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ABSTRACT

Artificial intelligence (AI) has been widely applied in drug discovery with a major task as molecular property prediction. Despite
booming techniques in molecular representation learning, key elements underlying molecular property prediction remain largely
unexplored, which impedes further advancements in this field. Herein, we conduct an extensive evaluation of representative
models using various representations on the MoleculeNet datasets, a suite of opioids-related datasets and two additional
activity datasets from the literature. To investigate the predictive power in low-data and high-data space, a series of descriptors
datasets of varying sizes are also assembled to evaluate the models. In total, we have trained 62,820 models, including 50,220
models on fixed representations, 4,200 models on SMILES sequences and 8,400 models on molecular graphs. Based on
extensive experimentation and rigorous comparison, we show that representation learning models exhibit limited performance
in molecular property prediction in most datasets. Besides, multiple key elements underlying molecular property prediction
can affect the evaluation results. Furthermore, we show that activity cliffs can significantly impact model prediction. Finally,
we explore into potential causes why representation learning models can fail and show that dataset size is essential for
representation learning models to excel.

1 Introduction
Drug discovery is an expensive process in both time and cost
with a daunting attrition rate. As revealed by a recent study1,
the average cost of developing a new drug was around 1 bil-
lion dollars and has been ever increasing2. In the past decade,
the practice of drug discovery has been undergoing radical
transformations in light of the advancements in artificial intel-
ligence (AI)3–5, which, at its core, is molecular representation
learning. Molecules are typically represented in three ways:
fixed representations, including fingerprints and structural
keys, that signify the presence of specific structural patterns;
linear notations, such as Simplified Molecular Input Line En-
try System (SMILES) strings; and molecular graphs6. With
the advent of deep learning, various neural networks have
been proposed for molecular representation learning, such
as convolutional neural networks (CNNs), recurrent neural
networks (RNNs) and graph neural networks (GNNs), among
others5. One major task for AI in drug discovery is molecular
property prediction, which seeks to learn a function that maps
a structure to a property value. In the literature, deep repre-
sentation learning has been reported as a promising approach
for molecular property prediction, outperforming fixed molec-
ular representations7, 8. More recently, to address the lack of
labeled data in drug discovery, self-supervised learning has
been proposed to leverage large-scale, unlabeled corpus on
both SMILES strings9–11 and molecular graphs12–15, which
has enabled state-of-the-art performance on the MoleculeNet
benchmark datasets16.

Despite the current prosperity, AI-driven drug discovery

is not without its critiques. Usually, when a new technique
is developed for molecular property prediction, improved
metrics by experimenting on the MoleculeNet benchmark
datasets16 are used to substantiate the claim that the model
achieves chemical space generalization. Although these novel
techniques often present impressive metrics, most often they
do not suffice to meet the practical needs in real-world drug
discovery. Indeed, the prevailing practice of representation
learning for molecular property prediction can be dangerous
yet quite rampant17. Details are elaborated as follows.

First, there is a heavy reliance on the MoleculeNet bench-
mark datasets, which may be of little relevance to real-world
drug discovery18. Moreover, despite wide adoption of the
benchmark datasets, discrepancies in the actual data splits
across the literature can entail unfair performance compar-
ison19. Very often, the focus on achieving state-of-the-art
performance overshadows statistical rigor and model applica-
bility17. For instance, when reporting prediction performance
for a newly developed model, most papers just used mean
values averaged over 3-fold7, 13, 20 or 10-fold11, 12, 19, 21 splits.
The seeds for dataset splitting are not always explicitly pro-
vided and in some cases, it may just be some arbitrary split
with a few individual runs. The inherent variability underly-
ing dataset splitting is often overlooked. One caveat is that,
without rigorous analysis, the improved metric values could
be mere statistical noise17. As for model applicability, besides
limited relevance of the heavily used MoleculeNet benchmark
datasets, the recommended evaluation metrics may lack prac-
tical relevance. One example is AUROC, which, as opined
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Fig. 1. Key elements underlying molecular property prediction. There are four aspects involved: model, dataset, model
evaluation and chemical space generalization. Currently in the literature, the focus is more on the model, which aims at
developing novel learning paradigms or model architectures on certain molecular representations. However, it is also necessary
to consider other crucial elements, pertaining to 1) what the model is built upon, 2) how the model is evaluated and 3) eventually
what the model is capable of. For the dataset, its chemical space coverage (w.r.t. both structures and labels), and scrutiny of its
quality, including dataset size and label accuracy (e.g. duplicates, contradictories and noise), as well as data splitting, is
essential before developing a model for a specific property prediction task. For the model evaluation, thoughtful consideration
of statistical analysis, evaluation metrics and task settings is critical as they impact the observed prediction performance. For
the chemical space generalization, it is important to clarify the model’s applicability and if the activity-cliffs issue is addressed.

by Robinson et al.17, cannot well capture the true positive
rate, a more relevant metric in virtual screening. To address
these prevailing issues, we revisited representative models in
molecular property prediction and examined the underlying
key elements, with a focus on: 1) dataset profiling, including
label distribution and structural analysis; 2) model evaluation,
which involves scrutiny of molecular representations, statis-
tical analysis, evaluation metrics and task settings together
with label noise considerations; and 3) chemical space gener-
alization, w.r.t. inter-scaffold and intra-scaffold generalization.
To explain the limitations of representation learning models,
we also applied all models to predicting simple molecular de-
scriptors so as to examine their fundamental predictive power.

The outline of the paper is as follows. We first discussed
the preliminaries for molecular property prediction, including
molecular representations, model architectures and learning
paradigms5. Subsequently, we provided the rationales behind
this study and presented our experiment schemes. To fully
assess the effectiveness of molecular representation learning
models, we also assembled a diverse set of datasets, including
opioids-related datasets from ChEMBL22, activity datasets
proposed by Cortés-Ciriano et al.23 and by Tilborg et al.24 and
series of datasets on basic molecular descriptors, in addition
to the MoleculeNet datasets. Then, the experimental results
are presented and analyzed. Furthermore, we explored into
why representation learning models can sometimes fail and
discussed on advancing representation learning for molecular
property prediction. Finally, we elaborated on the methods, in-
cluding datasets assembly, evaluation metrics, model training
and statistical analyses. Taking a respite from representation
learning, we revisited traditional molecular representations
and models to reflect on the key elements underlying molec-
ular property prediction (Fig. 1). Drawing on a quote from
Bender et al.25, 26 “a method cannot save an unsuitable rep-

resentation which cannot remedy irrelevant data for an ill-
thought-through question”, our central thesis asserts that “a
model cannot save an unqualified dataset which cannot rem-
edy an improper evaluation for an ambiguous chemical space
generalization claim”.

2 Preliminaries

2.1 Molecular representations
2.1.1 Fixed representations
Over the years, various formats have been used to represent
small molecules5, 6. Arguably, the simplest formats are 1D
descriptors which represent a molecule based on its formula,
such as atom counts, atom types and molecular weight. Be-
sides, there are 2D descriptors of a molecule, which can be
computed rapidly by RDKit27. Notably, RDKit 2D descrip-
tors cover 200 molecular features, such as molar refractivity
and fragments. Among them, a subset of 11 drug-likeness
PhysChem descriptors (namely MolWt, MolLogP, NumH-
Donors, NumHAcceptors, NumRotatableBonds, NumAtoms,
NumHeavyAtoms, MolMR, PSA, FormalCharge and Num-
Rings) can serve as a baseline24. To enhance prediction per-
formance, normalized RDKit2D descriptors are concatenated
with the learned representations8, 13.

Moreover, molecules can also be represented by 2D fin-
gerprints, including 1) structural keys, such as Molecular
ACCess System (MACCS) keys, and 2) path-based or cir-
cular fingerprints28. The circular fingerprints can take the
form of either bit vectors, which are binary vectors with each
dimension tracking the presence or absence of specific sub-
structures, or count vectors tracking the frequency of each
substructure. One of the most widely used circular finger-
prints is the extended-connectivity fingerprints (ECFP) based
on the Morgan algorithm, which was originally proposed to

2/24



address the molecular isomorphism issue, specifically to de-
termine if two molecules with different atom numberings are
the same29, 30. The ECFP generation involves three stages: 1)
initial assignment of integer identifier to each atom; 2) iter-
ative update of each atom identifier to reflect its neighbors
and identify duplicated structural features; and 3) duplicate
identifier removal, reducing multiple occurrences of the same
feature to a single representative in the final feature list to
generate the standard MorganBits fingerprints. Notably, the
occurrence counts can be retained, which correspond to the
MorganCounts fingerprints. ECFP has been the de facto stan-
dard circular fingerprint and is still valuable in drug discov-
ery28. The vector size of ECFP is usually set as 1024 or 2048.
The radius size of ECFP can either be 2 or 3, termed as ECFP4
or ECFP6, which are common variants of ECFP in the liter-
ature. For instance, Yang et al.8 used ECFP4 while Mayr et
al.7, Robinson et al.17 and Skinnider et al.31 used ECFP6.
We compared ECFP with different vector and radius sizes.
Additionally, atom-pairs fingerprints proposed to capture the
size and shape of molecules32 were also evaluated. Fixed
representations are summarized in Supplementary Table 1.

2.1.2 Molecular graphs
Intuitively, small molecules can be represented as graphs,
with atoms as nodes and bonds as edges. Formally, a graph is
defined as G = (V,E), where V and E represent nodes (atoms)
and edges (bonds), respectively. The attributes of atoms can
be represented by a node feature matrix X and each node v
can be represented by an initial vector xv ∈ RD and a hidden
vector hv ∈ RD. Similarly, the attributes of bonds can also
be represented by a feature matrix. In addition, an adjacency
matrix A is used to represent pairwise connections between
nodes. For every two nodes vi and v j, Ai j = 1 if there exists a
bond connecting them; otherwise, Ai j = 0. Usually, the edge
feature matrix and the adjacency matrix can be combined to
form an adjacency tensor. Supplementary Table 2 summarizes
commonly used node and edge features in molecular graphs.

