arXiv:2110.10067v2 [cs.LG] 31 Dec 2022

Published at 1st Conference on Lifelong Learning Agents, 2022

CORA: BENCHMARKS, BASELINES, AND METRICS
AS A PLATFORM FOR
CONTINUAL REINFORCEMENT LEARNING AGENTS

Sam Powers* Eliot Xing*
Carnegie Mellon University Georgia Institute of Technology
snpowers@cs.cmu.edu exing@gatech.edu

Eric Kolve Roozbeh Mottaghi Abhinav Gupta
Allen Institute for Al Allen Institute for Al Carnegie Mellon University

ABSTRACT

Progress in continual reinforcement learning has been limited due to several barriers to entry: missing
code, high compute requirements, and a lack of suitable benchmarks. In this work, we present CORA,
a platform for Continual Reinforcement Learning Agents that provides benchmarks, baselines, and
metrics in a single code package. The benchmarks we provide are designed to evaluate different
aspects of the continual RL challenge, such as catastrophic forgetting, plasticity, ability to generalize,
and sample-efficient learning. Three of the benchmarks utilize video game environments (Atari,
Procgen, NetHack). The fourth benchmark, CHORES, consists of four different task sequences
in a visually realistic home simulator, drawn from a diverse set of task and scene parameters. To
compare continual RL methods on these benchmarks, we prepare three metrics in CORA: Continual
Evaluation, Isolated Forgetting, and Zero-Shot Forward Transfer. Finally, CORA includes a set of
performant, open-source baselines of existing algorithms for researchers to use and expand on. We
release CORA and hope that the continual RL community can benefit from our contributions, to
accelerate the development of new continual RL algorithms.

1 INTRODUCTION

Over the course of the last decade, reinforcement learning (RL) has developed into a promising tool for learning a large
variety of tasks, such as robotic manipulation (Kober & Peters, 2012; Kormushev et al., 2013; Deisenroth et al., 2013;
Parisi et al., 2015), embodied Al (Zhu et al., 2017; Shridhar et al., 2020; Batra et al., 2020; Szot et al., 2021), video
games (Mnih et al., 2015; Vinyals et al., 2019), and board games like Chess, Go, or Shogi (Silver et al., 2017). However,
these advances can be attributed to fine-tuned agents each trained to solve the specific task. For example, a robot trained
to hit a baseball would not be able to play table tennis, even though both tasks involve swinging at a ball. If we were to
train the agent with current learning-based methods on a new task, then it would tend to forget previous tasks and skills.

By contrast, humans continuously learn, remembering many tasks and using past experiences to help learn new tasks in
different environments over extended periods of time. Developing agents capable of continuously building on what was
learned previously, without forgetting knowledge obtained from the past, is crucial in order to deploy robotic agents into
everyday scenarios. This capability is referred to as continual learning (Ring, 1994; 1998), also known as never-ending
learning (Mitchell et al., 2015; Chen et al., 2013), incremental learning, and lifelong learning (Thrun & Mitchell, 1995).

In recent years, there has been a growing interest in building agents that continuously learn skills or tasks without
forgetting previously learned behavior (Khetarpal et al., 2020). However, unlike other areas leveraging machine learning
such as computer vision and natural language processing, growth in the field of continual RL is still quite limited. Why
is that? We argue there are three primary reasons, (a) missing code: research code in continual RL is not publicly
available (due to the use of proprietary code for training agents at scale) and reproducibility remains difficult. This
creates a high barrier to entry as any new entrant must re-implement and tune baselines, in addition to designing
their own algorithm; (b) high compute barrier: the lack of publicly released baselines is compounded by the fact
that extensive compute resources are required to run experiments used in prior work, which is not easily available in

* Equal contribution

Published at 1st Conference on Lifelong Learning Agents, 2022

academic settings; (c) benchmarking gaps: there are few benchmarks and metrics used to evaluate continual RL, with
no set standards.

With this work, we aim to democratize the field of continual RL by reducing the barriers to entry and enable more
research groups to develop algorithms for continual RL. To this end, we introduce CORA, a platform that includes
benchmarks, baselines, and metrics for Continual Reinforcement Learning Agents. With this platform, we present
three contributions to the field which we believe will support progress towards this goal. First, we present a set of
benchmarks, each tailored to measure progress toward a different goal of continual learning. Our benchmarks include
task sequences designed to: test generalization to unseen environment contexts (Procgen), evaluate scalability to the
number of tasks being learned (MiniHack), and exercise scalability in realistic settings (CHORES), in addition to
a standard, proven benchmark (Atari). Second, we provide three metrics to compare key attributes of continual RL
methods on these benchmarks: Continual Evaluation, Isolated Forgetting, and Zero-Shot Forward Transfer. Finally, we
release open-source implementations of previously proposed continual RL algorithms in a shared codebase, including
CLEAR (Rolnick et al., 2019), a state-of-the-art method. We demonstrate that while CLEAR outperforms other
baselines in Atari and Procgen, there is still significant room for methods to improve on our benchmarks.

In all, we present the CORA platform', designed to be a modular and extensible code package which brings all of this
together. We hope our platform will be a one-stop shop for developing new algorithms, comparing to existing baselines
using provided metrics, and running methods on evaluations suitable for testing different aspects of continual RL agents.
We believe our contributions will help researchers conveniently develop new continual RL methods and facilitate
communicating research results to the community in a standard fashion. If continual robot learning can successfully
utilize household benchmarks like CHORES, then household robots or robots in the workforce may not be far distant.

2 RELATED WORK

We discuss various environments and tasks used to benchmark reinforcement learning in Appendix A.

Evaluating continual reinforcement learning While continual learning is most commonly addressed in the context of
supervised learning for image classification such as in (Ruvolo & Eaton, 2013; Lopez-Paz & Ranzato, 2017; Hsu et al.,
2018; Javed & White, 2019; Hsu et al., 2018; Mai et al., 2021), here we focus our discussion on continual reinforcement
learning, and as such, simulation environments and tasks to benchmark RL agents. For an overview on continual
learning applied to neural networks in general, we refer the reader to Parisi et al. (2019) and Mundt et al. (2020).

With CORA, we introduce benchmarks designed to evaluate continual RL algorithms that can be used in more
challenging, realistic scenarios. Continual RL for policies or robotic agents (Lesort et al., 2020) is more nascent,
although several benchmarks have been proposed. As mentioned above, continual RL has typically been evaluated on a
sequence of Atari games (Kirkpatrick et al., 2017; Schwarz et al., 2018b; Rolnick et al., 2019) and we leverage these
prior results to validate our baselines. Other video game-like environments proposed to evaluate continual learning
include StarCraft (Schwarz et al., 2018a) and VizDoom (Lomonaco et al., 2020).

Procgen (Cobbe et al., 2020) and MiniHack (Kiittler et al., 2020; Samvelyan et al., 2021), two of our other benchmarks,
are procedurally-generated, like Jelly Bean World (Platanios et al., 2020) which is a procedurally-generated 2D
gridworld proposed as a testbed for continual learning agents. Nekoei et al. (2021) present Lifelong Hanabi for continual
learning in a multi-agent RL environemnt. Beyond game-like environments, Wolczyk et al. (2021) evaluate continual
RL using task boundaries in a multi-task robot manipulation environment, while Khetarpal et al. (2018) discuss home
simulations as a potentially suitable environment to benchmark continual RL. In this work we present CHORES in
AI2-THOR (Kolve et al., 2017): task sequences for an agent in a home simulation to evaluate continual RL methods in
the visually realistic scenes offered.

Our work is conceptually similar to bsuite (Osband et al., 2019), which curates a collection of toy, diagnostic
experiments to evaluate different capabilities of a standard, non-continual RL agent. Concurrent with our work,
Sequoia (Normandin et al., 2021) introduces a software framework with baselines, metrics, and evaluations aimed
at unifying research in continual supervised learning and continual reinforcement learning. While both are valuable
benchmarking tools, they focus predominantly on simpler tasks like MNIST and CartPole. The most complex
environments that Sequoia uses are Meta-World, with simple state-based manipulation tasks, and MonsterKong,
composed of 8 hand-designed platformer levels. In contrast to both, CORA presents challenging task sequences
for vision-based, procedurally-generated environments that evaluate generalization and scability for continual RL.
Also concurrent with our work, Avalanche RL (Lucchesi et al., 2022) introduces a library for continual RL, whose
functionality will be merged into Avalanche (Lomonaco et al., 2021), is a popular library for continual learning.

"https://github.com/AGI-Labs/continual_rl

https://github.com/AGI-Labs/continual_rl

Published at 1st Conference on Lifelong Learning Agents, 2022

However, Avalanche RL does not present any experimental results on baseline methods. In this paper, we evaluate
several continual RL methods across four different environments.

3 TASK SEQUENCES FOR BENCHMARKING CONTINUAL RL

The goal of continual reinforcement learning is to develop an agent that can learn a variety of different tasks in
non-stationary settings. To this end, prior work has primarily focused on preventing catastrophic forgetting (Kirkpatrick
et al., 2017; Rolnick et al., 2019; Schwarz et al., 2018b) and maintaining plasticity (Mermillod et al., 2013) so that the
agent can learn new tasks. While simple tasks are useful for debugging, skill on them does not necessarily translate to
more complex tasks. We believe that the field has matured enough and is ready for more ambitious goals. In particular,
we believe continual RL methods should address the following problems: (a) showing positive forward transfer by
leveraging past experience; (b) generalizing to unseen environment contexts; (c) learning similar tasks through provided
goal specifications; (d) improving sample efficiency; in addition to (e) mitigating catastrophic forgetting; and (f)
maintaining plasticity.

While a single benchmarking environment that suitably deals with each of these features may be ideal, over the course
of development we have found this to be impractical with the tools currently available. For example, visually-realistic,
physics-based environments are generally not fast enough for the longer sequences of tasks that we use to test resilience
to forgetting. Furthermore, it may be overbearing for new algorithms to sufficiently address every continual RL goal,
whereas a modular set of evaluations allows for researchers to focus on areas to best highlight particular contributions
of their new methods. Instead, we present four benchmarks which continual RL reseachers may utilize:

* Atari (Bellemare et al., 2013), 6 task sequence: A standard, proven benchmark used by Schwarz et al. (2018b)
and Rolnick et al. (2019), particularly to demonstrate resilience to catastrophic forgetting.

* Procgen (Cobbe et al., 2020), 6 task sequence: Designed to test resilience to forgetting and in-distribution
generalization to unseen contexts in procedurally-generated, visually-distinct environments.

* MiniHack (Kiittler et al., 2020), 15 task sequence, based on NetHack (Samvelyan et al., 2021): Designed
to train agents on a long sequence of tasks in environments that are stochastic, procedurally-generated, and
visually-similar, in order to demonstrate resilience to forgetting, maintenance of plasticity, forward transfer,
and out-of-distribution generalization (extrapolation along different environment factors).

¢ 4 different CHORES, utilizing ALFRED (Shridhar et al., 2020) and AI2-THOR (Kolve et al., 2017): Designed
to test agents in a visually realistic domain where sample efficiency is key. Unlike other environments where
different tasks may be easily identified visually, CHORES tasks explicitly provide a goal image. CHORES
also present an opportunity to test forward transfer due to task similarity. For example, the ability to pick up a
hand towel ideally should transfer from one bathroom to another.

We direct the reader to Appendix B for formalism and background on the continual RL setting, including more precise
definitions of generalization for these benchmarks and how continual RL applies to these task sequences.

Task selection and ordering is still an open area of research (Jiang et al., 2021), and we did not tune task ordering. We
use the Atari task sequence as demonstrated in prior work, as well as use the implicit ordering in which Procgen and
MiniHack presented their tasks. Selection of tasks for CHORES was more involved, and is described in Appendix C.1.

Our goals include reducing the compute costs of continual RL experiments for the new benchmarks, as compared to the
Atari experiments. Indeed, we observed a speedup of 7x for MiniHack, 6x for Procgen, and 2x for CHORES; details
are available in Appendix C.7.

3.1 ATARI TASKS

Building off the work of Kirkpatrick et al. (2017) that evaluated a random set of ten Atari (Bellemare et al., 2013)
games, recent work in continual reinforcement learning (Schwarz et al., 2018b; Rolnick et al., 2019) evaluates continual
learning on six Atari games: [0-Spacelnvaders, 1-Krull, 2-BeamRider, 3-Hero, 4-StarGunner, 5-MsPacman]. They train
agents on each of the six tasks for SOM frames, cycling through the sequence 5 times, for a total of 1500M frames seen.
This results in 250M frames per task, which is five times as many frames as is standard in the single task setting. The
primary focus of algorithms that were developed and evaluated on this Atari task sequence was to reduce catastrophic
forgetting. This setting is particularly suitable for catastrophic forgetting due to the lack of overlap between tasks, in
regards to both observations and skills required. More details are given in Appendix C.8.

Following (Kirkpatrick et al., 2017; Schwarz et al., 2018b; Rolnick et al., 2019), we use the original Atari settings,
meaning that the games are deterministic. Modifications such as “sticky actions” (Machado et al., 2018) have become

Published at 1st Conference on Lifelong Learning Agents, 2022

more standard to overcome simulator determinism, and are an option for increasing task difficulty in future work. In this
work, we use Atari to validate our baseline implementations, preferring procedurally-generated environments (Procgen,
MiniHack) to test generalization. We note that different Atari game modes may also be used to produce variation and
assess generalization capability, as proposed by Farebrother et al. (2018).

3.2 PROCGEN TASKS

We use Procgen (Cobbe et al., 2020) to define a new sequence of video game tasks, with the intention of replacing
the Atari tasks used previously to evaluate continual learning methods. We choose Procgen because its procedural
generation allows for evaluating generalization on unseen levels, unlike Atari. Like Atari however, the tasks are all
visually distinct and the task sequence is well-suited to evaluating catastrophic forgetting. As with Atari, this is due to a
general lack of overlap between tasks. From the full set of available Procgen environments, the specific set of tasks
was chosen by Igl et al. (2021) to ensure the existence of a nontrivial generalization gap and to ensure generalization
actually improves during training.

Procgen is also significantly faster to run (our experiments take several days for Procgen vs. weeks on Atari). To
improve sample efficiency and reduce compute costs, we use the easy distribution mode for these Procgen games. We
use a sequence of six tasks [0-Climber, 1-Dodgeball, 2-Ninja, 3-Starpilot, 4-Bigfish, 5-Fruitbot], training for 5SM frames
on each task with 5 learning cycles. This results in 25M frames per task and 125M frames total. Note that we are not
increasing the number of training frames per task compared to the original paper, unlike the Atari task sequence.

The observation space is (64, 64) RGB images and is not framestacked. The 15-dim action space is the same across
Procgen tasks. As recommended in the original paper, we train the agent on 200 levels, while evaluation uses the
full distribution of levels that Procgen can procedurally generate. What is randomized varies depending on the game
environment, but covers textures, enemies, objects, and room layouts. See Appendix C.4, Figure 7 for a visualization of
the observations an agent may receive for each task in Procgen.

3.3 MINIHACK’S NETHACK TASKS

Most prior continual RL work evaluates on a relatively small number of tasks, but the recently introduced Mini-
Hack (Samvelyan et al., 2021) environment is fast enough to enable scaling up. MiniHack is based on the NetHack
Learning Environment (Kiittler et al., 2020), a setting that is procedurally generated like Procgen and has stochastic
dynamics (such as when attacking monsters). As with Procgen, the variation over which levels are randomized differs by
environment, but includes objects, enemies, start & goal locations, and room layouts. The larger number of tasks enables
MiniHack to more extensively test an agent’s ability to prevent forgetting and to maintain plasticity. Additionally,
while the Procgen tasks are easy to tell apart visually, the MiniHack tasks use the same texture assets and are more
challenging to distinguish. This makes task identification and boundary detection more difficult.

To create the MiniHack task sequence, we define 15 (train, test) task pairs with a total of 27 different navigation-type
tasks. The training environments are the easier versions, and we evaluate the agent on the harder environment variant.
We select from the navigation-type tasks introduced by MiniHack, ordering by how MiniHack presents their tasks, and
only omit the tasks that require episodic memory and deep exploration. We provide the full MiniHack task sequence we
use in Appendix C.3. Three evaluation environments are each used twice, because each has two related training tasks,
the impact of which we discuss further in Section 6.2. MiniHack also provides skill acquisition tasks, which could be
used in future work for an even more challenging task sequence.

When reporting results on this task sequence in Figure 3, we use the training environment name to refer to each task.
We use only the pixel-based input for the agent. MiniHack renders an (80, 80) RGB image which we zero-pad to (84,
84) for convenience. See Appendix C.4, Figure 7 for a visualization of observations an agent may receive for each task
in MiniHack. All tasks share an 8-dim action space.

3.4 CHORES BENCHMARK SUITE USING ALFRED AND AI2-THOR

AI2-THOR (Kolve et al., 2017) is a visually realistic simulation environment that provides a variety of rooms for an
agent to act in, with 30 layouts each of bedrooms, living rooms, kitchens, and bathrooms. ALFRED (Shridhar et al.,
2020) is a benchmark for embodied vision-and-language agents which provides demonstrations for extended sequences
of complex, tool-based tasks defined using AI2-THOR.

Using the demonstration trajectories and task definitions from ALFRED, we define a set of environments and task
sequences for continual RL, which we refer to as Continual Household Robot Environment Sequences (CHORES).
We do not provide ALFRED demonstration trajectories to the agent, as learning from demonstrations is beyond the

Published at 1st Conference on Lifelong Learning Agents, 2022

Mem-VaryRoom Mem-VaryTask Mem-VaryObject Gen-MultiTraj

Figure 1: Examples for CHORES that show the variation within each task sequence.

scope of this paper. Instead, we leverage the demonstration data to initialize an AI2-THOR environment and generate
subgoal images for the agent, which communicate the intended task for the agent to perform. The initial state of the
environment is set to the initial state of the demonstration trajectory. The usage of these demonstrations enables us to
have a variety of initializations for robot location, object locations, and room instance without explicitly setting the
simulation parameters or hand-defining distributions over these parameters. ALFRED also defines reward functions for
its tasks based on achieving its subgoals, which we use. Figure 5 in Appendix C.1 visualizes an example of a full set of
CHORES subgoals.

