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Abstract

Most models of visual attention are aimed at predicting
either top-down or bottom-up control, as studied using dif-
ferent visual search and free-viewing tasks. We propose
Human Attention Transformer (HAT), a single model pre-
dicting both forms of attention control. HAT is the new
state-of-the-art (SOTA) in predicting the scanpath of fixa-
tions made during target-present and target-absent search,
and matches or exceeds SOTA in the prediction of “task-
less” free-viewing fixation scanpaths. HAT achieves this
new SOTA by using a novel transformer-based architec-
ture and a simplified foveated retina that collectively cre-
ate a spatio-temporal awareness akin to the dynamic visual
working memory of humans. Unlike previous methods that
rely on a coarse grid of fixation cells and experience infor-
mation loss due to fixation discretization, HAT features a
dense-prediction architecture and outputs a dense heatmap
for each fixation, thus avoiding discretizing fixations. HAT
sets a new standard in computational attention, which em-
phasizes both effectiveness and generality. HAT’s demon-
strated scope and applicability will likely inspire the de-
velopment of new attention models that can better predict
human behavior in various attention-demanding scenarios.

1. Introduction
The prediction of human attention is crucial for Human-

Computer Interaction (HCI) systems to anticipate a person’s
needs and intents, but human attention is not a singular thing
and its control can take at least two broad forms. One is
bottom-up, meaning that attention saliency signals are com-
puted from the visual input and used to prioritize shifts of
attention. The same visual input should therefore lead to
the same shifts of bottom-up attention. The second type of
attention is top-down, meaning that a task or goal is used
to control attention. Given a kitchen scene, very differ-
ent fixations are observed depending on whether a person
is searching for a clock or a microwave oven [59]. These
two types of attention control spawned two separate liter-
atures on gaze fixation prediction (the accepted measure
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Figure 1. Given an image, the proposed HAT is able to predict
scanpaths under three settings target-present search for TV; target-
absent scanpath for sink; and free viewing. Importantly, HAT
outperforms previous state-of-the-art scanpath prediction methods
on multiple datasets across three settings: target-present, target-
absent visual search and free viewing, that were studied separately.

of attention), one where studies use a free-viewing task to
study questions of bottom-up attention and the other using
a goal-directed task (typically, visual search) to study top-
down attention control. Consequently, most models have
been designed to address either bottom-up or top-down at-
tention, not both. Can a single model architecture predict
both bottom-up and top-down attention control?

Our answer to this question is HAT, a Human Atten-
tion Transformer that generally predicts scanpaths of fixa-
tions, meaning that it can be applied to both top-down visual
search and bottom-up free viewing tasks (Fig. 1). Critical
to HAT’s effectiveness and scope is a novel transformer-
based design and a simplified foveated retina that collec-
tively work to create a form of dynamically-updating vi-
sual working memory. Previous methods either use a re-
current neural network (RNN) to maintain a dynamically
updated hidden vector that conveys information across fix-
ations [9, 48, 57, 2], or simulate a foveated retina by com-
bining multi-resolution information at the pixel level [57],
feature level [55], or semantic level [54]. These methods,
however, have drawbacks: RNNs lack interpretability and
multi-resolution methods of simulating a foveated retina
[57, 54, 55] fail to capture critical temporal and spatial in-
formation useful for scanpath prediction. To address these
problems, a computational attention mechanism [49] is used
to dynamically integrate the spatial, temporal and visual
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information acquired at each fixation into working mem-
ory [43, 44], enabling HAT to learn a set of task-specific
attention weights for aggregating information from work-
ing memory and predicting human attention control. This
mechanism hints at the relationship between human atten-
tion and working memory [16, 19], making HAT cogni-
tively plausible and its predictions interpretable.

In addition, previous work [54, 55, 9] addressed the
problem of scanpath prediction using (inverse) reinforce-
ment learning, where a coarse grid is often used to dis-
cretize the fixations into categorical actions due to the lim-
ited amount of gaze data. However, this discretization of
fixations leads to reduced accuracy of the fixation predic-
tion, thereby minimizing the usefulness of the method in
applications where high-resolution imagery is available as
input. A seemingly simple remedy to this problem would
be to increase the resolution of the discretization grid. How-
ever, this would quadratically increase the dimension of the
action space, making it challenging to train the networks
due to the need for much larger amounts of training data
to covering a much larger action space. HAT, on the other
hand, treats the scanpath prediction problem as a sequence
of dense prediction tasks with per-pixel supervision, thus
avoiding the discretization problem.

To demonstrate HAT’s generality, we predict scanpaths
under three settings, target-present (TP) search, target-
absent (TA) search, and free-viewing (FV), covering both
top-down and bottom-up attention. In the previous work
predicting search scanpaths [54, 55, 9], separate models
were trained for the TP and TA settings. HAT is a single
model establishing new SOTAs in both TP and TA search-
scanpath prediction. When trained with FV scanpaths, HAT
also achieves top performance relative to baselines. HAT
advances SOTA in cNSS by 83%, 58% and 72% under the
TP, TA and FV settings on the COCO-Search18 dataset [10]
and the COCO-FreeView dataset [11], respectively.

Our contributions can be summarized as follows:

1. We propose HAT, a novel transformer architecture in-
tegrating visual information at two different eccentric-
ities (approximating a foveated retina) to predict the
spatial and temporal allocation of human attention (the
fixation scanpath).

2. We show that our HAT architecture can be broadly
applied to different attention control tasks, as demon-
strated by SOTA scanpath predictions in the TP and TA
and FV settings. We also demonstrate that HAT’s pre-
dictions of human attention are highly interpretable.

3. We remove the need for fixation discretization and
formulate scanpath prediction as a sequential dense
prediction task, making HAT applicable to high-
resolution input.

