
Proteus: Towards aManageability-focused
Home-based HealthMonitoring Infrastructure
Mengjing Liu*, Mohammed Elbadry*, Yindong Hua*, Zongxing Xie, Fan Ye
{mengjing.liu,mohammed.elbadry,yindong.hua,zongxing.xie,fan.ye}@stonybrook.edu

Electrical and Computer Engineering
Stony Brook University, NY, USA

ABSTRACT
A data collection infrastructure is vital for generating sufficient
amounts and diversity of data necessary for developing algorithms
in home-based health monitoring. However, the manageability—
deployment and operation efforts—of such an infrastructure has
long been overlooked. Even a small size of a dozen homes may
incur enormous manual efforts on the research team, including
installing, configuring and updating of sensor, edge devices; con-
tinuous monitoring for faults and errors to prevent data losses,
and integrating new sensing modalities. In this paper, we present
Proteus, an easily managed infrastructure designed to automate
much of the work in deploying and operating such systems. Pro-
teus includes: i) scalable, continuous deployment and update of
devices with automatic bootstrapping; ii) automatic fault and er-
ror monitoring and recovery with watchdogs and LED feedback,
and complementary edge and cloud storage backups; and iii) an
easy-to-use data-agnostic pipeline for integrating new modalities.
We demonstrate our system’s robustness through different sets of
experiments: 3 sensor nodes running for 24 days sending data (17.3
Mbps aggregate rate), and 16 emulated sensors (92.8 Mbps aggre-
gate rate). All such experiments have data loss rates less than 1%.
Further we reduce human efforts by 25-fold and code required for
adding new data modality by 25-fold. Our results show that Proteus
is a promising solution for enabling research teams to effectively
manage home-based health monitoring at small to medium sizes.

CCS CONCEPTS
• Computer systems organization→ Data flow architectures.
ACMReference Format:
Mengjing Liu[*], Mohammed Elbadry[*], Yindong Hua[*], Zongxing Xie,
Fan Ye. 2023. Proteus: Towards a Manageability-focused Home-based Health
Monitoring Infrastructure. In 14th ACM International Conference on Bioin-
formatics, Computational Biology and Health Informatics (BCB ’23), Sep-
tember 3–6, 2023, Houston, TX, USA. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3584371.3613006

1 INTRODUCTION
Home-based health monitoring has the potential to revolutionize
the way we manage our health. The continuous collection and anal-
ysis of multi-modal sensing data could lead to early and precise

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
BCB ’23, September 3–6, 2023, Houston, TX, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0126-9/23/09. . . $15.00
https://doi.org/10.1145/3584371.3613006

interventions and management of a broad spectrum of diseases [8].
However, the development of robust, generalizable algorithms and
models critically depends on the amount and diversity of data from
real homes, not well controlled lab environments [4]. The lack of
a manageable infrastructure that can easily collect such data from
real homes is a fundamental barrier to practical home-based health
monitoring.

Themanageability in deploying and operating such an infrastruc-
ture is a great challenge, especially for most research teams of small
sizes (e.g., one faculty member plus a few students). Significant man-
ual efforts and special expertise are needed throughout all stages of
the process: i) configuring sensor, edge devices in multiple homes,
installing data collection and analytic software to create the testbed,
and constantly updating the algorithms and models running on the
sensor, edge and cloud upon improved software or changed health
conditions; ii) automatic monitoring of the system status and per-
formance, and timely detection, resolution of network, device faults
and errors to ensure minimal data loss in 24/7 data collection; and
iii) integrating heterogeneous sensing hardware, modalities with
varying data formats and rates (e.g., from Kbps of activities to tens
of Mbps of RF baseband) which may require separate and distinct
engineering efforts for data streaming, processing, and storage.

While there exist a few research infrastructures for health mon-
itoring purposes (e.g. [1, 2, 5, 6, 10, 14]), they do not consider man-
ageability issues of intensive human efforts required in deployment
(configuring, installing) and operation (updating, troubleshooting),
and they support mainly traditional sensors (e.g. video, wearable
devices, ambient sensors such as temperature and humidity) or sen-
sors for specific diseases (e.g. breath sensor for asthma monitoring),
not easy to extend and add new modalities. Existing data collection
or IoT infrastructures from industry (e.g. KAA [13], Thingspeak [9])
support newmodalities by data-agnostic transportation and storage
utilizing MQTT [7] and HTTPS protocols. However, they mostly
focus on cloud-side features such as data transfer, storage and anal-
ysis. Intensive manual efforts for configuring sensor, edge devices,
and frequent update of algorithms or models needed for home
health-monitoring, are not addressed. In addition, these works do
not consider sufficiently the faults, errors that happen frequently
(e.g. network outage, device faults) in home environments, causing
serious data losses and manual efforts to remedy.

