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Abstract

Natural language inference (NLI) is critical
for complex decision-making in biomedical
domain. One key question, for example, is
whether a given biomedical mechanism is sup-
ported by experimental evidence. This can be
seen as an NLI problem but there are no directly
usable datasets to address this. The main chal-
lenge is that manually creating informative neg-
ative examples for this task is difficult and ex-
pensive. We introduce a novel semi-supervised
procedure that bootstraps an NLI dataset from
existing biomedical dataset that pairs mecha-
nisms with experimental evidence in abstracts.
We generate a range of negative examples us-
ing nine strategies that manipulate the structure
of the underlying mechanisms both with rules,
e.g., flip the roles of the entities in the interac-
tion, and, more importantly, as perturbations
via logical constraints in a neuro-logical decod-
ing system (Lu et al., 2021b).

We use this procedure to create a novel dataset
for NLI in the biomedical domain, called
BioNLI and benchmark two state-of-the-art
biomedical classifiers. The best result we ob-
tain is around mid 70s in F1, suggesting the dif-
ficulty of the task. Critically, the performance
on the different classes of negative examples
varies widely, from 97% F1 on the simple role
change negative examples, to barely better than
chance on the negative examples generated us-
ing neuro-logic decoding.1

1 Introduction

Biomedical research has progressed at a tremen-
dous pace, to the point where PubMed2 has indexed
well over 1M publications per year in the past
eight years. Many of these publications include
high-level mechanistic knowledge, e.g., protein-
signaling pathways, which is critical for the under-
standing of many diseases (Valenzuela-Escarcega

1Code and data is available at https://github.com/
StonyBrookNLP/BioNLI

2https://pubmed.ncbi.nlm.nih.gov

Premise:The outflow of uracil from the yeast Saccha-
romyces cerevisiae is known to be relatively fast in certain
circumstances, to be retarded by proton conductors and
to occur in strains lacking a uracil proton symport. In the
present work, it was shown that uracil exit from washed
yeast cells is an active process, creating a uracil gradient
of the order of -80 mV relative to the surrounding medium.
Glucose accelerated uracil exit, while retarding its entry.
DNP or sodium azide each lowered the gradient to about
-30 mV, simultaneously increasing the rate of uracil entry.
They also lowered cellular ATP content. Manipulation of
the external ionic conditions governing delta mu H+ at
the plasma membrane had no detectable effect on uracil
transport in yeast preparations thoroughly depleted of ATP.

Consistent Hypothesis:It was concluded that <re> uracil
<er> exit is probably not driven by the s <el> proton <le>
gradient but may utilize ATP directly.

Adversarial Hypothesis:It is concluded that <el> uracil
<le> exit from S. cerevisiae is an active process facilitated
by a <re> proton <er> gradient and ATP.

Table 1: Example of a premise/hypothesis pair in the
BioNLI dataset, as well as of an adversarial hypoth-
esis that was automatically generated by an encoder-
decoder network that manipulated the lexico-semantic
constraints in the original hypothesis. Here the regulator
entity is marked as <re> entity <er>, and the regulated
entity is marked as <el> entity <le>.

et al., 2018), but which must be supported by lower-
level experimental evidence to be trustworthy. De-
veloping models that can understand and reason
about such mechanisms is crucial for support-
ing effective access to the rich biomedical knowl-
edge (Bastan et al., 2022). In particular, the current
information deluge motivates the need for develop-
ing tools that can answer the question: “Is a given
mechanism supported by experimental evidence?”.
This can be seen as a biomedical natural language
inference (NLI) problem. Despite the prevalence of
many biomedical NLP datasets (Demner-Fushman
et al., 2020; Bastan et al., 2022; Krallinger et al.,
2017), there are no datasets that can be directly
used to address this task.
However, manually creating a biomedical NLI
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dataset that focuses on mechanistic information is
challenging. Table 1, which contains an actual ex-
ample from our proposed dataset, highlights several
difficulties. First, understanding biomedical mech-
anisms and the necessary experimental evidence
that supports (or does not support) them requires
tremendous expertise and effort (Kaushik et al.,
2019). For example, the premise shown is con-
siderably larger than the average premise in other
open-domain NLI datasets such as SNLI (Bowman
et al., 2015), and is packed with domain-specific
information. Second, negative examples are sel-
dom explicit in publications. Creating them manu-
ally risks introducing biases, simplistic information,
and systematic omissions (Wu et al., 2021).
In this work, we introduce a novel semi-

supervised procedure for the creation of biomedical
NLI datasets that include mechanistic information.
Our key contribution is automating the creation
of negative examples that are informative without
being simplistic. Intuitively, we achieve this by
defining lexico-semantic constraints based on the
mechanism structures in the biomedical literature
abstracts. Our dataset creation is as follows:

(1) We extract positive entailment examples con-
sisting of a premise and hypothesis from abstracts
of PubMed publications. We focus on abstracts
that contain an explicit conclusion sentence, which
describes a biomedical interaction between two en-
tities (a regulator and a regulated protein or chem-
ical). This yields premises that are considerably
larger than premises in other open-domain NLI
datasets: between 3 – 15 sentences.