2. Related Work
Predicting and understanding human gaze control has

been a topic of interest for decades in psychology [56,
18, 58], but it has only recently attracted the researcher’s
attention in computer vision [1, 26] In particular, Itti’s
seminal work [23] on the saliency model has triggered
a lot of interest on human attention modeling in com-
puter vision community and facilitated many other stud-
ies identifying and modeling the salient visual features of
an image to predict natural human eye-movement behavior
[5, 33, 29, 22, 32, 15, 25, 24, 4, 41, 3]. However, the scope
of these work is often narrowly focused on predicting hu-
man natural eye-movements without a specific visual task
(i.e., free-viewing), ignoring another important form of at-
tention control, such as goal-directed attention. In addition,
existing saliency models (for which training code is avail-
able, if applicable, e.g., [23, 50]) only model the spatial
distribution of fixations and do not predict the temporal or-
der between fixations (i.e., scanpath). Scanpath prediction
is more challenging problem because it requires predicting
not only where a fixation will be, but also when it will be
there.

To tackle these limitations, Chen et al. [10] created
COCO-Search18, a large-scale goal-directed gaze dataset.
In that work, eye movements were collected from the par-
ticipants who were asked to search for a target object from
the visual input where a target might or might not exist (tar-
get present and target absent conditions, respectively). This
paradigm, called categorical visual search, is extensively
studied in psychology to understand human goal-directed
attention control [52]. Early visual search datasets either
have multiple targets [20] in an image or only contain one or
two target categories [17, 57]. COCO-Search18 extended it
to 18 targets creating a large enough eye-movement dataset
that enables training deep-learning models to predict goal-
directed human scanpaths. In [54], an inverse reinforcement
learning (IRL) model proposed which showed superior per-
formance on COCO-Search18 in predicting target-present
scanpaths. Most recently, the same research group [55] pro-
posed a more generalized scanpath prediction model using
foveated feature maps that can be applied to target-absent
as well. However, their generalizability to free-viewing pre-
diction has never been interrogated.

Chen et al. [9] showed that a reinforcement learning
model directly optimized on the scanpath similarity met-
ric can predict scanpaths on VQA task, as well as on free-
viewing and target-present visual search tasks. Similar to
their work, we design a generic scanpath model that gener-
alizes to free-viewing and visual search tasks (both target-
present and target-absent). Contrary to the previous ap-
proach (mostly CNN-based), we leverage the power of the
Transformer architecture [49] and a dynamically-updating
working memory, which collectively helps to learn a com-
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Figure 2. HAT overview. We use encoder-decoder CNNs to extract two sets of feature maps P1 and P4 of different spatial resolutions. A
working memory is constructed by combining all feature vectors from P1 with the feature vectors of P4 at previously fixated locations,
representing information extracted from the periphery and central fovea. A transformer encoder is used to dynamically update the working
memory at every new fixation. Then, HAT produces N per-task queries Q (e.g., clock search and mouse search), with each learning to
aggregates task-specific information from the shared working memory for predicting the fixations for its own task. Finally, the updated
queries are convolved with P4 to yield the fixation heatmaps after a MLP layer, and projected to the termination probabilities in parallel.
Note, although this example uses visual search, the framework also works for free-viewing scanpaths with N = 1.

plex spatio-temporal fixation representations that can be ap-
plied to various visual tasks. We also approach scanpath
prediction as a dense prediction problem, eliminating the
need for discretizing the fixations into lower-resolution grid
space, which causes an inevitable loss of precision in the
fixation prediction as in previous methods [9, 54, 55]. Our
model is similar to IVSN [60] in using a top-down query to
match features in a feature map for each visual task (free-
viewing or search). However, a critical difference is that
in IVSN the query is directly extracted from a given task-
related image; whereas in our setting HAT automatically
learn the task-specific queries from the training fixations.

3. Approach

In this section, we first formulate scanpath prediction as
a sequence of dense prediction tasks using behavior cloning.
We then introduce our proposed transformer-based model,
HAT, for scanpath prediction. Finally, we describe how we
train HAT and use it for fast inference.

3.1. Preliminaries

To avoid the precision loss caused by grid discretization
present in prior fixation prediction methods [57, 54, 9, 55],
we formulate scanpath prediction as a sequential prediction
of pixel coordinates. Given a H×W image and the initial
fixation f0 (often set as the center of an image), a scanpath
prediction model aims to predict a sequence of human-like
fixation locations {f1, · · · , fn}, with each fixation fi being
a pixel location in the image. Note that n is variable that
may be different for each scanpath due to the different ter-
mination criteria of different human viewers. To model the
uncertainty in human attention allocation, existing methods
[55, 54, 9, 57] often predict a probability distribution over a
coarse grid of fixation locations at each step. HAT takes the
same spirit but outputs a dense fixation heatmap. Specif-
ically, HAT outputs a heatmap Yi ∈ [0, 1]H×W with each
pixel value indicating the chance of the pixel being fixated
in the next fixation. In addition, HAT also outputs a ter-
mination probability τi ∈ [0, 1] indicating how likely the
model should terminate the scanpath at the current step i.
To sample a fixation, we apply L1-normalization on Yi. In
the following, we omit the subscript i for brevity.



𝐶×
𝐻
32
×
𝑊
32 𝐶×

𝐻
4
×
𝑊
4

flatten

… …

Scale 
Embedding

Previous
Fixations

2D Spatial 
Embedding

Temporal 
Embedding

Peripheral Tokens Foveal Tokens

select

Visual 
Embedding

… …

P P P P F F F

0 k k+1

P1
P4

New 
Fixation

Figure 3. Working memory construction. We construct the
working memory by starting with the visual embeddings (“what”)
flattened from P1 over the spatial axes and selected from P4 at pre-
vious fixation locations. Scale embedding is introduced to capture
scale information. Spatial embeddings and temporal embeddings
are further added to the tokens to enhance the “where” and “when”
signals. At every new fixation (marked in red), we simply add a
new foveal token while keeping other tokens unchanged.