Our CHORES benchmark extends continual RL into a visually realistic domain, where sample efficiency is key and
where tasks bear similarities that make forward transfer particularly useful. Sample efficiency is critical because we
designed CHORES to use a tight frame budget, as an initial attempt to mirror what would be feasible in the real world.

We first define three CHORES that shift the environment context in well-defined ways: Mem-VaryRoom changes the
room scene, Mem-VaryTask changes the task type, and Mem-VaryObject changes the object with which the agent
interacts. The fourth CHORES, Gen-VaryTraj, is considerably harder than the first three: it varies both the object and
the scene, in addition to testing generalization on unseen contexts from heldout demo trajectories. Figure 1 visualizes
CHORES and shows examples of variation within each task sequence. In Appendix C.1, we discuss design objectives
and compute constraints used while creating the set of CHORES we introduce in this work. Appendix C.2 describes the
four CHORES proposed in more detail. We note that the CHORES protocol is not exclusive to AI2-THOR and can also
be applied using any home simulation with a diverse dataset of demonstrations.

We use an action space of 12 discrete actions (e.g. LookDown, MoveAhead, SliceObject, PutObject, etc.). For an action
that interacts with an object, we take the action with the correct task-relevant object. Note that this differs from agents
evaluated in ALFRED originally, which generate interaction masks to select one object from those in view to interact
with. We use an observation size of (64, 64, 6), with 3 channels for the current RGB image observation and 3 channels
for an RGB goal image.

4 METRICS

We refer the reader to Appendix B for background and full review of the continual RL setting. We assume N tasks are
presented as a sequence Sy := (7o ... Ty—1). The agent trains on task 7; at timesteps in the interval [A;, B;), where
A; and B; are the task boundaries denoting the start and end, respectively, of task 7;. We cycle through the tasks M
times, so the full task sequence Sy s has length IV - M.

At each timestep ¢, the policy 7 receives an observation, reward, and indicator of whether the episode is
done, and takes an action based on what it has observed. In this section, we define episode return as the undiscounted
sum of rewards received over an episode. We train the agent s different times on the task sequence, with each run using
a different initial random seed. We consider several expected episode returns to be used when defining our metrics:

Tioi=k = Ri=g (7, T;) expected return achieved on task 7; at timestep K (1)
Tijend = Ri=B, (m,T:) expected return achieved on task 7; after training on task 7; (2)
Ti all,maz ‘= max Ri_k(m,7;) maximum (over all timesteps) expected return achieved on task 7; (3)

Keldo.Br—) after training on all tasks

Using these definitions, we discuss metrics for measuring different attributes of continual RL agents. Before proceeding,
we describe how we estimate expected returns. A run involves training one instance of an agent on a task sequence.
We pause each run every n timesteps and evaluate E' = 10 episodes worth of data for every task in the sequence, and
record the means. We further smooth the returns by using a moving average with a rolling window of size w to get an
estimate of 7.

Published at 1st Conference on Lifelong Learning Agents, 2022

4.1 CONTINUAL EVALUATION, ISOLATED FORGETTING, AND ZERO-SHOT FORWARD TRANSFER

We use three metrics to evaluate the performance of an algorithm on our benchmarks. The first is the standard Continual
Evaluation metric as used by prior work (Rolnick et al., 2019; Schwarz et al., 2018b). The second metric, Isolated
Forgetting, measures how much an agent may forget an old task while learning a new task. The third metric, Zero-Shot
Forward Transfer, measures how much an old task may contribute to the learning of a new task.

Continual Evaluation presents the opportunity to compute our definitions of Forgetting and Transfer, which isolate the
effects that training on task 7; has on the performance of task 7;, without requiring single-task models to be trained
and evaluated separately, as in (Chaudhry et al., 2018). We present our Forgetting and Transfer metrics in two forms.
The first form is the summary statistic, which provides a high-level overview of performance and is shown for our
benchmarks in Table 1. The second form is as a diagnostic table that describes how training on task 7; (column) impacts
each task 7; (row). Appendix E contains the full diagnostic tables for all benchmarks.

Continual Evaluation (C): The Continual Evaluation metric, presented as a set of graphs, evaluates performance on
all tasks periodically during training. This provides an understanding at any point of how the agent performs on every
task 7; at timestep K. This is essentially a Monte Carlo estimate, C;(t = K) ~ 7. j=k.

While the agent is asked to pause for evaluation every n timesteps, in practice there is some variation due to the
asynchronous implementation of the agents. To align the evaluation data across runs, we linearly interpolate to a
common interval, then compute the mean and standard error over s seeds. We graph C; for each task; an example can
be seen in Figure 2. We also provide the final performance mean and standard error for each method in a table format,
for convenient reference.

Isolated Forgetting (F): Isolated Forgetting, originally inspired by (Lopez-Paz & Ranzato, 2017; Wang et al., 2021),
represents how much is forgotten from a learned task during later tasks. It compares the expected return achieved for
earlier task 7; before and after training on later task 7;, where i < j:

Ti,j—1,end — Ti,j,end
Fig = @)

‘Ti,all,maa: |

When F; ; > 0, the agent has become worse at past task 7; while training on new task 7;, indicating forgetting has
occurred. Conversely, when F; ; < 0, the agent has become better at task 7;, indicating backward transfer (Lopez-Paz
& Ranzato, 2017) has been observed. We normalize by the absolute value of the maximum expected return observed for
task 7; within the run. Tasks can have varying reward scales, and normalization helps for comparing between tasks.

Unlike Chaudhry et al. (2018), we do not use the max value observed, but rather the value right before training on a
task, which corresponds with Lopez-Paz & Ranzato (2017). This allows us to isolate the impact of that particular task,
rather than looking at the cumulative effect to that point. We believe this makes the results easier to understand overall,
and the metric more useful.

Zero-Shot Forward Transfer (Z): Forward transfer considers how much prior tasks aid in the learning of new tasks.
The Intransgience metric as defined by Chaudhry et al. (2018) measures forward transfer by comparing the maximum
expected return for a task trained independently to the expected return achieved while it was trained sequentially. While
this might be the most accurate way to evaluate forward transfer, computing independent performance effectively
doubles the amount of compute required.

As one of our goals is to minimize the compute requirements of this benchmark, we instead propose what we refer to
as the Zero-Shot Forward Transfer metric. It compares the expected return achieved for later task 7; before and after
training on earlier task 7;, where ¢ > j:

Zi,j _ Tijend — Ti,j—1,end (5)
‘Ti,all,mam|

When Z; ; > 0, the agent has become better at later task 7; having trained on earlier task 7;, indicating forward transfer
has occurred by zero-shot learning (Lopez-Paz & Ranzato, 2017; Diaz-Rodriguez et al., 2018). When Z; ; < 0, the
agent has become worse at task ¢, indicating negative transfer has occurred. We normalize by the absolute value of the
maximum expected return observed for task 7; within the run, as was done for Forgetting.

Additional details (a) We only consider one cycle of the task sequence to compute F and Z. We do this for
interpretability and ease of understanding, though these metrics could be averaged across cycles with additional
assumptions. (b) The diagnostic tables and summary statistics are given using the unseen testing environments
when available. We use the same task indices when referring to the training and testing environments. (c) We scale

Published at 1st Conference on Lifelong Learning Agents, 2022

by 10 for readability, and average across seeds. (d) Summary statistics are computed as an average across tasks:
F=> W3 Fijand Z = Dis 0% Z; ;. Additionally, we compute the standard error of the mean; details
are given in Appendix E.1.

Why use offline evaluation? While a continual agent operating in the real world would not pause for evaluation, offline
evaluation is a useful tool enabled by simulation to understand agent performance. Offline evaluation helps answer
questions such as: “How does the agent currently perform on tasks learned in the past?”, “How does experience the
agent has acquired help it learn new tasks?”, or “How well would the agent generalize if it were asked to perform the
task in a unseen environment?”.

5 CORA: A PLATFORM FOR CONTINUAL REINFORCEMENT LEARNING AGENTS

5.1 BASELINES

We re-implemented four continual RL methods with baseline results on the Atari sequence from Section 3.1, which are
not publicly available to the best of our knowledge. We prioritized methods which had been demonstrated on Atari
before, in order to reference such results and appropriately validate our implementations. The continual RL methods
were selected to cover the categorizations described by Parisi et al. (2019); Lesort et al. (2020); Mundt et al. (2020):
elastic weight consolidation (EWC) (Kirkpatrick et al., 2017), online EWC (Schwarz et al., 2018b), Progress and
Compress (P&C) (Schwarz et al., 2018b), Continual Learning with Experience and Replay (CLEAR) (Rolnick et al.,
2019). EWC is a Regularization approach, P&C is an Architectural approach, and CLEAR is a Rehearsal approach.
Note that CLEAR is task-agnostic, while EWC and P&C require explicit task boundaries.

Our implementations of these baselines all build off the IMPALA (Espeholt et al., 2018) architecture and use the open-
source TorchBeast code (Kiittler et al., 2019). We discuss implementation details in Appendix C.5. In Appendix C.8,
we validate the performance of our baseline implementations compared to that of the original implementations on Atari.

5.2 CODE PACKAGE

We release our cont inual_rl codebase’ as a convenient way to run continual RL baselines on the benchmarks we
outlined in Section 3 and to use the continual RL evaluation metrics we defined in Section 4. The package is designed
modularly, so any component may be used separately elsewhere, and new benchmarks or algorithms may be integrated
in. We provide more details on design and usage of the continual_rl package in Appendix D. Hyperparameters
for all experiments are made available as configuration files in the codebase, and also detailed in Appendix C.6.

Online Online
IMPALA EWC EWC P&C CLEAR IMPALA EWC EWC P&C CLEAR
Atari 23£0.1 0303 1.6+0.0 1801 070l Atari 0100 0102 -0.0+0.0 -00£0.1 0.0=00
Procgen 12£00 0700 LI£0.0 0500 -00£00 Procgen 0.1£00 0201 -0.1£0.1 0.1£0.1 -0.1+0.0
MiniHack 0300 - - - 0.1£00 MiniHack 0.6+ 0.0 - - 05£0.1
C-VaryRoom - -0.6 £0.6 - 0.0+£00 -1.7+1.7 C-VaryRoom - -0.0£0.0 - 32+£19 -1L1+£1.1
C-VaryTask - 20%14 - 22£22 15%02 C-VaryTask - 40%26 - 0201 -32%00
C-VaryObj - -L0xll - 20220 34202 C-VaryObj - 2629 - 5413 -46+08
C-MultiTraj - 07x12 - L0001 -03%21 C-MultiTraj - 40%05 - 04201 -4707
(a) Forgetting (F) summary statistics for all ex- (b) Transfer (Z) summary statistics for all experi-
periments. ments.

Table 1: Summary statistics for all benchmarks and for all methods evaluated on them.

6 EXPERIMENTAL RESULTS

In this section, we present results on Procgen (Section 6.1), MiniHack (Section 6.2), and CHORES (Section 6.3).
For Atari results, see Appendix C.8. Metric summary statistics for all methods can be seen in Table 1, and metric
diagnostic tables are available in Section E. Final performance tables are also available in Appendix C.10, Tables 5
through 10. To estimate expected return and compute metrics, we use the following values for parameters described in

2For instance, “4.2” uses 1 less character than “0.42”, so this scaling helps fit the metric tables horizontally in the paper.
30ur code: https://github.com/AGI-Labs/continual_rl

https://github.com/AGI-Labs/continual_rl

Published at 1st Conference on Lifelong Learning Agents, 2022

Section 4: Procgen: n = 0.25e6, w = 20, s = 20; MiniHack: n = 1e6, w = 20, s = 10, CHORES: n = 5e4, w = 5,
s = 3, Atari: n = 0.25e6, w = 20, s = 5.

On the Continual Evaluation plots, solid lines represent evaluation on unseen testing environments, while dashed lines
show evaluation on the training environments. Shaded grey rectangles are used to indicate which task is being trained
during the indicated interval. We plot the mean as each line and the standard error as the surrounding, shaded region.

In each Forgetting table, we show negative values (representing backwards transfer) in green and positive in red, darker
in proportion to the magnitude of F. Values close to zero are unshaded. In contrast, in each Transfer table, we show
positive values (indicating forward transfer) in green shades and negative values in red.

We proceed to discuss experimental results with CORA using two perspectives. First, from the viewpoint of benchmark
analysis, we empirically discuss what each benchmark is evaluating and give examples of how the metric tables may be
used. Second, from the view of algorithm design, we examine the performance of the baselines to identify axes which
can be improved on by future algorithms. We frame this section through these two lenses in order to show how CORA
may be used by end-users.

6.1 PROCGEN RESULTS

0-Climber 1-Dodgeball 2-Ninja

1.25 3 5
e € s c CLEAR
5 1 S 5 4 1 —P&C
- -] bl |
2 sl 2 2 2, ! —ONLINE EWC
S 1 T 15 o EWC
(0] Q (0]
g os 5 o z,\ —IMPALA
Q o 1 0}
Q. a Q |
X 0.25 X X 1
1L 4 0.5 5

'™ ‘
00 30M 60M 90M 120M 150M OD 30M 60M 90M 120M 150M 00 ' 30M 60M 90M 120M 150M
3-Starpilot 4-Bigfish 5-Fruitbot

55 18 30 CLEAR

50
c c c 5
S 45 S s —P&C
G o Q 12 g 2 —ONLINE EWC
x 35 4 4
- 30 T 9 o 15 EWC
9 25 o 2 —
O 20 ST o 10 IMPALA
(0] (0] (0]
a 15 a A Q 5
X 10 /\ A < 3(\4\3 <
w w J w

5 ‘/\ W w v OM

OO‘N 30M 60M 90M 120M 150M 0O 30M 60M 90M 120M 150M 0 30M 60M 90M 120M 150M

Step Step Step

Figure 2: Results for Continual Evaluation (C) on the 6 Procgen tasks, based on recommendations by (Igl et al.,
2021). The solid line shows evaluation on unseen testing environments; the dashed line shows evaluation on training
environments. Gray shaded rectangles show when the agent trains on each task. For readability, Figure 10 in
Appendix C.9 presents an alternative version of this figure without CLEAR results.

Benchmark analysis: From the summary statistics in Table 1, we can see that Procgen tests for catastrophic forgetting,
but shows little forward transfer overall, which aligns with our expectations for this benchmark. Using the Transfer
metric diagnostic tables in Appendix E.5, we see that that forward transfer is not uniform across tasks. For example,
we observe that 0-Climber transfers reasonably well to 2-Ninja and 4-Bigfish. Intuitively, as 0-Climber and 2-Ninja
are both platformer games, transfer is expected. Transfer to 4-Bigfish is less obvious but may be explained by both
games using side-view perspectives or by sharing useful skills like object gathering. In particular, O-Climber involves
collecting stars, while 4-Bigfish tasks the agent with eating other fish.

Algorithm design: From the Continual Evaluation results in Figure 2, we observe that CLEAR is a strong baseline for
avoiding catastrophic forgetting on all tasks, reliably outperforming every other method. However, there is still room for
improvement: maximum scores obtained by CLEAR fall significantly short of the maximum achievable scores reported
in Appendix C of the Procgen paper (Cobbe et al., 2020), particularly on 0-Climber (1 vs 12.6), 1-Dodgeball (2.5 vs 19),

Published at 1st Conference on Lifelong Learning Agents, 2022

2-Ninja (4 vs 10), and 4-Bigfish (18 vs 40). Additionally, by comparing the training (dashed) and testing (solid) lines,
we observe that CLEAR generalizes well to unseen contexts on all tasks, except 1-Dodgeball. The summary statistics in
Table 1 show that transfer is overall low for Procgen. Using the more detailed diagnostic tables in Appendix E.5, we can
see that this varies by task. For instance with EWC, training on 1-Dodgeball improves performance on 3-Starpilot but
reduces performance on all other tasks. CLEAR shows some transfer from 0-Climber to 2-Ninja, but essentially none
anywhere else, even showing negative transfer from 1-Dodgeball to 2-Ninja. These failures represent opportunities for
investigation and for new algorithms to improve on.

6.2 MINIHACK RESULTS

0-Room-Random 1-Room-Dark 2-Room-Monster 3-Room-Trap 4-Room-Ultimate

1 1 1 1 1

CLEAR
—IMPALA

0.8 0.8

06

08
0.6
0.4

02
of

08
06

0.8
0.6 0.6

0.4

0.2
0

0.4 0.4

0.2 0.2

Expected Return
Expected Retu‘rn
Expected Retu‘rn
Expected Return
=
;
i
Expected Return

0(% D/%
0.2 0. 02 02 03
04 0.4 0.4 0.4 0.4
o 130m 260m o 130m 260M o 130m 260M o 130m 260M 0 130m 260M
5-Corridor-R2 6-Corridor-R3 7-KeyRoom 8-KeyRoom-Dark 9-River-Narrow
1 1 1 1 1
E E E 0.8 E 0.8 E 0.8 CLEAR
2 0 T2 oo "2 s =Y = —IMPALA
]]] g 3]
o o & 04 & 04 & 04
- - P
F < X027 /N X —0.2 X —0.2f ~ ST
¥ r/\r\\«/*/)\// ¢ ‘—/\r\\—s\/"" VA e N o 704'\/\/_\’\ —_—— Hod
7‘0 130M 260M 7‘D 130M 260M [130M 260M [130M 260M 0 130M 260M
10-River-Monster 11-River-Lava 12-HideNSeek 13-HideNSeek-Lava 14-CorridorBattle
1 1 1 1 1
E 0.8 7E 0.8 7E 0.8 7E 0.8 7E 0.8 7CLEAR
2 o6 2 o6 2 os 2 os 2 o IMPALA
]]] g 3]
@ 04 o 04 & 04 & 04 & 04
T o2 ® o2 ® o2 ® o2 ® o2
k9] k9] k9] A k9] ko]
=N g o g [\ g \ g °
Eof s ol o saaons Fopal) 5 Fepac) O Fepiaa |
o 0.4 04 04 04
0 130M 260M 0 130M 260M 0 130M 260M 0 130m 260M 0 130m 260M
Step Step Step Step Step

Figure 3: Results for Continual Evaluation (C) on the 15 MiniHack task pairs sequence. The solid line shows evaluation
on unseen testing environments; the dashed line shows evaluation on training environments. Gray shaded rectangles
show when the agent trains on each task.