(2) We generate a wide range of negative exam-
ples by manipulating the structure of the under-
lying mechanisms both with rules, e.g., flip the
roles of the entities in the interaction, and, more
importantly, by imposing the perturbed conditions
as logical constraints in a neuro-logical decoding
system (Lu et al., 2021b). This battery of strategies
produces a variety of negative examples, which
range in difficulty, and, thus, provide an important
framework for the evaluation of NLI methods.

We employ this procedure to create a new dataset
for natural language inference (NLI) in the biomed-
ical domain, called BioNLI. Table 1 shows an ac-
tual example from BioNLI. The dataset contains
13489 positive entailment examples, and 26907 ad-
versarial negative examples generated using nine
different strategies. An evaluation of a sample of
these negative examples by human biomedical ex-

perts indicated that 86% of these examples are in-
deed true negatives. We trained two state-of-the-art
neural NLI classifiers on this dataset, and show
that the overall F1 score remains relatively low,
in the mid 70s, which indicates that this NLI task
remains to be solved. Critically, we observe that
the performance on the different classes of nega-
tive examples varies widely, from 97% accuracy
on the simple negative examples that change the
role of the entities in the hypothesis, to 55% (i.e.,
barely better than chance) on the negative exam-
ples generated using neuro-logic decoding. Further,
given how the dataset is constructed we can also
test if models produce consistent decisions on all
adversarial negatives associated with a mechanism,
giving deeper insight into model behavior. Thus, in
addition of its importance in the biomedical field,
we hope that this dataset will serve as a benchmark
to test models’ language understanding abilities.

2 Related Work

Previous work on NLI in scientific domains include:
medical question answering (Abacha and Demner-
Fushman, 2016), entailment based text exploration
in health care (Adler et al., 2012), entailment recog-
nition in medical texts (Abacha et al., 2015), textual
inference in clinical trials (Shivade et al., 2015),
NLI on medical history (Romanov and Shivade,
2018), and SciTail (Khot et al., 2018) which is
created from multiple-choice science exams and
web sentences. These datasets either have modest
sizes (Abacha et al., 2015), target specific NLP
problems such as coreference resolution or named
entity extraction (Shivade et al., 2015), and make
use of experts in the domain to generate inconsis-
tent data which is costly and labor-intensive. Ad-
ditionally, they also focus on sentence-to-sentence
entailment tasks, where both the premise and the
hypothesis are no longer than one sentence. Most
importantly, none of these are directly aimed at
inference on mechanisms in biomedical literature.

Our work is also related to NLI tasks that go be-
yond sentence-level entailments. For example, (Yin
et al., 2021) include premises longer than a sen-
tence, but only use three simple rule-based meth-
ods to create negative samples. (Yan et al., 2021;
Nie et al., 2019) use larger contexts as premises for
the NLI task but only on general purpose domains
like news, fiction, and Wiki. On the other hand, the
BioNLI dataset is an inference problem with large
contexts as premises but in the biomedical domain
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which often requires handling more complex texts
and domain knowledge.
There is also a growing body of research into

exploring factual inconsistency in text generation
models (Maynez et al., 2020; Zhu et al., 2021;
Utama et al., 2022). We take advantage of the
known weakness of generation models for halluci-
nation and also employ a constraint based neurolog-
ical decoding from recently introduced decoding
methods (Lu et al., 2021b,a; Kumar et al., 2021) to
generate adversarial examples for BioNLI dataset.