3.2. Human Attention Transformer

HAT is a novel transformer-based model for scanpath
prediction. At each fixation, HAT outputs a set of pre-
diction pairs {(Yt, τt)}Tt=1 where t indicates a task, which
could be a visual search task (e.g., clock search and mouse
search) or a free-viewing task. Fig. 2 shows an overview
of the proposed model. HAT consists of four modules: 1)
a feature extraction module that extracts a feature pyramid
with multi-resolutional feature maps corresponding to in-
formation extracted at different eccentricities [55, 47]; 2)
a foveation module which maintains a dynamical work-
ing memory representing the information acquired through
fixations; 3) an aggregation module that selectively aggre-
gates the information in the working memory using atten-
tion mechanism for each task; 4) a fixation prediction mod-
ule that predicts the fixation heatmap Yt and termination
probability τt for each task t.

The feature extraction module consists of a pixel encoder
(e.g., ResNet [21], a Swin transformer [39]), and a pixel de-
coder (e.g., FPN [36] and deformable attention [61]). Tak-
ing a H×W image as input, the pixel encoder encodes the
input image into a high-semantic but low-resolution feature
map. The pixel decoder up-samples the feature map sev-
eral times, each time by a scale factor of two, to construct

a pyramid of four multi-scale feature maps denoted as P =
{P1, · · · , P4}, where P1 ∈ RC× H

32×
W
32 , P4 ∈ RC×H

4 ×W
4 ,

and C is the channel dimension.

The foveation module constructs a dynamic working mem-
ory using the feature maps P1 and P4 to represent the in-
formation a person acquires from the peripheral and foveal
vision, respectively. We discard medium-grained feature
maps P2 and P3 in computing the peripheral representation
for computational efficiency. We did not observe perfor-
mance improvement after adding P2 in the peripheral to-
kens (see Sec. 4.4 for details). Finally, we apply a Trans-
former encoder [49] to dynamically update the working
memory with the information acquired at a new fixation.

Fig. 3 illustrates the construction of the working mem-
ory. The working memory consists of two parts: peripheral
tokens and foveal tokens. We first flatten the low-resolution
feature map P1 over the spatial axes to obtain the periph-
eral visual embeddings V p ∈ R( H

32 ·
W
32 )×C . Feature vectors

in P4 at each fixation location are selected as the foveal vi-
sual embeddings V f ∈ Rk×C , where k is number of pre-
vious fixations. For simplicity, we round the fixation to its
nearest position in P4. Then we add a learnable scale em-
bedding to each token to discern the scale/resolution of the
visual embeddings. As the spatial information is shown to
be important in predicting human scanpath (e.g., center bias
and inhibition of return [51]), we enrich the peripheral and
foveal tokens with their 2D spatial information in the im-
age. Specifically, we create a lookup table of 2D sinusoidal
position embeddings [35] G ∈ RH×W×C by concatenating
the 1D sinusoidal positional encoding of the horizontal and
vertical coordinates of each pixel location. For a visual em-
bedding at position (i, j) of a given feature map of stride
S (S = 32 for P1 and S = 4 for P4), its position encod-
ing is defined by the element at position (ti, tj) in G where
ti = bi · Sc and tj = bj · Sc. Furthermore, we add to each
foveal token the temporal embedding, a learnable vector,
according to its fixation index to capture the temporal order
among previous fixations.

The aggregation module is a transformer decoder [49] that
selectively aggregates information from the working mem-
ory into the task-specific queries Q ∈ RN×C , where N is
the number of tasks (e.g., N = 18 for COCO-Search18
[10] and N = 1 for free-viewing datasets). The trans-
former decoder has L layers, with each layer consisting
of a cross-attention layer, a self-attention layer and a feed-
forward network (FFN). Different from the standard trans-
former decoder [49], we follow [12] and switch the order
of cross-attention and self-attention module. Firstly, each
zero-initialized task query selectively gathers the informa-
tion in working memory acquired through previous fixa-
tions using cross-attention. Then, the self-attention layer
followed by a FFN is applied to exchange information in



different queries which could boost the contextual cues [14]
in each query.

The fixation prediction module yields the final
prediction—a fixation heatmap Ŷt and a termination
probability τ̂t for each task t. For the termination pre-
diction, a linear layer followed by a sigmoid activation is
applied on top of each updated query qt ∈ Q:

τ̂t = sigmoid(WqTt + b), (1)

where W and b are the parameters of the linear layer. For
the fixation heatmap prediction, a Multi-Layer Perceptron
(MLP) with two hidden layers first transforms qt into a
task embedding, which is then convolved with the high-
resolution feature map P4 to get the fixation heatmap Ŷt
after a sigmoid layer:

Ŷt = sigmoid(P4 �MLP(qt)), (2)

where � denotes the pixel-wise dot product operation. Fi-
nally, we upsample Ŷt to the image resolution. Note that
the predictions for all tasks, i.e., Ŷ ∈ RN×H×W and
τ̂ ∈ RN×1, are yielded in parallel.

3.3. Training and Inference

Training loss. We follow [57] and use behavior cloning
to train HAT. The problem of scanpath prediction is bro-
ken down into learning a mapping from the input triplet of
an image, a sequence of previous fixations, and a task to the
output pair of a fixation heatmap and a termination probabil-
ity. Given the predicted fixation heatmaps Ŷ ∈ RN×H×W

and termination probabilities τ̂ ∈ RN×1, the training loss is
only calculated for its ground-truth task t:

L = Lfix(Ŷt, Y ) + Lterm(τ̂t, τ), (3)

where Y ∈ [0, 1]H×W and τ ∈ {0, 1} are the the ground-
truth fixation heatmap and termination label for task t, re-
spectively. We compute Y by smoothing the ground-truth
fixation map with a Gaussian kernel with the kernel size be-
ing one degree of visual angle. Lfix denotes the fixation loss
and is computed using pixel-wise focal loss [37, 34]:

Lfix =
−1
HW

∑
i,j


(1− Ŷij)α log(Ŷij) if Yij = 1,

(1− Yij)β(Ŷij)α

log(1− Ŷij)
otherwise,

(4)

where Yij represents the value of Y at location (i, j) and
α = 1 and β = 4. Lterm is the termination loss and is
computed by applying a binary cross entropy (negative log-
likelihood) loss, i.e.,

Lterm = −ω · τ log(τ̂t)− (1− τ) log(1− τ̂t), (5)

where ω is a weight to balance the loss of positive and neg-
ative training examples since there are many more negative
labels than positive labels for training a termination pre-
diction, especially for target-absent visual search and free-
viewing tasks where scanpath are long. We set ω to be
the ratio of the number of negative training instances to the
number of positive ones.