2.1.3 SMILES strings
While graph representations offer rich structural information,
they can be memory-intensive and storage-demanding6. Al-
ternatively, a more computationally efficient representation
of molecules is the SMILES strings33, where atoms are rep-
resented by the atomic symbols and bonds by symbols like
"-", "=", "#" and ":", corresponding to single, double, triple
and aromatic bonds, respectively. Notably, single bonds and
aromatic bonds are usually omitted. Moreover, parentheses
are used to denote the branches in a molecule. For cyclic
structures, a single or aromatic bond is firstly broken down
in the ring and the bonds are then numbered in any order
with the ring-opening bonds by a digit following the atomic
symbol at each ring. Notably, one molecule can have multiple
SMILES representations6. Thus, the canonicalized SMILES
strings are more often used34. To be understood by models,
SMILES strings should be firstly tokenized and the tokens are
then converted into one-hot vectors.

2.2 Model architectures
Various model architectures have been proposed for molecular
property prediction, such as RNNs, GNNs and transformers5.
Originally designed for handling sequential data (e.g., text
and audio), RNNs can be naturally used to model molecules
represented as SMILES strings, such as SMILES2Vec35 and
SmilesLSTM7. On the other hand, GNNs are well suited for
molecular graphs. Different variants have been applied, such
as graph convolutional networks (GCN)36, graph attention net-
work (GAT)37, message passing neural networks (MPNN)38,
directed MPNN (D-MPNN)8 and graph isomorphism net-
works (GIN)12, 39. To address the scarcity of annotated data in
drug discovery, self-supervised learning has recently been pro-
posed for pretraining on large-scale unlabeled molecules cor-
pus before downstream finetuning5. In our study, we mainly
utilized two pretrained models: MolBERT11 and GROVER13,
which use SMILES strings and molecular graphs as input,
respectively. To evaluate the effectiveness of the advanced
molecular representation learning models, we used traditional
machine learning models on fixed representations as baselines.

2.2.1 Traditional ML models: RF, XGBoost & SVM
Random Forest (RF) is an ensemble of decision tree predic-
tors, commonly used for classification and regression tasks40.
RF has been widely adopted in drug discovery prior to the
"deep-learning" era4. XGBoost (eXtreme Gradient Boosting)
is another popular ensemble learning model41. Different from
RF which builds multiple decision trees independently, XG-
Boost iteratively trains decision trees to correct the errors of
previous trees. This is achieved by adding new trees that focus
on samples incorrectly predicted previously. XGBoost is com-
putationally efficient and can handle large datasets, making
it suitable for many real-world applications. Support Vector
Machine (SVM) is a classical model for both classification
and regression tasks42, which is based on the concept of find-
ing the optimal hyperplane that separates different classes
in a dataset. SVM has been successfully applied in various
domains, including image recognition and text classification,
particularly in low-data regimes. Previous studies have shown
that RF, XGBoost and SVM serve as strong baselines for deep
learning models in molecular property prediction43. Conse-
quently, we selected them as baselines in our study.

2.2.2 Sequence-based models: RNN & MolBERT
The SMILES strings can be viewed as a "chemical" language.
Language models, therefore, have been widely applied in
molecular representation learning for molecular property pre-
diction, molecule generation and retro-synthesis prediction5.
Related model architectures include RNNs and Transform-
ers. In our study, we evaluated two sequence-based models:
GRU44 (a RNNs variant) and MolBERT11 (a Transformer-
based model). GRU, like other RNNs, is designed to process
sequential data and has shown to be particularly effective in
natural language processing (NLP) tasks, such as language
modeling45. Recently, inspired by Bidirectional Encoder Rep-
resentation from Transformers (BERT) in NLP46, Fabian et

3/24



al.11 exploited the architecture of BERT for molecular prop-
erty prediction. Using Transformers as the building block,
MolBERT is pretrained on a corpus of about 1.6M SMILES
strings, which improves prediction performance on six bench-
mark datasets in both classification (BACE, BBBP, HIV) and
regression (ESOL, FreeSolv, Lipop) settings16.

The abstracted architecture of MolBERT is depicted in
Supplementary Fig. 1a. MolBERT is pretrained on a vocab-
ulary of 42 tokens and a maximum sequence length of 128
characters. To support arbitrary length of SMILES strings at
inference, relative positional encoding is used47. Following
the original BERT model, MolBERT uses the BERTBase ar-
chitecture with an output embedding size of 768, 12 BERT
encoder layers, 12 attention heads and a hidden size of 3,072,
resulting in about 85M parameters. During finetuning, the pre-
trained model, with its backbone weights frozen, is combined
with one linear layer, totaling 769 parameters to be optimized.

2.2.3 Graph-based models: GCN, GIN & GROVER
As stated in Sec. 2.1.2, molecules can be intuitively abstracted
as graphs. GNNs, therefore, have been widely applied in
molecular representations learning5. The core operation in
GNNs is message passing, also known as neighborhood ag-
gregation38. During message passing, a node’s hidden state
is iteratively updated by aggregating the hidden states of its
neighboring nodes and edges, involving multiple hops. Af-
ter each iteration, the message vectors can be integrated us-
ing certain AGGREGATE function, such as sum, mean, max
pooling or graph attention48. The AGGREGATE function is
essentially a trainable layer, which is shared by different hops
within an iteration. When message passing is completed, the
hidden states of the last hop from the last iteration are the
nodes’ embeddings, followed by a READOUT function to ob-
tain the graph-level embedding. Among different variants
of GNNs, GCN36 is a basic type that encodes the molecular
structure into a graph and then applies convolutional opera-
tions to extract features. GIN39 further improves GCN with a
permutation-invariant aggregation operation, which ensures
the learned embeddings invariant to the node orderings. This
enables GIN to handle graph isomorphism, where two graphs
have identical structures but different node labels.

To improve prediction performance in low-data regimes,
pretraining has been proposed for GNNs with two common
tasks:12: self-supervised node-level atom type prediction
and supervised graph-level molecular label prediction. How-
ever, supervised pretraining may cause "negative transfer"12,
where downstream performance can be deteriorated. Re-
cently, Rong et al.13 proposed GROVER with delicately-
designed, self-supervised pretraining tasks at the node-, edge-
and graph-level. GROVER is pretrained on about 10M unla-
beled molecules and achieves state-of-the-art performance
on 11 benchmark datasets, comprising both classification
(BACE, BBBP, ClinTox, SIDER, Tox21, ToxCast) and re-
gression (ESOL, FreeSolv, Lipop, QM7, QM8) settings. The
abstracted model architecture of GROVER is depicted in Sup-
plementary Fig. 1b. For downstream tasks, GROVER fol-

lows the practice in Chemprop8, where 200 global molecular
features are extracted using RDKit27. These features are con-
catenated with the learned embeddings (i.e., output of the
READOUT function), which pass through a linear layer (i.e., a
task head) for molecular property prediction.

Notably, GROVER has two configurations: GROVERbase
and GROVERlarge, corresponding to about 48M and 100M
model parameters, respectively. With nearly 10M molecules
for pretraining, GROVER demands highly intensive com-
putational resources. As stated, pretraining GROVERbase
takes 2.5 days, and GROVERlarge requires around 4 days on
250 NVIDIA V100 GPUs. Given the large number of ex-
periments in this study, we focused solely on the pretrained
GROVERbase. Besides the backbone with weights frozen dur-
ing finetuning, GROVERbase includes one READOUT layer
and two 2-layer MLPs, resulting in about 5.2M parameters
to be optimized. To examine the actual power of GROVER,
we further distinguished between GROVER (without RDKit
features) and GROVER_RDKit.

2.3 Assembled datasets
2.3.1 Opioids with reduced overdose effects
Opioid overdose is a leading cause of injury-related death in
the United States49. There is an increasing interest in develop-
ing opioid analgesics with reduced overdose effects50. As indi-
cated by a large-scale observational study51, reduced overdose
effects can potentially be addressed from the pharmacokinetic
(PK) perspective and the pharmacodynamic (PD) perspec-
tive. The PK perspective focuses on reducing overdose events
by avoiding excessive amount of opioids at the action site.
Key PK-related targets include multi-drug resistance protein 1
(MDR1), cytochrome P450 2D6 (CYP2D6) and CYP3A4. On
the other hand, the PD perspective aims to alleviate overdose
outcomes by avoiding off-target effects. Relevant PD-related
targets include the µ opioid receptor (MOR), δ opioid recep-
tor (DOR), and κ opioid receptor (KOR). Further details about
these datasets are available in Sec. 4.1.

2.3.2 Descriptors datasets of varying sizes
In drug discovery, the property of interest for prediction is
often the binding activity. However, activity can be innately
hard to predict due to the complex interaction mechanisms17.
Moreover, the available activity datasets are usually limited in
size. To circumvent these constraints posed by activity predic-
tion, we assembled descriptor datasets to further interrogate
molecular representation learning in predicting simple molec-
ular descriptors, namely MolWt and NumAtoms. Specifically,
we assembled datasets of varying sizes from ZINC250K52.
Details on the datasets assembly can be found in Sec. 4.1.

2.4 Study rationale and experiment design
2.4.1 How useful are the learned representations?
The first major question that our study aims to answer is:
how useful are the learned representations for molecular prop-
erty prediction? While deep neural networks have been re-
ported to outperform traditional machine learning models,
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such as RF and SVM on ECFP6 in a large-scale activity
prediction study7, recent analyses by Robinson et al.17 re-
vealed that SVM remains competitive with neural network
models. Therefore, to thoroughly investigate whether learned
representations can surpass fixed representations, we carefully
selected several representative models for molecular prop-
erty prediction following an extensive literature review5. Our
evaluation includes traditional machine learning models (RF,
SVM and XGBoost), regular neural network models (RNN,
GCN and GIN) and pretrained neural network models (Mol-
BERT, GROVER and GROVER_RDKit) (Supplementary Fig.
2a). Additionally, we evaluated the models using the opioids-
related datasets, other activity datasets and descriptor datasets,
as depicted in Supplementary Fig. 2b-d. In total, we trained
and evaluated 62,820 models.

2.4.2 Are the models properly evaluated?
In MoleculeNet16, each benchmark dataset comes with a rec-
ommended evaluation metric, which is widely adopted by
subsequent studies. Specifically, for classification datasets,
area under the receiver operating characteristic curve (AU-
ROC) is mostly used; whereas for regression datasets, the
root mean square error (RMSE) is prevailing. However, these
recommended metrics can have limitations. As opined by
Robinson et al.17, AUROC for classification may be of little
relevance in real-world drug discovery applications such as
virtual screening. In the case of imbalanced datasets, which
is often the case in reality where only a small portion of test
molecules are actives, AUROC can be biased53. The issue
arises because AUROC represents the expected true positive
rate averaged over all classification thresholds (false positive
rates). Thus, if two ROC curves cross, even if one curve has
higher AUROC, it may perform considerably worse (lower
true positive rate) under certain thresholds of interest. An alter-
native is area under the precision-recall curve (AUPRC)17, 53,
which focuses on the minor class, typically the actives.