3 BioNLI Creation

We model the task of understanding if a high-level
mechanistic statement is supported by lower-level
experimental evidence as natural language infer-
ence (NLI). The goal of NLI is to understand
whether the given hypothesis can be entailed from
the premise or not (Dagan et al., 2005). This is
typically modeled with three labels (entailed or
not, plus a neutral class if the two texts are un-
related). In our case, the premise contains the
experimental evidence, while the hypothesis sum-
marizes the higher-level mechanistic information.
Both of these texts are extracted from abstracts
of biomedical publications, where the beginning
sentences (the supporting set) describe experimen-
tal evidence, and a conclusion sentence summa-
rizes the mechanistic information that is entailed
by these experiments.
In this work, we introduce the BioNLI dataset,

an NLI dataset automatically created from a set of
abstracts of PubMed open-access publications. We
collected all the abstracts which contain a conclu-
sion sentence with mechanistic information at the
end of the abstract, and filter out the rest. Following
previous work in mechanism generation (Bastan
et al., 2022), we focus on conclusion sentences that
discuss binary biochemical interactions between
a regulator and a regulated entity (both of which
are proteins or chemicals). We then generate nega-
tive examples by manipulating the structure of the
conclusion sentences.
In the following subsections we describe in de-

tail the generation of both positive and negative
examples in BioNLI.

3.1 Identifying Abstracts with Mechanistic
Information

To identify abstracts that contain conclusion sen-
tences with such binary biochemical interactions,

we followed the same procedure and dataset 3 as
(Bastan et al., 2022) . That is, we used a series of
patterns (e.g., finding words that start with conclud
all patterns are described in Appendix A) to iden-
tify conclusion sentences at the end of abstracts,
and consider the previous ones as the supporting
set. We analyzed the SuMe dataset and found that
91% of the abstracts end with conclusion sentences,
which indicates that the filtering heuristic is robust.

Further, we take advantage of the structured text
in the biomedical domain, by focusing on abstracts
that describe some mechanism between two bio-
chemical entities. One of the main entities is called
regulator entity and is marked with <re> entity
<re> inside the text; the other main entity is called
regulated entity and is marked with <el> entity
<le> inside the text. We will use this structure to
generate negative examples by modifying it.

3.2 Positive Instances

For positive examples, we simply use the origi-
nal conclusion sentence from the abstract as the
hypothesis and the supporting set as the premise.
These sentences are likely to be accurate as they are
written by domain experts, and also peer-reviewed
by other scientists.

3.3 Adversarial Instances

The key contribution of this paper is on the auto-
matic creation of meaningful, yet difficult negative
examples without the use of experts. We introduce
multiple strategies for creating negative examples.
We group these strategies into two groups: rule-
based and neural-based counterfactuals, both of
which are detailed below. We show examples of
these strategies in Table 4.

3.3.1 Rule-Based Counterfactuals
This category consists of rule-based methods that
convert a correct conclusion sentence (i.e., the hy-
pothesis) into an instance that is not entailed by
the given supporting set by perturbing parts of
its semantic structure. Most of them are used in
general-domain factual consistency evaluating sys-
tems (Kryściński et al., 2019; Zhu et al., 2020):

Swap Entity Names (SEN): Swapping the entity
names. This flips the roles of the entities in the
interaction, i.e., the regulator becomes the regu-

3This paper works at a higher level of abstraction, which
contains causal semantic relations (or “activations”), which
are always directed and not necessarily asymmetric.
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lated and vice versa, which contradicts the original
evidence.

Swap Entity Positions (SEP): In this perturbation
we swap the positions of the two entities in text.

Swap Random Entity (SRE): In this perturba-
tion one of the main entities is randomly swapped
with a different entity that occurs in the support-
ing set and has the same entity type. We use
SciSpaCy (Neumann et al., 2019) and the built
in en_ner_bionlp13cg_md model to detect entity
types.

Swap Random Entity with Out of text entity
(SREO): In this perturbation we swap one of the
two entities in the interaction with a random entity
from out of the context which was not available
in the supporting set but has the same type as the
main entity. Similarly, we use SciSpaCy with the
same model to detect entity types.

Verb Negation (VNeg): We randomly select one
of the predicates in the original conclusion and
change its polarity, e.g., from positive to negative
or vice versa.

Swap Numbers (SN): If the conclusion contains
a number, it is swapped with a different number,
randomly chosen from the supporting set.

Lexical Polarity Reversal (LPR): We collected
a list of terms describing mechanistic interactions
(e.g., inhibition and promotion), and swapped them
with their antonyms when encountered in the hy-
pothesis.

3.3.2 Neural-based Counterfactuals
The above methods are relatively simple per-
turbations, which might be easily detected by
transformer-based classifiers. To counteract this po-
tential limitation, we take advantage of transformer-
based generation methods to create more complex
and diverse set of negative examples. In this cate-
gory we have two main approaches:

Mechanism Generation (GEN): We use a model
pretrained on a mechanism generation task in the
same context (Bastan et al., 2022) to generate mech-
anism sentences (and the relation between main
entities) for each abstract in our dataset. As our
dataset overlaps with the one from (Bastan et al.,
2022), we implemented a 5-fold cross validation,
and retrained the model with the corresponding
training set in each fold. That is, for each split,
we train with 4 folds and generate the output for

the other fold. The generated texts which get a
BLEURT score lower than λ, and predict the re-
lation between two main entities incorrectly are
selected as counterfactuals. Here, we set λ = 0.45.