Inference. Similarly to [54, 55, 9], HAT also generates
scanpaths autoregressively, but in an efficient way. Given
an image, HAT only computes the image pyramid P and
peripheral tokens once. For a new fixation, a foveal token
is constructed and appended to the working memory after
which the aggregation module and fixation prediction mod-
ule yield the fixation heatmaps and termination predictions
for all tasks in parallel.

4. Experiments
In this section, we describe our experiments to study the

effectiveness of HAT for scanpath prediction on both visual
search and free-viewing tasks.

Datasets. We train and evaluate HAT using four datasets:
COCO-Search18 [10], COCO-FreeView [11], MIT1003
[27] and OSIE [53]. COCO-Search18 is a large-scale visual
search dataset containing both target-present and target-
absent human scanpaths in searching for 18 different object
target. COCO-Search18 contains 3101 target-present im-
ages and 3101 target-absent images selected from COCO
[38], each viewed by 10 subjects. COCO-FreeView is a
“sibling” dataset of COCO-Search18 but with free-viewing
scanpaths. COCO-FreeView contains the same images with
COCO-Search18, each viewed by 10 subjects in a free-
viewing setting. MIT1003 is a widely-used free-viewing
dataset containing 1003 natural images. OSIE is a also
free-viewing gaze dataset but with rich semantic-level anno-
tations, containing 700 natural indoor and outdoor scenes.
Each image in MIT1003 and OSIE is viewed by 15 subjects.

Evaluation metrics. To measure the performance, we
mainly analyze the scanpath prediction models from two
aspects: 1) how similar the predicted scanpaths are to the
human scanpaths; and 2) how accurate a model predicts
the next fixation given all previous fixations. To measure
the scanpath similarity, we use a commonly adopted met-
ric, sequence score (SS) [6] and its variant semantic se-
quence score (SemSS) [55]. SS transforms the scanpaths
into sequences of fixation cluster IDs and then compares
them using a string matching algorithm [42]. Different from
SS, SemSS transforms a scanpath into a string of semantic
labels of the fixated pixels. For next fixation prediction,
we follow [30, 55, 31] and report the conditional saliency
metrics, cIG, cNSS and cAUC, which measure how well
a predicted fixation probability map of a model predicts
the ground-truth (next) fixation when the model is provided



Target-present Target-absent
SemSS SS cIG cNSS cAUC SemSS SS cIG cNSS cAUC

Human consistency 0.526 0.500 - - - 0.410 0.381 - - -
Detector 0.545 0.451 0.182 2.346 0.905 0.369 0.321 -0.516 0.446 0.783
Fixation heuristic 0.530 0.437 1.107 2.186 0.917 0.347 0.298 -0.599 0.405 0.798
IVSN [60] 0.393 0.326 -0.192 1.318 0.901 0.284 0.222 -0.219 0.884 0.867
PathGAN [2] 0.310 0.244 - - - 0.349 0.250 - - -
IRL [54] 0.491 0.422 -9.709 1.977 0.913 0.301 0.319 0.032 1.202 0.893
Chen et al. [9] 0.536 0.445 -1.273 2.606 0.956 0.381 0.331 -3.278 1.600 0.925
FFMs [55] 0.529 0.451 1.548 2.376 0.932 0.389 0.372 0.729 1.524 0.916
HAT (ours) 0.554 0.444 2.259 4.769 0.970 0.412 0.388 1.314 2.528 0.945
Joint HAT (ours) 0.575 0.468 2.301 4.687 0.977 0.421 0.394 1.372 2.624 0.948

Table 1. Comparing visual search scanpath prediction algorithms (rows) using multiple scanpath metrics (columns) on the target-
present test set and the target-absent test set of COCO-Search18. All metrics are the higher the better. We highlight the best results in
bold. Note that [55] reported SemSS only using the 80 COCO object categories, here we also include the stuff categories (background) in
COCO-Stuff [8], which results in a lower SemSS for the same method. “Joint” means training jointly with TP and TA scanpaths.

with the fixation history of the scanpath in consideration,
using the widely used saliency metrics, IG, NSS and AUC
[7]. For fair comparison, we follow [55] and predict one
scanpath for each testing image, step by step selecting the
most probable fixation location as the next fixation.

Other models. We first compare our model against sev-
eral heuristic baselines. Following prior works [54, 57, 55,
9, 31], the human consistency, an oracle where we use one
viewer’s scanpath to predict the scanpath of another, is re-
ported as a gold-standard model. Second, we compare to a
fixation heuristic method, a ConvNet trained to predict hu-
man fixation density maps, from which we sample fixations
sequentially with inhibition of return. For visual search
scanpaths, we further include a detector baseline, which is
similar to the fixation heuristic, but trained on target-present
images of COCO-Search18 to output target detection prob-
ability maps. For the fixation heuristic and detector base-
lines, we use the winner-take-all strategy to generate scan-
paths. Furthermore, we compare HAT to the previous state-
of-the-art models of scanpath prediction: IVSN [60], IRL
[54], Chen et al. [9], DeepGaze III [31] and FFMs [55].
Note that IVSN only applies for visual search tasks, and un-
like other methods, IVSN is designed for zero-shot search
scanpath prediction, hence is not trained with any gaze data.
DeepGaze III only applies for free-viewing scanpaths and is
trained with the SALICON dataset [25] and MIT1003 [27].