Here, we further argue that the evaluation metric should
be contingent on the question of interest during drug dis-
covery. For instance, target fishing, a popular sub-task in
virtual screening54, aims to identify all possible targets that
a molecule can bind to. According to Hu et al.55, an active
PubChem compound can interact with about 2.5 targets. Con-
sequently, off-target effects can be pervasive, which may lead
to undesired adverse drug reactions. Thus, identifying poten-
tial targets for a molecule during early stage is important56. In
this scenario, the evaluation should go beyond merely predict-
ing whether a molecule can bind to a specific target. Instead,
we would ask: 1) given a set of predicted drug targets k, what
is the fraction of correct predictions among the predicted pos-
itives(i.e., recall@k)? and 2) given a set of predicted drug
targets k, what is the fraction of correct predictions among the
annotated positives (i.e., precision@k)? Even in the single-
target virtual screening scenario, we may prioritize precision,
the positive predictive value, inasmuch it is imperative to
ensure a sufficient amount of true positives out of the pre-
dicted positives. On the other hand, if the goal is to exclude

molecules inactive against certain targets that are related to
adverse reactions, the negative predictive value is of more
interest. More details on evaluation metrics are in Sec. 4.2.

In addition to the choice of evaluation metrics, another
crucial but often missing part in previous studies is the sta-
tistical test, despite that the benchmark datasets are small-
sized17, 18, 57. Most often, when a new model is developed,
some arbitrary split or 3/10-fold splits are applied to calculate
the mean of some metric for rudimentary comparison. The re-
ality is, however, without rigorous statistical tests, such results
are insufficient to justify a real advancement.

Another factor that can impact evaluation is task setting.
Typically in activity data collection, pIC50 values are ob-
tained and an arbitrary cutoff value, such as 5 or 6, is used
to dissect molecules into actives and inactives. Nevertheless,
how classification with an arbitrary cutoff value affects the
final prediction, compared to directly regressing the pIC50
values, is not well examined yet. To study the influence of
task settings, we conducted experiments under both classifi-
cation and regression settings for the opioids-related datasets
(Supplementary Fig. 2b).

2.4.3 What does chemical space generalization mean?
In representation learning for molecular property prediction,
the ultimate goal is to build models that can generalize from
known molecules to unseen ones. To mimic chronological
split in the real-world setting, MoleculeNet recommends scaf-
fold split58 as a proxy which ensures that molecules in test sets
are equipped with unseen scaffolds during training, posing
a more challenging prediction task. In the literature, many
papers adopt the scaffold-split practice and claim chemical
space generalization upon improved evaluation metrics. The
assumption is that chemical space generalization means gen-
eralizing between different scaffolds, which further assumes
that each scaffold is associated with specific properties, for
instance, similar activity. However, one scaffold may not
necessarily map to a narrow range of property values. In
such cases, the use of scaffold split does not suffice to claim
chemical space generalization. Moreover, it entails ambiguity.

Formally, the chemical space is defined as the set of all pos-
sible organic molecules, in particular, the biologically relevant
molecules59. In the chemical space, there usually exist some
structural constellations, which are populated by molecules
with specific properties and can be identified using scaffold-
based analysis60. Since these constellations have diverse
scaffolds, two molecules with different scaffolds can have
disparate properties, a phenomenon known as the "scaffold
cliff"60. For the widely-adopted scaffold split, we argue that
it actually addresses the "scaffold cliff" and the model is es-
sentially engaged in inter-scaffold generalization. Meanwhile,
another major challenge in drug discovery is the "activity
cliffs" (AC), where a minor structural change causes a drastic
activity change between a pair of similar molecules, usually
with the same scaffold61. On the contrary to inter-scaffold
generalization, it is intra-scaffold generalization needed in
the case of activity cliffs. Unfortunately, while activity cliffs
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Fig. 2. Datasets profiling for MoleculeNet datasets and opioids-related datasets. a. Label distribution of selected
MoleculeNet datasets. b. Label distribution of the opioids-related datasets. c. Activity-cliffs showcase on a series of molecules
with the KOR top 14 scaffold (Supplementary Fig. 13). Note1: pIC50 is the negative logarithm of half maximal inhibitory
concentration. Note2: data are in the Source Data file.

are prevalent and have been discussed in computational and
medicinal chemistry for nearly three decades61, they have not
been emphasized in most molecular property prediction stud-
ies. In this study, we adopted both scaffold split and random
split to examine inter-scaffold generalization (Supplementary
Fig. 2). Furthermore, to assess intra-scaffold generalization,
we filtered out molecules with scaffolds observed with the
AC issue, denoted as the AC molecules (see Sec. 3.2), and
evaluated prediction performance separately on the AC and
non-AC molecules (see Sec. 3.9).

3 Results
3.1 Label and structure profiling.
To gain a clear understanding of the datasets, we conducted
label profiling for both the MoleculeNet benchmark datasets
and the opioids-related datasets (see Sec. 4.1). As shown in
Fig. 2a, BACE is balanced, with a positive rate of 45.7%.
On the other hand, BBBP is imbalanced towards the pos-
itives (76.5%), whereas HIV has significantly fewer posi-
tive instances (3.5%). The labels of ESOL, FreeSolv and
Lipop all exhibit left-skewed distribution, especially for Free-
Solv. In contrast, the pIC50 distribution for the opioids-
related datasets is right-skewed (Fig. 2b), suggesting that
most screened molecules exhibit low activity. To construct
the opioids-related datasets in the classification setting, we
applied a cutoff at 6 on the raw pIC50 values to convert

molecules as either active or inactive, abiding by the rule
that pIC50 less than 6 inactive otherwise active. As shown in
Fig. 2b, the resultant datasets are all imbalanced. The positive
rates for MOR, DOR and KOR,are 29.7%, 23.3% and 27.8%,
respectively. For MDR1, CYP2D6, CYP3A4, the positive
rates are even lower, with 9.1%, 1.4% and 2.2%, respectively.

To quantify the difference of label distributions, we calcu-
lated the Kolmogorov D statistic62 among training, validation
and test sets (Supplementary Fig. 3a). Using scaffold split,
the D statistic is more dispersed with a higher median than
that using random split. This suggests that scaffold split leads
to larger gaps in label distributions in addition to separating
molecules by scaffolds. It also manifests that molecules with
same scaffolds tend to have similar properties. Random split,
on the other hand, results in a more compact distribution of
the D statistic with a lower median, indicating that training
and test sets are more likely to have molecules with close
labels. To quantify the structural similarity among training,
validation and test sets, we also calculated the Tanimoto sim-
ilarity63 (Supplementary Fig. 3b). Likewise, the similarity
exhibits more compact distribution with higher medians under
random split, suggesting that training and test molecules are
more structurally similar compared to scaffold split.

We also calculated the percentage of top fragments, i.e.,
heterocycles and functional groups, which are summarized in
Supplementary Fig. 4&5. The top heterocycles vary across
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different datasets, manifesting their unique pharmacological
properties. For instance, piperidine is the top heterocycle for
MOR, DOR and KOR (Supplementary Fig. 5b), which is
common in opioid analgesics64. For the functional groups,
all datasets share top functional groups such as benzenes and
amines, which are key components to facilitate interacting
with drug targets, typically proteins with abundant amino acid
residues, via forming hydrogen bonds or π-π stacking interac-
tions65. Other structural traits, such as NumRotatableBonds
and NumRings, are summarized in Supplementary Fig. 6.

For the activity datasets, the label distributions are summa-
rized in Supplementary Fig. 7.

3.2 Activity cliffs in opioids-related datasets.
In Sec. 2.4.3, we discussed chemical space generalization.
To address the intra-scaffold generalization, we looked into
activity cliffs in the opioids-related datasets. For each tar-
get, we visualized the top 30 scaffolds along with its pIC50
distribution (Supplementary Figs. 8-13). To showcase activ-
ity cliffs where analogs exhibit drastic difference in potency,
we illustrated with the KOR Top 14 scaffold (Supplementary
Fig. 13). As shown in Fig. 2c, the replacement of the two
hydrogen atoms with the chlorine atoms at the phenyl ring
from molecule #9 to molecule #1 results in a drastic activ-
ity increase by 7 orders of magnitude, which, presumably, is
due to the chlorine atoms helping the ligand better occupy
the hydrophobic space in the binding pocket, an important
contributor for binding. When comparing molecule #1 to
molecule #5, the hydroxyl group at the pyrrolidine ring in-
creases the potency by 4 orders of magnitude, indicating that
a potential H-bond interaction with the receptor is crucial for
binding. Meanwhile, although shortening the acetyl group to
the aldehyde group causes a minor reduction in activity when
contrasting molecule #5 to molecule #6, longer side chains
(molecules #7&#8) can undermine activity, suggesting limited
space around the binding site.

Table 1. Activity cliffs in the opioids-related datasets.

Dataset #AC Scaffolds (%) #AC Molecules (%)
MDR1 62 (10.2) 594 (41.3)
CYP2D6 124 (9.3) 710 (31.0)
CYP3A4 146 (7.2) 926 (25.2)
MOR 213 (13.1) 1,627 (46.1)
DOR 178 (11.6) 1,342 (41.6)
KOR 218 (13.1) 1,502 (45.2)

These molecules demonstrate that major activity change
can occur even with minor structural changes. More formally,
we defined the activity cliffs as IC50 values spanning at least
two orders of magnitude within one scaffold61, 66. Note that
one order of magnitude can be also used as a criterion. The
scaffolds observed with activity cliffs are termed as AC scaf-
folds and molecules with AC scaffolds are denoted as the
AC molecules. The numbers (percentages) of AC scaffolds

and AC molecules are summarized in Table 1. Notably, al-
though AC scaffolds are around 10%, nearly half molecules
are equipped with the AC scaffolds in MDR1, MOR, DOR
and KOR, posing a challenge for intra-scaffold generalization.