In this paper, we present Proteus 1 , a manageability-focused
data collection infrastructure that minimizes manual efforts so a
small research team can efficiently deploy and operate longitudinal
home-based health monitoring. To minimize human efforts, we
develop new design components, and identify, combine mature
technology pieces, engineering practices to optimize the overall

1This work is supported in part by NSF grants 1951880, 2119299.

https://doi.org/10.1145/3584371.3613006
https://doi.org/10.1145/3584371.3613006

BCB ’23, September 3–6, 2023, Houston, TX, USA Mengjing Liu*0 , Mohammed Elbadry*0 , Yindong Hua*0 , Zongxing Xie, Fan Ye

Table 1: Comparison with existing work. Our proposed system (in cyan), Proteus, advances the state of the art by enabling a comprehensive set of functions as
a whole to allow research teams to effectivelymanage home-based healthmonitoring.

System [6] Welcome [2] SPHERE [14] KAA [13] ThingSpeak [9] Proteus
In-home ✗ ✓ ✓ ✓ ✓ ✓

Automatic Installation ✗ ✗ ✗ ✗ ✗ ✓

Automatic Connectivity ✗ ✗ ✗ ✗ ✗ ✓

OTA Deployment/Update ✗ ✗ ✓ ✗ ✗ ✓

Edge Status Monitoring ✗ ✗ ✓ ✓ ✓ ✓

Watchdog on Edge/Cloud ✗ ✗ ✗ ✗ ✗ ✓

Complementary Edge Storage ✗ ✗ ✗ ✗ ✗ ✓

Data-agnostic Pipeline ✓ ✗ ✓ ✓ ✓ ✓

End-to-end Data Loss — — — — — < 1%
End-to-end Latency — — — — — < 3.65 seconds

Reduction in Manufacturing Time — — — — — 25-fold

workflow, including: i) a scalable, continuous deployment and man-
agement pipeline with IoT device management solution (DMS) for
remote, batch deployment and frequent update, automated node
registration and networking setup upon first boot, and automated
connection on edge; ii) automatic monitoring and watchdog mecha-
nisms on edge for timely recovery from errors, and complementary
edge storage backup for resilience against network failures; and iii)
a data-agnostic pipeline that uses publish-subscribe (pub-sub) to
transfer heterogeneous data formats to the cloud and store the data
in database appropriately.

Preliminary experiences show that we can achieve 25-fold reduc-
tion in manual configuration of 7 sensor nodes from 420 minutes to
17 minutes. A small scale stress test shows that Proteus works reli-
ably with 16 simulated sensor nodes, collecting data at an aggregate
rate of 92.8Mbps, with negligible data loss. The infrastructure we de-
ploy in a one-bedroom, one-bathroom simulated home environment
runs 3 real sensor nodes continuously for 24 days, and 10 real sensor
nodes for 2 weeks without glitches. Despite many faults and errors
(e.g. 6 sensor nodes running for 1 month, 2 network outages, 11 low
data transfer rates, lasting 2 hours in total), the watchdog mech-
anisms can always quickly restore the normal operation, leading to
minimal data loss (< 1%). Results show that greatly improved man-
ageability of Proteus enables small research teams to efficiently de-
ploy and operate longitudinal, continuous data collection systems.

We summarize our contributions as follows:

• We identify three sources of intensive manual efforts in man-
ageability challenges for deploying and operating longitu-
dinal home-based health monitoring: i) configuring sensor
nodes and edge servers, installing and updating their soft-
ware and analytics; ii) detecting, resolving network and hard-
ware faults and errors to ensure minimal data loss; iii) inte-
grating new, unforeseen data modalities.

• We design new components and identify, combine mature
techniques to minimize human efforts for greatly improved
manageability for small research teams to deploy and operate
such an infrastructure, including i) automated, continuous
deployment, operation and update of the infrastructure with
automatic self-bootstrapping; ii) automatic monitoring and
recovery with watchdogs and complementary edge storage,
requiring minimal manual efforts while ensuring minimal
data loss; and iii) easy integration of new, unforeseen modal-
ities with a data-agnostic pipeline.

• We have deployed the infrastructure in a simulated home
environment. We find the manual configuring efforts are
cut down by 25 fold, and lines of code for new modality
integration is cut down by 25 fold. 10 real sensor nodes run
continuously for 2 weeks without any errors, and 16 simu-
lated nodes collecting data at an aggregate rate of 92.8 Mbps
have negligible losses.

2 BACKGROUNDANDRELATEDWORK
We identify and provide a brief description of existing technologies
that are critical for designing Proteus.