4.1. Implementation Details

Network structure. HAT has four modules as shown in
Fig. 2. For the feature extraction module, we use ResNet-
50 [21] as our pixel encoder and MSDeformAttn [61] as the
pixel decoder (results with other pixel encoders, ResNet-
101 and Swin Transformer [39], and pixel decoder, FPN
[36], can be found in the supplement). The number of

HAT (ours)Human FFMs [53] Chen et al [8]

TP

FV

TA

Figure 4. Visualization of the ground-truth human scanpaths
and predicted scanpaths of different methods (columns). Three
different settings (rows) including target-present bottle search,
target-absent stop sign search and free viewing are shown from the
top to bottom. The final fixation of each scanpath is highlighted in
red circle. For methods without termination prediction, i.e., IRL,
detector and fixation heuristic, we visualize the first 6 fixations
for visual search and 15 for free viewing. The rightmost column
shows the predicted scanpaths of the heuristic methods (detector
for visual search and fixation heuristic for free-viewing).

channels of the feature maps C is set to 256. For the
foveation module, the transformer encoder has three lay-
ers. The transformer decoder in the aggregation module has
six layers (i.e,. L = 6). The number of queries N = 18
for visual search scanpath prediction (as COCO-Search18
contains 18 target categories) and N = 1 for free-viewing
scanpath prediction. Finally, the MLP in the fixation predic-
tion module has two hidden layers of 128 dimensions and a
ReLU activation function.

Training settings. We follow [55, 54] and resize all im-
ages to 320×512 for computational efficiency during train-
ing and inference. We use the AdamW [40] with the learn-
ing rate of 0.0001 and train HAT for 30 epochs with a batch
size of 128. No data augmentation is used during training.



SS cIG cNSS cAUC
Human consistency 0.349 - - -
Fixation heuristic 0.329 0.319 1.621 0.930
PathGAN [2] 0.181 - - -
IRL [54] 0.300 -0.213 1.018 0.888
Chen et al. [9] 0.365 -1.263 1.655 0.922
DeepGaze III [31] 0.339 0.140 1.418 0.910
FFMs [55] 0.329 0.329 1.432 0.918
HAT 0.359 1.171 2.841 0.947

Table 2. Comparing free-viewing scanpath prediction algo-
rithms (rows) using multiple metrics (columns) on the test set of
COCO-FreeView. The best results are highlighted in bold.

SS cIG cNSS cAUC
Human consistency 0.363 - - -
Chen et al. [9] 0.210 -9.735 0.186 0.750
HAT 0.225 0.573 1.841 0.930

Table 3. Generalization to an unseen dataset MIT1003. Both mod-
els are trained on COCO-Freeview. The best results are in bold.

Note that the pixel encoder and pixel decoder are kept fixed
during training and we use the COCO-pretrained weights
for panoptic segmentation from [12]. Following [54], we
set the maximum length of each predicted scanpath to 6
and 10 (excluding the initial fixation) for target-present and
target-absent search scanpath prediction, respectively. For
free viewing, the maximum scanpath length is set to 20.
More details can be found in the supplement.

4.2. Main Results

Visual Search. In Tab. 1, we compare HAT with SOTA
visual search scanpath prediction models in both target-
present (TP) and target-absent (TA) settings on the COCO-
Search18 test set. When trained separately on TP and TA
scanpaths, HAT consistently outperforms all other methods
in predicting TP and TA scanpaths. In TP setting, HAT
achieves the best performance in four out of five metrics.
Although FFM and Detector are better in SS, HAT achieves
a higher SemSS, suggesting that HAT better understands
the semantics behind fixations. Moreover, compared to the
previous state of the art, Chen et al. [9], HAT improves the
cNSS by 83% and 58% in TP and TA settings, respectively.
Importantly, when trained jointly with TP and TA scanpaths
(never been done before), HAT further improves the perfor-
mance in predicting both TP and TA scanpaths, surpassing
or matching with human consistency in most metrics.

Free-viewing. Beyond visual search, HAT can also pre-
dict free-viewing scanpath by regarding the free-viewing as
a single standalone task. In Tab. 2, we compare HAT with
the baselines except Detector and IVSN as the free-viewing
fixations are not tasked to searching for a target like visual
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Figure 5. Peripheral tokens vs foveal tokens under TP, TA and
FV settings (from left to right). The top three figures visualize the
temporal change of the contribution of peripheral and foveal mem-
ory tokens in predicting human attention. Here the contribution
is measured by the attention weight from the last cross-attention
layer of the aggregation module in HAT. X-axis shows the token
index, with 0 representing all peripheral tokens (by summing the
attention weights of all peripheral tokens) and i > 0 being the
i-th foveal token. Y-axis indicates temporal fixation step from
first to max number of fixation steps allowed for each task. The
bottom three figures show the spatial distribution of the attention
weights of all peripheral tokens, averaged over the temporal axis.
The brighter the color, the larger is the contribution.

search. HAT outperforms all other methods in cIG, cNSS
and cAUC, especially HAT is 256% and 72% better than
the second best (FFMs and [9]) in cIG, cNSS, respectively.
This reaffirms the effectiveness of HAT as a generic frame-
work for scanpath prediction. We further compare HAT to
the best alternative overall, Chen et al. [9], by evaluating the
models trained using COCO-FreeView on an unseen dataset
MIT1003 in Tab. 8. The results show that HAT outperforms
[9] in all metrics and with significant improvement in cIG,
cNSS and cAUC. This suggests that other models like the
predictions of FFMs and Chen et al.’s model are prone to
be overconfident, whereas HAT better calibrates the confi-
dence in predicting free-viewing fixations and thus provides
a more robust prediction of human attention with better gen-
eralizability to unseen datasets. Our additional experiments
on OSIE and MIT1003 further confirm our findings. Please
refer to the supplement for detailed results.

4.3. Qualitative Analysis

Scanpath visualization. In this section, we qualitatively
compare the predicted scanpaths of different methods to
each other and to the ground-truth human scanpaths in the
TP, TA and FV settings. As shown in Fig. 4, when search-
ing for bottles in the TP setting, HAT not only correctly
predicted the terminal fixation on the heavily-occluded tar-
get, but also predicted fixations on all the distractor objects
that look similar to the target, like humans do. Other meth-
ods either missed the distractor objects or failed to find the



target. Similarly, for the TA stop sign search, HAT was the
only one that looked at both sides of the road in searching
for a stop sign like the human subject would, showing a use
of semantic and context cues to control attention. In the FV
setting, HAT also predicted the most human-alike scanpaths
among all methods in (1) the fixation locations (where), (2)
the semantics (what), and (3) the order (when) of the fix-
ations. This demonstrates that HAT captures the all three
aspects (what, where and when) of human fixations. More
scanpath visualizations can be found in the supplement.