3.3 Does learned representation surpass fixed de-
scriptors?

To check if learned representations outperform fixed repre-
sentations, we compared between RF and pretrained mod-
els, specifically MolBERT, GROVER and GROVER_RDKit,
which have been reported to achieve state-of-the-art perfor-
mance. Notably, the results of RF on RDKit2D descrip-
tors are used for this comparison since these descriptors are
also utilized in GROVER_RDKit. As shown in Fig. 3a, RF
achieves the best performance in BACE, BBBP, ESOL and
Lipop (p < 0.05), whereas MolBERT achieves comparably
best performance in HIV under scaffold split. In FreeSolv,
GROVER and GROVER_RDKit achieve similarly low RMSE
with RF, whereas MolBERT has the highest RMSE (p< 0.05).
Similarly in Fig. 6a, MolBERT shows the highest RMSE
(p < 0.05) in 21 activity datasets by Cortés-Ciriano et al.23

as well as ESOL (p < 0.05). In datasets with larger sizes
(around 4K), such as COX-2, erbB1 and HERG, MolBERT
achieves comparable performance with GROVER, but is still
outperformed by RF and GROVER_RDKit (p < 0.05). We
speculate that MolBERT may exhibit higher prediction power
when there are more data points.

Moreover, by comparing GROVER and GROVER_RDKit,
we observed that concatenating RDKit2D descriptors signifi-
cantly improves GROVER’s performance in HIV, ESOL and
Lipop (Fig. 3a). Similar observations can be made in all
opioids-related datasets at the regression setting (Fig. 4a).
Among the 24 activity datasets by Cortés-Ciriano et al.23, 9
datasets show significantly lower RMSE in GROVER_RDKit
compared to GROVER under scaffold split (Fig. 6a). There-
fore, concatenating RDKit2D descriptors to the learned repre-
sentations is misleading when assessing the real power of the
representation learning models. Due to the non-negligible ef-
fect of descriptors concatenation, we only included GROVER
when comparing major molecular representations, namely
RDKit2D descriptors, SMILES strings and molecular graphs
(Fig. 3d & 4d). As supported by most datasets, RDKit2D
descriptors show better performance than learned represen-
tations by RNN, GCN, GIN and pretrained models using
SMILES strings or molecular graphs.

For RDKit2D descriptors, we also compared among tra-
ditional machine learning models (Fig. 3d & 4d) and found
that under scaffold split, RF achieves the best performance
in BACE, BBBP, HIV, Lipop and all opioids-related datasets,
whereas XGBoost performs best in ESOL and FreeSolv
(p < 0.05). SVM exhibits the worst performance in all
opioids-related datasets in the regression setting and most
benchmark datasets. For SMILES strings, MolBERT out-
performs RNN in BACE, HIV, Lipop and all opioids-related
datasets except MDR1. For molecular graphs, we found that
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Fig. 3. Evaluating prediction performance with MoleculeNet datasets. a. Performance of RF on RDKit2D descriptors,
MolBERT, GROVER and GROVER_RDKit. b. Performance of RF on RDKit2D descriptors, MolBERT, GROVER and
GROVER_RDKit under scaffold split. c. Statistical significance for pairwise model comparison in b. d. Performance of RF,
SVM & XGBoost on RDKit2D descriptors, RNN & MolBERT and GCN, GIN & GROVER under scaffold split. e.
Performance of RF on fixed representations. f. Statistical significance for pairwise model comparison in d. g. Statistical
significance for pairwise fixed representation comparison in e. Note1: default metric for classification datasets (BACE, BBBP,
HIV) is AUROC and RMSE for regression datasets (ESOL, FreeSolv, Lipop). Note2: error bar denotes standard deviation over
30 splits. Note3: Mann-Whitney U test is used for statistical analysis. Note4: data are in the Source Data file.
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GCN and GIN achieve similar performance in BBBP, HIV,
ESOL, FreeSolv, MDR1, CYP3A4, DOR and KOR. In BACE,
Lipop and MOR, GIN outperforms GCN whereas in CYP2A6,
GCN surpasses GIN (p < 0.05). GROVER outperforms GCN
and GIN in BBBP, ESOL and FreeSolv. However, in HIV,
Lipop and most opioids-related datasets, GROVER shows
worse performance. On the contrary to MolBERT, we spec-
ulate that GROVER may exhibit higher prediction power in
smaller datasets. The prediction performance under random
split is depicted in Supplementary Fig. 14.

3.4 Are the statistical analysis necessary?
To demonstrate the necessity of statistical analysis, we con-
ducted a simple analysis by comparing RF on RDKit2D de-
scriptors, MolBERT, and GROVER using the benchmark
datasets. The analysis aims to answer the question: when
using the average metric value alone under scaffold split, the
widely-adopted practice, how many individual or triple splits
combination out of the 30 splits are there for a certain model to
be concluded as best-performing? Note that GROVER_RDKit
is removed from this analysis because concatenating descrip-
tors can significantly bias the comparison (see Sec. 3.3).

For RF, MolBERT and GROVER, we first calculated the
number of single test fold where a model achieves the best
performance using the recommended metrics (Supplementary
Table 3). In BACE, BBBP, ESOL and Lipop, RF dominates
across 23, 20, 30 and 30 splits, respectively, which is con-
sistent with the finding in Sec. 3.3, that is, RF performs the
best. Still, there are other splits where MolBERT or GROVER
achieves the highest AUROC in the classification datasets,
which means there is a chance to wrongly conclude the repre-
sentation learning models as best-performing. Moreover, to
emulate the common practice, we also calculated the number
of triple-splits combinations where a specific model predicts
best based on the average of recommended metrics. Supple-
mentary Table 4 shows that there are quite a few combinations
where a model can be mistaken as best-performing.

Therefore, without statistical tests, there exists a potential
risk of drawing incorrect conclusions regarding whether a new
technique truly improves predictive performance. Moreover,
since the benchmark datasets are publicly available, one caveat
is that data splitting may be customized to cater to a specific
model, introducing bias in the model generalizability.

3.5 Which fixed representation is most powerful?
Given the superior performance of RF in most datasets (see
Sec. 3.3), we mainly analyzed results by RF on fixed molecu-
lar representations, namely RDKit2D descriptors, PhysChem
descriptors, MACCS keys, MorganBits fingerprints, Morgan-
Counts fingerprints and AtomPairs fingerprints. Notably for
MorganBits, we compared different sizes for radius (2, 3)
and numBits (1024, 2048) using the benchmark and opioids-
related datasets. Since there is little difference when altering
the sizes (Supplementary Fig. 15), we sticked with a raidus of
2 and a numBits value of 2048 for the Morgan fingerprints.

Among all fixed representations, PhysChem descriptors
show the worst performance in most opioids-related datasets
under both scaffold and random split (Fig. 4e), as well as in
most activity datasets by Cortés-Ciriano et al.(Fig. 6c & Sup-
plementary Fig. 16) and by Tilborg et al.(Supplementary Fig.
17), presumably due to its limited features. Surprisingly in
ESOL and FreeSolv (Fig. 3e), PhysChem descriptors achieves
the best performance along with RDKit2D descriptors. In the
activity datasets by Cortés-Ciriano et al., RDKit2D descrip-
tors performs significantly better than PhysChem descriptors
except in A2a (size: 166), ABL1 (size: 536), Dopamine (size:
405), possibly due to overfitting (Fig. 6c & Supplementary
Fig. 16). For MorganBits fingerprints, a widely-used strong
baseline, we observed that it outperforms RDKit2D descrip-
tors in HIV, whereas in BBBP, ESOL, FreeSolv and Lipop, it
is outperformed by RDKit2D descriptors (Fig. 3e). However,
when the datasets are related to binding, for instance, MOR,
DOR and KOR, MorganBits fingerprints exhibit significantly
better performance (Fig. 4e & Fig. 5d). As for MorganBits
vs MorganCounts, there is no significant difference except
in ESOL and Lipop, where MorganCounts outperforms Mor-
ganBits. For AtomPairs fingerprints, it shows similarly supe-
rior performance with RDKit2D descriptors, MorganBits and
MorganCounts in most datasets. For MACCS keys, despite
showing the best performance in FreeSolv, it generally shows
worse performance than the other fixed representations except
PhysChem descriptors.

3.6 Are the recommended metrics appropriate?
In MoleculeNet16, each benchmark dataset comes with a
recommended evaluation metric. However, in real-world
drug discovery, these metrics may not always be appropri-
ate (see Sec. 2.4.2). In this section, we compared model
performance using a variety of evaluation metrics, in addition
to the recommended ones. For classification tasks, we calcu-
lated AUROC, AUPRC, PPV and NPV (see Sec. 4.2.1). For
regression tasks, we calculated RMSE, MAE, R2 and Pear-
son_R (see Sec. 4.2.2). As shown in Fig. 3b & c, when using
the recommended AUROC, RF achieves higher performance
than MolBERT, GROVER and GROVER_RDKit in BBBP
(p < 0.05). However, if the evaluation metric PPV or NPV is
used, RF shows similar performance with all the other three
models. Another noteworthy example is that, when evaluated
by Pearson_R, GROVER achieves better performance in Free-
Solv compared to RF (p < 0.05); but when evaluated by R2,
RF achieves similar performance with GROVER (p ≥ 0.05).
Thus, different metrics may lead to disparate conclusions
and caution is needed, especially for similar-naming metrics
such as R2 and Pearson_R. In fact, by plotting R2 against
Pearson_R, we found that Pearson_R can overestimate R2
(Supplementary Fig. 18a). In certain cases, Pearson_R can
still be around 0.5 even when R2 drops to zero or becomes
negative. Additionally, when comparing RMSE and MAE
(Supplementary Fig. 18b), MAE underestimates RMSE on
the same raw predictions.
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Fig. 4. Evaluating prediction performance with opioids-related datasets at regression setting. a. Performance of RF on
RDKit2D descriptors, MolBERT, GROVER and GROVER_RDKit. b. Performance of RF on RDKit2D descriptors, MolBERT,
GROVER and GROVER_RDKit under scaffold split. c. Statistical significance for pairwise model comparison in b. d.
Performance of RF, SVM & XGBoost on RDKit2D descriptors, RNN & MolBERT and GCN, GIN & GROVER under scaffold
split. e. Performance of RF on different fixed representations. f. Statistical significance for pairwise model comparison in d. g.
Statistical significance for pairwise fixed representation comparison in e. Note1: default metric is RMSE. Note2: error bar
denotes standard deviation over 30 splits. Note3: Mann-Whitney U test is used for statistical analysis. Note4: data are in the
Source Data file.
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Fig. 5. Evaluating prediction performance with opioids-related datasets at classification setting. a. Performance of RF on
RDKit2D descriptors, MolBERT, GROVER and GROVER_RDKit. b. Performance of RF on RDKit2D descriptors, MolBERT,
GROVER and GROVER_RDKit under scaffold split. c. Statistical significance for pairwise model comparison in b. d.
Performance of RF on different fixed representations. e. Statistical significance for pairwise fixed representation comparison in
d. Note1: default metric is AUROC. Note2: error bar denotes standard deviation over 30 splits. Note3: Mann-Whitney U test is
used for statistical analysis. Note4: data are in the Source Data file.