Neurologic Decoding (GEN-ND): Neurologic de-
coding is a decoding algorithm that enables neural
language models to generate text while satisfying
complex lexical constraints (Lu et al., 2021b). We
take advantage of this decoding method to impose
different structure-aware constraints. For genera-
tion, we use the same model as the one described
in GEN approach. For decoding this model, we
define the following constraints which result in gen-
erating negative examples. (we combine all three
categories in our results table, naming the entire
group GEN-ND):

(1) Neurologic Decoding with SEN Constraints
(GEN-ND-SEN): We imposed as positive con-
straints (i.e., constraints that should be satisfied
during decoding) that the two entities be present
in the output, but we swapped their names. That
is, the regulator and regulated entities are swapped;
if both of them are satisfied in the generated text,
the instance is used as a negative example. For ex-
ample if the original conclusion has the following
pattern:
... < re > entity1 < er > ... < el > entity2 < le >

We add the following constraints to the neuro-
logical decoding:
[[< re > entity2 < er >], [< el > entity1 < le >]]

Compared with the general SEN introduced in sec-
tion 3.3.1, by using these constraints we force the
generation model to generate a natural yet negative
and completely new sentence.

(2) Neurologic Decoding with SRE Constraints
(GEN-ND-SRE): Similarly, we swapped one of the
main entities in the positive constraints with a ran-
dom entity from the supporting text. To make sure
the generated sentence is not too similar to the orig-
inal conclusion sentence, we used the generated
sentence only if both constraints are satisfied and
the semantic similarity between the text and the
original text is smaller than δ. To compute the se-
mantic similarity we use BioLinkBERT (Yasunaga
et al., 2022). We set δ to 0.9.

(3)Neurologic Decoding with Negative Constraints
(GEN-ND-NG): The third and last method we tried
uses negative constraints, i.e., its lexical artifacts
should not be present in the generated text. In
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Dataset Train Dev Test Sum
+ 8489 3000 2000 13489

-

SEN 2064 3000 2000 7064
SEP 2022 3000 2000 7022
SRE 81 20 15 116
SREO 1466 2584 1524 5574
VNeg 837 1395 810 3042
SN 615 543 314 1472
LPR 711 623 340 1674

GEN-ND 547 141 102 790
GEN 165 30 21 216
Total 8508 11336 7126 26970
Unique 8508 3000 2000 13508
Total 16997 14336 9126 40459
Unique 16997 3000 2000 21997

Table 2: Dataset statistics of the larger distribution. Each
instance is perturbed as many times as possible for the
dev and test sets and once for the training set.
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Figure 1: Distribution of possible perturbations over the
dev set

particular, the negative constraints we defined con-
tained the original entities. By using the original
entities as negative constraints the generated text
receives a higher score if the main entities are not
shown in their own roles (i.e., neither regulator nor
regulated entities are not enclosed with specific
markers).

3.4 Dataset Statistics

The resulting dataset is summarized in two tables.
Table 2 shows the maximum number of possible
perturbations on each instance. For example, all
instances can be perturbed with SEP and SEN ap-
proaches, while only the ones that have a number
in both conclusion and supporting set can be per-
turbed with the SN approach.
The distribution of the possible perturbations

Dataset Train Dev
+ 2790 2453

-

SEN 413 2453
SEP 452 2453
SRE 80 22
SREO 335 2058
VNeg 159 1214
SN 256 625
LPR 311 728

GEN-ND 586 84
GEN 162 33
Total 2754 9670

Total Unique 2754 2453
Total 5544 12123

Total Unique 5544 2453

Table 3: Dataset statistics of the balanced distribution.
We sampled over perturbed classes to create a balance
dataset so that no rule-based category have more than
500 instances in the train set. Test set is same as Table 2

over the dev set is shown in Figure 1. As we see in
this figure, all sentences can get at least two pertur-
bation SEN and SEP. 5.7% of the instances can not
get any other perturbations based on their structure.
35.1% of the data get 3 different adversarial exam-
ples. Most of the data, which is about 39% of them,
can be perturbed with 4 different approaches. The
lowest category is 8 perturbations which are only
about 0.1% of the data. We don’t have any instance
which can be perturbed with all 9 possible methods
explained in section 3.3, which shows the diversity
and variety on the adversarial instance generation
approaches.