Benchmark analysis: From the summary statistics in Table 1, we observe that IMPALA and CLEAR show minor
transfer on MiniHack tasks compared to Atari and Procgen. Looking at the Transfer metric diagnostic table in
Appendix E.7, we can see that the first task 0-Room-Random transfers significantly to all other tasks, which can be
interpreted as the agent learning the basics of moving around a MiniHack environment. Furthermore, we observe
transfer from environments to others of the same type. For example, the Room environments generally positively
transfer to each other, while mostly negatively transferring to the later River and HideNSeek environments. When
training tasks share the same testing task, such as 12-HideNSeek and 13-HideNSeek-Lava, the transfer metric is
noticeably high, as expected. Finally, from the Continual Evaluation results in Figure 3, we observe that MiniHack
effectively tests for plasticity as well, as later experiments fail to learn effectively.

Algorithm design: From the Continual Evaluation results in Figure 3, we can see CLEAR generally performs well
at learning tasks and mitigating catastrophic forgetting for the first five tasks. However, we observe that the agent
struggles to learn later tasks (fails to maintain plasticity), and that there is a significant out-of-distribution generalization
gap, in performance on test (solid) compared to train (dashed) environments for all tasks. Additionally, inspecting
the forgetting metric diagnostic tables in Appendix E.6, we see that the HideNSeek tasks exhibit particularly high
forgetting. These results and shortcomings present important areas for new algorithms to pursue.

6.3 CHORES RESULTS

We show Continual Evaluation results for the four CHORES in Figure 4. Forgetting and Transfer metrics diagnostic
tables are available in Appendix E.8 and Appendix E.9. On the memorization sequences, the testing environment is the
same as the training environment, and evaluation is represented with a solid line. In our generalization experiment, the
solid line represents evaluation on held-out testing environments, and the dotted line represents performance on the

Published at 1st Conference on Lifelong Learning Agents, 2022

R402 R419 R423 Hang TP Counter Cabinet

CLEAR
—P&C
EWC

Expected Return
Expected Return

——
1ot /

Expected Return

Expected Return
T‘
Expected Return
Expected Return

5 ‘L °

) 2u M o 1% 2 M % M am M) 2u M % 1%

] “
Step Step Step

(a) Mern-VarylSée(p)om sequence (b) Mem-Vzi"pyTask sequence

Fork Knife Spoon R19, Cup R13, Potato RO2, Lettuce

g 10 ,5 10 ,5 10 ,g 10 ’E 10 ,5 o 7%‘2”{
g > g - g - g - g - g - Ewc
oA [A T o —G 5 N = 5 o
2 4 — 2 2 A\ 2 2 2
9 // 8 s 4 A | 8 -s — @ -5 o g -5
g g / g g g
& £ w0 g WA /. QA BN 6 g p—————————— & 10 ——

% m ™ E] % m ™ M % m ™ m % ™M ™M M % ™ ™ El 1% M ™ 3M

Step Step Step Step Step Step
(c) Mem-VaryObject sequence (d) Gen-MultiTraj sequence

Figure 4: Results for Continual Evaluation (C) on the CHORES suite of benchmarks. For (d) Gen-MultiTraj, the solid
line shows evaluation on unseen testing environments; the dashed line shows evaluation on training environments. Gray
shaded rectangles show when the agent trains on each task.

training environments. We report 2 cycles for each of (a) Mem-VaryRoom and (b) Mem-VaryTask, and 1 for each of (c)
Mem-VaryObject and (d) Gen-MultiTraj, due to time constraints.

Benchmark analysis: From the Continual Evaluation results, we find that CHORES are challenging, and current
agents achieve low returns overall. Some learning occurs for the first task of every sequence, but nearly none in later
tasks, with the exception of (a) Mem-VaryTask. We also observe no generalization to unseen contexts from held-out
demo trajectories in (d) Gen-MultiTraj. The Transfer and Forgetting metrics are less meaningful with low returns, but
there is some indication of forward transfer, particularly on (c) Mem-VaryObj. Taken together, we can see CHORES
as the reach-goal; a set of tasks current methods cannot solve, and that will truly test the sample efficiency of future
methods.

Algorithm design: CLEAR achieves the highest returns overall, but there is significant room to improve learning these
tasks. We observe significant Forgetting, particularly on (c) Mem-VaryObj, illustrating one such area for improvement.
Advances in sample efficiency and exploration are likely required for agents to make progress on this challenge.

7 CONCLUSION

In this paper, we present CORA, a platform designed to reduce the barriers to entry for continual reinforcement learning.
CORA provides a set of benchmarks, open-sourced implementations of several baselines, evaluation metrics, and
the modular continual_rl package to contain it all. Each benchmark is designed to exercise different aspects
of continual RL agents: a standard, proven Atari benchmark for catastrophic forgetting and sample efficiency; a
Procgen benchmark to test forgetting and generalization to unseen environment contexts; a MiniHack benchmark
to test generalization, plasticity, and transfer; and the new, challenging, CHORES benchmark to test capability in a
visually-realistic environment where sample-efficiency is key. With these benchmarks, we demonstrate the strengths
and weaknesses of the current state-of-the-art continual RL method, CLEAR. While CLEAR generally outperforms
the other baselines at learning tasks and mitigating catastrophic forgetting, significant improvements are needed for
generalization, forward transfer, and maintaining plasticity over a long sequence of tasks. We are excited to introduce
the community to CORA, and hope CORA can aid in the development, testing, and understanding of new methods in
the field of continual RL.

Limitations We study task sequences that share a high-dimensional observation space (images) and have a discrete
action space. These RL tasks are finite-horizon, with episodic resets. In this work, we also primarily study video-game
environments, with procedurally-generated variation. These assumptions are shaped by our perspective of the continual
RL problem and current state of the field. We acknowledge that different points of view exist, backed by design choices
which may differ from the conditions we study. For instance, we consider task cycling in this work, which may favor
replay-based methods such as CLEAR that can retain data from all tasks in the sequence, after the first cycle. This
protocol does not apply to a pure online learning setup, where no assumptions may be made on the structure and
similarities of incoming data. We intend to relax these assumptions as new methods are developed and CORA evolves.

10

Published at 1st Conference on Lifelong Learning Agents, 2022

ACKNOWLEDGEMENTS

We thank Jonathan Schwarz and David Rolnick for discussion on implementing baselines, and helpful feedback on this
project. We additionally thank Abhinav Shrivastava with help running experiments. This work was supported by ONR
MURI, ONR Young Investigator Program, and DARPA MCS.

REFERENCES

Dhruv Batra, Angel X Chang, Sonia Chernova, Andrew J Davison, Jia Deng, Vladlen Koltun, Sergey Levine, Jitendra
Malik, Igor Mordatch, Roozbeh Mottaghi, et al. Rearrangement: A challenge for embodied ai. arXiv preprint
arXiv:2011.01975, 2020.

Charles Beattie, Joel Z Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich Kiittler, Andrew Lefrancq,
Simon Green, Victor Valdés, Amir Sadik, et al. Deepmind lab. arXiv preprint arXiv:1612.03801, 2016.

Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environment: An evaluation
platform for general agents. Journal of Artificial Intelligence Research (JAIR), 47:253-279, 2013.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech Zaremba.
Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Simon Brodeur, Ethan Perez, Ankesh Anand, Florian Golemo, Luca Celotti, Florian Strub, Jean Rouat, Hugo Larochelle,
and Aaron Courville. Home: A household multimodal environment. arXiv preprint arXiv:1711.11017, 2017.

Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS Torr. Riemannian walk for incremental
learning: Understanding forgetting and intransigence. In Proceedings of the European Conference on Computer
Vision (ECCV), pp. 532-547, 2018.

Xinlei Chen, Abhinav Shrivastava, and Abhinav Gupta. Neil: Extracting visual knowledge from web data. In
Proceedings of (ICCV) International Conference on Computer Vision, pp. 1409 — 1416, December 2013.

Maxime Chevalier-Boisvert. gym-miniworld environment for openai gym. https://github.com/maximecb/
gym-miniworld, 2018.

Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic gridworld environment for openai gym.
https://github.com/maximecb/gym-minigrid, 2018.

Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation to benchmark reinforce-
ment learning. In International conference on machine learning, pp. 2048-2056. PMLR, 2020.

Marc Peter Deisenroth, Gerhard Neumann, and Jan Peters. A survey on policy search for robotics. Foundations and
Trends in Robotics, 2(1-2):1-142, 2013.

Natalia Diaz-Rodriguez, Vincenzo Lomonaco, David Filliat, and Davide Maltoni. Don’t forget, there is more than
forgetting: new metrics for continual learning, 2018.

Kiana Ehsani, Winson Han, Alvaro Herrasti, Eli VanderBilt, Luca Weihs, Eric Kolve, Aniruddha Kembhavi, and
Roozbeh Mottaghi. Manipulathor: A framework for visual object manipulation. In CVPR, 2021.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam Doron, Vlad Firoiu, Tim
Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with importance weighted actor-learner architectures.
In International Conference on Machine Learning, pp. 1407-1416. PMLR, 2018.

Jesse Farebrother, Marlos C Machado, and Michael Bowling. Generalization and regularization in dqn. arXiv preprint
arXiv:1810.00123, 2018.

Chuang Gan, Jeremy Schwartz, Seth Alter, Damian Mrowca, Martin Schrimpf, James Traer, Julian De Freitas, Jonas
Kubilius, Abhishek Bhandwaldar, Nick Haber, Megumi Sano, Kuno Kim, Elias Wang, Michael Lingelbach, Aidan
Curtis, Kevin Tyler Feigelis, Daniel Bear, Dan Gutfreund, David Daniel Cox, Antonio Torralba, James J. DiCarlo,
Joshua B. Tenenbaum, Josh Mcdermott, and Daniel LK Yamins. ThreeDWorld: A platform for interactive multi-
modal physical simulation. In Thirty-fifth Conference on Neural Information Processing Systems Datasets and
Benchmarks Track (Round 1), 2021.

11

https://github.com/maximecb/gym-miniworld
https://github.com/maximecb/gym-miniworld
https://github.com/maximecb/gym-minigrid

Published at 1st Conference on Lifelong Learning Agents, 2022

Xiaofeng Gao, Ran Gong, Tianmin Shu, Xu Xie, Shu Wang, and Song-Chun Zhu. Vrkitchen: an interactive 3d virtual
environment for task-oriented learning. arXiv preprint arXiv:1903.05757, 2019.

Dibya Ghosh, Jad Rahme, Aviral Kumar, Amy Zhang, Ryan P Adams, and Sergey Levine. Why generalization in rl is
difficult: Epistemic pomdps and implicit partial observability. Advances in Neural Information Processing Systems,
34,2021.

Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy learning: Solving
long-horizon tasks via imitation and reinforcement learning. In Conference on Robot Learning, pp. 1025-1037.
PMLR, 2020.

William H Guss, Cayden Codel, Katja Hofmann, Brandon Houghton, Noboru Kuno, Stephanie Milani, Sharada
Mohanty, Diego Perez Liebana, Ruslan Salakhutdinov, Nicholay Topin, et al. The minerl 2019 competition on sample
efficient reinforcement learning using human priors. arXiv preprint arXiv:1904.10079, 2019.

Assaf Hallak, Dotan Di Castro, and Shie Mannor. Contextual markov decision processes. arXiv preprint
arXiv:1502.02259, 2015.

Yen-Chang Hsu, Yen-Cheng Liu, Anita Ramasamy, and Zsolt Kira. Re-evaluating continual learning scenarios: A
categorization and case for strong baselines. arXiv preprint arXiv:1810.12488, 2018.

Maximilian Igl, Gregory Farquhar, Jelena Luketina, Wendelin Boehmer, and Shimon Whiteson. Transient non-
stationarity and generalisation in deep reinforcement learning. In International Conference on Learning Representa-
tions, 2021.

David Isele and Akansel Cosgun. Selective experience replay for lifelong learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 32, 2018.

Stephen James, Zicong Ma, David Rovick Arrojo, and Andrew J Davison. Rlbench: The robot learning benchmark &
learning environment. /[EEE Robotics and Automation Letters, 5(2):3019-3026, 2020.

Khurram Javed and Martha White. Meta-learning representations for continual learning. In Advances in Neural
Information Processing Systems (NeurlPS), pp. 1820-1830, 2019.

Mingqi Jiang, Edward Grefenstette, and Tim Rocktéschel. Prioritized level replay. In International Conference on
Machine Learning, pp. 4940—4950. PMLR, 2021.

Arthur Juliani, Ahmed Khalifa, Vincent-Pierre Berges, Jonathan Harper, Ervin Teng, Hunter Henry, Adam Crespi,
Julian Togelius, and Danny Lange. Obstacle tower: A generalization challenge in vision, control, and planning. In
Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, 2019.

Harini Kannan, Danijar Hafner, Chelsea Finn, and Dumitru Erhan. Robodesk: A multi-task reinforcement learning
benchmark. https://github.com/google-research/robodesk, 2021.

Michat Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and Wojciech Jaskowski. Vizdoom: A doom-based
ai research platform for visual reinforcement learning. In 2016 IEEE Conference on Computational Intelligence and
Games (CIG), pp. 1-8. IEEE, 2016.

Khimya Khetarpal, Shagun Sodhani, Sarath Chandar, and Doina Precup. Environments for lifelong reinforcement
learning. arXiv preprint arXiv:1811.10732, 2018.

Khimya Khetarpal, Matthew Riemer, Irina Rish, and Doina Precup. Towards continual reinforcement learning: A
review and perspectives. arXiv preprint arXiv:2012.13490, 2020.

Robert Kirk, Amy Zhang, Edward Grefenstette, and Tim Rocktédschel. A survey of generalisation in deep reinforcement
learning. arXiv preprint arXiv:2111.09794, 2021.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu, Kieran Milan,
John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic forgetting in neural
networks. Proceedings of the National Academy of Sciences of the United States of America, 114(13):3521-3526,
2017.

Jens Kober and Jan Peters. Reinforcement learning in robotics: A survey. In Reinforcement Learning, pp. 579—-610.
Springer, 2012.

12

https://github.com/google-research/robodesk

Published at 1st Conference on Lifelong Learning Agents, 2022

Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs, Alvaro Herrasti, Daniel Gordon, Yuke
Zhu, Abhinav Gupta, and Ali Farhadi. Ai2-thor: An interactive 3d environment for visual ai. arXiv preprint
arXiv:1712.05474, 2017.

Petar Kormushev, Sylvain Calinon, and Darwin G Caldwell. Reinforcement learning in robotics: Applications and
real-world challenges. Robotics, 2(3):122—-148, 2013.

Ilya Kostrikov. Pytorch implementations of reinforcement learning algorithms. https://github.com/
ikostrikov/pytorch-a2c-ppo-acktr—-gail, 2018.

Heinrich Kiittler, Nantas Nardelli, Thibaut Lavril, Marco Selvatici, Viswanath Sivakumar, Tim Rocktédschel, and Edward
Grefenstette. TorchBeast: A PyTorch Platform for Distributed RL. arXiv preprint arXiv:1910.03552,2019. URL
https://github.com/facebookresearch/torchbeast.

Heinrich Kiittler, Nantas Nardelli, Alexander H. Miller, Roberta Raileanu, Marco Selvatici, Edward Grefenstette, and
Tim Rocktédschel. The nethack learning environment. In Proceedings of the Conference on Neural Information
Processing Systems (NeurIPS), 2020.

Youngwoon Lee, Edward S Hu, and Joseph J Lim. IKEA furniture assembly environment for long-horizon complex
manipulation tasks. In IEEE International Conference on Robotics and Automation (ICRA), 2021. URL https:
//clvrai.com/furniture.

Timothée Lesort, Vincenzo Lomonaco, Andrei Stoian, Davide Maltoni, David Filliat, and Natalia Diaz-Rodriguez.
Continual learning for robotics: Definition, framework, learning strategies, opportunities and challenges. Information
Fusion, 58:52—-68, 2020.

Vincenzo Lomonaco, Karan Desai, Eugenio Culurciello, and Davide Maltoni. Continual reinforcement learning in 3D
non-stationary environments. In Proceedings of the CVPR Workshop on Continual Learning in Computer Vision, pp.
248-249, 2020.

Vincenzo Lomonaco, Lorenzo Pellegrini, Andrea Cossu, Antonio Carta, Gabriele Graffieti, Tyler L Hayes, Matthias
De Lange, Marc Masana, Jary Pomponi, Gido M Van de Ven, et al. Avalanche: an end-to-end library for continual
learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3600-3610,
2021.

David Lopez-Paz and Marc’ Aurelio Ranzato. Gradient episodic memory for continual learning. In Advances in Neural
Information Processing Systems (NIPS), pp. 6467-6476, 2017.

Nicold Lucchesi, Antonio Carta, and Vincenzo Lomonaco. Avalanche rl: a continual reinforcement learning library.
arXiv preprint arXiv:2202.13657, 2022.

Marlos C Machado, Marc G Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and Michael Bowling.
Revisiting the arcade learning environment: Evaluation protocols and open problems for general agents. Journal of
Artificial Intelligence Research, 61:523-562, 2018.

Zheda Mai, Ruiwen Li, Jihwan Jeong, David Quispe, Hyunwoo Kim, and Scott Sanner. Online continual learning in
image classification: An empirical survey. arXiv preprint arXiv:2101.10423, 2021.

Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random search of static linear policies is competitive for
reinforcement learning. In Proceedings of the 32nd International Conference on Neural Information Processing
Systems, pp. 1805-1814, 2018.

Vegard Mella, Eric Hambro, Danielle Rothermel, and Heinrich Kiittler. moolib: A Platform for Distributed RL. 2022.
URL https://github.com/facebookresearch/moolib.