Regarding the choice of appropriate metrics, we observed
that in the opioids-related datasets except CYP2D6, AUROC
is generally above 0.75 (Fig. 5a), whereas most AUPRC val-
ues drop below 0.75 (Fig. 5b). For MolBERT, GROVER and
GROVER_RDKit, AUPRC drops to around 0.25 in CYP3A4
and approximates zero in CYP2D6. Drawing AUPRC and
PPV against AUROC (Supplementary Fig. 18c&d) reveals
that AUROC can exaggerate prediction performance, espe-

cially in CYP2D6 and CYP3A4. Thus, AUROC can be over-
optimistic. Furthermore, despite the high AUROC (around
0.90), AUPRC (around 1.0) and PPV (around 0.90) in BBBP,
NPV drops to around 0.65 (Fig. 3b). In this case, even with
nearly perfect collective metrics like AUROC and AUPRC,
NPV can be very limited. This becomes an issue if the goal
of virtual screening is to identify hits that are impermeable
through the blood-brain barrier, since only around 65% of
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Fig. 6. Evaluating prediction performance with activity datasets by by Cortés-Ciriano et al. a. Performance of RF on
RDKit2D descriptors, MolBERT, GROVER and GROVER_RDKit. b. Statistical significance for pairwise model comparison
in a. c. Performance of RF on fixed representations. Note1: default metric is RMSE. Note2: error bar denotes standard
deviation over 30 splits. Note3: Mann-Whitney U test is used for statistical analysis. Note4: data are in the Source Data file.

predicted negatives are truly impermeable among the pre-
dicted negatives. On the contrary, while the highest AUROC

in HIV can reach around 0.80, its best PPV falls below 0.25
(Fig. 3b). Similarly, PPV is limited in the opioids-related
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Fig. 7. Examining the effect of activity cutoff values with opioids-related datasets. a. Prediction performance of RF on
MorganBits fingerprints with opioids-related datasets at classification setting with different activity cutoff values. b. Percentage
of edge-case molecules in the test sets. c. Performance distribution of RF on MorganBits fingerprints (cutoff at 6) under
scaffold split after removing edge-case molecules. d. Prediction errors of RF on MorganBits fingerprints (cutoff at 6) under
scaffold split (red dashed line: pIC50 at 5&7). e. Predicted probability of RF on MorganBits fingerprints at different cutoff
values for edge cases under scaffold split. Note1: center line in the box plots denote the median; limits denote lower and upper
quartiles; whiskers denote the range within 1.5 times interquartile from the median; points are outliers. Note2: data are in the
Source Data file.

datasets (Fig. 5b). For instance, the best PPV is around 0.7
in MDR1, whereas in MOR, DOR and KOR, it is even lower.
In highly imbalanced CYP2D6 and CYP3A4 datasets, PPV
can drop to nearly zero. Thus, if the goal of virtual screening
is to identify hits active towards these targets, a substantial
proportion of the predicted actives could be false positives.
In summary, precision metrics can be more suitable for per-
formance evaluation in classification settings, which further
depends on the emphasis on positives or negatives, i.e., the
specific goal of virtual screening.

3.7 Regression vs Classification: which to choose?
To study how task setting affects prediction performance, we
set both regression and classification settings for the opioids-
related datasets (Supplementary Fig. 2b). As shown in
Fig. 5b, we observed that all models achieve limited per-
formance in CYP2D6 at the classification setting, with partic-
ularly abysmal performance in PPV. However, at the regres-
sion setting, RMSE and MAE in CYP2D6 can be lowered
to around 1.5, suggesting that regression may be more suit-
able for CYP2D6, although the pIC50 labels can be noisy67.
On the contrary, in MDR1, MOR, DOR and KOR, where

the prediction performance is promising indicated by high
AUROC at classification setting, the regression error, as indi-
cated by RMSE and MAE, remains around 2.0. One potential
cause for the disparate performance between the classification
and regression settings could be the arbitrary activity cutoff.
As shown in Fig. 7a, classification performance varies with
the cutoff values. Since each dataset has a unique label dis-
tribution (Fig. 2), the cutoff value at 6 may lead to varying
prediction difficulties. For instance, similar molecular struc-
tures with close pIC50 values around 6 could be coerced into
actives vs. inactives, which poses a major challenge and may
act as a source for misclassification.

In fact, these molecules are the so-called "edge cases"67.
Formally, we defined them as molecules sharing the same scaf-
fold but showing pIC50 spanning from 5 to 7. The percentages
of edge-case molecules in the test sets are shown in Fig. 7b.
For MOR, DOR and KOR, around 5% of molecules are edge
cases, whereas for CYP2D6 and CYP3A4, the percentage is
around 1%, which can be attributed to the limited number of
molecules with pIC50 above 5 (Fig. 2b). We also evaluated
classification performance with edge-case molecules removed
in the test sets (Fig. 7c). In general, prediction performance
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Fig. 8. Examining chemical space generalization with opioids-related datasets at regression setting. a. Performance difference
between scaffold split and random split. b. Performance difference between AC molecules and non-AC molecules under
scaffold and random split. c. Relationship between prediction performance and AC molecules proportions. d. Raw predictions
for AC showcase molecules in Fig. 2c. Note1: AC stands for activity cliffs. Note2: R in c stands for Pearson correlation
coefficient in c. Note3: red dashed line in d denote the y = x line. Note4: data are in the Source Data file.

improves after removing the edge cases, especially for MOR,
DOR and KOR, suggesting the classification challenge posed
by the edge cases. We further examined prediction errors
(the difference between predicted values and labels) vs labels
at the regression setting (RF on MorganBits). In Fig. 7d,
we observed that the prediction error is not constant across
the range of labels. Instead, there exists an increasing trend,
which suggests that the model is prone to overestimation for
molecules with high pIC50 values, and underestimation is
more likely to happen for molecules with low pIC50 values.

For CYP2D6, prediction errors are mostly centered around
zero, which explains its relatively low RMSE (Fig. 4b). For
all edge cases, prediction errors are mostly positive, indicating
that the model tends to overestimate their pIC50 values.

To further examine the effect of activity cutoff values, we
plotted the distribution of predicted probabilities for edge-
case molecules at different cutoffs. For MOR, DOR and KOR,
when the cutoff value increases from 5 to 7, the predicted
probabilities are shifted to the left (Fig. 7e), suggesting these
edge cases are more likely to be predicted as inactive. Con-
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Fig. 9. Exploring performance in molecular property prediction. a. Distribution of metric variability of different models in
opioids-related datasets. b. Relationship difference between metric mean and metric variability. c. Relationship between label
value and molecular descriptors in ESOL and Lipop. d. Pearson correlation coefficient between label value and molecular
descriptors in MoleculeNet datasets. e. Pearson correlation coefficient between label value and molecular descriptors inactivity
datasets by Cortés-Ciriano et al.and Tilborg et al.f Prediction performance in MolWt datasets of varying dataset sizes. g
Prediction performance in NumAtoms datasets of varying dataset sizes. Note1: whiskers in the box plots denote the range
within 1.5 times interquartile from the median. Note2: ESOL and Lipop are two datasets from MoleculeNet. Note3: error bar
denotes standard deviation over 30 splits. Note4: data are in the Source Data file.

versely, for edge cases in MDR1, CYP2D6 and CYP3A4, the
predicted probabilities are always near zero, regardless of the
cutoff values. This may be attributed to the data-imbalance
issue, where the majority of training examples are negative in-
stances, making it difficult for the model to accurately predict
positive instances. One practical implication is that the posi-
tive ratios should be checked when selecting a cutoff value. If
the binarized dataset is highly imbalanced, it is recommended
to perform regression directly on the raw labels.

Nonetheless, it is noteworthy that pIC50 labels inherently
contain noise, which is often heteroscedastic67. For instance,
pIC50 of 5.1 or 4.9 are often treated equally in contributing to
the opposing activity (e.g., classification threshold of 5). How-
ever, the accuracy of such measurements may not be 100%
guaranteed in the presence of experimental errors, which can
be categorized into systematic error and random error68. Sys-
tematic error is hard to trace down whereas random error can
be approximated by a Gaussian distribution. A previous study
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by Cortés-Ciriano et al.69 simulated adding random noise
to pIC50 values in 12 datasets and assessed how it affects
subsequent predictive performance of 12 models. The results
revealed that different models showed different sensitivity to
the added noise. Other factors underlying the response to
noise include noise levels and noise distribution as well as
label disctribution of the dataset and the selected cutoff value.

3.8 Inter-scaffolds generalization.
To check inter-scaffolds generalization, we focused on the
opioids-related datasets, where experiments were conducted
under both scaffold and random splits at regression setting
(Supplementary Fig. 2b). Prediction performance are summa-
rized in Fig. 4d (scaffold split) and Supplementary Fig. 14c
(random split). Given no scaffolds overlap among training, val-
idation and test sets under scaffold split, we compared the pre-
diction performance between scaffold and random split so as
to evaluate how the models perform during inter-scaffold gen-
eralization. The difference of mean RMSE between scaffold
and random split is shown in Fig. 8a. Note that Mann-Whitney
U is used to assess the statistical significance of the differ-
ence, and non-significant differences were imputed as zero.
Compared to random split, prediction performance of most
models is worse under scaffold split, indicated by significantly
higher RMSE, across all opioids-related datasets. This obser-
vation manifests the inter-scaffold generalization challenge.
Notably, MolBERT shows negligible differences in prediction
performance between scaffold and random split in MDR1,
CYP2D6, CYP3A4 and MOR. For GROVER, the differences
of prediction performance are all zero, likely due to the high
variability associated with GROVER’s performance (Fig. 9a).
Given the limited performance of MolBERT and GROVER
under scaffold split (see Sec. 3.3), achieving inter-scaffold
generalization can not yet be claimed. Besides the difference
in metric means, we observed higher metric variability under
scaffold split across all models (Fig. 9a), showing increased
prediction uncertainty during inter-scaffold generalization.