Enterprise Device Management Solutions. There exist en-
terprise solutions [11] for IoT device management and field de-
ployment, like Amazon’s AWS Greengrass IoT, Azure IoT device
Management, which provide services like monitoring node status
remotely with a cloud dashboard, pushing updates to remote nodes,
containerized deployment of codes, version control, watchdog ser-
vices for automatic quick-recovery, and etc.

Containers andMicroservices. Containerizing the code (e.g.,
docker) is a popular cloud technology that packages a full userspace
environment with complex library, code dependencies so it can be
accurately and easily duplicated in large quantities with simple
scripts in forms of microservices.

Pub-Sub Communication. A pub-sub transport provides ro-
bust asynchronous communication where data is cached and resent
under intermittent connections, and flexibility to support data of
different formats/content as opaque loads tagged with different
topics. There exist mature solutions for constrained nodes at edge
(e.g., MQTT). With Quality of Service (QoS) 2, MQTT guarantees
once and only once data delivery over network.

Related Work. While these technologies help with manage-
ability of the intended infrastructure, building and running such
a system still requires significant efforts in an error-prone environ-
ment with imperfect embedded devices. We categorize and compare
the related work in Table 1.

Home-based data collection infrastructure has been created, but
not focused on manageability [3]. VitalCore [1] has developed an
analytics and support dashboard and eliminated the tall pipeline
of reading HL7 format health data. Multi-modal sensor infrastruc-
ture [14] supports various sets of data sent to the cloud, but does
*These authors contributed equally to this work

Proteus: Towards aManageability-focused Home-based HealthMonitoring Infrastructure BCB ’23, September 3–6, 2023, Houston, TX, USA

not handle edge computing, or maintaining units in the field. [2, 6]
focus on clinical data and device management. However, they are
not specifically designed for home-based health monitoring, thus in-
tensive human efforts for installing, monitoring devices and remedy
on failures (e.g. network outage, hardware failures) which can eas-
ily occur in home environments are not considered. Furthermore,
they do not provide a quantitative estimation of the infrastruc-
ture’s robustness and efficiency. Many such data collection works
could use Proteus to reduce manual efforts for greatly improved
manageability (e.g., Parkinson data collection [12]).

There are also existing IoT platforms from industry (KAA [13],
Thingspeak [9]), which support multi-modal data transportation
with MQTT or HTTPS protocols, and various data analysis and
visualization tools on cloud. However, they do not consider manual
efforts in configuring, installing individual sensor, edge devices, and
detecting, troubleshooting for faults, errors (e.g. network outage,
device faults) in edge environments, which are fundamental bar-
riers for small research teams to conduct longitudinal home-based
health monitoring.

3 SYSTEMDESIGN
3.1 Goals and Assumptions
3.1.1 Goals. The goals of our infrastructure design are to minimize
manual efforts of a research team in different stages: i) deploying
the infrastructure for initial setup and continuous operating for
data collection and analysis. ii) detecting network, device faults
and errors, and recovering timely to facilitate longtime, continu-
ous running with minimum data loss. and iii) coding work on the
pipeline to integrate multiple, possibly unforeseen types of sensors
(e.g., base band radio data) for health monitoring needs.

3.1.2 Assumptions. We make the following assumptions: i) there
exists sufficient wireless connection to the Internet at homes to han-
dle the data throughput; ii) most of the data to be collected are time
series and events (e.g., vital signs, activities with timestamps) that
can be stored in relational and time series databases (e.g., MySQL,
InfluxDB); and iii) for certain sensitive data, the user may prefer
storage, processing locally on edge servers, not cloud.

3.2 SystemOverview
In this section, we first describe the 3-layer framework of Proteus
including the data path and control path of the pipeline. We then
provide a comprehensive description of the efforts required to de-
ploy and operate the infrastructure, and our design to minimize
such efforts.

Figure 1 shows the three-layer structure of Proteus and its data
and control paths. In each home (i.e., edge), embedded systems (e.g.,
Raspberry Pi’s) gather data directly from connected sensors (e.g.,
Ultra-Wide Band (UWB) radios, or Neulog sensors via USB), and
send data through the homeWiFi to an edge server. The edge server,
a data transfer gateway, aggregates data from all sensor nodes in
one home, pushes data to the cloud. It temporarily stores the data
in a local database when the Internet is disconnected, and resends
new incoming data upon reconnection. Sensitive data not allowed
to leave the home is also stored locally. Further, analytic algorithms
and machine learning models can be deployed on the edge server,
enabling edge processing whenever needed. After data is sent to
a cloud MQTT broker in a DMZ (Demilitarized Zone facing public