Martial Mermillod, Aurélia Bugaiska, and Patrick BONIN. The stability-plasticity dilemma: investigating the continuum
from catastrophic forgetting to age-limited learning effects. Frontiers in Psychology, 4:504, 2013. ISSN 1664-1078.
doi: 10.3389/fpsyg.2013.00504.

T. Mitchell, W. Cohen, E. Hruschka, P. Talukdar, J. Betteridge, A. Carlson, B. Dalvi, M. Gardner, B. Kisiel, J. Krishna-
murthy, N. Lao, K. Mazaitis, T. Mohamed, N. Nakashole, E. Platanios, A. Ritter, M. Samadi, B. Settles, R. Wang,
D. Wijaya, A. Gupta, X. Chen, A. Saparov, M. Greaves, and J. Welling. Never-ending learning. In Proceedings of
the Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI-15), 2015.

13

https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
https://github.com/facebookresearch/torchbeast
https://clvrai.com/furniture
https://clvrai.com/furniture
https://github.com/facebookresearch/moolib

Published at 1st Conference on Lifelong Learning Agents, 2022

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves,
Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through deep reinforcement
learning. Nature, 518(7540):529-533, 2015.

Martin Mundt, Yong Won Hong, Iuliia Pliushch, and Visvanathan Ramesh. A wholistic view of continual learning
with deep neural networks: Forgotten lessons and the bridge to active and open world learning. arXiv preprint
arXiv:2009.01797, 2020.

Hadi Nekoei, Akilesh Badrinaaraayanan, Aaron Courville, and Sarath Chandar. Continuous coordination as a realistic
scenario for lifelong learning. In International Conference on Machine Learning, pp. 8016-8024. PMLR, 2021.

Fabrice Normandin, Florian Golemo, Oleksiy Ostapenko, Pau Rodriguez, Matthew D Riemer, Julio Hurtado, Khimya
Khetarpal, Dominic Zhao, Ryan Lindeborg, Thimothée Lesort, et al. Sequoia: A software framework to unify
continual learning research. arXiv preprint arXiv:2108.01005, 2021.

OpenAl. Robogym. https://github.com/openai/robogym, 2020.

Ian Osband, Yotam Doron, Matteo Hessel, John Aslanides, Eren Sezener, Andre Saraiva, Katrina McKinney, Tor
Lattimore, Csaba Szepesvdri, Satinder Singh, Benjamin Van Roy, Richard S. Sutton, David Silver, and Hado van
Hasselt. Behaviour suite for reinforcement learning. CoRR, abs/1908.03568, 2019.

German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual lifelong learning with
neural networks: A review. Neural Networks, 113:54-71, 2019.

Simone Parisi, Hany Abdulsamad, Alexandros Paraschos, Christian Daniel, and Jan Peters. Reinforcement learning vs
human programming in tetherball robot games. In Proceedings of the International Conference on Intelligent Robots
and Systems (IROS), 2015.

Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker, Glenn Powell, Jonas Schneider, Josh
Tobin, Maciek Chociej, Peter Welinder, Vikash Kumar, and Wojciech Zaremba. Multi-goal reinforcement learning:
Challenging robotics environments and request for research. CoRR, abs/1802.09464, 2018.

Emmanouil Antonios Platanios, Abulhair Saparov, and Tom Mitchell. Jelly bean world: A testbed for never-ending
learning. In International Conference on Learning Representations, 2020.

Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, Tingwu Wang, Sanja Fidler, and Antonio Torralba. Virtualhome:
Simulating household activities via programs. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 8494-8502, 2018.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel Todorov, and Sergey
Levine. Learning Complex Dexterous Manipulation with Deep Reinforcement Learning and Demonstrations. In
Proceedings of Robotics: Science and Systems (RSS), 2018.

Mark B Ring. CHILD: A first step towards continual learning. In Learning to learn, pp. 261-292. Springer, 1998.

Mark Bishop Ring. Continual learning in reinforcement environments. PhD thesis, University of Texas at Austin Austin,
Texas 78712, 1994.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience replay for continual
learning. In Advances in Neural Information Processing Systems, volume 32, pp. 350-360, 2019.

Paul Ruvolo and Eric Eaton. ELLA: An efficient lifelong learning algorithm. In Proceedings of the International
Conference on Machine learning (ICML), pp. 507-515, 2013.

Mikayel Samvelyan, Robert Kirk, Vitaly Kurin, Jack Parker-Holder, Mingi Jiang, Eric Hambro, Fabio Petroni, Heinrich
Kuttler, Edward Grefenstette, and Tim Rocktidschel. Minihack the planet: A sandbox for open-ended reinforcement
learning research. In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 1), 2021.

Manolis Savva, Angel X Chang, Alexey Dosovitskiy, Thomas Funkhouser, and Vladlen Koltun. Minos: Multimodal
indoor simulator for navigation in complex environments. arXiv preprint arXiv:1712.03931, 2017.

Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana Jain, Julian Straub, Jia
Liu, Vladlen Koltun, Jitendra Malik, et al. Habitat: A platform for embodied ai research. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 9339-9347, 2019.

14

https://github.com/openai/robogym

Published at 1st Conference on Lifelong Learning Agents, 2022

Jonathan Schwarz, Daniel Altman, Andrew Dudzik, Oriol Vinyals, Yee Whye Teh, and Razvan Pascanu. Towards a
natural benchmark for continual learning. In Proceedings of the NeurlPS Workshop on Continual Learning, 2018a.

Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-Barwinska, Yee Whye Teh, Razvan
Pascanu, and Raia Hadsell. Progress & compress: A scalable framework for continual learning. In International
Conference on Machine Learning, pp. 4528-4537, 2018b.

Bokui Shen, Fei Xia, Chengshu Li, Roberto Martin-Martin, Linxi Fan, Guanzhi Wang, Shyamal Buch, Claudia
D’ Arpino, Sanjana Srivastava, Lyne P Tchapmi, et al. igibson, a simulation environment for interactive tasks in large
realistic scenes. arXiv preprint arXiv:2012.02924, 2020.

Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi, Luke Zettlemoyer,
and Dieter Fox. Alfred: A benchmark for interpreting grounded instructions for everyday tasks. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 10740-10749, 2020.

David Silver, Thomas Hubert, Julian Schrittwieser, loannis Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot,
Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. Mastering chess and shogi by self-play with a general
reinforcement learning algorithm, 2017.

Andrew Szot, Alex Clegg, Eric Undersander, Erik Wijmans, Yili Zhao, John Turner, Noah Maestre, Mustafa Mukadam,
Devendra Chaplot, Oleksandr Maksymets, et al. Habitat 2.0: Training home assistants to rearrange their habitat.
arXiv preprint arXiv:2106.14405, 2021.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden, Abbas
Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv preprint arXiv:1801.00690, 2018.

S. Thrun and Tom Michael Mitchell. Lifelong robot learning. Robotics Auton. Syst., 15:25-46, 1995.

Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha Vezhnevets, Michelle Yeo, Alireza
Makhzani, Heinrich Kiittler, John Agapiou, Julian Schrittwieser, et al. Starcraft ii: A new challenge for reinforcement
learning. arXiv preprint arXiv:1708.04782, 2017.

Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaél Mathieu, Andrew Dudzik, , Junyoung Chung, ,
David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan Horgan, Manuel Kroiss, Ivo
Danihelka, Aja Huang, Laurent Sifre, Trevor Cai, John P. Agapiou, Max Jaderberg, Alexander S. Vezhnevets, Rémi
Leblond, Tobias Pohlen, Valentin Dalibard, David Budden, Yury Sulsky, James Molloy, Tom L. Paine, Caglar
Gulcehre, Ziyu Wang, Tobias Pfaff, Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wiinsch, Katrina McKinney,
Oliver Smith, Tom Schaul, Timothy Lillicrap, Koray Kavukcuoglu, Demis Hassabis, Chris Apps, and David and
Silver. Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature, pp. 1-5, 2019.

Jianren Wang, Xin Wang, Yue Shang-Guan, and Abhinav Gupta. Wanderlust: Online continual object detection in the
real world. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10829—10838, 2021.

Jiayi Weng, Min Lin, Shengyi Huang, Bo Liu, Denys Makoviichuk, Viktor Makoviychuk, Zichen Liu, Yufan Song,
Ting Luo, Yukun Jiang, et al. Envpool: A highly parallel reinforcement learning environment execution engine.
arXiv preprint arXiv:2206.10558, 2022.

Maciej Wotczyk, Michat Zajac, Razvan Pascanu, Fukasz Kucinski, and Piotr MitoS. Continual world: A robotic
benchmark for continual reinforcement learning. arXiv preprint arXiv:2105.10919, 2021.

Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu, Minghua Liu, Hanxiao Jiang, Yifu
Yuan, He Wang, et al. Sapien: A simulated part-based interactive environment. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 11097-11107, 2020.

Eliot Xing, Abhinav Gupta, Sam Powers, and Victoria Dean. Kitchenshift: Evaluating zero-shot generalization of
imitation-based policy learning under domain shifts. In NeurIPS 2021 Workshop on Distribution Shifts: Connecting
Methods and Applications, 2021.

Claudia Yan, Dipendra Misra, Andrew Bennnett, Aaron Walsman, Yonatan Bisk, and Yoav Artzi. Chalet: Cornell house
agent learning environment. arXiv preprint arXiv:1801.07357, 2018.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey Levine. Meta-world:
A benchmark and evaluation for multi-task and meta reinforcement learning. In Conference on Robot Learning, pp.
1094-1100. PMLR, 2020.

15

Published at 1st Conference on Lifelong Learning Agents, 2022

Chiyuan Zhang, Oriol Vinyals, Remi Munos, and Samy Bengio. A study on overfitting in deep reinforcement learning.
arXiv preprint arXiv:1804.06893, 2018.

Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim, Abhinav Gupta, Li Fei-Fei, and Ali Farhadi. Target-driven
visual navigation in indoor scenes using deep reinforcement learning. In 2017 IEEE international conference on
robotics and automation (ICRA), pp. 3357-3364. IEEE, 2017.

Yuke Zhu, Josiah Wong, Ajay Mandlekar, and Roberto Martin-Martin. robosuite: A modular simulation framework and
benchmark for robot learning. In arXiv preprint arXiv:2009.12293, 2020.

16

Published at 1st Conference on Lifelong Learning Agents, 2022

A EXTENDED RELATED WORK

Environments and tasks Historically, RL agents were evaluated on simple control tasks with state-based inputs from
the OpenAl Gym (Brockman et al., 2016) or DeepMind Control Suite (Tassa et al., 2018). Some of these tasks have
been shown to be easily solvable by random search algorithms (Mania et al., 2018) and thus should not be considered as
sufficiently difficult for comparing algorithms. Leveraging physics simulators, many environments have been proposed
that involve robots, fixed in place, for object manipulation tasks of varying complexity (Plappert et al., 2018; Rajeswaran
et al., 2018; Gupta et al., 2020; Xing et al., 2021; OpenAl, 2020; Kannan et al., 2021; James et al., 2020; Zhu et al.,
2020; Yu et al., 2020; Lee et al., 2021). Learning policies for robot manipulation is challenging, compounded by the
exploration difficulty of the task, continuous action spaces, and the sample inefficiency of RL algorithms.

In this work, we choose environments with discrete action spaces, in order to use a single output policy across multiple
tasks, rather than use separate output heads for different tasks. We make this decision considering the capabilities of
current methods. For environments with continuous action spaces, task-agnostic single-headed architectures may be
infeasible currently, as in (Wotczyk et al., 2021), so we leave this for future work. Furthermore, it is beneficial for
continual RL for tasks to share a consistent observation space, allowing for the creation of common policies that can
leverage task similarities. If environments rely on state-based inputs such as the positions of objects, it is usually the
case that the state space changes for different tasks. To ensure a consistent observation space, we pick environments
which offer image-based observation spaces.

RL is also frequently evaluated on video game-like environments, most commonly Atari (Bellemare et al., 2013), among
others (Chevalier-Boisvert et al., 2018; Chevalier-Boisvert, 2018; Vinyals et al., 2017; Beattie et al., 2016; Kempka
et al., 2016; Juliani et al., 2019; Guss et al., 2019; Cobbe et al., 2020; Kiittler et al., 2020). In this work, we reproduce
prior continual RL results on Atari (Schwarz et al., 2018b; Rolnick et al., 2019). We also define new task sequences
using Procgen (Cobbe et al., 2020) and MiniHack (Samvelyan et al., 2021). MiniHack is designed to isolate more
tractable subproblems in the highly challenging NetHack (Kiittler et al., 2020) environment. We believe Procgen and
MiniHack, with fast, procedurally-generated, stochastic environments to be better testbeds for continual RL onwards.

Beyond video game environments, many home environment simulators have been proposed recently (Brodeur et al.,
2017; Savva et al., 2017; Puig et al., 2018; Yan et al., 2018; Gao et al., 2019; Savva et al., 2019) which offer visually-
realistic scenes for evaluating Embodied AI. Among these types of environments, we highlight AI2-THOR (Kolve et al.,
2017), Habitat 2.0 (Szot et al., 2021), iGibson (Shen et al., 2020), Sapien (Xiang et al., 2020), and ThreeDWorld (Gan
et al., 2021), which feature a wide range of household objects and scene-level interaction tasks. In particular, AI2-
THOR, Habitat 2.0, and iGibson provide multiple home scenes based on real-world data. These different scenes are
useful for applying realistic domain shift between tasks and evaluating forward transfer when learning later tasks. We
choose AI2-THOR as a simulation environment in this benchmark because it offers a higher-level discrete action space,
compared to Habitat 2.0 or iGibson at the time of development, along with a diverse set of demonstrations released in
ALFRED (Shridhar et al., 2020). We also note that recent work using AI2-THOR has done evaluations with object
manipulation tasks (Shridhar et al., 2020; Batra et al., 2020; Ehsani et al., 2021), paving the way for more complex
action spaces.

B BACKGROUND

Formally, we consider each task 7 as a finite, discrete-time Markov decision process (MDP), represented by a tuple
(S, A, T,r, po), with state space S, action space A, state transition probability function 7', reward function r, and
probability distribution py on the initial states Sp C S. In the standard reinforcement learning setup, the goal is to
learn a policy 7(a|s) which maximizes the expected return R, where the return of a state s is defined as the sum of
(discounted) rewards over a finite-length episode from state s.

We refer the reader to (Zhang et al., 2018; Ghosh et al., 2021; Kirk et al., 2021), on which we base our dis-
cussion of generalization in RL using a Contextual MDP (CDMP) (Hallak et al., 2015). A state s € S can be
decomposed as (¢, s’) € S¢, where s’ € S’ is the underlying state and ¢ € C is the context, such that S = C' x S’. We
assume that the context is not observed by the agent, so the CDMP is a partially observable MDP (POMDP) with
observation space O.

The context ¢ remains fixed throughout an episode, and determines the environment variation. The initial
state distribution may be factorized as po(s) := p(c)po(s’|c), where p(c) is called the context distribution, used to
determine collections of training and testing environments. Formally, we consider context sets Cly.q;, and Cyest, Where
the policy is trained on training context-set CMDP T |¢,,..,. and evaluated on the testing context-set CMDP T |¢,. _, -

17

Published at 1st Conference on Lifelong Learning Agents, 2022

We denote the expected return in the CMDP as R(7, T) := E.,(c) [R(7, T|c)]. The objective for the policy 7 is to
maximize the expected return on the testing context set, R(m, T|¢,..,). Furthermore, the generalization gap between
train and test performance can be measured by R(m, Tc,,...) — R(m, Tlc,...)-

In Procgen, we consider in-distribution generalization on unseen environment contexts, where Cj.qq and
Chest are disjoint sets composed of i.i.d samples of C'. In particular, ¢ is a random seed which determines how the game
level procedurally generates. For the easy difficulty setting of Procgen, Ct;4:,, is composed of 200 fixed seeds, while
Ciest = C' is uniform over all seeds.

In MiniHack, we consider out-of-distribution generalization, namely extrapolation along different environ-
ment factors. In addition to a random seed, any MiniHack environment instance is also determined by its des—file,
which controls map layout as well as placement of environment features, monsters, and objects. For example, the
MiniHack task Corridor-R5 has one des-f1i1le associated with it, while KeyRoom-S5 has defined its own separate
one. Thus, each (train, test) task pair tests extrapolation along environment variations such as room size, number
of rooms, obstacles, or lighting. We refer the reader to Appendix C of the MiniHack paper for further details on
variation (Samvelyan et al., 2021), and Appendix C.3 of our paper for the full list of MiniHack task pairs we use.
Similarly, CHORES Gen-MultiTraj evaluates out-of-distribution generalization on unseen factors such as room scene
and object of interest.

For a continual reinforcement learning setup, we further consider a sequence of N tasks, Sy := (7 ... Tny-1). The
agent trains on task 7; at timesteps in the interval [A;, B;), where A; and B; are the task boundaries denoting the start
and end, respectively, of task 7;. We cycle through the tasks M times, so the full task sequence Sy as has length N - M.
We assume that the tasks are drawn from some world collection W, where the dimensions of the observation space and
action space are consistent across all tasks from V. This enables us to train one model, with a single output policy
layer, over the task sequence. In this work, we consider V to be Atari games, Procgen games, NetHack dungeons for
MiniHack, or AI2-THOR scenes for CHORES. We further assume that tasks in Y} have some shared structure, for
instance related to dynamics (ie. enemies hurt players) or rewards (ie. survive longer), which humans would also learn
to exploit in order to perform all tasks in W.

There are a couple ways to view the benefits of defining the learning problem in this sequential manner,
compared to training an expert for each task or training via multi-task learning. The first is through the lens of a robotic
agent, operating in the real world in a way similar to humans. Such an agent should learn and adapt to new settings as
they are encountered, without forgetting prior learned behavior. Training multiple tasks in parallel or training on each
task individually with human-specified boundaries makes additional assumptions, which encourages the development
of methods that are ill-suited to the needs of lifelong robotic agents in the real-world.

The second way to view the benefits of continual RL is that sequentially learning tasks is a simple and effective way to
induce a non-stationary learning process. Any component of the MDP may change on task switch, and the agent should
be capable of handling such distribution shifts. While our benchmarks are not imbued with all the ways in which the
real world may change, we see this way of modeling the learning problem as a step towards the final goal of real-world
embodied agents, for future work to build off.