3.9 Intra-scaffold generalization.
To examine intra-scaffold generalization, we compared predic-
tion performance for AC and non-AC molecules (see Sec. 3.2)
under both scaffold and random splits. Mann-Whitney U test
was conducted to examine the statistical significance, and non-
significant differences were imputed as zero. As shown in
Fig. 8b, the RMSE difference is generally positive, indicating
worse prediction on the AC molecules. This inferior perfor-
mance for the AC molecules suggests limited intra-scaffold
generalization in the case of activity cliffs. Besides, the per-
formance differences between AC and non-AC molecules are
more frequently observed under scaffold split. In other words,
random split appears to alleviate the intra-scaffold general-
ization challenge in the case of activity cliffs. This can be
attributed to the fact that some AC scaffolds have been seen
during training, which enables better prediction at inference
time. Once again, it highlights the importance of scaffolds in
molecular property prediction.

Moreover, we examined the relationship between RMSE
and the proportion of AC molecules in the training, validation
and test sets (Fig. 8c). We observed that RMSE values tend to
be higher as the proportions of AC molecules increase, partic-
ularly in the training set. The strong positive correlation sug-
gests that activity cliff is a key factor contributing to limited
prediction performance. In addition, we examined the learned
representations for the AC showcase molecules (Fig. 2c) un-
der scaffold split (seed: 4). As shown in Fig. 8d, the predicted
pIC50 values are not well aligned with the y = x line. In par-
ticular, for MolBERT, GROVER and GROVER_RDKit, the
average pIC50 values appear to be "imputed" as the predicted
values for the AC molecules.

As pointed out by Robinson et al.17, active molecules with
different scaffolds can interact with the target with very dif-
ferent mechanisms. Thus, expecting a model to generalize by
learning from unseen scaffolds can be somewhat unrealistic.
Our exploration into the intra-scaffold generalization further
substantiates this point by incorporating the activity-cliffs is-
sue, which holds two important implications: firstly, exposing
the model to a set of diverse scaffolds during training may be
conducive for inference, even potentially helpful to handle ac-
tivity cliffs, although further study is needed; secondly, when
applying a molecular property prediction model, for instance,
in a drug design framework70, predictions should be noted
with lower certainty when the generated molecules have novel
scaffolds that exhibit drastic activity changes.

Furthermore, to identify the best-performing model in the
activity datasets by Tilborg et al.24, we applied RF, SVM and
XGBoost on all fixed molecular representations. As shown in
Supplementary Fig. 17, RF on MorganBits, MorganCounts
or AtomPairs fingerprints generally achieves lowest RMSE,
whereas SVM on PhysChem descriptors shows worst perfor-
mance mostly.

3.10 Metric variability correlates with performance.
Based on our extensive experimentation and rigorous compar-
ison, we observed that traditional machine learning models on
fixed molecular representations still excel in molecular prop-
erty prediction, outperforming recent representation learn-
ing models in most datasets. This raises a natural question:
why do representation learning models fail? In the next sec-
tions, we further analyzed the prediction results and conducted
follow-up experiments to highlight some pertinent observa-
tions.

In Fig. 9a, we plotted the standard deviation of all regres-
sion metrics in the opioids-related datasets for different mod-
els. In addition to the varying prediction performance as
discussed in Sec. 3.3, metric variability also varies across mod-
els. Representation learning models, particularly GROVER,
exhibit high variability in all metrics. Moreover, metric vari-
ability can be further correlated with mean metric values. As
shown in Fig. 9b, RMSE and MAE (higher values for worse
performance)) tend to increase with higher metric variability,
whereas R2 and Pearson_R tend to decrease (lower values
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for worse performance). The inherent variability underlying
representation learning models can be another manifestation
of the prediction performance, underscoring the importance
of reporting metric variability along with the means. Notably,
imbalanced datasets can contribute to high variability and sub-
sequently lead to low performance. For instance, in CYP2D6
at classification setting (positive rate: 1.4%), all models ex-
hibit highly variant yet very limited performance with mean
AUROC around 0.5 or even lower.

3.11 Descriptors correlate with properties.
In Sec. 3.3, we observed that molecular descriptors can be
particularly predictive in certain datasets. For instance, RF
on the PhysChem descriptors can achieve comparable per-
formance with the best-performing RDKit2D descriptors in
ESOL (Fig. 3e). In contrast, biological activity is more com-
plicated and cannot be well tackled with the descriptors alone;
structural fingerprints are more useful in these cases ( Fig. 4e
& Fig. 6c).

To explain why PhysChem descriptors show such high per-
formance, we visualized the labels against selected descriptors
for ESOL and Lipop. As depicted in Fig. 9c, MolLogP has
a nearly linear relationship with the label in ESOL, whereas
in Lipop, there is no such strong correlation. To quantify
the relationship, we calculated the correlation coefficients be-
tween molecular properties and PhysChem descriptors in all
benchmark datasets (Fig. 9d). In ESOL, the coefficient with
MolLogP is nearly −1, which is very likely to be the reason
why PhysChem descriptors excel in its prediction. In Free-
Solv, its label also exhibits moderate correlation with multiple
descriptors, such as NumAtoms, NumHAcceptors and NumH-
Donors, with correlation coefficients ranging from −0.75
to −0.5. These observations may explain why PhysChem
descriptors are among the top 3 best performing molecular
representations in ESOL and FreeSolv (Fig. 3e).

We also conducted analysis for the activity datasets pro-
posed by Cortés-Ciriano et al.23 and Tilborg et al.24. As
shown in Fig. 9e, correlation coefficients in most datasets fall
within the range [−0.5,0.5], suggesting weak correlation be-
tween binding activity and the descriptors. This could explain
why PhysChem descriptors show limited performance in ac-
tivity prediction (Fig. 6c & Supplementary Fig. 17). Notably,
MolWt, NumAtoms, NumHAcceptors and NumRotatable-
Bonds can have moderate correlation with activity in certain
datasets, with correlation coefficient greater than 0.5) whereas,
surprisingly, NumHDonors is weakly correlated with activity.

3.12 Prediction performance vary with dataset size.
Given the advantage of descriptors in many datasets over
representation learning models, we assembled the descriptor
datasets (see Sec. 2.3.2) to predict MolWt and NumAtoms, for
a further investigation on the fundamental predictive power
(Supplementary Fig. 2d). Moreover, unlike the public activity
datasets, which often have limited dataset sizes, descriptor
datasets can be assembled at low costs. In total, we built 16

datasets of varying sizes for each descriptor, which were split
into training, validation and test sets under scaffold split.

As shown in Fig. 9f, the prediction for MolWt can have
significant variability among all models when the dataset size
is less than 1K. Even using fixed representations like Mor-
ganBits, MACCS and AtomPairs, mean RMSE can be around
25 for RF, 40 for SVM and 30 for XGBoost. For sequence-
based models, RNN achieves RMSE of around 40 when the
dataset size is 0.1K, whereas MolBERT shows the highest
error with RMSE around 300. For graph-based models, GCN
and GIN show RMSE around 200 when the dataset size is
0.1K, whereas GROVER can achieve RMSE around 30. This
showcases the predictive power of pretrained GROVER in
the low-data space. When dataset size increases from 0.1K
to 1K, we observed that RMSE of GCN and GIN decreases
by around 75%, lowering to below 50. For GROVER, al-
though RMSE also decreases with size increasing from 0.1K
to 1K, the trend is not as obvious. For RNN, RMSE decreases
by around 50% to below 20. However, little difference can
be observed for MolBERT. Overall, the mean and variance
of RMSE decrease with increasing dataset size. When the
dataset size keeps on increasing from 1K to 100K, RMSE
of RF can decrease to around 15, similar to XGBoost. And,
surprisingly, SVM achieves nearly perfect RMSE (close to
zero) when the dataset size is greater than 10K. For repre-
sentation learning models, we observed that RMSE of RNN
drastically decreases from 20 to nearly zero when dataset size
approaches 100K, whereas GCN and GIN drop to around 10.
Similar observations for NumAtoms prediction Fig. 9g.

In summary, for the descriptors prediction, the performance
of RF, SVM and XGBoost improves as the data size increases.
Besides, we found that AtomPairs performs best (particularly
when used with SVM), followed by MACCS and Morgan-
Bits. Notably, morganBits can outperform MACCS when
used with SVM. We speculate that SVM, despite its inferior
performance when the dataset size is small, it can achieve
superior performance in large datasets. For representation
learning models, regular neural network models have lim-
ited performance when the dataset size is below 1K, whereas
pretrained graph-based model GROVER shows superior per-
formance, consistent with observations in Sec. 3.3, where
GROVER achieves excellent performance in FreeSolv (size:
642). Surprisingly, the pretrained sequence-based model Mol-
BERT shows quite limited performance, with RMSE over
200 when the dataset size is less than 10K. Nonetheless,
RMSE of MolBERT shows a decreasing trend when the
dataset size is greater than 10K (Supplementary Fig. 19),
whereas GROVER’s performance does not exhibit substantial
improvement with increasing dataset size. Ultimately, RNN
achieves the best performance when the dataset size exceeds
10K, which manifests the promise of representation learning
models in the "big-data" space. However, activity datasets
can be quite limited in size, particularly those from public
databases, which could be another cause for the observed
failures of representation learning models.

17/24



Discussion
In this study, we took a step back from representation learning
and conducted a comprehensive evaluation on molecular prop-
erty prediction. We evaluated a diverse collection of models,
including traditional machine learning models and neural net-
work models, along with a set of molecular representations,
on various datasets. In total, we trained over 60,000 models to
ensure a rigorous and thorough comparison. Notably, we care-
fully investigated two large models based on SMILES strings
and molecular graphs, namely MolBERT11 and GROVER13.
Both of these models employ transformer as the their core
unit and adopt self-supervised learning for pretraining.