Sensors

Home
WIFI

Edge/home

Edge server/ Gateway

initialization
Data Type
Interface

Raspberry Pi

Sensor node

Edge storage
backup

Analysis/
models

Edge MQTT Broker

Cloud

MQTT

Time
series

Database

Relational
Database

Secure Cloud

Internet

MQTT

Database Handler

Internal
Secure Network

Cloud MQTT Broker

DMZ Microservices

Bootstrap

AWS
Greengrass

Container

IOT DMS

MQTT

Redis

Control path Data path watchdog monitoring

UWB

Figure 1: Proteus Design Overview. In each home, there aremultiple Raspberry
Pi’s connected to sensors. They use MQTT to publish readings to an Edge
Server Gateway, which then aggregates the data and sends it to the cloudMQTT
Broker which stores it in databases appropriately. Both edge and cloud have
watchdogs, cloudmonitoring and Over the Air (OTA) update capabilities.

Internet and blocking potential malicious traffic), some microser-
vices receive and push the data to appropriate databases (either
time-series or relational) in the secure cloud behind DMZ. The con-
trol path consists of two parts: i) IoT DMS to remotely deploy and
update containerized codes and models on edge, sensor nodes, ii)
System-wide monitoring and watchdogs to monitor system status
and performance to ensure timely detection and recovery from
faults, errors (e.g. network outage).

We divide our design into three parts: i) Automated and Contin-
uous Deployment to minimize human efforts in the setup of the
infrastructure, ii) Maintenance to monitor system performance, de-
tect and restore from unexpected faults, error automatically, and iii)
Data-agnostic Pipeline to support easy integration of newmodalities.

3.3 Automated and Continuous Deployment
The deployment of the infrastructure can be divided into three
phases:

Installation. Manually installing operating systems and soft-
ware (e.g. Docker for containerized code, software for LED control
and WiFi configuration, etc.), or setting up the environment for an
algorithm (especially a deep learning model) for embedded systems,
are all laborious. We estimate that it takes an expert familiar with
embedded systems 10 minutes to set up a sensor node. Instead
of repeating such manual effort for every single sensor node, we
duplicate them based on a “prep” master image with all the needed
packages using a flash cloning machine, which costs only 3 minutes
to duplicate 7 units in a batch.

Connectivity. After installation, we need to configure the net-
work settings of sensor devices so they can find the IP of edge
server and establish pub/sub connections for data transmission. We
reduce configuration time by i) automatedWiFi set up.We configure

BCB ’23, September 3–6, 2023, Houston, TX, USA Mengjing Liu*0 , Mohammed Elbadry*0 , Yindong Hua*0 , Zongxing Xie, Fan Ye

the “prep” image to open a WiFi portal on boot so that we can
connect to it using a mobile App and send over the WiFi identifier
and password of the Home WiFi network to embedded systems
of sensor nodes. ii) Dynamic Edge Server Connection. To establish
pub sub connection between the sensor nodes and edge server, the
only information needed is the IP address of the broker, which is
located in the edge server and can change over time. To achieve
dynamic IP discovery mechanism, we create a lookup table in the
cloud relational database to associate the edge server of each home
with its MAC address, which is generally considered to be static.
To establish pub sub connection, the sensor nodes only need to
query the relational database to get IP address of the broker in the
corresponding home. In addition, we configure the home ID of the
home where the sensor is deployed in the “prep” image for record.

OTA Deployment and Update. Deploying code (e.g., algo-
rithms and models) across tens to hundreds of sensors and edge
devices is labor-intensive. The workload is compounded by con-
stant code update on sensors and edge upon bug fixes, software
improvements, or changing health conditions. To alleviate such
manual efforts, we build on enterprise DMS (e.g., AWS Greengrass)
which has a dashboard to easily deploy and update code on many
sensor nodes and edge servers via a few clicks. However, for a
sensor device to be managed by a DMS, it needs to register and
obtain its unique ID from the DMS. We develop an automatic self-
registration script, where upon the first boot, the script generates
a unique ID for the edge device, registers the device to the DMS,
and creates a record in our relational database (including its unique
ID and the home ID) for subsequent tracking with the home ID
stored in the “prep” image beforehand. Then the self-registration
of dozens nodes in one home can be done in parallel automatically
on first boot without any manual efforts.

3.4 Maintenance
Our system has multiple embedded devices and multi-hop network
transport. Many problems (e.g. network interruption, accidental
unplugging of sensors, hardware failures) may occur in a home en-
vironment, resulting in critical data loss. Although software such as
AWS Greengrass and PM2 provides dashboard for remote monitor-
ing of device status and watchdogs to restart programs if they exit
abnormally, they do not provide detailed per-device performance
metrics (e.g. data transfer rate per hop) which are significant for
gaining more insights of system performance and troubleshooting.
Furthermore, when such application level restart cannot bring the
system back, more action (e.g. rebooting the device) is required.