Note that while our goal is to produce a dataset
with as many high quality examples as possible
for each category, downstream applications can ad-
just the distribution of the training categories to
be uniform or biased towards specific categories
as needed based on their requirements. To study
the impact of a balanced distribution of adversar-
ial examples, we sampled the positive and nega-
tive classes to produce a balanced dataset. Table 3
shows the distribution of the adversarial categories
in this balanced dataset. We evaluate with the orig-
inal collection as well as with this balanced dataset
(see Table 5).
Table 4 shows a set of rule-based and neural-based
adversarial examples. The main entities are en-
closed with specific markers and are swapped with
different methods. We also see a completely new
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and negative generated text based on the supporting
set with the generation approach (GEN-SEN).

3.5 Quality Control
To ensure the quality of the collected dataset, we
asked two experts (graduate students in the biomed-
ical domain) to inspect 50 randomly selected ad-
versarial examples generated by the neural-based
counterfactual methods (section 3.3.2). We sam-
pled 25 examples each from GEN and GEN-ND
methods. Given the abstract and the generated sen-
tence, the experts assessed whether the generated
sentence is indeed inconsistent with the given sup-
porting set, meaning that the sentence cannot be
concluded given the supporting set. The expert
analysis shows that the neural-based counterfac-
tuals are of high quality. They find that 88% of
adversarial examples from the GEN method and
84% from the GEN-ND method are correct nega-
tive examples, averaging to 86% overall.

4 Evaluation

In this section we benchmark the performance of
state-of-the-art (SOTA) biomedical language mod-
els on the BioNLI dataset. Our evaluation is aimed
at assessing the following aspects of the BioNLI:

1. How difficult is the inference task captured by
the dataset?

2. What kinds of perturbations are difficult for
the models?

3. How consistent are the models on adversarial
instances?

4.1 Implementation Details
We fine-tune two state-of-the-art models in biomed-
ical domain:
(i) PubMedBERT (Gu et al., 2020) was pretrained
from scratch with texts from the biomedical do-
main and shown to be effective for a wide variety
of biomedical NLP tasks including NER, QA, and
sentence similarity.
(ii) BioLinkBERT (Yasunaga et al., 2022) aug-
ments PubMedBERT by pre-training jointly on
linked biomedical articles.
We fine-tune the top 3 layers of the base-sized pre-
trained models from Hugging Face (Wolf et al.,
2019) using PyTorch (Paszke et al., 2019). We
use AdamW (Loshchilov and Hutter, 2017) with a
learning rate of 1e− 4 by manually tuning 5 differ-
ent values. We use the original hyper-parameters
of the models and the NLI label prediction is done

via binary classification using CLS token. The se-
quence length we use here is 512 and the beam
size is 16. We train each model for 20 epochs
and choose the best one based on the performance
(macro F1) over the dev set.

The performance of both these models is listed
in Table 5. The table reports positive, negative, and
overall F1 scores, as well performance for the vari-
ous types of negative examples (recall). At the time
of prediction, we use a binary classifier. Hence, we
don’t have a fine-grained negative category pre-
dictions, therefore, we can’t calculate precision.
Instead, we report recall for fine-grained negative
categories and F1 score for positive and overall
negative prediction. We also report macro-F1 for
positive and negative classes. In addition, the table
includes an ablation experiment, where the perfor-
mance of the classifiers trained only on the hypoth-
esis (“hypo-only”) is contrasted with the classifier
trained on the entire data (“premise+hyp”). We
also include the performance of the balanced distri-
bution in parentheses, to compare with the overall
distribution.

4.2 Overall Difficulty
Table 5 indicates that the overall performance of the
best model on the positive class is 77%, and 79% on
all negative examples (macro-average). If we only
consider the difficult negative classes (SRE, LPR,
GEN-ND, GEN), the best model’s performance on
the negative categories drop considerably to 55.4%,
i.e., only slightly better than a random classifier.
This table also highlights the difficulty of the

generated categories. While traditional approaches
of the adversarial example creation, (i.e., SEN and
SEP), are solvable with large transformer-based
models, the more complex negative examples pro-
duced using generation are considerably more dif-
ficult to be classified correctly.
Table 5 calls attention to another feature of the

BioNLI dataset: classifiers trained with the bal-
anced training data (shown in parentheticals) per-
form better on minority categories, while the mod-
els produced after training on the larger distribution
perform better on other categories. This highlights
the versatility of the dataset, as well as the impor-
tance of customizing the data distribution (includ-
ing that of negative examples!) for each use case.