18

Published at 1st Conference on Lifelong Learning Agents, 2022

C CORA DETAILS

All code, including hyperparameters, is available here: https://github.com/AGI-Labs/continual_rl.

We divide additional details for CORA in this section into: design objectives for CHORES (Appendix C.1), details of
each CHORES task sequence (Appendix C.2), list of MiniHack task pairing (Appendix C.3), examples of initial obser-
vations for video-game task sequences (Appendix C.4), experiment runtimes (Appendix C.7), baseline implementation
details (Appendix C.5), hyperparameters (Appendix C.6), Atari experiment results (Appendix C.8), additional Procgen
figures (Appendix C.9), final performance tables on all environments (Appendix C.10), and avenues for future work
(Appendix C.11).

C.1 CHORES DESIGN OBJECTIVES

Num traj.
Difficulty =~ Test Type per task Scene Task Object

Mem-VaryScene easier memorization 1 A, bath put in bathtub hand towel

Mem-VaryTask easier memorization 1 bath, Room 402 A toilet paper (TP)

Mem-VaryObject easier memorization 1 kitchen, Room 24 clean object A

Gen-MultiTraj harder generalization 3 A, kitchen Cool & put in sink A

Task A Task B Task C

Mem-VaryScene Room 402 (r = 12) Room 419 (r = 12) Room 423 (r = 12)
Mem-VaryTask hang TP (r = 12) put 2 TP in cabinet (rr = 24) put 2 TP on counter (rr = 24)
Mem-VaryObject fork (r = 18) knife (r = 18) spoon (r = 18)

Gen-MultiTraj Room 19, cup (r = 18) Room 13, sliced potato (r = 31) Room 2, sliced lettuce (r = 31)

Table 2: Summary of the four CHORES benchmarks. The first three are memorization tasks, and are evaluated on the
training environment. The fourth is a harder generalization task, with 3 trajectories per task to initialize the scene and
task parameters. We also summarize which scene each task is in, what task it performs, and what objects it utilizes. We
categorize each CHORES by what the task sequences varies. The r values in parentheses show the minimum return for
solving the task.

Goal communication All CORA benchmarks other than CHORES use video game environments, where the visual
differences between the tasks may have been sufficient for the agent to know what they are supposed to do, in order
to receive reward. For instance in Atari, O-Spacelnvaders is distinct enough in appearance from 2-BeamRider that no
further task specification is required, see Appendix C.4 Figure 6. However, since all CHORES take place in a fixed set
of rooms, the observation that the agent receives on its own is insufficient to distinguish task boundaries with. In this
work, we use subgoal images in CHORES to communicate task intentions to the agent. In real-world settings, this could
be achieved by a human demonstrating a task and taking pictures at critical points during the task to give to a robotic
agent. Future work may leverage the language annotations ALFRED provides with each demonstration trajectory for
alternate as more convenient forms of communication would be useful for robotic agents to employ.

Task constraints To make the benchmark as accessible for the community, our aim was for each task used by CHORES
to be individually solvable in under five hours using a machine with 16 vCPUs, 64 GB of RAM, and a Titan X GPU.
Given the nature of simulating realistic environments, this corresponds to a budget of around 1 million frames per task.
Additionally, since continual RL ultimately should be deployed onto robotic agents in the real world, modest sample
budgets align with what will likely be feasible with real world learning.

Most existing policies may not be sample efficient enough to learn complex tasks in this amount of time. However, by
providing sequences of simple tasks that are at the edge of what is currently achievable, we hope to move beyond this
boundary and encourage the development of algorithms that are successful under these conditions. We also provide one
complex task as an example of what is possible moving forward and for what we hope will be achievable in future
CHORES benchmarking.

Task selection The CHORES tasks were (by necessity) somewhat more hand-picked. These were selected in the
following way:
1. We used ALFRED to generate a new set of trajectories for the latest AI2-THOR version (needed for headless
rendering to use on our cluster) using ALFRED’s defined set of tasks.

2. Based on our defined axes of variation (e.g. varying objects), we filtered successfully generated tasks into
clusters that met our criteria.

19

https://github.com/AGI-Labs/continual_rl

Published at 1st Conference on Lifelong Learning Agents, 2022

3. From this filtered set, we selected tasks to maximize diversity (e.g. more than just pick-and-place).

The selection process was done more out of necessity than the ideal, but we believe the tasks cover the desired goals of
the benchmark more than adequately.

C.2 CHORES DETAILS

(a) Go to counter (b) Pick up knife (c) Slice potato (d) Go to sink

(e) Put knife in sink (f) Go to counter (g) Pick up potato (h) Go to fridge

(i) Cool potato (j) Go to sink (k) Put potato in sink

Figure 5: Visualization of one ALFRED trajectory used to define a task in CHORES.

To start, we propose three memorization-based CHORES, each of which tests an agent’s robustness to a particular type
of domain shift. Each task within these three CHORES is intended to be relatively easy, using only one trajectory to set
the environment parameters and evaluating in the same scene as during training. We additionally propose one harder
CHORES to evaluate generalization. This last CHORES has more complex tasks, with a set of three trajectories per
task to initialize the environment from, and evaluation is also done in unseen settings from a different 3 trajectories.
These benchmarks are summarized in Table 2 in the Appendix. In all cases, the locations of moveable, interactable
objects are randomized between trajectories.

The first task sequence, which we refer to as Mem-VaryRoom, keeps the task type and task object the same, while
changing the room scene the agent interacts in to different bathrooms. The agent is trained to find a hand towel and
place it in the bath tub of Room 402 for 1M steps, then in Room 419, then in Room 423. We then cycle through the
environments again, to evaluate how much faster learning each environment is the second time.

The second task sequence, Mem-VaryTask, follows the same pattern but holds the current room and object constant,
while changing the task. The agent is trained in the same bathroom to change a roll of toilet paper on a hanger, then to
put two rolls of toilet paper in the cabinet, and finally to place two rolls on the countertop.

20

Published at 1st Conference on Lifelong Learning Agents, 2022

The third task sequence, Mem-VaryObject, holds the current room and task constant but changes the object. In kitchen
24 the agent is tasked to clean a fork, then clean a knife, then clean a spoon. Cleaning is done by putting an object
under running water from a faucet. For the first two tasks, after cleaning the agent must put the object on the counter
top, and in the third it must put it in the cabinet.

The fourth task sequence, Gen-MultiTraj, uses a task where an agent takes an object, puts it in the fridge to cool it,
removes it, and then places it in the sink. With this base task, the task sequence is as follows: (a) in kitchen 19, the
agent performs the task with a cup; (b) in kitchen 13, the agent must slice a potato, then perform the task with the sliced
potato; (c) in kitchen 2, the agent must slice lettuce, then perform the task with the sliced lettuce. The key difference
from the previous task sequences is that each task in the fourth CHORES is evaluated on unseen settings initialized
from three possible heldout demonstrations trajectories, testing an agent’s ability to generalize.

In Figure 5, we visualize all subgoal images for one trajectory of the Gen-MultiTraj potato task (task 2).

Reward details Unlike ALFRED which reports the number of subgoals achieved, we report the episode returns for
consistency with the other benchmarks, clipped to a minimum value of -10. Extremely negative values occur when
the agent performs a particularly suboptimal action for the duration of the episode, until the maximum step limit of
1000 is hit. Without clipping, this occasional negative behavior completely drowns out the agent’s successes, both in
visualization and metrics.

C.3 MINIHACK TASK SEQUENCE

The MiniHack (train, test) paired task sequence we use is:

(Room-Random-5x5, Room-Random-15x15)
(Room-Dark-5x5, Room-Dark-15x15)
(Room-Monster-5x5, Room-Monster-15x15)
(Room-Trap-5x5, Room-Trap-15x15)
(Room-Ultimate-5x5, Room-Ultimate-15x15)
(Corridor-R2, Corridor-R5)

(Corridor-R3, Corridor-R5)

(KeyRoom-S5, KeyRoom-S15)
(KeyRoom-Dark-S5, KeyRoom-Dark-S15)
(River-Narrow, River)

© 00 = O U e W NN = O

—
o

(River-Monster, River-MonsterLava)

—_
—_

(River-Lava, River-MonsterLava)
(HideNSeek, HideNSeek-Big)
(HideNSeek-Lava, HideNSeek-Big)
(CorridorBattle, CorridorBattle-Dark)

— = =
[SGVE V)

This task sequence defines 15 pairs of (train, eval) environments and uses a total of 27 different environments. Some of
the evaluation environments are used multiple times because that those test environments have more than one related
train environment. In particular, this impacts task pairs 5 and 6; 10 and 11; 12 and 13.

C.4 EXAMPLES FOR INITIAL OBSERVATIONS OF THE VIDEO GAME BENCHMARKS

We show examples of initial observations that an agent may get for each task in the Atari (Figure 6), Procgen (Figure 7),
and MiniHack (Figure 8) task sequences. Note that visually, it is easy to distinguish the different tasks for Atari and
Procgen. However, since MiniHack tasks use the same visual assets, it is more challenging to tell tasks apart from
each other. This makes task boundary identification more difficult for algorithms. Furthermore, this also supports why
CHORES provides agents with a goal image specifying the task to perform.

21

Published at 1st Conference on Lifelong Learning Agents, 2022

0-Spacelnvaders 1-Krull 2-BeamRider 3-Hero 4-StarGunner 5-MsPacman

Figure 6: Examples of initial observations for each task in the 6 task Atari sequence.

0-Climber 1-Dodgeball 3-Starpilot 4-Bigfish 5-Fruitbot

==

I]
7 LA L e

Figure 7: Examples of initial observations for each task in the 6 task Procgen sequence

0-Room-Random 1-Room-Dark 2-Room-Monster 3-Room-Trap 4-Room-Ultimate

5-Corridor-R2 6-Corridor-R3 7-KeyRoom 8-KeyRoom-Dark 9-River-Narrow

10-River-Monster 11-River-Lava 12-HideNSeek 13-HideNSeek-Lava 14-CorridorBattle

Figure 8: Examples of initial observations for each task in the 15 task MiniHack sequence. Observations are shown for
the training task of each pair.

C.5 BASELINE IMPLEMENTATION DETAILS

After discussion with the authors, the original P&C (Schwarz et al., 2018b) results collect the task’s budgeted number of
samples from the environment for each of their progress and compress phases. Instead, we opt to collect half for each,
rather than effectively doubling the budget for environment steps compared to other methods. This may be why we

22

Published at 1st Conference on Lifelong Learning Agents, 2022

observe P&C underperforming compared to the original paper’s results. Note that P&C evaluates using the knowledge
base model, which is only updated in the second half of training on each task. As such, for the first half of each task
(while the active column model is being updated), essentially a flat performance curve is reported for P&C.

Additionally, as stated in Appendix C.8, the original authors used a pre-release version of IMPALA, while we use the
TorchBeast implementation of IMPALA. For CLEAR, we used a 25M frame replay buffer while the original CLEAR
paper used a replay buffer of half the number of frames that the agent trains on. For two cycles, this would correspond
to 300M frames, while the authors of CLEAR used a replay buffer of 750M frames for their Atari experiment running
5 learning cycles. Due to system constraints, we are unable to run with the larger replay buffer size. Even with this
difference, our implementation of CLEAR outperforms the results reported in the original paper. CLEAR uses reservoir
sampling (Isele & Cosgun, 2018) to maintain a buffer that stores a uniform sample of all past experience.

We use a single output head across the task sequence, rather than separate heads for each task such as in (Wotczyk et al.,
2021). We evaluate using the eval mode of policies. For all IMPALA-based methods, eval mode takes the argmax
action instead of a stochastic sampling. In the case of P&C, we evaluate using the output of the knowledge base instead
of the active column. While we use existing methods in the manner in which they were designed, we would like to
encourage future methods to have parity between train and evaluation policies.

Network architecture For Atari (Appendix C.8), we use the “shallow” model without an LSTM from the IMPALA
paper (Espeholt et al., 2018). We also use this model for MiniHack (Section 6.2) and CHORES (Section 6.3). For
Procgen (Section 6.1), we use the “deep” residual model without an LSTM from the IMPALA paper, following (Jiang
et al., 2021; Cobbe et al., 2020). We include Procgen results from an earlier version of this paper that used the “shallow”
model in Appendix C.9.

C.6 HYPERPARAMETERS

Hyperparameter Shared

Num. actors 64

Learner threads 2

Batch size 32

Unroll length 20

Grad clip 40

Reward clip [-1,1]

Normalize rewards No

Baseline cost 0.5

Entropy cost 0.01

Discount factor 0.99

LSTM No

Network arch. Nature CNN

Learning rate 4e—4

Optimizer RMSProp
a=0.99
e =0.01

pnw=0

Hyperparameter EWC Online EWC P&C CLEAR

EWC A\ 10000 175 3000

EWC, min. task steps 2e5 2e5

Fisher samples 100 100 100

Normalize Fisher No Yes Yes

Online EWC v 0.99 0.99

KL cost 1.0

Batch ratio (novel-replay) 50-50

Policy cloning cost 0.01

Value cloning cost 0.005

Replay buffer size 25e6

Table 3: Hyperparameters for baselines on the Atari. For Atari, the network architecture is the Nature-CNN model
from the DQN paper (Mnih et al., 2015). For Procgen, we use the same values, except CLEAR’s replay buffer size
is reduced to 5e6, and across all baselines, we switch the network architecture to the “deep” residual model from the
original IMPALA paper (Espeholt et al., 2018).

23

Published at 1st Conference on Lifelong Learning Agents, 2022

Hyperparameter Shared
Reward clip No
Normalize rewards Yes Hyperparameter _ Shared
Entropy cost 0.001 Num. actors 10
Discount factor 0.999 Batch size 10
Learning rate 2e—4 Unroll length 80
Optimizer RMSProp
€=1le—6 (b) CHORES
(a) MiniHack

Table 4: Hyperparameters for baselines on (a) MiniHack, following values used by Samvelyan et al. (2021); (b)
CHORES. We report values changed from those used for Atari.

We report hyperparameters used by the baselines for Atari in Table 3. Note that the scale of the losses differ between
EWC vs. Online EWC and P&C, see Appendix C.2 of the P&C paper (Schwarz et al., 2018b). For EWC, we
conducted a hyperparameter search with learning rate from [le—5, le—4, 4e—4, 6e—4] and EWC X from [1, 100,
175, 500, 1000, 1500, 3000, 5000, 10000]. For Online EWC and P&C, we chose EWC X from [175, 3000, 10000]
and Online EWC ~ from [0.95, 0.99, 0.999, 0.9999]. For CLEAR, we chose the replay buffer size from [5e6, 20e6, 25¢6].

For Procgen, we use the same hyperparameters as for Atari, except CLEAR’s replay buffer size is reduced
to 5e6, and across all baselines we switch the network architecture to the “deep” residual model from the original
IMPALA paper (Espeholt et al., 2018). For MiniHack, we use hyperparameters from Samvelyan et al. (2021),
which are shown in Table 4 (a). We also reduce CLEAR’s replay buffer size to 10e6. For CHORES, we report the
hyperparameters used in Table 4 (b).

C.7 EXPERIMENT RUNTIMES
When we run using a single GPU on a machine with 128 GB of RAM, and 32 or 40 vCPUs, we observe the following
runtime averages across the entire experiments:

e MiniHack: 45 hours (1.5 hr/task)

* Procgen: 54 hours (1.8 hr/task)

* Atari: 129 hours (10.8 hr/task) — which would have taken 323 hours to run the original 5-cycle experiment

CHORES: discussed in Section C.1, around 5 hours per task to train.

Atari, as the standard baseline, is what we aimed to improve upon with the selection of Procgen and MiniHack, and
indeed we see a speedup of around 6-7x. CHORES, which uses the visually realistic AI2THOR home simulation
environment, is slower, but still 2x as fast as Atari per task.

We note that concurrent with our work, advances (Weng et al., 2022; Mella et al., 2022) have been made in accelerating
the Atari simulator (and other CPU-based environments) using C++ threads and by bypassing the Python GIL. This has
lowered the compute requirements for running longer Atari experiments, which were previously only possible with
industry-level compute. We are excited for the possibilities opened by these advances, for future work on continual
RL incorporating longer task sequences, and the more difficult Atari settings introduced by (Machado et al., 2018;
Farebrother et al., 2018).

C.8 ATARI RESULTS

We include the standard, proven Atari task sequence as a benchmark, in order to validate our baseline implementations
on an existing standard. The reproduction of these Atari results were developed over hundreds of hours, including
time spent analyzing papers for algorithm details, corresponding with the original authors, tuning hyperparameters,
and running many seeds of Atari experiments, each of which takes hundreds of millions of frames. These results were
reproduced using a university server cluster and several thousand dollars of AWS credits, compared to the industry-level
compute that the original authors (from DeepMind) Schwarz et al. (2018b) and Rolnick et al. (2019) had access to. This
is one of the primary reasons we are advocating for more compute-friendly continual RL benchmarks. It is also the
reason that we were only able to run 2 learning cycles for these Atari results instead of the intended 5 cycles.

24

Published at 1st Conference on Lifelong Learning Agents, 2022

0-Spacelnvaders 1-Krull 2-BeamRider
4000 10k 10k
CLEAR
o o C
5 3000 5 % 5 —P&C
2 Z L © —Online EWC
[a 9 o 6k o 6k
S 2000 ° e EWC
O O 4k O 4k —IMPALA
3 <3 8
2 1000 2o 4 2o |
—]
OO 300M 600M OSM 300M 600M OO 300M 600M
3-Hero 4-StarGunner 5-MsPacman
50k 100k 4000
CLEAR
C C C
E 40k E 80k é 3000 — P&C
& 30k & 6ok ‘ & —Online EWC
e ° ‘ S 2000 EWC
O 20k O 40k o —IMPALA
8 8 8
25 10k 25 20k 5 1000
% 300M 600M S 300M 600M % 300M 600M
Step Step Step

Figure 9: Results for Continual Evaluation (C) on the 6 Atari task sequence from (Rolnick et al., 2019; Schwarz et al.,
2018b). Due to compute constraints, we only train for 2 cycles compared to the original experiments which used 5
learning cycles. IMPALA is the baseline learning algorithm that the other methods for continual RL build off. Gray
shaded rectangles show when the agent trains on each task.