Thus, we designwatchdogs combinedwith LED chipsets for auto-
matic monitoring and recovery to detect, notify (with different LED
lighting modes) and remedy on i) network issues and ii) hardware
issues in time to ensure seamless operation of the infrastructure.

Network Issues.We have a local database on the edge server
to temporarily store data when Internet is disconnected. However,
there are network issues on sensor nodes that can cause data loss
before data is transferred to the edge server, requiring extra efforts
to operate correctly.

With pub-sub communication, when data publishing fails due to
network issues, during which the data will be kept in the publisher
queue in the sensor node memory, waiting to be re-published un-
til the publishing (i.e., four-way handshake) finishes successfully.
While new data keeps coming in, data piles up in the queue. Once

the maximum queue size is reached, new data cannot be appended
in the queue and are dropped. Thus, we identify two key metrics
to monitor sensor nodes: memory usage and publisher queue size
over time, which can reflect data transfer rates and reveal abnormal
network issues occurring.

We monitor the network connection, notify users with an LED
light pattern (blue light) and reboot the device to recover if the
network outage lasts longer than a threshold. For low data transfer
rates, we monitor the publisher queue size and reboot the device
when publisher queue reaches the maximum limit (configured cor-
responding to memory limit) and data transfer rate remains low
within a time window.

Hardware Failures. Multiple hardware failures (sensors being
unplugged, power supply failure, file system corruption and edge
server going offline) can happen on edge, requiring mandatory
human operations. We integrate the embedded system with an LED
chipset whose lighting modes can indicate the sensor states, aiding
non-expert users and the research team to conduct troubleshoot
and remedy on errors without physical travel. The states and cor-
responding recoveries are i) Green: the sensor device is running
normally, no operation required; ii) Red: the sensor needs to be
re-plugged. iii) Yellow flashing: the sensor node can not discover
the edge server MAC address, requiring to record edge server MAC
in relational database. iv) Blue flashing: the sensor node can not dis-
cover the edge server IP address, requiring to connect edge server
to home WiFi. v) Red flashing: the sensor node can not connect to
the broker on the edge server, requiring to reboot the edge server.
vi) LED is off: file system corruption, requiring OS image reflash for
recovery. vii) A power light off on sensor nodes indicates a power
failure and requires the power supply to be re-plugged.

More events can be supported by additional lighting patterns of
the LEDs. Compared to having to read logs to analyze the problem,
which is cumbersome, and feasible only by the research team, LED
feedback offers an easy, direct visual means for a few most common
problems, allowing even non-expert users to help the research team
troubleshoot remotely (e.g., via phone calls).

3.5 Data-agnostic pipeline
The utilization of heterogeneous sensing devices and modalities
is essential to meet comprehensive research needs and effectively
monitor home health. While data transmission over the network
independent of the data type can be easily achieved with pub sub
transportation, extra effort is needed to deal with storage of data
from heterogeneous sensing modalities to facilitate subsequent
data analysis. We design interfaces for data types to minimize the
required coding effort.

When adding a new sensor modality, the developer will need
to update code for streaming data from the sensor (according to
respective libraries), and passing the opaque, tagged data in the
format they wish to store in the database. Two categories of meta-
data are defined to accommodate the new data type: i) database
type and name, which instructs the pipeline the type of the data-
base (i.e. time-series, relational) and name of database to store data
within; ii) tags (i.e., topics) to store each respective field (e.g. “base-
band_timestamp" indicates two tags to store baseband data field
and timestamp field of when the data is generated) appropriately
within the database. We use the database tags as topics in pub sub

Proteus: Towards aManageability-focused Home-based HealthMonitoring Infrastructure BCB ’23, September 3–6, 2023, Houston, TX, USA

Edge Server
Sensor Node

Raspberry Pi

UWB Radar

LED Chipset

Figure 2: Each home has a gaming laptop based edge server andmultiple sensor
nodes each consisting of a Raspberry pi, UWB sensor and LED chipset.

transportation, so only microservices subscribing on those topics
for respective databases receive the corresponding data.

4 EVALUATION
We implement our infrastructure’s cloud components on a HIPPA-
compliant data center using standard virtual machines running
Red Hat Enterprise Linux 8.4.1. For each sensor node, we use a
commodity Raspberry Pi 3B+ connecting a Ultra-Wide Band (UWB)
radio sensor (5.8 Mbps data rate of baseband frames) and a LED
chipset. We take gaming laptops (Intel Core i7, 16GB RAM, 1 GPU,
512 GB hard drive) as edge servers. We deploy one MQTT broker
on the edge server to aggregate data from all sensors per home,
and another in cloud for all homes. We leverage AWS Greengrass
to control the sensor/edge devices and push containerized updates
to them from a cloud dashboard. We deploy InfluxDB as our time-
series database and MySQL as relational database. We configure
our sensor nodes and edge server (Raspberry Pi’s and laptops) with
automatic bootstrap and connectivity to minimize human efforts.