Compared to supervised learning, self-supervised learning
does not require heavy human annotations71, which can be
particularly expensive in drug discovery1. As demonstrated
by Hu et al.12, self-supervised pre-training can help mitigate
the "negative transfer" associated with supervised pre-training.
In general, self-supervised learning can be categorized into
three types: generative, contrastive and generative-contrastive
(adversarial)72. Pretraining tasks, such as masked language
modeling in MolBERT and contextual property prediction in
GROVER, lean towards the generative type. Recently, the
contrastive type of self-supervised pretraining has also been
applied in molecular property prediction. For instance, Mol-
CLR14 proposes three augmentation strategies, namely, atom
masking, bond deletion and subgraph removal, on molec-
ular graphs to pretrain GCN and GIN, respectively. More
recently, iMolCLR15 has been proposed to improve on Mol-
CLR, which integrates structural similarities into the loss
function. In MolBERT11, one pretraining task is the SMILES
equivalence prediction, which is predicting whether two in-
put SMILES strings represent the same molecule, where the
second SMILES is either randomly sampled from the pretrain-
ing corpus or an equivalent SMILES. Based on the ablation
study, however, the SMILES equivalence task slightly but con-
sistently decreases downstream performance. Additionally,
MolBERT11 and GROVER13 both utilize RDKit27 to calcu-
late molecular descriptors values or extract graph-level motifs
as domain-relevant labels for pretraining. As indicated by
the ablation study in MolBERT, molecular descriptors value
prediction has the highest impact on downstream performance.
Moreover, our study also revealed that RDKit2D descriptors
play a crucial role in GROVER, and fixed representations such
as RDKit2D descriptors significantly outperform the learned
representations in many datasets, which aligns with previous
studies43, 73. As a potential direction for future research, ex-
ploring better ways to leverage fixed representations could be
beneficial in improving molecular property prediction.

Nonetheless, despite the advancements in AI techniques,
the question of whether AI can benefit real-world drug discov-
ery is not without its concerns25, 26. To ensure responsible use
of AI in drug discovery, guidelines for evaluating molecules
generated by AI have been suggested by Walters et al.74. Sim-
ilarly, evaluation of molecular property prediction models
should also be standardized. Recently, Bender et al.75 pro-

posed a set of evaluation guidelines for machine learning tools,
covering appropriate comparison methods and evaluation met-
rics, among other essential aspects. In our study, we addressed
molecular property prediction from three key perspectives:
datasets profiling, model evaluation and chemical space gen-
eralization (Fig. 1). For the datasets, each of them has unique
label distribution and molecular structures, which poses vary-
ing degrees of prediction difficulty. The molecular structures
are dissected into scaffolds and structural traits, including frag-
ments (functional groups and heterocycles) and other struc-
tural traits, such as MolWt and NumAtoms. Furthermore,
under different dataset split schemes and with different seeds,
the structural similarity and label divergence among the train-
ing, validation and test sets also vary, which contributes to
the performance variance. For model evaluation, a diverse
collection of models were compared, including three tradi-
tional machine learning models, three regular neural network
models and two large models pretrained with self-supervised
learning strategies, using various molecular representations.
With statistical analyses, fixed representations exhibit lead-
ing performance in most datasets, suggesting the need for
further advancements in representation learning for molecu-
lar property prediction. For chemical space generalization,
it is dissected into inter-scaffolds generalization and intra-
scaffold generalization. The inferior prediction performance
under scaffold split, compared to random split, indicates that
better AI techniques are needed to enhance inter-scaffolds
generalization. Similarly, the inferior performance observed
for AC molecules (see Sec. 2.4.3) suggests that more efforts
are required for intra-scaffold generalization, especially in
the case of activity cliffs. Moreover, routine evaluation on
activity-cliffs is essential, which has been overlooked in many
previous studies. One reason for this neglect could be due to
the heavy reliance on the MoleculeNet benchmark datasets.

Indeed, the widely-used benchmark datasets may not al-
ways reflect real-world drug discovery challenges18. Some
benchmark datasets can pose unreasonable prediction tasks26.
For instance, SIDER16 is a dataset for 1,427 marketed drugs
and their side effects in 27 system organ classes. In addition to
molecular structures, there are many other factors underlying
the side effects in humans, such as food-drug interactions76,
drug-drug interactions77, among others26. Thus, it is unreal-
istic to expect a model to directly predict side effects solely
from chemical structures. Similarly, the ClinTox dataset16 has
a classification task for FDA approval status alongside clinical
trial toxicity. These two tasks cannot be entirely attributed
to the chemical structures. Thus, to examine the usefulness
of advanced representation learning models, we assembled a
suite of opioids-related datasets. As shown in Fig. 2, the MOR,
DOR and KOR datasets related to the pharmacodynamic as-
pect of opioid overdose are quite balanced. On the contrary,
the CYP2D6 and CYP3A4 datasets related to the pharmacoki-
netic aspect of opioid overdose are extremely skewed to the
left, with an active rate less than 10% under the cutoff value
6. Consequently, the PPV for these two metabolic enzymes
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is considerably limited. Indeed, datasets in these domains
are still scarce26. Besides, the activity datasets from public
databases may contain noise. For instance, we found some
duplicates and contradictory records in the opioids-related
datasets, which were subsequently removed for further analy-
sis. In some cases, even the established benchmark datasets
may require an extra “washing” step to ensure data quality43.

Given the limited prediction performance, we also explored
into potential explanations on why representation learning
fails and discussed pertinent observations on the inferior per-
formance of molecular representation learning models. Firstly,
representation learning models, presumably due to their large
numbers of parameters, tend to show greater metric variabil-
ity, which is further negatively correlated with metric mean
values. Secondly, certain molecular properties show correla-
tions with specific molecular descriptors, which explains the
superior performance of the fixed representations. Thirdly,
nevertheless, our experiments on the descriptor datasets of
varying dataset sizes revealed that representation learning
models struggle to accurately predict simple molecular de-
scriptors, especially when the dataset size is small. One ex-
ception, though, is the pretrained GROVER, which performs
similarly well with fixed representations when data points are
fewer than 1K. However, its performance does not improve
with increasing dataset size. On the other hand, traditional
machine learning models and regular neural network mod-
els exhibit lower prediction error when there are substantial
data points. Particularly, RNN achieves the best performance
when dataset size reaches 6K. For the pretrained MolBERT, it
exhibits little advantage when descriptor datasets have small
sizes. However, when the dataset size reaches 100K, it shows
comparable performance with fixed representations. Indeed,
the dataset size is a key bottleneck. Addressing this challenge
calls for concerted efforts in generating high-quality datasets
to fully harness the power of representation learning models.

Last but not least, there are still some limitations in this
study. Firstly, the sources of uncertainty underlying molec-
ular property prediction include dataset split, experimental
data, and model training67. While our experimental scheme
repeated dataset split 30 times with different random seeds,
it only partially addressed the uncertainty. Moreover, there
could also be variations introduced during model training,
such as random weight initialization and random mini-batch
shuffling78. Ensembling techniques have been proposed to
alleviate the uncertainty related to model training and im-
prove prediction accuracy8. However, these techniques were
not evaluated in this study due to heavy computation bur-
den. Another crucial, yet often neglected, assumption is that
the collected datasets are usually regarded as the gold stan-
dard without any experimental errors, which, however, may
not always hold true. Experimental uncertainty needs to be
taken into consideration to further enhance the reliability of
molecular property prediction67. Secondly, the explainability
of the molecular property prediction models is not covered.
This concept of explainable AI aims to make the predictions

more understandable by domain experts79, which is crucial in
building trust towards effective AI tools in drug discovery.

In conclusion, this study dived into underlying molecular
property prediction. By gaining insights from extensive exper-
imentation, we expect to raise more awareness of these key
elements, which, in turn, can bring better AI techniques in
molecular property prediction.

4 Methods
4.1 Datasets assembly
4.1.1 MoleculeNet benchmark datasets
In 2018, Wu et al.16 proposed a suite of MoleculeNet bench-
mark datasets for molecular property prediction, which have
been widely used to develop novel molecular representation
learning models. Among them, we selected three classifi-
cation datasets (BACE, BBBP, HIV) and three regression
datasets (ESOL, FreeSolv, Lipop), which were used in Mol-
BERT11 and GROVER13 (except for HIV) as well as a recent
study by Jiang et al.43. Note that these datasets are for single-
task purpose and were downloaded from MolMapNet19. Sup-
plementary Table 5 summarizes each dataset, including its
task type, number of molecules, maximum length and number
of scaffolds. Since MolBERT needs to pad the input SMILES
strings to the maximum length, we only retained molecules
with length up to 400, which was applied to all models for fair
comparison. As shown in Supplementary Table 5, all selected
benchmark datasets have a maximum length less than 400,
except for HIV, where about 0.01% molecules were removed.

As for dataset splitting, there are several options, such as
random split, scaffold split, stratified split and time split16, and
each method serves its own purpose. For example, time split is
used to train the model on older data points and test on newer
molecules, simulating the real-world scenario where models
predict for newly synthesized molecules based on existing
data points. The most widely adopted method in the literature
is scaffold split, which addresses the inter-scaffold general-
ization (see Sec. 2.4.3). However, the actual splits can vary
across studies. For the regression datasets, MolBERT used
the random splits provided in MolMapNet while GROVER
adopted scaffold split. For the classification datasets, both
MolBERT and GROVER adopted scaffold split but the seeds
were not provided, so the splits may not be identical.

In this study, we adopted both scaffold and random split, fol-
lowing a 80:10:10 ratio for training/validation/test sets (Sup-
plementary Fig. 2a). Additionally, to ensure statistical rigor,
we repeated the dataset split procedure 30 times with 30 differ-
ent seeds (0,1,2, · · · ,29) using GROVER’s implementation
for dataset split. The same splits were then used consistently
for all experiments to ensure fair comparison.

4.1.2 Opioids-related datasets
To examine practical issues in molecular property predic-
tion, we also assembled a suite of opioids-related datasets
(see Sec. 2.3.1). Specifically, binding affinity is collected for
these pharmacological components51, 77: MDR1 (ChEMBL
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ID: 4302), CYP2D6 (ChEMBL ID: 289), CYP3A4 (ChEMBL
ID: 340), MOR (ChEMBL ID: 233), DOR (ChEMBL ID:
236) and KOR (ChEMBL ID: 237). The data is retrieved from
ChEMBL2722 using in vitro potency measures, namely: IC50,
EC50, Ki and Kd. We set the assay type as "Binding", the
standard relationship as "=", the standard unit as "nM" and the
organism as "Homo Sapiens". The raw binding affinity data is
converted into the negative log 10 scale, which is denoted as
pIC50. Contradictory entries and duplicates were removed.