We use the full 18-dim action space for this task sequence. The observation space is (84, 84) grayscale images, and the
agent receives a framestack of 4. The Atari games used are fully deterministic, and following the prior continual RL
work on Atari, we do not apply sticky actions (Machado et al., 2018).

Atari results are shown in Figure 9, and we compare them against the results presented in Rolnick et al. (2019). Notably,
on almost all Atari tasks, our implementations outperform the results reported in CLEAR. This may be because we use
the TorchBeast (Kiittler et al., 2019) implementation of IMPALA, while the results in Rolnick et al. (2019) and Schwarz
et al. (2018b) use an earlier, pre-release version of IMPALA.

Benchmark analysis: Summary metrics are available in Table 1. From these, we observe that Atari does effectively
test for robustness to catastrophic forgetting, but exhibits nearly no transfer. Looking at the diagnostic transfer in
Table 12, we observe no transfer, likely because the six Atari tasks used are too distinct from each other.

Algorithm design: From the continual evaluation results in Figure 9, we can see that CLEAR outperforms the other
baselines at both at recall and plasticity on Atari, which matches the original results by (Rolnick et al., 2019). EWC
maintains a flat return curve for early tasks, which is consistent, losing plasticity and failing to learn the later tasks.
P&C largely maintains its plasticity, but we observe considerably more forgetting than was reported. We discuss this
disparity in Appendix C.5.

25

Published at 1st Conference on Lifelong Learning Agents, 2022

C.9 ADDITIONAL PROCGEN FIGURES

For readability, we provide an alternative plot (Figure 10) of the Procgen results shown in Section 6.1, Figure 2, without
the CLEAR baseline. Additionally, in Figure 11, we report baseline results on Procgen using the “shallow” model. The
updated Procgen results in Section 6.1, Figure 2 use the “deep” residual model.

Expected Return

Expected Return

==

0-Climber
=
=]
ko)
ot
o]
(0]
B
(0]
o
X
w
3-Starpilot
€
=1
ol
o
e}
(0]
°
[0}
[a)
i
A

30M 60M 90M 120M 150M

Step

1.2

0.7

0.

0.2

15

1-Dodgeball

5

5

5

5

%

30M 60M 90M 120M 150M

4-Bigfish

%

30M 60M 90M 120M 150M

Step

Expectedl Retulrn I

Expected Retu'rn '

2-Ninja

—P&C

—ONLINE EWC
EWC

—IMPALA

0 30M 60M 90M 120M 150M

5-Fruitbot

—P&C

—ONLINE EWC
EWC

—IMPALA

: A

0 30M 60M 90M 120M 150M
Step

Figure 10: Results for Continual Evaluation (C) on the 6 Procgen tasks. These are the same results as shown in Figure
2, but with CLEAR removed and rescaled to better visualize the baselines.

Expected Return

Expected Return

%

0-Climber

I AL

30M 60M 90M 120M 150M

3-Starpilot

30M 60M 90M 120M 150M
Step

Expected Return

Expected Return

1-Dodgeball

30M 60M 90M 120M 150M

4-Bigfish

%

30M 60M 90M 120M 150M
Step

Expected Return

Expected Return

2-Ninja

—CLEAR
—P&C
—Online EWC
EWC
—IMPALA

| \j y
60M 90M 120M 150M

30M

5-Fruitbot

—CLEAR
—P&C
—Online EWC
EWC
—IMPALA

T 30M 60M 90M 120M 150M

Step

Figure 11: Results for Continual Evaluation (C) on the 6 Procgen tasks, based on recommendations by Igl et al.
(2021). The solid line shows evaluation on unseen testing environments; the dashed line shows evaluation on training
environments. Gray shaded rectangles show when the agent trains on each task. These results use the “shallow” model
from the IMPALA paper (Espeholt et al., 2018), while the results in Section 6.1, Figure 2 use the “deep” residual model.

26

Published at 1st Conference on Lifelong Learning Agents, 2022

C.10 FINAL PERFORMANCE TABLES

C.10.1 ATARI, FINAL PERFORMANCE TABLES

Task CLEAR P&C Online EWC EWC IMPALA
0-Spacelnvaders 1766.75 4= 89.36 209.14 £ 55.91 240.19 £65.36 654.45 £ 134.16 247.64 &+ 39.18
1-Krull 6542.51 +410.25 156.65 +141.62 1714.31 +532.34 2210.76 + 290.60 1249.52 £ 592.68
2-BeamRider 2002.95 £+ 212.14 627.60 £ 36.22 491.86 £ 68.31 458.69 +109.92 425.58 = 108.48
3-Hero 33604.29 £ 1487.71 289.25 £ 289.25 0.00 £ 0.00 0.00 £ 0.00 0.00 £ 0.00

4-StarGunner 56365.93 4 2881.83 37515.49 £ 3692.96 3421.75 £ 1453.06 140.03 £ 87.05 3495.73 + 1774.20
5-MsPacman 3536.24 4 400.45 996.19 £ 58.19 2171.94 +229.90 201.91 +58.12 2104.36 &+ 103.78

Table 5: Comparison of final performance (mean+SEM) between methods in the environments for each Atari task.

C.10.2 PROCGEN, FINAL PERFORMANCE TABLES

Task CLEAR P&C Online EWC EWC IMPALA

0-Climber 0.744+0.04 0.12+0.02 0.37+0.06 0.06 £0.02 0.22+£0.04
1-Dodgeball 1.35 4+ 0.05 0.04+0.01 0.054+0.01 0.224+0.04 0.06 +0.01
2-Ninja 3.894+0.18 0.20+0.06 0.114+0.04 0.204+0.08 0.38+0.06
3-Starpilot 38.29 +1.45 0.52+0.09 0.53+0.10 1.954+0.06 0.44 +0.09
4-Bigfish 11.31+0.58 1.63+0.14 1.81+0.18 1.39+0.15 2.65+0.18
5-Fruitbot 25.81 4+ 0.22 —0.46 £ 0.42 6.16 = 1.24 —1.44 4+ 0.07 22.62 £+ 0.33

Table 6: Comparison of final performance (mean+SEM) between methods in the unseen testing environments for each
Procgen task.

Task CLEAR P&C Online EWC EWC IMPALA

0-Climber 0.814+0.05 0.194+0.05 0.29+0.05 0.07+0.03 0.24+0.04
1-Dodgeball 2.19 4+ 0.08 0.05+0.01 0.054+0.01 0.294+0.05 0.05+0.01
2-Ninja 3.924+0.18 0.27+0.08 0.124+0.03 0.20+0.07 0.42+0.09
3-Starpilot 38.76 +1.52 0.56 +0.10 0.52+0.10 1.99+0.06 0.43 £0.09
4-Bigfish 13.90 4+ 0.55 1.52+0.09 1.86+0.18 1.604+0.22 2.88+0.27
5-Fruitbot 27.04 4+ 0.21 —0.49 +0.38 6.56 +1.19 —1.64 + 0.05 22.58 4+ 0.41

Table 7: Comparison of final performance (mean+SEM) between methods in the training environments for each
Procgen task.

27

Published at 1st Conference on Lifelong Learning Agents, 2022

C.10.3 MINIHACK, FINAL PERFORMANCE TABLES

Table 8: Comparison of final performance (mean£=SEM) between methods in the unseen testing environments for each

MiniHack task.

Task CLEAR IMPALA
0-Room-Random 0.24 +0.03 —0.024+0.08
1-Room-Dark 0.33 +£0.08 —0.11+£0.07
2-Room-Monster 0.30 £0.04 —0.0240.08
3-Room-Trap 0.294+0.03 0.03£0.09
4-Room-Ultimate 0.37 +£0.07 —0.09 4+0.05
5-Corridor-R2 —0.84 +£0.02 —0.69 = 0.07
6-Corridor-R3 —-0.854+0.03 —0.70 £+ 0.07

7-KeyRoom
8-KeyRoom-Dark

—0.324+0.02 —0.40 £0.00
—0.38 = 0.00 —0.40 £ 0.00

9-River-Narrow —0.18 +0.01 —0.19+£0.04
10-River-Monster —0.26 £0.01 —0.20 = 0.04
11-River-Lava —0.26 £ 0.01 —0.20 £ 0.04

12-HideNSeek

14-CorridorBattle

—0.10+£0.03 —0.174+0.07
13-HideNSeek-Lava —0.09 £ 0.03 —0.17 +0.07
—0.334+0.01 —0.33 +£0.01

Task CLEAR IMPALA

0-Room-Random 0.91 +0.02 0.384+0.12
1-Room-Dark 0.67 £0.04 0.23+0.08
2-Room-Monster 0.91+£0.01 0.36t0.12
3-Room-Trap 0.924+0.02 0.38+0.11
4-Room-Ultimate 0.714+0.03 0.23 +0.07

5-Corridor-R2
6-Corridor-R3
7-KeyRoom

—0.14 +0.03 —0.68 £+ 0.06

—0.86 £ 0.02

—0.68 +0.07

—0.124+0.02 —0.20 £+ 0.00

8-KeyRoom-Dark —0.18 £0.01 —0.20 £ 0.00
9-River-Narrow 0.05+0.04 —-0.194+0.04
10-River-Monster —0.20+0.02 —0.17 £ 0.05
11-River-Lava —-0.224+0.01 —0.18 +0.04
12-HideNSeek 0.17 £ 0.02 0.03 £ 0.06
13-HideNSeek-Lava 0.16 =0.02 0.01 = 0.06

14-CorridorBattle

—0.18 £0.04 —0.31+0.02

Table 9: Comparison of final performance (mean+SEM) between methods in the training environments for each
MiniHack task.

28

Published at 1st Conference on Lifelong Learning Agents, 2022

C.10.4 CHORES, FINAL PERFORMANCE TABLE

Task CLEAR P&C EWC
Mem-VaryRoom

Room 402 —5.27+4.73 0.00+0.00 2.73+1.47
Room 419 0.07£0.07 0.00+0.00 —6.53 +3.47
Room 423 —3.33£3.33 0.00+0.00 —3.37+3.17
Mem-VaryTask

Hang TP —3.83 £6.17 —6.50 + 3.25 —2.37 £+ 2.37
Put TP on Counter —7.33£247 —6.53 £ 3.27 —1.06 £ 4.19
Put TP in Cabinet 12.71 £9.15 —6.26 +£3.15 2.10+2.10
Mem-VaryObject

Clean Fork —2.06 £7.53 —2.99 +3.09 0.27 +0.18
Clean Knife —0.86 £4.18 —3.13 +3.03 3.67+1.73
Clean Spoon 1.36 £6.71 —6.21 £3.11 —2.97 + 3.27
Gen-MultiTraj (train)

Room 19, Cup —0.55£4.34 —9.26 + 0.23 —9.59 £+ 0.18
Room 13, Potato —2.83 +£3.44 —8.01 +0.58 —2.43 + 3.35
Room 2, Lettuce —1.78 £ 3.19 —9.30 £ 0.37 —5.43 £ 2.72
Gen-MultiTraj (test)

Room 19, Cup —6.39 £3.20 —9.46 + 0.13 —3.06 + 3.27
Room 13, Potato —2.57£2.67 —8.724+0.23 —5.61 £ 2.93
Room 2, Lettuce —3.06 +£2.86 —9.10 - 0.33 —2.99 + 3.40

Table 10: Comparison of final performance (mean+=SEM) between methods in the environments for CHORES.

C.11 FUTURE WORK

CORA is an extensive, on-going effort which we continue to develop and maintain. We are working on integrating
in more baselines, such as a modular method and a continual supervised learning method adapted to the RL domain.
We also hope to incorporate other useful metrics, such as for measuring data efficiency. While the set of benchmarks
we present already pose considerable difficulty, we see several directions to build off CORA for more challenging
evaluations. For instance, Procgen, MiniHack, and CHORES could be scaled up to even longer and more diverse task
sequences. Agents could also be trained on tasks from a mix of different environments.

29

Published at 1st Conference on Lifelong Learning Agents, 2022

python main.py --policy impala --experiment procgen_6_tasks_5_cycles

1.<<create>> ,“. 2.run(policy)
s
Policy Experiment
get_environment_runner() [Task1, Task2, ...]
compute_action(observation) run(policy, task)
train(storage_buffer)

4.get_environment_
runner()

6.compute_action(

observation) 3.run(policy,
.. task)
<<iterate>>
. . 8.train(
EnvironmentRunner : storage_buffer) o

e task_spec

collect_data(task_spec) 5.storage_buffer = run(policy)
: collect_data(continual_
: 7. step(action) task_spec) eval(policy)

y

Environment

Figure 12: Sequence diagram representing the most basic flow of the continual_r1l package. Blue represents
components defined by Experiment, and green represents components defined by Policy.

D CODE STRUCTURE

D.1 ARCHITECTURE DIAGRAM

An overview of our code package architecture can be seen in Figure 12. The two fundamental components of the
package are Experiment and Policy. Experiment conceptually encapsulates everything that should remain
the same between runs, such as task specification, ordering, duration, and observation dimensionality. Policy
encapsulates everything an algorithm has control over and can change as tasks are learned.

To train and evaluate agents on our benchmarks, these two things must be specified. They may be specified either via
command line, or by configuration file, along with any hyperparameter changes from the defaults. We recommend
referring to the README provided with the source code for more details on running experiments and implementing
new policies and experiments.

D.2 POLICIES

Any Policy must implement: (i) computing an action given an observation and (ii) training in response to collected
experience. Any existing code that does these can be integrated into the continual_r1 package by implementing a
simple adapter wrapper. We provide an example of doing this for PPO based on the pytorch—-a2c-ppo-acktr
repository (Kostrikov, 2018). This enables easier integration of agents from outside our codebase, so the experiments
and metrics provided by continual_r1 can be leveraged.

The other thing a Policy must specify is how it should be run (i.e. its training loop), which we encapsulate in
modules we refer to as EnvironmentRunners. In most simple cases, an existing EnvironmentRunner will suffice, such
as EnvironmentRunnerBatch for standard, synchronous RL. However, in highly asynchronous or distributed cases, a
user of CORA may wish to write their own. We provide more details on EnvironmentRunners in Section D.2.1.

The final two steps to using a policy in CORA are the specification of configuration parameters, by extending
ConfigBase, and adding the new policy to continual_rl/available_policies.py, so it can be used
identically to existing ones, either via config file or via command line.

30

Published at 1st Conference on Lifelong Learning Agents, 2022

Additionally, since the policies are independent modules, it is also easy to use the provided policy implementations in a
separate code base. The framework is installable as a pip package, which can be imported directly.

D.2.1 ENVIRONMENTRUNNERS

EnvironmentRunners have one function they must implement: collect_data (). Given the task specification, the
EnvironmentRunner must collect any number of steps worth of data from the environment and return the results of what
it has collected. The function will be called repeatedly until the total number of steps for the task have been satisfied.
Data collection for continual evaluation occurs between calls to collect data (), so care should be taken when
selecting how much data to collect at a time. If too many timesteps are collected at once, the metrics will not be able to
be computed as often as desired.

EnvironmentRunners can also be viewed as a higher-level API for more advanced policies. One example of how this is
useful is for IMPALA (Espeholt et al., 2018). IMPALA’s key feature is how it learns asychronously by decoupling
collecting data with actors from training policies, so the simple Policy structure of compute_action () and
train () areinsufficient. Instead, we define ImpalaEnvironmentRunner and implement a custom collect_data ()
method that returns new results that have accumulated every fixed number of seconds to support the actors and learners
working asynchronously.

D.3 EXPERIMENTS

Any Experiment defines a sequence of tasks. Every task contains full specifications (available in
continual_rl/task_spec.py) for what environment should be created, how many frames it is given as a
budget, and so on. Each task also provides common preprocessing features for convenience. For instance, we can define
an ImageTask that scales the observation image, stacks frames, and converts the observation to a PyTorch tensor.

Experiments use this sequence of tasks to handle collecting metrics such as the Continual Evaluation metric described
in Section 4.1. The Forgetting and Transfer metrics are computed in a post-processing step using the collected data
from continual evaluation.

31

Published at 1st Conference on Lifelong Learning Agents, 2022

E METRICS

Recall that in all cases, each table represents how much training on the task in each column impacts the performance of
the task in each row. These metrics are also only computed across the first cycle of the task sequence.

E.1 STANDARD ERROR OF THE MEAN

We present the standard error of the mean in our detailed metric tables. To aggregate metrics across rows and columns,
we use the following procedure. First, we define a set of individual metric values M; ; = {M; ; , : s € S}, where S
represents the set of seeds used, M represents the metric to compute (either F or Z), and ¢ and j are task ids as defined

in Section 4.1. For each non-aggregate entry in the table we compute SEM; ; = o(M;,5;ddof=1)

VM 5

as usual, where o (M)
and | M) are the standard deviation and size of set M.

However, for the aggregate values (row, column, and table averages), it is not the case that Mj; ; is independent from
M 41,7 or M j41, so we cannot simply create an aggregate set across the rows or columns. Instead, we compute
M= ﬁ >, M. j 5. This metric averages a given seed over all ¢, which yields a metric that is independent and
can be aggregated as described above. This allows us to define SEM; = %Cj\?le), where N is the number of

tasks. SEM; is defined symmetrically. Finally, the full-table-aggregate SFE M is computed by averaging over the full
set of ¢ - j entries in M.