We summarize the comparison between Proteus and existing
home-based health monitoring infrastructures and IOT platforms
in Table 1. We are the first to introduce a manageability focused
infrastructure that minimizes manual efforts in deployment and
operation. This enables small research teams to efficiently manage
longitudinal home-based health monitoring systems. Furthermore,
we conduct quantitative evaluations to assess the end-to-end loss,
latency, and reduction in manufacturing time, providing concrete
evidence of the robustness and efficiency of our infrastructure.

4.1 Automated and Continuous Deployment
25-fold reduction inmanufacturing time from 420minutes to
17minutes.Originally, setting up 7 sensor nodes costs 420 minutes
(60 minutes per unit in total, a rough estimate of the effort, including
10 minutes for OS and software installation, 5 minutes WiFi setup,
30 minutes dynamic edge server connection, 3 minutes deploy code
on edge, 12 minutes update code on edge. Empirically, home WiFi
breaks 1/day, thus 30 edge server connections/month. Code updates
1/week, thus 4/month). Through configuration and batch OS flash
image cloning, automatic WiFi setup and connectivity, automated
self-bootstrapping and OTA update, we reduce 420 minutes to 17
minutes (itemized as OS image cloning 3 minutes, WiFi setup 7 min-
utes, dynamic edge server connection 2 minutes, code deployment
1 minute and code update 4 minutes per month for 7 nodes in total).
This saves significant time and makes it manageable by a small
research team to deploy dozens of homes in a matter of hours.

Time of running (day)

Sensor node 1
Sensor node 2
Sensor node 3

8 16 24

Publisher queue is full,
Transfers data fast, recovers

Publisher Queue is full;
Transfers data slowly, be restarted

No network;
Be restarted

Figure 3: Abnormal events occur on sensor nodes during a 24-day run.

SN

pub

ES

sub pub

DMZ
Broker

sub pub
Redis

sub
Data
handler

1 2 3
Secure

4

SQL
InfluxDB

Figure 4: The hop-by-hop data flow from the sensor node to the cloud database.

4.2 Maintenance
During infrastructure testing, abnormal events occur on several
sensor nodes, but our watchdogs are able to recover them from
errors and ensure continuous operation. In Figure 3 we present the
events on three of the sensor nodes through 24 days of running.
Sensor node 1 runs smoothly with no issues, while on sensor node
2, the publisher queue is full after 2.5 days briefly (no reboot or
issue) and the node is rebooted after 11.5 days due to a network
disconnection. After 16 days, node 2 is rebooted due to having
publisher queue full for over 10 minutes. Meanwhile, sensor node
3 encounters the same event and is rebooted automatically. Our
results confirm that multiple issues happen in continuous operating
systems in the field, and that our watchdog can recover the nodes
and prevent data loss (0.03% data loss on edge in 24 days).

During running, we also observe 2 times of file system corrup-
tions on sensor nodes and 2 times of edge server going offline
because it has been running for months without being restarted.
Due to our monitoring with LED, we can be notified of such hard-
ware failures and remedy timely to prevent data loss.

4.3 Easy integration
of newmodality (25× reduction in LOC)

We demonstrate the adaptability of our pipeline to support new
data modalities. For time-series data like UWB baseband data and
Neulog sensor data, we pack their data into MQTT messages for
data transfer and store them in corresponding measurements in In-
fluxDB on cloud. For example, for Activities of Daily Living (ADL)
recognition, the sensor nodes collect baseband data (containing
all original information for developing better ADL recognition
algorithms) from UWB sensors and package them with times-
tamps into MQTT messages to send under the topic “Baseband-
Data_timestamp/Node_ID". On the cloud, a measurement named
“BasebandData_timestamp/Node_ID" in InfluxDB should be created,
including “BasebandData" and “timestamp" fields so that the data
handler can read messages and write timestamps and baseband data
into the database correctly. With our system, we can implement
it within 4-5 LOC (2-3 LOC parse data from sensor, and 2 LOC
pass it to our API) instead of hundreds of LOC :15 LOC to create a
publisher or subscriber, 2 LOC to publish and subscribe to topics of
interest, 20 LOC on the subscriber side to parse messages and decide
what to do with them (e.g. push to the next hop or store in edge
database), 55 LOC to parse data and convert it to the appropriate
format before writing to the database, 15 LOC to write data into
database in multi-threading. If programming languages used on the
edge and cloud are different, the LOC count can easily double.