Notably, IC50/EC50/Ki/Kd are often heteroscedastic67.
Consequently, measurement errors may not be equally dis-
tributed across the range of activity and, therefore, regression
of the raw pIC50 values may not be favorable67. Thus, one
common practice is to convert direct regression into a binary
classification task. For the active vs. inactive threshold, 1 µM
(pIC50 at 6) is usually used as the default cutoff. In our study,
we also adopted this practice.

Supplementary Table 5 summarizes task type, number of
molecules, maximum length and number of scaffolds. Since
all datasets have a maximum length less than 400, all collected
molecules are 100% retained. For the opioids-related datasets,
we performed both scaffold and random splits (Supplementary
Fig. 2b). Each split method was repeated 30 times using 30
different seeds (0,1,2, · · · ,29) with GROVER’s implementa-
tion for dataset split. These splits were used consistently in
all subsequent experiments.

4.1.3 Activity datasets
In light of critiques on the MoleculeNet benchmark datasets,
we utilized two other sets of activity data from the literature to
further assess the performance of representation learning mod-
els. The first set, proposed by Cortés-Ciriano et al.23, contains
activity data for 24 drug targets. The experiment scheme on
these activity datasets is depicted in Supplementary Fig. 2c,
where we adopted both scaffold and random splits. To ensure
statistical rigor, we repeated dataset splitting 30 times with 30
different seeds (0,1,2, · · · ,29) using GROVER’s procedure,
which were saved and kept consistent across all experiments.
The second set, proposed in MoleculeACE by Tilborg et al.24,
contains activity data for 30 targets. These datasets highlight
the issue of activity cliffs and provide a fixed training-test
split, based on which we only evaluated traditional machine
learning models on the fixed representations.

4.1.4 Descriptor datasets
As mentioned in Sec. 2.3.2, we assembled a series of de-
scriptor datasets of varying sizes (0.1K,0.2K, · · · ,80K,100K).
The molecules were randomly sampled from ZINC250k52

and the descriptor values, namely MolWt and NumAtoms,
were calculated using RDKit27. The experiment scheme
on the descriptor datasets is in Supplementary Fig. 2d,
where we applied scaffold split. To ensure statistical rigor,
we repeated the split procedure 30 times with 30 differ-
ent seeds (0,1,2, · · · ,29) using GROVER’s implementation,
which were saved and kept consistent across all experiments.

4.2 Evaluation metrics
In Sec. 2.4.2, we highlighted the limitations of using recom-
mended metrics for model evaluation and emphasized the
necessity of considering other metrics. Next, we provide de-
tails on these metrics. Notably, there are more sophisticated
virtual screening metrics in early drug discovery, such as area
under the accumulative curve (AUAC), Boltzmann-Enhanced
Discrimination of ROC (BEDROC), enrichment factor (EF),
and robust initial enhancement (RIE), among others80.

4.2.1 Classification metrics
In binary classification tasks, each molecule is assigned a
probability of belonging to the positive (or active) class. When
the predicted probability is greater than a threshold value
(between 0 and 1), the molecule is classified as positive (or
active), otherwise negative (or inactive). In total, there are
four possible outcomes: true positive (TP), false positive (FP),
true negative (TN) and false negative (FN). Based on the
TP and FP rates across different probability thresholds, the
receiver operating characteristic curve can be plotted with the
area under the ROC curve as AUROC. Similarly, based on
precision and recall, the precision-recall curve can be plotted
to derive AUPRC. AUROC usually ranges from 0.5 (random
classification) and 1 (perfect classification); if a classifier
performs worse than random guessing, AUROC can be lower
than 0.5. AUROC is more robust in the case of imbalanced
datasets, but it may not be suitable when the minor class is of
greater interest17. In such cases, AUPRC is an alternative53,
with a baseline value as the fraction of the minor class.

PPV =
T P

T P+FP
(1)

NPV =
T N

T N +FN
(2)

Despite the usefulness of AUROC and AUPRC, these "col-
lective" metrics may not be directly pertinent to virtual screen-
ing17, a common application for molecular property predic-
tion5. In fact, the primary goal of early drug discovery is to
rank molecules based on the predicted activity, thus avoiding
the intractable number of false positives or false negatives
in experimental assays81. Given a set of predicted actives
or inactives, depending on the screening goal, we argue that
positive predictive value (PPV; Equation 1) and negative pre-
dictive value (NPV; Equation 2) are more relevant to virtual
screening and drug design, as discussed in Sec. 2.4.2. Unlike
AUROC and AUPRC, which are averaged across different
probability thresholds, a threshold is determined first before
deriving TP, FN, TN and FP, based on which PPV and NPV
are calculated. When the datasets are balanced, the threshold
is set as 0.5 whereas for imbalanced datasets, the threshold
may be adjusted. In our study, we used Youden’s J statistic82,
the vertical distance between ROC curve and a random chance
line, to derive a threshold which maximizes the J statistic.
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4.2.2 Regression metrics
In regression tasks, the recommended metrics are RMSE
(Equation 3) and MAE (Equation 4), which quantify how
far apart the predicted values are from labels: a lower value
indicates a better model fit. MAE measures the average error
whereas RMSE is more sensitive to outliers. In addition, two
other metrics can also measure regression performance8, 16, 83,
namely, Pearson_R and R2, which are scale independent.

RMSE =

√
1
N

N

∑
i=1

(yi − ŷi)2 (3)

MAE =
1
N

N

∑
i=1

|yi − ŷi| (4)

Pearson_R =
∑

N
i=1(yi − ȳobs)(ŷi − ȳpred)√

∑
N
i=1(yi − ȳobs)2 ∑

N
i=1(ŷi − ȳpred)2

(5)

R2 = 1− ∑
N
i=1(yi − ŷi)

2

∑
N
i=1(yi − ȳobs)2

(6)

Pearson_R is an intuitive measure of the linear correlation
between the predicted values and labels84, and is defined as
the ratio between the covariance of two variables and the prod-
uct of their standard deviations (Equation 5), ranging from
-1 to 1. An absolute value of 1 indicates a perfect linear re-
lationship between the predicted values and labels. Notably,
some studies used Pearson_R83 while others used the square
of Pearson_R16, 19, known as Pearson_R2, ranging from 0 to
1. On the other hand, R2, also known as the coefficient of de-
termination, is not based on correlation. Instead, it calculates
the proportion of the variance in the predicted values that can
be explained by the labels (Equation 6). R2 usually ranges
from 0 to 1, and a higher R2 corresponds to a better model fit.
An R2 of 1 indicates that the predicted values exactly match
the observed values, while an R2 of 0 represents the baseline
case, where the model always predicts ȳobs, the mean of labels.
R2 can even be negative if the model performs worse than
the baseline. Presumably due to naming similarity, R2 and
Pearson_R2 can sometimes be confusing. In our study, we
included both Pearson_R and R2, which are calculated with
the scipy package and the scikit-learn package, respectively.

4.3 Model training
For traditional machine learning models, the hyperparame-
ters were determined by using grid search around the default
values or reported values in the literature. For regular neural
network models, we set the hyperparameters such that the
models in comparison have a similar number of parameters.
Specifically, we followed Chemprop8 and set the number of
trees as 500 for RF. For SVM, we used the linear support vec-
tor regressor or classifier. For XGBoost, we used the gradient

boosting regressor or classifier. For RNN, we adopted the
GRU variant and set the hidden size as 512, followed by 3
fully connected layers. For GCN and GIN, the embedding
dimension is 300, followed by 5 convolutional layers, and
the size for hidden vectors is set as 51214. For these regular
neural networks, we applied uniform Xavier initialization to
initialize model weights85. For MolBERT and GROVER, we
adopted the optimal hyperparameters reported in the original
papers11, 13. All experiments with the neural network models
were run on a single NVIDIA V100 GPU for 100 epochs.
The validation loss is used to select the best model during
training for test. Batch size is set as 32. However, for the
HIV dataset, MolBERT takes around 3 hours to complete a
100-epochs training in each split when the batch size is 32.
Since GROVER takes even more time, we set the batch size
as 256 when applying GROVER on HIV, which still takes
around 5 hours to complete a 100-epoch training. To ensure
fair comparison, we saved all raw predictions, based on which
evaluation metrics were calculated using the same codes.

4.4 Statistical analyses
To examine if there are significant differences among the mod-
els and representations, we conducted statistical analyses on
the prediction performance (Supplementary Table 6). Two
major categories of analyses can be applied: parametric and
non-parametric tests86. Parametric t tests examine whether
two groups have equal means and can be further categorized
into paired t test and unpaired t test. For the paired t test,
the null hypothesis is that two populations have equal means,
with the assumption of equal variances (i.e. homoscedasticity).
When two samples have unequal variances and/or unequal
sample sizes, the unpaired or independent t test, also known
as Welch’s t test, should be used. Notably, the paired and inde-
pendent t tests are parametric with the normality assumption.
While parametric tests can be robust to moderate violations
of the normality assumption with large sample sizes, non-
parametric tests are recommended when the sample size is
small. Two common approaches are Wilcoxon signed-rank
test and Wilcoxon rank-sum test (i.e. Mann-Whitney U test).
Wilcoxon signed-rank test is a non-parametric version of the
paired t test and compares the medians of two populations.
Wilcoxon rank-sum test also compares medians and is robust
to violations of homoscedasticity. The non-parametric tests
do not require the normality assumption; however, when the
data are normally distributed, they may lead to less statistical
power, which corresponds to a higher chance of making type
II error (i.e. failure to detect a true effect)17, 86.

Since we observed that the distribution of each performance
metric is skewed together with heteroscedasticity (Supplemen-
tary Fig. 20-23), Mann Whitney U test was used to calculate
the pairwise significance. The significant level is set as the
two-sided p value less than 0.05.
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Data Availability
The data for all figures and tables are provided in the Source
Data file.

Code Availability
Codes and data are provided in the Github repository: https:
//github.com/dengjianyuan/Respite_MPP
(DOI: 10.5281/zenodo.8280951).
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