Model interpretability. We also qualitatively analyzed the
contribution of peripheral tokens and foveal tokens in pre-
dicting human attention control under the TP, TA and FV
settings, separately. As shown in Fig. 5, the peripheral to-
kens contribute the most in predicting TP fixations across
all fixations (forming the yellow column on the left). This
is because in TP images there is a strong target signal avail-
able in the visual periphery to guide attention. Contrast this
with FV fixations, where the contribution of the peripheral
tokens diminishes over the temporal space and the only the
current foveal token has a strong and consistent contribu-
tion (a clear red diagonal line). An interpretation of this
pattern is that people have only a poor memory of what
they viewed in previous fixations and their attention is con-
trolled by salient pixels within a local neighborhood around
the current fixation. Interestingly, for TA fixations we also
observe a diminishing contribution of the peripheral tokens
over the temporal space, but not as pronounced. Moreover,
as more fixations are made, the contribution of recent fixa-
tions increases, approaching the pattern in FV. This suggests
that the later fixations of a TA scanpath behave like a FV
scanpath, which confirms a finding in [11]. Lastly, the bot-
tom row visualizes the contribution of each individual pe-
ripheral token (averaged over the temporal axis), where we
see peripheral tokens encode a strong center bias for FV fix-
ations, whereas TA fixations show a weaker center bias and
TP fixations show no obvious center bias at all, again as ex-
pected and confirming previous suggestion. This showcases
the potential for HAT to make highly interpretable predic-
tions of human attention control. Category-wise analysis
for TP and TA can be found in the supplement.

4.4. Ablation studies

We perform ablation studies of HAT under the TA set-
ting. In Tab. 4, we first verify our choice of extracting
the peripheral tokens from P1 in the foveation module of
HAT. We train HAT with three different sources of periph-
eral tokens: 1) P1 ∈ RC× H

32×
W
32 (160 peripheral tokens as

H = 320 and W = 512); 2) P2 ∈ RC× H
16×

W
16 (640 to-

kens); 3) P1 + P2 where we concatenate the tokens for P1

and P2 (800 tokens in total). We observe that three differ-
ent options have similar performance. We choose P1 in our
implementation because of its computational efficiency and

SemSS SS cIG cNSS
P1 (HAT) 0.412 0.388 1.314 2.528
P2 0.410 0.385 1.321 2.533
P1 + P2 0.411 0.386 1.306 2.487
w/o transformer enc. 0.399 0.377 1.249 2.442
w/o spatial emb. 0.400 0.380 1.040 2.299
w/o scale emb. 0.403 0.380 1.283 2.453
w/o temporal emb. 0.411 0.383 1.136 2.244
w/o peripheral tokens 0.404 0.374 1.248 2.465
w/o foveal tokens 0.393 0.374 0.778 1.893

Table 4. Ablation study of HAT. These experiments are done on
the TA set of COCO-Search18. The best results are in bold.

smaller memory footprint.
We further verify the effectiveness of each component

in the foveation module, including the transformer encoder,
2D spatial embedding, scale embedding and temporal em-
bedding, peripheral tokens and foveal tokens, by ablating
them one at a time. It is shown in Tab. 4 that ablating
any of these components incur a performance drop over all
metrics. This suggests that all of these components con-
tribute to the superior performance of HAT. Among these
components, removing foveal tokens incurs the largest per-
formance drop (cIG decreases by nearly 41%). This is un-
derstandable because foveal tokens represent the knowledge
acquired in previous fixations, without which HAT can be
considered as a fixation density map predictor like the fix-
ation heuristic baseline. In addition, spatial embedding and
temporal embedding also contribute significantly to the per-
formance of HAT, without them cIG drops by 21% and
14%, respectively. This indicates that knowing “where” and
“when” visual information is acquired is important for pre-
dicting scanpath. Please refer to the supplementary material
for more ablation studies of HAT.

5. Conclusions and Discussion
With the rapid development of Augmented Reality (AR)

and Virtual Reality (VR) technologies, there is an increas-
ing demand for predicting and understanding human gaze
behavior [45, 28, 46], with scanpath prediction being a chal-
lenging task. For those AR/VR applications requiring a
high input resolution (360◦), discretizing fixations into a
coarse grid incurs a non-negligible loss in accuracy. In this
work we presented HAT, a generic attention scanpath pre-
diction model. Built from a simple dense prediction frame-
work [13], HAT circumvents the drawbacks of discretizing
fixations as in prior state of the arts [54, 9, 55]. Inspired
by the human vision system, HAT uses a novel foveated
working memory which dynamically updates its knowledge
about the scene as it changes its fixation. We show that
HAT achieves new SOTA performance, not only in predict-
ing free-viewing fixation scanpaths, but also scanpaths in



target-present and target-absent search. In demonstrating
this broad scope, our HAT model sets a new bar in the com-
putational attention of attention control.
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[31] Matthias Kümmerer, Matthias Bethge, and Thomas SA Wal-
lis. Deepgaze iii: Modeling free-viewing human scanpaths
with deep learning. Journal of Vision, 22(5):7–7, 2022. 5, 6,
7
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A. Appendix

This document provides further implementation details
(Sec. B), additional results from ablation studies (Sec. C),
experiments on OSIE and MIT1003 (Sec. D), additional
qualitative analysis (Sec. E) and further discussion about
the applications of the proposed HAT model (Sec. F).