E.2 ATARI METRICS: FORGETTING

1-Krull

2-BeamRider 3-Hero 4-StarGunner 5-MsPacman | Avg + SEM 1-Krull ~ 2-BeamRider 3-Hero 4-StarGunner 5-MsPacman | Avg + SEM
0-Spacelnvaders | 3.8 +0.3 -0.1+0.2 -03+0.3 1.0+04 -0.3+0.3 0.8+0.1 0-Spacelnvaders | 2.3 +1.8 -0.3+0.5 00+0.5 0.1+1.0 04+0.8 05+0.3
1-Krull - 5.6+0.7 14+05 -14+05 1.0+£0.5 1.7+0.2 1-Krull - 0.6+23 -05+04 19+15 -0.1+04 0.5+0.6
2-BeamRider - - 63+02 21+03 -0.0+0.1 2.8+0.1 2-BeamRider - - -03+0.1 1.0+0.7 -0.5+0.2 0.1+0.1
3-Hero - - - 85+02 0.0+0.0 43+0.1 3-Hero - - - 0.0+0.0 0.0+0.0 0.0+0.0
4-StarGunner - - - - 6.7+0.3 6.7+0.3 4-StarGunner - - - - -0.3+0.3 -03£03
5-MsPacman - — — — — 5-MsPacman - — — -
Avg + SEM 38+03 2.7+04 25+02 2.6+0.1 1.5+0.2 23+0.1 Avg + SEM 23+1.8 02+1.1 -03+0.1 0.8+0.6 -0.1+0.2 03+0.3
(a) IMPALA (b) EWC
1-Krull ~ 2-BeamRider 3-Hero 4-StarGunner 5-MsPacman | Avg+ SEM 1-Krull ~ 2-BeamRider 3-Hero 4-StarGunner 5-MsPacman | Avg + SEM
0-Spacelnvaders | 5.9 +0.6 -0.7+0.6 03+04 0.6%05 -0.2+0.4 1.2+0.1 0-Spacelnvaders | 4.6 £0.7 -0.7 0.6 -0.6+02 1.6+0.5 -0.1+£0.3 1.0+£0.2
1-Krull - 57+0.7 05+06 1.6+1.0 -0.5+04 1.8+0.2 1-Krull - 49+04 0.1+0.5 03+0.9 0.1+0.5 1.3+0.1
2-BeamRider - - 26+04 05+02 0.6+0.2 1.2+0.1 2-BeamRider - 24+09 45+09 -0.1+0.1 23+0.2
3-Hero - - - 6.0+ 1.6 1.7+15 39+0.1 3-Hero - - 52+0.6 0.0 +0.0 26+0.3
4-StarGunner - - - 0.1+0.1 0.1£0.1 4-StarGunner - - - 47+£09 47+£09
5-MsPacman - - - - — - 5-MsPacman — - - -
Avg + SEM 59+0.6 25+04 1.1+03 22+0.7 03+0.3 1.6+0.1 Avg + SEM 46+07 21+03 06+03 29+0.5 09+0.2 1.8+0.1
(c) Online EWC (d) P&C
1-Krull ~ 2-BeamRider 3-Hero 4-StarGunner 5-MsPacman | Avg + SEM

0-Spacelnvaders | 3.6 +0.3 -0.7+0.1 05+02 0.1+0.1 02+0.1 0.7+0.1

1-Krull - 1.9+0.5 -0.1+£02 -02+02 03+0.1 0.5+0.1

2-BeamRider - - 1.6+0.3 -0.8+0.1 1.3+03 0.7+0.2

3-Hero - - - 02+0.3 1.7+1.0 1.0+04

4-StarGunner - - - - 1.4+03 1.4£03

5-MsPacman = - - - - =

Avg + SEM 36+03 0.6+03 07+02 -02+0.1 1.0+0.3 0.7+0.1

(e) CLEAR

Table 11: Atari Forgetting metrics with the standard error. We can see that forgetting across the board is quite high,
though mitigated by both EWC and CLEAR.

32

Published at 1st Conference on Lifelong Learning Agents, 2022

E.3 ATARI METRICS: TRANSFER

4-StarGunner

0-Spacelnvaders 1-Krull 2-BeamRider 3-Hero Avg + SEM 0-Spacelnvaders 1-Krull 2-BeamRider 3-Hero 4-StarGunner | Avg + SEM
0-Spacelnvaders - - - - - 0-Spacelnvaders | — - - - - -
1-Krull 0.1+0.0 - - - - 0.1+0.0 1-Krull 19+1.2 - - - 19+1.2
2-BeamRider 02+0.2 00+£0.0 - - - 0.1£0.1 2-BeamRider 02+£20 27+£13 - - - -13+£14
3-Hero 0.0+0.0 -0.0+£0.0 02+0.2 - - 0.1+0.1 3-Hero 0.0+0.0 -0.0+£0.0 0.0£0.0 - - 0.0+0.0
4-StarGunner 0.0+0.0 -0.0+£0.0 0.0+0.0 0.0+£00 - 0.0+0.0 4-StarGunner 33+12 -1.7+£20 -0.1%1.1 03+£06 - 0405
5-MsPacman 0.6+0.2 -04+03 0.7+0.3 -08+04 02+05 0.1 0.1 5-MsPacman 1.6 £0.5 -1.4+04 0.8+0.7 -0.2+02 0.1+0.5 0.2+0.1
Avg + SEM 0.2+0.1 -0.1+0.1 03+0.1 -04+02 02+0.5 0.1+0.0 Avg + SEM 1.4+04 -1.5+04 0206 0.1+03 0.1+05 0.1+0.2
(a) IMPALA (b) EWC
0-Spacelnvaders 1-Krull 2-BeamRider 3-Hero 4-StarGunner | Avg + SEM 0-Spacelnvaders 1-Krull 2-BeamRider 3-Hero 4-StarGunner | Avg + SEM
0-Spacelnvaders | — - - - - 0-Spacelnvaders | — - - - - -
1-Krull -0.2+0.2 - - - - -02+0.2 1-Krull 04+03 - - - - 04+03
2-BeamRider 0.1+0.5 07+£03 - - - -03+0.2 2-BeamRider 03+03 0.0+0.1 - - - 02+0.1
3-Hero 03+0.2 -03+£0.2 0.0£0.0 - - 0.0+0.0 3-Hero 0.0£0.0 0.0£0.0 0.0£0.0 - - 0.0+0.0
4-StarGunner 0.0+0.0 -0.0+£0.0 0.0+0.0 -0.0+£0.0 - 0.0+0.0 4-StarGunner -0.0+0.0 0.0£0.0 -0.0+0.0 00+£0.0 - 0.0+0.0
5-MsPacman 08+0.3 -09+£04 02+0.1 04+03 -04+03 0.0+0.1 5-MsPacman -0.7+0.5 -04+£02 1.6+04 -1.0+£04 -0.6+03 -0.2+0.1
Avg + SEM 02+0.1 -0.5+0.1 0.1+0.0 02+02 -04+03 -0.0 +0.0 Avg + SEM -0.0+0.2 -0.1+£0.0 0.5+0.1 -0.5+02 -0.6+0.3 -0.0+0.1
(c) Online EWC (d) P&C
0-Spacelnvaders 1-Krull 2-BeamRider 3-Hero 4-StarGunner | Avg + SEM

0-Spacelnvaders - - - - -

1-Krull 03+0.3 - - - - 03+03

2-BeamRider -03+0.3 02+02 - - - -0.1+£0.2

3-Hero 0.0+0.0 0.0+0.0 0.1+0.0 - - 0.0+0.0

4-StarGunner 0.0+0.0 -0.0+£0.0 0.0+0.0 0.0+00 - 0.0+0.0

5-MsPacman 05+0.2 -03+£0.2 0302 -0.1+£03 -0.1+0.1 0.0+0.0

Avg + SEM 0.1+0.1 -0.0+0.0 0.1+0.1 -0.1+0.1 -0.1+0.1 0.0+0.0

(e) CLEAR

Table 12: Atari Transfer metrics with standard error. Note that overall there is little forward transfer observed; this is
expected because the tasks bear little similarity.

33

Published at 1st Conference on Lifelong Learning Agents, 2022

E.4 PROCGEN METRICS: FORGETT

ING

(e) CLEAR

Table 13: Procgen Forgetting metrics.

34

1-Dodgeball 2-Ninja 3-Starpilot 4-Bigfish 5-Fruitbot | Avg + SEM 1-Dodgeball 2-Ninja 3-Starpilot 4-Bigfish 5-Fruitbot | Avg + SEM
0-Climber 2.6+0.2 -1.2+£02 1402 -07+0.1 03x0.10.5+0.0 0-Climber 1.2+0.1 -0.6+0.1 07+0.1 00+0.0 -0.1+£0.0[02+0.0
1-Dodgeball | — 54+£02 -0.1+03 08%02 0.1+0.1]| 1.5+0.1 1-Dodgeball | — 5104 -05+03 09+03 02+02 | 1.4£0.1
2-Ninja - - 62+02 -09+02 06%0.1 | 2.0%0.1 2-Ninja - - 43£03 0.1%£01 -02+0.1]14%0.1
3-Starpilot | — - - 1.1£0.1 0.1£0.0 | 0.6+0.0 3-Starpilot | — - - -05+£0.2 03+02 | -0.1£0.1
4-Bigfish - - - 1902 | 1.9+0.2 4-Bigfish - - - -02+0.2| -02£02
5-Fruitbot — — — — — — 5-Fruitbot — — — - -
Avg + SEM | 2.6 +£0.2 21+0.1 25+02 01x0.1 06+0.1]1.2+0.0 Avg +SEM | 1.2+0.1 22+02 15+01 0.1%0.1 -00+0.1]0.7+0.0
(a) IMPALA (b) EWC
1-Dodgeball 2-Ninja 3-Starpilot 4-Bigfish 5-Fruitbot | Avg + SEM 1-Dodgeball 2-Ninja 3-Starpilot 4-Bigfish 5-Fruitbot | Avg + SEM
0-Climber | 4.6+0.2 -33+0.3 34+£03 -06+02 -08+0.3| 0.7+0.1 0-Climber | 0.5+0.3 1.0+£0.5 -04+02 1.1+04 -05+0.2|0.3=+0.1
1-Dodgeball | — 61+£03 -08+02 1.0+02 02+0.1 | 1.6+0.1 1-Dodgeball | — -02+0.2 3.0+£02 -02+02 04+02 |07+0.1
2-Ninja - - 47+£03 -06+02 00+02 | 1.4+0.1 2-Ninja - - -0.6+£0.1 22+03 -0.1+0.0| 0.5+0.1
3-Starpilot | — - - 05+02 1401 |09+0.1 3-Starpilot | — - - 06+02 1.7+02 | 05+0.1
4-Bigfish - - 0.1+£02 | 0.1+02 4-Bigfish - - -02+0.2| -02£0.2
5-Fruitbot - - - - - 5-Fruitbot - - - - -
Avg + SEM | 4.6+0.2 14+02 24+02 01+01 02+0.1 | 1.1+£0.0 Avg +SEM | 0.5+0.3 04+02 06+0.1 06+02 03+0.1 [05+0.0
(c) Online EWC (d) P&C
1-Dodgeball 2-Ninja 3-Starpilot 4-Bigfish 5-Fruitbot | Avg + SEM

0-Climber | -04+0.2 02+0.1 0902 -01+02 0.1+0.1 |0.2+0.0

1-Dodgeball | — -00+02 03+02 -0.1+01 03+02 | 0.1+0.0

2-Ninja - - -0.1+£03 -05+04 06+03 | 0.0+0.1

3-Starpilot | — - - -1.6+0.1 -04+0.1| -1.0+0.0

4-Bigfish - - - 02+0.1 | 0.2+0.1

5-Fruitbot — - - - —

Avg+SEM | -04+0.2 0.1+0.1 04+0.1 -05+0.1 02+0.1 |-0.0+0.0

Published at 1st Conference on Lifelong Learning Agents, 2022

E.5 PROCGEN METRICS: TRANSFER

Table 14: Procgen Transfer metrics.

35

0-Climber 1-Dodgeball 2-Ninja 3-Starpilot 4-Bigfish | Avg + SEM 0-Climber 1-Dodgeball 2-Ninja 3-Starpilot 4-Bigfish | Avg + SEM
0-Climber - - - - - - 0-Climber - - - - - -
1-Dodgeball | 0.0£0.0 - - - - 0.0+0.0 1-Dodgeball | -0.4+0.3 — - - - -0.4+0.3
2-Ninja 30£08 -42+£05 - - - -0.6+0.3 2-Ninja 23+0.7 -33+x04 - - - -0.5+0.2
3-Starpilot | -0.0£0.0 03+0.0 -03+£0.0 - - 0.0+0.0 3-Starpilot | -1.3+04 3.5+0.2 -31+£02 - - -0.3+0.2
4-Bigfish 1.1+£04 -20+02 0301 -02+0.1 - -02+0.1 4-Bigfish 38+0.6 -43+x04 1604 -15+03 - -0.1£0.1
5-Fruitbot 01+0.1 -02+0.0 -01+00 03+00 -03%+0.0|-0.0+0.0 5-Fruitbot -0.1+£0.6 -2.1+0.3 1.6+£02 -04+03 05+0.2 | -0.1%0.1
Avg+SEM | 0.8+0.2 -1.5%0.1 -0.0+£0.0 0.0+£0.0 -03£0.0 |-0.1+0.0 Avg+SEM | 0.9+02 -1.5%0.1 0.0+0.1 -1.0+03 05+0.2 | -02+0.1
(a) IMPALA (b) EWC
0-Climber 1-Dodgeball 2-Ninja 3-Starpilot 4-Bigfish [Avg + SEM 0-Climber 1-Dodgeball 2-Ninja 3-Starpilot 4-Bigfish | Avg + SEM
0-Climber - - - - - - 0-Climber - - - - - -
1-Dodgeball | -0.6 0.5 — - - - -0.6£0.5 1-Dodgeball | -0.7 £0.4 - - - - -0.7+04
2-Ninja 45+£05 -43x05 - - - 0.1+0.1 2-Ninja 16£05 -03+£01 - - - 0.7+0.2
3-Starpilot | -0.7£0.2 2.2+0.0 21+£01 - - -02+0.1 3-Starpilot | -0.9+0.3 0.8+0.2 02+£02 - - 0.0£0.2
4-Bigfish 1.8+£0.7 -27+03 1.1+£0.1 -08+0.1 - -02+0.1 4-Bigfish 1404 -07x03 -07+04 03£02 - 0.1£0.1
5-Fruitbot 03+£02 -05%0.1 03+£0.0 -01£0.0 -0.1£0.0 | -0.0+0.0 5-Fruitbot 0.1+£0.1 -0.1+0.1 -02+0.1 0.1+0.1 02%0.1 | 0.0£0.0
Avg+SEM | 1.1£02 -13+0.1 -02+0.0 -05+0.1 -0.1+0.0 | -0.1+0.1 Avg+SEM [03+02 -0.1x0.1 -03+0.1 02+0.1 02+0.1 | 0.1+0.1
(c) Online EWC (d) P&C
0-Climber 1-Dodgeball 2-Ninja 3-Starpilot 4-Bigfish | Avg + SEM