BCB ’23, September 3–6, 2023, Houston, TX, USA Mengjing Liu*0 , Mohammed Elbadry*0 , Yindong Hua*0 , Zongxing Xie, Fan Ye

Table 2: Data Loss Rate Hop byHop

of SN R ES Sub Red DB EDB T
4 23.2 0.05% 0 0 0.06% 8% 15D
7 40.6 0.27% 0 0 0.26% 12% 6D
10 58.0 0.5% 0.17% 0 0.03% 3.8% 14D
16 92.8 0 0 0 0.10% 1.4% 2H

4.4 Overall Performance
We evaluate the overall performance of the infrastructure in terms
of the data loss and latency with different number of sensor nodes
running concurrently for an extended period of time. Each sen-
sor node sends 1 MQTT message per second, including 80 UWB
base-band data frames, where the message data size is 0.72MB. In
addition, we run multiple threads simultaneously on a gaming lap-
top to simulate multiple sensor node connections to stress test the
system for data loss and latency. We estimate the data loss and
latency from one hop to the next to get a insight of the system
performance. The data flow and 4 hops of the infrastructure are
shown in Figure 4. We estimate the data loss and latency hop-by-
hop between the publishers on sensor nodes (SN), subscriber on the
edge server (ES), subscriber of broker on cloud (Sub), subscriber of
Redis on cloud (Red) and InfluxDB (DB) on cloud. We measure the
loss and latency with different data rates (R) in Mbps, numbers of
sensor nodes, and continuous running times (T, in the units of days
denoted by “D" and hours “H"). We summarize the test results of
data loss in Table 2, including the ratio of data temporarily stored
in the edge database as a percentage of all data (EDB). Results for
4, 7, and 10 nodes are from real sensor nodes, and the others are
node connections from multithreaded simulations.

Results in Table 2 show that Proteus can support data collection
with 16 sensor nodes sending data at 92.8 Mbps aggregate rate,
with negligible data loss (0.10% end-to-end), sufficient for the needs
of home health monitoring. In the test with 10 real sensor nodes
running for 2 weeks, we observe 0.7% end-to-end data loss. Given
the resilient pipeline and watchdogs, there are negligible data loss
between SN and ES during rebooting of sensor nodes. In our pre-
liminary experiment using 3 sensor nodes for 40 days, we observe
no data loss and no errors from sensor nodes to the edge server.
Results show that Proteus is reasonably stable and promising for
continuous, longitudinal data collection.

EDB in Table 2 demonstrates the fraction of data backup on
edge server at up to 12% upon network failures, which proves such
backup storage is necessary. We also conduct offline tests (e.g., man-
ually disconnecting the network of the edge server for 2 hours) and
observe no data loss because of edge storage.

Figure 5 shows the average hop-by-hop latency with real and
simulated sensor nodes. In the 15-day run test with 4 real sensor
nodes, the average latency from sensor node to each hop of the
infrastructure is 0.2, 0.23, 0.24, 0.53 seconds respectively. With more
sensor nodes and higher data rates, we observe the end-to-end la-
tency slightly increases due to higher data transfer and storage
requirements. But even with 16 simulated sensor nodes to connect
to the system and send data at 92.8 Mbps, we observe 3.65 seconds
end-to-end latency, still sufficient for home health monitoring (e.g.,
detecting falls within seconds).

0 1 2 3 4
latency (s)

4
7

10
16

of

 S
N

DB
Red

Sub
ES

Figure 5: Average Latency Hop by Hop. With 16 simulated sensor node
connections sending data at 92.8Mbps, the end-to-end latency is 3.65 seconds,
slightlyhigherbut still enough forhomehealthmonitoring (e.g., fall detection).

5 CONCLUSION
In this paper, we present our experience in developing and pilot de-
ploying an infrastructure for home-based healthmonitoring.We rec-
ognize the human efforts needed in the full cycle of deploying and
operating such infrastructure. Our system cuts down on labor ef-
forts by 25X and reduces code necessary for deployment by 25X. Our
system ran end to end (from sensor on edge to database on cloud)
and had 0.7% data loss over 14 days experiment. We share experi-
ences and lessons hopefully valuable for other research teams, and
we plan to open-source the infrastructure once it becomes mature.

REFERENCES
[1] Hyonyoung Choi, Amanda Lor, Mike Megonegal, Xiayan Ji, Amanda Watson,

JamesWeimer, and Insup Lee. 2021. VitalCore: Analytics and Support Dashboard
for Medical Device Integration. In IEEE/ACM CHASE 2021. IEEE, 82–86.