B. Implementation details

Training details. Follow [55, 9, 54], we resize the images
in all datasets (COCO-Search18, COCO-FreeView, OSIE
and MIT1003) to a fixed resolution (320×512 in this paper)
for computational efficiency during training and inference.
The ground-truth human fixations are remapped (linearly)
onto the resized image. For COCO-Search18, COCO-
FreeView and OSIE, we use their official data split for train-
ing and testing. For the MIT1003 dataset, we perform 5-
fold cross validation on the 1003 images in MIT1003, i.e.,
training on 800 images (and the associated human scan-
paths) and testing on the rest 203 images in each fold. We
report the averaged results (over 5 folds) for the MIT1003
dataset. We use the AdamW [40] with the learning rate of
0.0001 and train HAT for 30 epochs with a batch size of
128. No data augmentation is used during training. Note
that the pixel encoder and pixel decoder are kept fixed dur-
ing training and we use the COCO-pretrained weights for
panoptic segmentation from [12]. In summary, the follow-
ing parameters in HAT are trained end-to-end using the loss
defined in Eq. (3) of the main paper: the Transformer
encoder in the foveation module; all task-specific queries
and the Transformer decoder in the aggression module; and
the linear layer (W, b) and MLP in the fixation prediction
module. Following [54], we set the maximum length of
each predicted scanpath to 6 and 10 (excluding the initial
fixation) for target-present and target-absent search scan-
path prediction (COCO-Search18), respectively. For free-
viewing datasets (COCO-FreeView, OSIE and MIT1003),
the maximum scanpath length is set to 20.

Implementation of cIG. cIG denotes the amount of infor-
mation gain from the predicted fixation map (the model is
provided with all previous fixations) over a baseline in pre-
dicting the ground-truth fixation. Here, the baseline is a fix-
ation density map constructed by averaging the smoothed
density (with a Gaussian kernel of one degree of visual
angle) maps of all training fixations. For target-present
and target-absent visual search settings, we use a (target)
category-wise fixation density map, following [55]. For the
heuristic models (i.e., target detector and saliency heuristic)
which apply the winner-take-all strategy on a static fixation
map to generate the scanpath prediction, we use the same
static fixation map for all fixations in a scanpath to com-
pute cIG, cNSS and cAUC. To obtain the predicted fixation

maps for Chen et al.’s model [9], we use the ground-truth
fixation map (Gaussian smoothed with a kernel size of 2) as
input to obtain the predicted action map for the next fixation
(i.e., the predicted fixation map). Note that all predicted fix-
ation maps in computing cIG, cNSS and cAUC, are resized
to 320×512 for fair comparison.

Inference speed. On a single RTX A6000 GPU, it takes
about 1 second and 18GB GPU memory for HAT to pro-
cess a batch of 128 images at each fixation step (i.e., 0.008
secs for each image). The total time for generating a scan-
path depends on the scanpath length. For instance, on av-
erage HAT takes 0.048 secs to generate 128 target-absent
scanpaths whose average length is about 6 fixations.

C. More Ablation Studies with HAT
By default, HAT uses ResNet-50 [21] as the pixel en-

coder and MSD [61] as the pixel decoder. However, HAT is
also compatible with other architectures. Hence, in Tab. 5,
we evaluate HAT with different pixel encoders and de-
coders. Three pixel encoders: ResNet-50 (R50), ResNet-
101 (R101) [21] and Swin Transformer (we use the base
model, Swin-B) [39]), and two pixel decoders: FPN [36]
and MSD [61], are evaluated. One can observe that MSD
is slightly better than FPN as the pixel decoder and HAT
performs the best when using R50 as the pixel encoder. No-
tice that the difference between different configurations is
small, suggesting that the performance of HAT is robust to
the choice of different pixel encoder and decoder architec-
tures. More importantly, all of these configurations of HAT
significantly outperforms all baselines in the main text (see
Table 1 of the main text).

In Tab. 6, we ablate the Transformer decoder in the ag-
gregation module of HAT by using different numbers of
Transformer decoder layers: L = 1, 3, 6, 9. By default,
HAT uses 6 layers of Transformer decoder, i.e., L = 6. By
varying L, we observe no significant performance change in
HAT with L = 6 being slightly better than other configura-
tions in SS and cIG. This indicates that HAT’s superior per-
formance does not depend on the choice of hyper-parameter
L.

D. Experiments on OSIE and MIT1003
To further validate the effectiveness of our proposed

HAT in free-viewing scanpath prediction, we compare HAT
to the previous state-of-the-art method in free-viewing scan-
path prediction, Chen et al. [9] (see Tab. 2 of the main
text), using the OSIE dataset [53] and the MIT1003 dataset
[27]. Here we only report SS, cIG, cNSS and cAUC and
do not use SemSS because OSIE and MIT1003 do not con-
tain pixel-wise segmentation annotation which is required
in SemSS. Tab. 7 and Tab. 8 consistently show that HAT
surpasses Chen et al. [9] in all three metrics by a large



Pixel enc. Pixel dec. SemSS SS cIG cNSS
R50 MSD 0.412 0.388 1.314 2.528
R50 FPN 0.404 0.376 1.283 2.465

R101 MSD 0.404 0.383 1.238 2.467
Swin-B MSD 0.406 0.382 1.289 2.508

Table 5. Comparing different pixel encoder and pixel decoder
in HAT. The ablation experiments are done on the target-absent set
of COCO-Search18. The best results are highlighted in bold.

L SemSS SS cIG cNSS
1 0.413 0.386 1.277 2.536
3 0.412 0.384 1.301 2.557
6 0.412 0.388 1.314 2.528
9 0.411 0.384 1.304 2.528

Table 6. Comparing different choices of Transformer decoder
layers L in HAT. The ablation experiments are done on the target-
absent set of COCO-Search18. The best results are highlighted in
bold.

SS cIG cNSS cAUC
Human consistency 0.380 - -
Chen et al. [9] 0.326 -1.526 2.288 0.920
HAT 0.333 1.519 2.780 0.942

Table 7. Comparing free-viewing scanpath prediction al-
gorithms on OSIE (rows) using multiple scanpath metrics
(columns). The best results are highlighted in bold.

SS cIG cNSS cAUC
Human consistency 0.363 - - -
Chen et al. [9] 0.260 0.042 1.408 0.927
HAT 0.324 0.762 2.116 0.941

Table 8. Comparing free-viewing scanpath prediction algorithms
(rows) on MIT1003 training set using 5-fold cross validation
using multiple scanpath metrics (columns). The best results are
highlighted in bold.

margin especially in cIG and cNSS on both free-viewing
datasets. The results are consistent with our findings in Ta-
ble 2 of the main text—HAT accurately predicts the scan-
paths (reflected by SS), with well-calibrated confidence (as
evidenced by the high cIG and cNSS).