4.3 Difficulty of Adversarial Instances
Table 5 indicates that some categories of the ad-
versarial examples are more difficult than the rest.
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Abstract:We investigated whether intracellular pH (pH(i)) is a causal mediator in abscisic acid (ABA)-induced gene
expression. We measured the change in pH(i) by a "null-point" method during stimulation of barley (Hordeum vulgare cv
Himalaya) aleurone protoplasts with ABA and found that ABA induces an increase in pH(i) from 7.11 to 7.30 within 45 min
after stimulation. This increase is inhibited by plasma membrane H(+)-ATPase inhibitors, which induce a decrease in pH(i),
both in the presence and absence of ABA. This ABA-induced pH(i) increase precedes the expression of RAB-16 mRNA, as
measured by northern analysis. ABA-induced pH(i) changes can be bypassed or clamped by addition of either the weak
acids 5,5-dimethyl-2,4-oxazolidinedione and propionic acid, which decrease the pH(i), or the weak bases methylamine
and ammonia, which increase the pH(i). Artificial pH(i) increases or decreases induced by weak bases or weak acids,
respectively, do not induce RAB-16 mRNA expression. Clamping of the pH(i) at a high value with methylamine or ammonia
treatment affected the ABA-induced increase of RAB-16 mRNA only slightly. However, inhibition of the ABA-induced
pH(i) increase with weak acid or proton pump inhibitor treatments strongly inhibited the ABA-induced RAB-16 mRNA
expression.

Conclusion:We conclude that, although the <el> ABA <le>-induced the <re> pH <er>(i) increase is correlated with and
even precedes the induction of RAB-16 mRNA expression and is an essential component of the transduction pathway
leading from the hormone to gene expression, it is not sufficient to cause such expression.

SEN We conclude that, although the <el> pH <le>-induced the <re> ABA <er>(i) increase is correlated with and
even precedes the induction of RAB-16 mRNA expression and is an essential component of the transduction
pathway leading from the hormone to gene expression, it is not sufficient to cause such expression.

SEP We conclude that, although the <re> pH <er>-induced the <el> ABA <le>(i) increase is correlated with and
even precedes the induction of RAB-16 mRNA expression and is an essential component of the transduction
pathway leading from the hormone to gene expression, it is not sufficient to cause such expression.

SREO We conclude that, although the <el> integrin <le>-induced the <re> pH <er>(i) increase is correlated with and
even precedes the induction of RAB-16 mRNA expression and is an essential component of the transduction
pathway leading from the hormone to gene expression, it is not sufficient to cause such expression.

VNeg We conclude that, although the <el> ABA <le>-induced the <re> pH <er>(i) increase is not correlated with and
even precedes the induction of RAB-16 mRNA expression and is an essential component of the transduction
pathway leading from the hormone to gene expression, it is not sufficient to cause such expression.

LPR We conclude that, although the <el> ABA <le>-induced the <re> pH <er>(i) decrease is correlated with and
even precedes the induction of RAB-16 mRNA expression and is an essential component of the transduction
pathway leading from the hormone to gene expression, it is not sufficient to cause such expression.

Generation We conclude that the <re> ABA <er> -induced increase in <el> pH <le> (i) precedes the expression of RAB-16
mRNA.

Table 4: Example of the generated adversarial instance for the BioNLI dataset using lexico semantic constraints.
Regulator entities are enclosed in <re> <er> tags and regulated entities are enclosed in <el> <le> tags. The red
texts show the negated phrases.

This is mostly seen in rule-based categories. In
average, the neural-based methods generate more
difficult sentences than the rule-based methods.
For instance, SEP and SEN instances are eas-

ier due to the structure (markers) in the dataset.
Even without inspecting the supporting set, the
model learns that the entity with <re><er> mark-
ers should be the subject of the text while the entity
marked with <el><le> should be the object of the
mechanism.
Some categories are easier to recognize with

context. For instance SREO and SN approaches are
not easily detectable with hypothesis only baselines.
But, when the model is trained with both premise
and hypothesis, these become easier because the
contradiction can be recognized using information
in the premise (i.e. abstract).
We have four difficult categories of adversarial

examples (SRE, LPR, GEN-ND, and GEN) where
the models perform only slightly better than a ran-

dom classifier. These are the least-frequent classes;
when we train the model under the balanced distri-
bution the performance improves, somewhat. How-
ever, performance remains low, which underscores
the need for further research on handling these dif-
ficult adversarial examples.