[2] Ioanna Chouvarda, Nada Y Philip, Pantelis Natsiavas, Vasilis Kilintzis, Drishty
Sobnath, Reem Kayyali, Jorge Henriques, Rui Pedro Paiva, Andreas Raptopoulos,
Olivier Chetelat, et al. 2014. WELCOME—innovative integrated care platform
using wearable sensing and smart cloud computing for COPD patients with
comorbidities. In 2014 36th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society. IEEE, 3180–3183.

[3] Advantech Co. 1983-2023. Advantech Co-Creating the Future of the IoTWorld.
Retrieved August 7, 2017 from https://www.advantech.com/en-us

[4] Prafulla NDawadi, Diane J Cook, andMaureen Schmitter-Edgecombe. 2013. Auto-
mated cognitive health assessment using smart homemonitoring of complex tasks.
IEEE transactions on systems, man, and cybernetics: systems 43, 6 (2013), 1302–1313.

[5] Matti Hämäläinen, Lorenzo Mucchi, Stefano Caputo, Lorenzo Biotti, Lorenzo
Ciani, Dania Marabissi, and Gabriele Patrizi. 2021. Ultra-wideband radar-based
indoor activity monitoring for elderly care. Sensors 21, 9 (2021), 3158.

[6] Andrew Hornback, Wenqi Shi, Felipe O Giuste, Yuanda Zhu, Ashley M Carpenter,
Coleman Hilton, Vinieth N Bijanki, Hiram Stahl, Gary S Gottesman, Chad Purnell,
et al. 2022. Development of a generalizable multi-site and multi-modality clinical
data cloud infrastructure for pediatric patient care. In Proceedings of the 13th ACM
International Conference on Bioinformatics, Computational Biology and Health
Informatics. 1–10.

[7] Urs Hunkeler, Hong Linh Truong, and Andy Stanford-Clark. 2008. MQTT-S—A
publish/subscribe protocol for Wireless Sensor Networks. In COMSWARE’08.
IEEE, 791–798.

[8] Yingcheng Liu, Guo Zhang, Christopher G Tarolli, Rumen Hristov, Stella
Jensen-Roberts, Emma MWaddell, Taylor L Myers, Meghan E Pawlik, Julia M
Soto, Renee MWilson, et al. 2022. Monitoring gait at home with radio waves in
Parkinson’s disease: A marker of severity, progression, and medication response.
Science Translational Medicine 14, 663 (2022), eadc9669.

[9] The MathWorks. 2023. IoT Analytics - ThingSpeak Internet of Things. Retrieved
June 10, 2023 from https://thingspeak.com/

[10] Ho-Kyeong Ra, Asif Salekin, Hee Jung Yoon, Jeremy Kim, Shahriar Nirjon, David J
Stone, Sujeong Kim, Jong-Myung Lee, Sang Hyuk Son, and John A Stankovic.
2016. Asthmaguide: an asthma monitoring and advice ecosystem. In 2016 IEEE
Wireless Health (WH). IEEE, 1–8.

[11] Arvind Ravulavaru. 2018. Enterprise Internet of Things Handbook: Build end-to-end
IoT solutions using popular IoT platforms. Packt Publishing Ltd.

[12] Shehjar Sadhu, Dhaval Solanki, Nicholas Constant, Vignesh Ravichandran, Gozde
Cay, Manob Jyoti Saikia, Umer Akbar, and Kunal Mankodiya. 2022. Towards
a telehealth infrastructure supported by machine learning on edge/fog for
Parkinson’s movement screening. Smart Health (2022), 100351.

[13] KaaIoT Technologies. 2023. Enterprise IoT Platform with Free Plan | Kaa.
Retrieved June 10, 2023 from https://www.kaaiot.com/

[14] Przemyslaw Woznowski, Xenofon Fafoutis, Terence Song, Sion Hannuna,
Massimo Camplani, Lili Tao, Adeline Paiement, Evangelos Mellios, Mo Haghighi,
Ni Zhu, et al. 2015. A multi-modal sensor infrastructure for healthcare in a
residential environment. In IEEE ICCW 2015. IEEE.

https://www.advantech.com/en-us
https://thingspeak.com/
https://www.kaaiot.com/

	Abstract
	1 Introduction
	2 Background and Related Work
	3 System Design
	3.1 Goals and Assumptions
	3.2 System Overview
	3.3 Automated and Continuous Deployment
	3.4 Maintenance
	3.5 Data-agnostic pipeline

	4 EVALUATION
	4.1 Automated and Continuous Deployment
	4.2 Maintenance
	4.3 Easy integration of new modality (25 reduction in LOC)
	4.4 Overall Performance

	5 Conclusion
	References