0-Climber | — - - - -

1-Dodgeball | -0.2+0.1 — - - - -0.2£0.1

2-Ninja 32405 -33+03 - - - -0.0£0.2

3-Starpilot | -0.1£0.0 0.1+0.0 -0.0£0.0 — - -0.0£0.0

4-Bigfish 06+05 -12+02 0.0%01 -00+0.1 - -0.1£0.1

5-Fruitbot 00+0.1 -00+£0.0 -0.0+00 -0.0+x0.0 0.0£0.0 | -0.0£0.0

Avg+SEM | 0.7+0.1 -1.1¥0.1 -0.0£0.0 -00+0.0 0.0+0.0 | -0.1+0.0

(e) CLEAR

Published at 1st Conference on Lifelong Learning Agents, 2022

E.6 MINIHACK METRICS: FORGETTING

1-R-Dar.. 2-R-Mon.. 3-R-Tra.. 4-R-Ult.. 5-Cor.. 6-Cor.. 7-KeyR ~ 8-KeyR-.. 9-River-Na.. 10-River-M.. 11-River-L.. 12-HnS.. 13-HnS.. 14-Corrido.. | Avg + SEM
0-R-Ran.. -0.3£03 -05+0.1 -04£04 00+03 -0.0£02 23+04 1403 -02£0.1 -02+03 -02x02 1.0£0.5 -1.8£0.5 -06+04 24£05 0.2£0.1
1-R-Dar.. - -0.8£02 1.6+05 -1.3+05 -01+03 25+£04 02+03 -05+£0.6 0202 03£04 0.6+0.2 -1.6£0.6 -1.0+04 1.9£0.5 0.2£0.0
2-R-Mon.. - - -04£02 -01+03 -04+£02 32+04 19+04 -04x02 02%03 -02£04 1.4£0.6 -22£05 -18+07 2.6£0.7 0.3+£0.1
3-R-Tra.. - - - 0503 -03+03 2.6+04 17+04 -04+02 -05+04 -05+03 1.4£05 -1.3£03 -0.1+04 22+£05 0.5£0.1
4-R-Ult.. - - - - 04+£05 44+08 -03+06 -1.3+£0.6 02+04 0.6+0.5 0.7+0.5 -1.3£04 -1.0+07 1.7+£04 04+£0.1
5-Cor.. - - - - - 03+£04 23+02 08%0.1 0.1%0.1 0.1£0.1 0.2+0.2 -05£02 -06+02 -0.0+03 |03+0.1
6-Cor.. - - - - - - 23+£02 09+02 -0.0x0.1 0.1£0.1 0.4+£0.1 -0.7£02 -06+02 0.1+£04 03+£0.1
7-KeyR - - - - - - - -03£02 -09+03 0903 1.4£02 0.6£0.1 02+0.1 0.0£0.0 0.3£0.0
8-KeyR-.. - - - - - - - - 04£03 1.0£02 0.6+0.2 03£0.1 0.1+00 0.0£0.0 04+£0.1
9-River-Na.. | — - - - - - - - - 47+£1.1 24+05 26+07 22+05 0903 -0.3£0.1
10-River-M.. | — - - - - - - - - - -1.5+£04 06+06 1.6+04 -0.1x05 | 02+02
11-River-L.. | — - - - - - - - - - - 0506 16+04 -0.1+05 |0.7+02
12-HnS.. - - - - - - - - - - - - -40+£1.0 3707 -0.1£04
13-HnS.. - - - - - - - - - - - - - 3907 3907
14-Corrido.. | — - - — — — - - - - - — - — -
Avg+SEM [-03+03 -0.7+0.1 03+03 -02+02 -0.1+03 25+04 14+02 -02+02 -00+02 -03+02 03+0.2 -04+0.1 -03+02 14+03 0.3+0.0
(a) IMPALA
I-R-Dar.. 2-R-Mon.. 3-R-Tra.. 4-R-Ult.. 5-Cor.. 6-Cor.. 7-KeyR 8-KeyR-.. 9-River-Na.. 10-River-M.. I1-River-L.. 12-HnS.. 13-HnS.. 14-Corrido.. | Avg + SEM
0-R-Ran.. -04£02 -06+02 -04+02 0.1+02 -06+£03 -02+03 0402 00+02 0904 1.3£05 03+£0.2 -05£02 03+02 05%02 0.1£0.0
1-R-Dar.. - -2.7£03 -05+03 02+02 -06+04 -1.2+£04 -02+04 00+02 -02+02 0.1%03 -02+£02 15+04 15+£06 -05+04 |-02+0.1
2-R-Mon.. - - -06£02 -03+02 -05+03 00+03 0303 -02+02 1.0+04 1.3£05 05+0.2 -0.8£02 -0.1+03 1.1+£02 0.2+0.1
3-R-Tra.. - - - 02+£02 -06+02 -04+04 00+02 00+02 09+04 1.1£05 05+0.2 -02+£02 05+£04 0802 02+0.1
4-R-Ult.. - - - - -1.1£02 -08+03 -04+£02 0.1£02 02£02 0.1+0.3 -04+02 1.1+£03 19+04 0202 0.1+0.1
5-Cor.. - - - - - 01+£02 06+0.1 -04£02 -03+x02 -04+£02 0.1£0.1 02+£02 08+03 0902 02+0.0
6-Cor.. - - - - - - 05+£0.1 -03+02 -04£02 -04+£02 0.1£0.1 02+£02 0904 0902 02+0.0
7-KeyR - - - - - - - 03+£03 04+0.1 04+0.2 03+0.2 -02+0.1 -01£03 -04£02 | 0.1%0.1
8-KeyR-.. - - - - - - - - 0.7+0.2 03+0.1 -0.1£00 00£0.0 01£0.1 -00£0.0 |02+0.0
9-River-Na.. | — - - - - - - - - -1.5+0.3 -0.8+£02 08+02 1.1+£02 0402 -0.0£0.1
10-River-M.. | — - - - - - - - - - 0.1+£04 02+04 07+0.1 08%0.1 05+0.2
11-River-L.. | — - - - - - - - - - - 02£03 09+0.1 0.7+£0.1 0.6+0.1
12-HnS.. - - - - - - - - - - - - -5.2+£04 2607 -1.3+04
13-HnS.. - - - - - - - - - - 25£0.5 25205
14-Corrido.. | — - - - - - - - - - - - - -
Avg+SEM | -04+02 -1.7+02 -05+02 00+0.1 -07+£02 -04+02 02+0.1 -01+0.1 03+0.1 0.2+0.1 0.0+0.1 02+0.1 03+0.1 0.8%0.1 0.1+0.0
(b) CLEAR

Table 15: MiniHack Forgetting metrics.

36

Published at 1st Conference on Lifelong Learning Agents, 2022

E.7 MINIHACK METRICS: TRANSFER

0-R-Ran.. 1-R-Dar.. 2-R-Mon.. 3-R-Tra.. 4-R-Ult.. 5-Cor.. 6-Cor.. 7-KeyR ~ 8-KeyR-.. 9-River-Na.. 10-River-M.. 11-River-L.. 12-HideNSe.. 13-HideNSe.. | Avg + SEM
0-R-Ran.. - - - - - - - - - - - - - - -
1-R-Dar.. 40+03 - - - - - - - - - - - - - 40+0.3
2-R-Mon.. 86+1.1 0203 - - - - - - - - - - - - 44+05
3-R-Tra.. 75+09 09+04 12+05 - - - - - - - - - - - 32+04
4-R-Ult.. 58+04 3.0+06 1.1+x04 -22+07 - - - - - - - - - - 1.9+0.2
5-Cor.. 32+07 -01+02 04+02 02+04 -04+04 - - - - - - - - - 0.7+0.1
6-Cor.. 32+07 -01+02 05+03 02+04 -05+04 14+03 - - - - - - - 0.8+0.0
7-KeyR 1.1£04 03+02 13+04 09+05 -02+05 23+04 -04+03 - - - - - - 0.8+0.0
8-KeyR-.. 31+08 -1.0+05 05+04 15+05 -13+04 12+03 -01+03 -21+03 - - - - - 0.2+0.0
9-River-Na.. | 64+0.1 -0.1+02 0.1*0.1 04+03 -05+03 -04+02 -20+02 -07+04 04+0.2 - - - - 0.4+0.0
10-River-M.. | 7203 -03£02 -00+0.1 05+03 -08+02 -06+02 -1.8+02 -1.0+04 -02+02 -0.0+04 - - - - 03+0.0
I1-River-L.. | 71£04 -03+03 -00£0.1 05+03 -08+02 -08+03 -1.9+02 -1.0+04 -0.0+02 0.1+04 1.5+£0.6 - - - 0.4+0.1
12-HideNSe..| 47£0.6 -1.5£02 -08+02 12+02 -08+02 -07+02 -0.6+x03 -00+03 0704 -02+03 -0.1+04 -02+£03 - - 0.1+0.1
13-HideNSe.. | 54+£03 -1.5+02 -07+02 12£02 -09%£02 -08%02 -05+£03 0204 07+05 -02x04 -01x04 -0.5+£02 5209 - 0.6+0.1
14-Corrido.. | 44409 -15+03 -0.0+03 14+04 -15+£03 02+x03 00+x04 -01£06 05+02 -09+07 -09+0.2 -0.7+£04 0.1+0.1 -0.5+0.2 0.0+ 0.0
Avg+SEM | 51+02 -02+02 03+01 05+03 -08+02 02+0.1 -09+02 -07+03 03+02 -02+03 0.1+03 -0.5+£02 27+05 -0.5+0.2 0.6 +0.0
(a) IMPALA
0-R-Ran.. 1-R-Dar.. 2-R-Mon.. 3-R-Tra.. 4-R-Ult.. 5-Cor.. 6-Cor.. 7-KeyR 8-KeyR-.. 9-River-Na.. 10-River-M.. [I1-River-L.. 12-HideNSe.. 13-HideNSe.. | Avg + SEM
0-R-Ran.. - - - - - - - - - - - - - - -
1-R-Dar.. 25+05 - - - - - - - - - - - - 25+0.5
2-R-Mon.. 71+£0.6 02+02 - - - - - - - - - - - 3.6+04
3-R-Tra.. 70+£0.8 07+02 09+02 - - - - - - - - - - 29+03
4-R-Ult.. 21+£04 23+02 27+03 0202 - - - - - - - - - 1.8+£0.2
5-Cor.. 1.5+£05 02+02 08+02 0.1%£02 -05+02 - - - - - - - - 0.4+0.1
6-Cor.. 1.6£0.5 0102 0902 02£02 -0.6+02 09£0.1 - - - - - - - 05+0.1
7-KeyR 13206 00+02 1.0+x04 0.1%£02 -09+03 15+£03 06+£03 - - - - - - 0.5+0.1
8-KeyR-.. 22+0.8 -09+04 -1.0+£04 -02%0.1 00£0.1 03£0.1 03£01 0502 - - - - - 0.1+0.0
9-River-Na.. | 25+£15 0502 02+£02 -0.1£0.1 -00+£0.0 -0.1+0.1 -04+02 -0.1+0.1 0402 - - - - 03+0.2
10-River-M.. | 3.0+£1.5 02£0.1 -0.1%£02 -03+02 -0.1+£02 -05+02 -0.7+02 0.1+03 05+03 -04+£03 - - - - 02+0.2
I1-River-L.. | 28+13 03+0.1 00+£02 -04+02 -03+02 -03+0.1 -05+02 -00+02 04+03 -03+03 -05+04 - - - 0.1+0.1
12-HideNSe.. | 26 +0.6 -0.7+02 -08+02 -02+02 0.0+0.1 -00+0.1 -04+02 -0.0+0.1 0.6+02 04%02 0.2+0.1 -0.0+0.2 - 0.1+0.1
13-HideNSe.. | 23+0.7 -06+02 -05+02 -0.1+02 -02+02 -02+0.1 -02+02 0.0+02 0502 03%02 -0.0+0.2 -0.0+£02 39+05 - 0.4+0.1
14-Corrido.. | 0.8+0.5 -04+02 -05+02 -0.1+00 00+00 01+00 08+0.1 13+03 -01+0.1 -09+03 -04+02 -0.0+02 -03+0.2 -0.5+0.2 -0.0+0.0
Avg+SEM | 28405 0.1+£01 03+01 -01+0.1 -03+0.1 02+0.1 -01+0.1 03+0.1 04%0.1 -02%0.1 -0.2+0.1 -0.0 £0.1 1.8+0.3 -0.5+0.2 0.5+0.1
(b) CLEAR

Table 16: MiniHack Transfer metrics.

37

Published at 1st Conference on Lifelong Learning Agents, 2022

E.8 CHORES METRICS: FORGETTING

R402 R419 R423 Avg + SEM R402 R419 R423 Avg + SEM R402 R419 R423 Avg + SEM
R402 00£00 14+14 [07+0.7 R402 - 00£0.0 00%0.0[0.0£0.0 R402 41+24 -6.1+3.1|-1.0£1.0
R419 -33%£33| -33+£33 R419 - - 0.0£0.0| 0.0£0.0 R419 -3.1£3.1 | -3.1+3.1
R423 = R423 - — - R423 — —
Avg + SEM 00+£00 -1.0+1.0[-0.6+0.6 Avg + SEM | — 00+£0.0 0.0%0.0| 0.0+0.0 Avg + SEM 4.1+24 -46+28|-1.7+1.7
(a) EWC (b) P&C (c) CLEAR
Table 17: CHORES: Mem-VaryRoom Forgetting metrics.
Hang TP Counter Cabinet | Avg+ SEM Hang TP Counter Cabinet Avg + SEM Hang TP Counter Cabinet Avg + SEM
Hang TP - -0.0£0.0 00+0.0]| -0.0£0.0 Hang TP 0.1+£0.1 -33+32|-1.6%+1.6 Hang TP - 48+04 03+02|25+03
Counter - - 63+43| 63+43 Counter - - -3.5+33| -35+33 Counter - - -0.5+0.5| -0.5+0.5
Cabinet - - - - Cabinet - - - - Cabinet - - - -
Avg £ SEM 00200 3.1£22| 2114 Avg £ SEM 01+0.1 -34%32| 22222 Avg £ SEM 48+04 -01%02] 15202
(a) EWC (b) P&C (c) CLEAR
Table 18: CHORES: Mem-VaryTasks Forgetting metrics.
Fork Knife Spoon Avg + SEM Fork Knife Spoon Avg + SEM Fork Knife Spoon Avg + SEM
Fork - 34+£30 -32+32|0.1£0.1 Fork - -00£00 3.1%3.1|15%15 Fork - 6.7+£33 04+60|3.6%18
Knife - -32+32(-32+32 Knife - 3.0+£3.0| 3.0+3.0 Knife 29+£29|29+£29
Spoon - Spoon - - - Spoon - —
Avg + SEM | — 34+£30 -32+32|-1.0+1.1 Avg+ SEM | — -0.0£0.0 3.0+3.0(2.0+2.0 Avg + SEM | — 67+33 1.7+19[34+02
(a) EWC (b) P&C (c) CLEAR
Table 19: CHORES: Mem-VaryObjects Forgetting metrics.
R19, Cup RI13, Potat.. R02, Lettu.. | Avg + SEM R19, Cup R13, Potat.. RO2, Lettu.. | Avg + SEM R19, Cup R13, Potat.. RO2, Lettu.. | Avg + SEM
R19, Cup 19+£32 -02£0.1 09+15 R19, Cup - 0.0£0.1 -02£0.1 -0.1%0.1 R19, Cup - 1.3+£13 -13+12 | -00%1.0
R13, Potat.. 05+04 05+04 R13, Potat.. | — -0.1£0.1 -0.1 0.1 R13, Potat.. | — -09+46 | -09+4.6
RO2, Lettu.. — - RO2, Lettu.. - RO2, Lettu.. | —
Avg + SEM 1.9+32 02+0.1 07+12 Avg + SEM 0.0+0.1 -0.1+0.1 -0.1+0.1 Avg + SEM | — 3513 -1.1+£29 | -03+2.1
(a) EWC (b) P&C (c) CLEAR

Table 20: CHORES: Gen-MultiTraj Forgetting metrics.

38

Published at 1st Conference on Lifelong Learning Agents, 2022

E.9 CHORES METRICS: TRANSFER

R402 R419 R423 | Avg + SEM R402 R419 R423 | Avg + SEM R402 R419 R423 | Avg + SEM
R402 - - [R402 - - [R402 - - [
R419 00+£0.0 - - 0.0£0.0 R419 48+29 - - 48+29 R419 -0.1£0.1 - - -0.1£0.1
R423 -0.1+0.1 0.0+0.0 - -0.1+0.0 R423 48+29 00+0.0 - 24+14 R423 20+20 -13+13 - -1.7+1.7
AVg£SEM | 0.1£00 00£00 — | 0000 AVg£SEM | 48+29 0000 — |3219 AVg*SEM| 1.0 10 -13%13 — | -11x1.1
(2) EWC (b) P&C (c) CLEAR
Table 21: CHORES: Mem-VaryRoom Transfer metrics.
Hang TP Counter Cabinet | Avg + SEM Hang TP Counter Cabinet | Avg + SEM Hang TP Counter ~ Cabinet | Avg + SEM
Hang TP - Hang TP - - - - Hang TP - - - -
Counter -6.7+33 - -6.7+3.3 Counter 02+0.1 — - 02+0.1 Counter -715+£0.1 - - -715+0.1
Cabinet -63+32 1.1+13 2.6+22 Cabinet 02+03 0.1+0.1 - 0.1+0.1 Cabinet -22+0.0 -0.0+01 - -1.1+0.1
Avg+SEM| -6.5+33 1.1+13 -4.0+2.6 Avg+#SEM| 02+0.2 0.1+0.1 02+0.1 Avg + SEM| -48+£0.0 -00+0.1 — -32+0.0
(a) EWC (b) P&C (c) CLEAR
Table 22: CHORES: Mem-VaryTasks Transfer metrics.
Fork Knife Spoon | Avg + SEM Fork Knife Spoon | Avg + SEM Fork Knife Spoon | Avg + SEM
Fork - - - Fork - - - - Fork -
Knife 6.4+3.1 64+3.1 Knife 93+07 - - 93£0.7 Knife 94+00 - -9.4+0.0
Spoon 69+32 -53+27 0.8+2.8 Spoon 82+19 -13+13 - 34+16 Spoon -64+05 1.8+26 - -23+1.2
Avg+SEM | 6.6+3.1 -53+27 26+29 Avg+SEM | 87+13 -13+13 — 54+13 Avg+SEM | -79+£02 18+26 - -4.6+0.8
(a) EWC (b) P&C (c) CLEAR
Table 23: CHORES: Mem-VaryObjects Transfer metrics.
R19,Cup RI13, Potat.. R02, Lettu.. | Avg + SEM R19, Cup R13, Potat.. R02, Lettu.. | Avg + SEM R19,Cup RI13, Potat.. R02, Lettu.. | Avg + SEM
R19, Cup - - - - R19, Cup - - - - R19, Cup - - - -
R13, Potat.. | -3.5£1.7 - - 35+1.7 R13, Potat.. | 0.9+0.0 - - 0.9+0.0 R13, Potat.. | -4.1£2.1 - - -4.1+2.1
RO2, Lettu.. | -6.3+2.7 -23+27 - -43+04 RO2, Lettu..| 0.0+0.2 03 +0.2 - 02+0.2 RO2, Lettu..| -9.8+0.1 -0.1+02 - -5.0+0.0
Avg+SEM | -49+2.0 -23+27 - -4.0+0.5 Avg+SEM| 04+0.1 03£0.2 — 0.4£0.1 Avg+SEM| -7.0+10 -0.1+£02 - -4.7+0.7
(a) EWC (b) P&C (c) CLEAR

Table 24: CHORES: Gen-MultiTraj Transfer metrics.

39

	1 Introduction
	2 Related Work
	3 Task Sequences for Benchmarking Continual RL
	3.1 Atari tasks
	3.2 Procgen tasks
	3.3 MiniHack's NetHack tasks
	3.4 CHORES benchmark suite using ALFRED and AI2-THOR

	4 Metrics
	4.1 Continual Evaluation, Isolated Forgetting, and Zero-Shot Forward Transfer

	5 CORA: A Platform for Continual Reinforcement Learning Agents
	5.1 Baselines
	5.2 Code package

	6 Experimental Results
	6.1 Procgen results
	6.2 MiniHack results
	6.3 CHORES results

	7 Conclusion
	A Extended Related Work
	B Background
	C CORA Details
	C.1 CHORES design objectives
	C.2 CHORES details
	C.3 MiniHack task sequence
	C.4 Examples for initial observations of the video game benchmarks
	C.5 Baseline implementation details
	C.6 Hyperparameters
	C.7 Experiment runtimes
	C.8 Atari results
	C.9 Additional Procgen Figures
	C.10 Final performance tables
	C.10.1 Atari, final performance tables
	C.10.2 Procgen, final performance tables
	C.10.3 MiniHack, final performance tables
	C.10.4 CHORES, final performance table

	C.11 Future work

	D Code Structure
	D.1 Architecture diagram
	D.2 Policies
	D.2.1 EnvironmentRunners

	D.3 Experiments

	E Metrics
	E.1 Standard error of the mean
	E.2 Atari Metrics: Forgetting
	E.3 Atari Metrics: Transfer
	E.4 Procgen Metrics: Forgetting
	E.5 Procgen Metrics: Transfer
	E.6 MiniHack Metrics: Forgetting
	E.7 MiniHack Metrics: Transfer
	E.8 CHORES Metrics: Forgetting
	E.9 CHORES Metrics: Transfer