E. Additional Qualitative Analysis

Peripheral contribution map. In Section 4.3 of the main
text, we showed that there exists a strong center bias sig-
nal in the peripheral tokens of free-viewing (FV) fixations,
whereas the center bias is less obvious in the peripheral
tokens of target-absent (TA) and target-present (TP) fixa-
tions. A natural question arising from this observation is
whether the peripheral tokens of TA and TP fixations en-
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Figure 6. Peripheral contribution map of visual search fixa-
tions. We show the contribution map of the peripheral tokens
for two categories (rows): car and bottle, in target-present and
target-absent settings (columns). We measure the contribution of
each peripheral token by the attention weights from the last cross-
attention layer of the aggregation module in HAT, averaged over
the temporal axis of all testing data in COCO-Search18 [10]. The
brighter the color, the larger the contribution.

code a target prior–spatial distribution of the possible tar-
get location. To answer this question, we first visualize the
category-wise peripheral contribution maps for TP and TA
fixations by averaging the attention weights (on the periph-
eral tokens) of the last cross-attention layer over all testing
fixations for each target category. As shown in Fig. 6, the
category-specific peripheral contribution map does not pro-
vide a clear evidence of TA and TP peripheral contribution
map being a target prior, but we find some target-specific
pattern, e.g., the contribution is pronounced around the bot-
tom horizontal area for “car” and around the vertical area
for “bottle”, which may represent the spatial prior of each
category.

We further analyze how the peripheral contribution map
evolves across a sequence of fixations. Fig. 7 shows the
peripheral contribution maps when searching for a laptop
(middle column) with the corresponding predicted scanpath
(left column) and fixation heatmaps (right column). Each
row represents each fixation step. We observe that the en-
coded periphery features not only align with the location of
the next fixation (e.g., when the occluded laptop is encoded
in the left-bottom periphery, the model makes a fixation
to the target and terminates the search), but also provides
the contextual cues where a target might be located (e.g.,
near the keyboard and the monitor where a laptop is usually
found). We also observe a similar pattern in the TA setting,
where the peripheral contributions are higher for target-like
objects (e.g., truck in car search, Fig. 8) and for contextual
cues (table and keyboard for laptop search, Fig. 9)

Scanpath visualization. We further visualize additional
scanpaths for human (ground truth), our HAT, FFMs [55],



Peripheral contribution map Predicted fixation heatmap

1st fixation

2nd fixation

3rd fixation
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Figure 7. Visualization of the predicted scanpath, peripheral contribution map and fixation heatmap (columns) of HAT for a target-
present laptop search example at every fixation (rows). We also include the predicted termination probability τ for each step on the left.
The model stop searching if τ > 0.5.

Chen et al. [9], IRL [54], and a heuristic method (target de-
tector for visual search and saliency heuristic for free view-
ing) in the TP, TA, and FV settings. Fig. 10 shows the TP
scanpaths. In all examples, HAT shows superior perfor-
mance in predicting the human fixation trajectory not only
when humans correctly fixate on the target, but also when
their attention is distracted by other visually similar objects.
For example, in the last column of Fig. 10 when the task is
to find a knife, HAT is the only model that correctly pre-
dicts the fixation on the metallic object (because knives are

usually metallic), whereas other methods either missed the
target or did not show any distractions to the metallic object.
This shows the capacity of HAT in modeling human atten-
tion control in visual search. Fig. 11 shows that HAT learns
to leverage the context cues in predicting target-absent fix-
ations, e.g., when the search target is microwave, HAT cor-
rectly predicted the fixations on the counter-top and table,
where microwaves are often found. Similarly, HAT also
generates the most human-like scanpaths in free-viewing
task (see Fig. 12), capturing all important aspects of scan-
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Figure 8. Visualization of the predicted scanpath, peripheral contribution map and fixation heatmap (columns) of HAT for a target-
absent car search example at every fixation (rows). We also include the predicted termination probability τ for each step on the left. The
model stop searching if τ > 0.5.

paths, such as the locations (where), the semantics (what),
and the order (when) of the fixations.

F. Further discussion on applications

Models that predict top-down attention (TP/TA search
fixations), modulated by an external goal, have wide ap-
plicability to attention-centric HCI. For example, faster
attention-based rendering that leverages the prediction of
a user’s attention as they play a VR/AR game and home
robots incorporating search-fixation-prediction models will

be better at inferring a user’s need (i.e., their search target).
Home robots incorporating search-fixation-prediction mod-
els will be better able to infer a users’ need (i.e., their search
target) and autonomous driving systems can attend to image
input like an undistracted driving expert. Applications of
FV attention prediction exist in foveated rendering [28] and
online video streaming [45].
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Figure 9. Visualization of the predicted scanpath, peripheral contribution map and fixation heatmap (columns) of HAT for a target-
absent laptop search example at every fixation (rows). We also include the predicted termination probability τ for each step on the left.
The model stop searching if τ > 0.5.
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Figure 10. Target-present scanpath visualization. We show the scanpaths of six methods (rows) for four different targets (columns)
which are bottle, stop sign, microwave and knife. The final fixation of each scanpath is highlighted in red circle. For methods without
termination prediction, i.e., IRL and detector, we visualize the first 6 fixations.
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Figure 11. Target-absent scanpath visualization. We show the scanpaths of six methods (rows) for four different targets (columns) which
are bottle, stop sign, microwave and knife. The final fixation of each scanpath is highlighted in red circle. For methods without termination
prediction, i.e., IRL and detector, we visualize the first 6 fixations.
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Figure 12. Free-viewing scanpath visualization. We show the scanpaths of six methods (rows) for four example images. The final fixation
of each scanpath is highlighted in red circle. For methods without termination prediction, i.e., IRL and detector, we visualize the first 15
fixations.