4.4 Model Consistency on Adversarial
Instances

In addition to the per-perturbation evaluation, we
also merged all available positive and negative
instance for each entry of the dataset, and com-
puted what percentage of them are classified cor-
rectly. The cumulative results are shown in Fig-
ure 2. While models are able to get reasonable
accuracy overall, they are not consistent in their de-
cisions. There are no cases, where both the positive
instance and all of its associated negative instances
are all classified correctly. There are only 30% of
the cases where at least 70% of the perturbations
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Full Distribution Balanced Distribution

Model PubMedBERT BioLinkBERT PubMedBERT BioLinkBERT

Class h-only p+h h-only p+h h-only p+h h-only p+h

Positive 0.65 0.76 0.68 0.77 0.57 0.69 0.60 0.69

N
eg
at
iv
e

R
ul
e-
ba
se
d

SEN 0.90 0.96 0.91 0.97 0.88 0.92 0.93 0.96

SEP 0.92 0.97 0.93 0.98 0.89 0.92 0.93 0.96

SRE 0.33 0.50 0.33 0.50 0.50 0.67 0.33 0.67

SREO 0.69 0.98 0.64 0.99 0.60 0.95 0.69 0.97

VNeg 0.81 0.91 0.82 0.86 0.79 0.84 0.78 0.83

SN 0.64 0.82 0.54 0.81 0.52 0.78 0.59 0.82

LPR 0.56 0.56 0.48 0.59 0.50 0.50 0.48 0.49

Macro-avg 0.69 0.81 0.67 0.82 0.67 0.80 0.68 0.81

N
N
-b
as
ed GEN-ND 0.47 0.6 0.53 0.56 0.57 0.66 0.64 0.68

GEN 0.33 0.57 0.33 0.57 0.57 0.68 0.33 0.68

Macro-avg 0.40 0.58 0.43 0.56 0.57 0.67 0.49 0.68

All negatives 0.63 0.76 0.61 0.76 0.65 0.77 0.63 0.79

Macro-avg 0.64 0.76 0.65 0.77 0.61 0.73 0.62 0.74

Table 5: Overall performance of two state-of-the-art models in the biomedical domain (PubMedBERT, Bi-
oLinkBERT) on both distributions. The models are fine-tuned using the data with premise (p+h) and without
premise (h-only) on the BioNLI dataset. The metric used here is recall for fine-grained negative classes and F1 for
positive and all negative categories. The different rows indicate the performance for the various kinds of positive
and negative examples.
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Figure 2: Percentage of correctly classified perturba-
tions in the dev set.

derived from the same positive instance are classi-
fied correctly. This further indicates the brittleness
(or lack of robust reasoning) in current models sug-
gesting avenues for further research.

4.5 Error Analysis

We analyzed a set of 50 instances within the
BioNLI dataset which are classified incorrectly. Ta-

Error Category Frequency %

Multiple pieces of information 10
Abbreviation 10

Unrelated information 16
Mechanism mix up 18
Noun phrase mix up 20
Entity Similarity 26

Table 6: Distribution of different error categories in 50
incorrect classified samples

ble 6 outlines distribution of the errors made by
BioLinkBERT model in different categories. In
10% of the misclassified instances, the mechanism
behind the entities which is explained in the con-
clusion sentence needs multi hop reasoning which
makes it difficult to classify correctly. Abbrevia-
tions can cause difficulties, when one of the main
entities is mentioned in its full form in one sentence
but abbreviated in the rest of the sentences. Dis-
tant entities also make inference harder. The model
fails when the two main entities are in different sen-
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tences with many unrelated fragments of text occur
between them. Sometimes the abstracts can talk
about two related experiments on the same entities,
but the mechanism is only related to one of the
experiment making it harder to assess entailment.
A ’-’ (dash) between two words, can change the
subject and object of a sentence. The entailment
is very difficult when there is a subtle difference
here. Finally, the similarity between entity names,
or name overlaps, specifically in case of SRE and
GEN-ND-SRE confuses the model about the cor-
rect entailment class. There are cases where the
entity is swapped with another entity with simi-
lar name or with partially overlapped name, these
cases seem to be difficult for the model to classify
correctly.

5 Conclusion

In this paper, we introduced a novel semi-
supervised procedure for the creation of biomedical
NLI datasets that include mechanistic information.
Our key contribution is automating the creation of
negative examples that are informative without be-
ing simplistic. We achieve this by manipulating
the lexico-semantic constraints in the mechanism
structures captured in the hypotheses, which we
implement both with rules and with neuro-logic
decoding. To our knowledge, this is the first paper
that employs neuro-logic decoding for the genera-
tion of adversarial examples. All in all, we imple-
mented nine different strategies for the creation of
adversarial examples.
We used this procedure to create the BioNLI

dataset, which addresses NLI for mechanistic texts
in the biomedical domain. An evaluation of a sam-
ple of these negative examples by human biomed-
ical experts indicated that 86% of these examples
are indeed true negatives. We trained two state-of-
the-art neural NLI classifiers on this dataset, and
showed that the overall performance remains rela-
tively low, which indicates that this NLI task is not
solved. Critically, we observe that the performance
on the different classes of negative examples varies
widely, from 97% accuracy on the simple nega-
tive examples that change the role of the entities
in the hypothesis, to 55% (i.e., barely better than
chance) on the negative examples generated us-
ing neuro-logic decoding. We hope that this open-
access dataset4 will enable further research both on

4Code and data is available at https://github.com/
StonyBrookNLP/BioNLI

biomedical NLI, and on language understanding in
general.
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7 Limitations

Unlike many scientific NLI datasets (Romanov and
Shivade, 2018; Shivade et al., 2015) no instance
in the BioNLI dataset was directly annotated by
human domain experts. Instead, following the trend
of machine-generated datasets (Hartvigsen et al.,
2022), we build upon recent developments in text
generation and generate BioNLI automatically.

The only human annotation in this effort was per-
formed by one expert on a sample of 50 sentences,
to check the quality of automatically created nega-
tive examples. This minimal effort was justified by
previous work in the biomedical space (citation hid-
den for review), in which we observed that experts
had high inter-annotator agreement on the interpre-
tations of scientific information in abstracts.
The premise-free experiments show the pres-

ence of artifacts in some categories of the BioNLI
dataset, similar to several other NLI datasets (Ro-
manov and Shivade, 2018; Bowman et al., 2015;
Nangia et al., 2017). Addressing these artifacts
remains an open research issue.

8 Ethical Considerations

Our data is collected solely from open-access pub-
lications in PubMed. We do not include any meta
data (authors, publication venue, etc.) in the dataset.
The created dataset is also open-access.

We believe our released dataset and software
will contribute to society by promoting further NLI
research and applications in the biomedical do-
main. Long term, we envision that this research
will enable novel machine reading applications that
automatically discover potential explanations and
treatments for diseases that are still misunderstood
today.
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A Extraction Patterns for Identifying
Conclusion Sentences

To extract the conclusion sentences from the ab-
stract, we follow the recipe from Bastan et al.
(2022). We filtered the abstracts from PubMed
dataset which have a form of conclusion sentence
at the end. In particular we filtered out all the
abstracts that do not have any of the phrases in
Table 7.

Used Phrase
we conclude that
it is concluded that
it was concluded that
we concluded that

we have concluded that
it has been concluded that
it may be concluded that

it was therefore concluded that
we therefore conclude that

we conclude
we thus conclude that

it is therefore concluded that
we further conclude that

Table 7: Used phrases to filter the abstracts

B Hyper-parameter Selection

B.1 Generation Lambda

One of the strategies to generate negative exam-
ples is the generation method (GEN). We trained
a t5-large model on the SuMe dataset using 5-fold
cross validation. Each time we trained on 4 folds
and generated the output for the 5th fold. From
the generated texts, we selected the ones which
have lowest quality. That is, we selected generated
sentences that contain both entities, the predicted
relation labels are incorrect, and the Bleurt score of
the generated sentence against the true mechanism
sentence is lower than a threshold λ. In our prelim-
inary experiments we found that λ = 0.45 yields a
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Parameter Value Details
min_tgt_length 15 min target length
max_tgt_length 256 max target length

bs 4 batch size
beam_size 50 beam size

length_penalty 0.1 length penalty for beam
ngram_size 10 ngrams occur once
prune_factor 50 candidates to keep
sat_tolerance 2 min satisfied constraints

beta 2 reward factor

Table 8: Neurological decoding hyper parameters

good compromise between quality and yield. Ana-
lyzing the output of this hyper-parameter showed
that 90% of the sentences selected with this method
are indeed true negative samples.

B.2 Neurological Decoding Hyper-parameters
One of the strategies to generate negative examples
is the generation method with the neurological de-
coding (GEN-ND) (Lu et al., 2021b). We used the
source code introduced in their GitHub page5. The
hyper-parameter details are shown in Table 8.
We also allowed for the use of negative or pos-

itive constraints, another choice that we use as a
hyper-parameter.

5http://github.com/GXimingLu/
neurologic_decoding
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