
GIPH: GENERALIZABLE PLACEMENT LEARNING FOR ADAPTIVE
HETEROGENEOUS COMPUTING

Yi Hu 1 Chaoran Zhang 1 Edward Andert 2 Harshul Singh 1 Aviral Shrivastava 2 James Laudon 3

Yanqi Zhou 3 Bob Iannucci 3 Carlee Joe-Wong 1

ABSTRACT
Careful placement of a distributed computational application within a target device cluster is critical for achieving
low application completion time. The problem is challenging due to its NP-hardness and combinatorial nature. In
recent years, learning-based approaches have been proposed to learn a placement policy that can be applied to
unseen applications, motivated by the problem of placing a neural network across cloud servers. These approaches,
however, generally assume the device cluster is fixed, which is not the case in mobile or edge computing settings,
where heterogeneous devices move in and out of range for a particular application. To address the challenge of
scaling to different-sized device clusters and adapting to the addition of new devices, we propose a new learning
approach called GiPH, which learns policies that generalize to dynamic device clusters via 1) a novel graph
representation gpNet that efficiently encodes the information needed for choosing a good placement, and 2) a
scalable graph neural network (GNN) that learns a summary of the gpNet information. GiPH turns the placement
problem into that of finding a sequence of placement improvements, learning a policy for selecting this sequence
that scales to problems of arbitrary size. We evaluate GiPH with a wide range of task graphs and device clusters
and show that our learned policy rapidly finds good placements for new problem instances. GiPH finds placements
that achieve up to 30.5% better makespan, searching up to 3⇥ faster than other search-based placement policies.

1 INTRODUCTION

When running a compute application across a network of
computing devices, careful choice of which parts of the
application to run on which device can significantly affect
application performance. This is particularly true when
devices are heterogeneous: e.g., compute-intensive tasks
should be run on devices with more computation resources,
unless those devices have insufficient communication re-
sources to transmit the task results. Moreover, for applica-
tions involving mobile entities (e.g., autonomous vehicles,
mobile users) devices can be volatile: they may unexpect-
edly enter and/or exit the system. Their capabilities may also
vary, e.g., due to competing processes or battery drainage.
Finding an adaptive placement solution is therefore challeng-
ing. Salaht et al. (2020), for example, survey prior works
on service placement in edge computing settings, which
feature a heterogeneous and dynamic mix of edge devices,
edge servers, and cloud servers.

1Department of Electrical and Computer Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania, USA 2School of
Computing and Augmented Intelligence, Arizona State University,
Tempe, Arizona, USA 3Google Brain, Mountain View, California,
USA. Correspondence to: Yi Hu <yihu@andrew.cmu.edu>.

Proceedings of the 6 th MLSys Conference, Miami Beach, FL,
USA, 2023. Copyright 2023 by the author(s).

We consider applications in heterogeneous computing that
must adapt to device network changes. One example is co-
operative sensor fusion for intelligent traffic systems, where
vehicles combine sensor data from other cars and traffic
cameras for localization and autonomous driving. In gen-
eral, the applications can be represented as directed acyclic
graphs (DAGs), in which each node represents a discrete
computation task or sensor input, and edges represent data
links between tasks that determine the sequence of compu-
tations. Input data enters the DAG and flows through the
tasks, e.g., camera images moving through a trained con-
volutional neural network (CNN) for object detection. We
focus on the common objective of minimizing application
completion time, e.g., to receive CNN inference results as
fast as possible. Our proposed framework, however, can
generalize to other objectives, e.g., if one wishes to balance
energy cost with completion time.

Challenges: Due to the NP-hardness and combinatorial
nature of the placement problem (Topcuoglu et al., 2002),
heuristic methods that rely on simple strategies and hand-
crafted features have been proposed. However, they are
often sub-optimal. Many heuristics also assume an overly
simplified performance model (e.g., for task computation
and communication times) to enable a closed-form formu-
lation. This paper, instead, follows another recent line of

GiPH: Generalizable Placement Learning for Adaptive Heterogeneous Computing

work that automatically learns highly efficient placement
policies with reinforcement learning (RL), which learns
directly from simulated or real runtime environments.

RL also has the potential to generalize across different prob-
lem instances, which can reduce the need for re-training
when new applications need to be placed on new clusters
of devices. In practice, a wide range of applications may
run on constantly changing networks of devices, e.g., train-
ing a federated learning model (Tu et al., 2020), rendering
augmented reality holograms (Wang et al., 2018), or analyz-
ing camera video feeds (Hoque et al., 2021), all of which
may be (partially) run on mobile devices like phones or
vehicle-mounted cameras whose availability changes over
time as they move (Salaht et al., 2020). It is thus imperative
to design RL representations and learning algorithms that
can adapt placements to new device clusters. Existing ap-
proaches cannot do so as they either assume all device char-
acteristics are fixed or a fixed number of devices. As a result,
whenever the device network changes, the learned policies
will perform poorly without significant re-training. In het-
erogeneous computing environments, placement feasibility
constraints may also exist due to hardware functionality,
which in general can be challenging to handle in RL.

In this work, we propose GiPH, an RL-based approach to
learning efficient and fully Generalizable Placement with
the ability to adapt to dynamic Heterogeneous networks.
To the best of the authors’ knowledge, GiPH is the very
first RL approach to learn a placement policy that not only
generalizes to new task graphs that are not in the training
set, but also explicitly adapts to changing device networks
with the ability to relocate the tasks. While we consider
minimization of completion time, GiPH generalizes to other
performance objectives. After reviewing related work in
Section 2, we outline the key contributions and findings of
this work as follows:

• We formulate application placement as a search problem
where the placement is found through applying a sequence
of iterative task relocations that improve upon a given
placement (Section 3).

• We propose GiPH, an RL-based framework to learn gener-
alizable placement policies. The learned policy efficiently
searches for good placement of a task graph on a het-
erogeneous device cluster using a novel and universal
graph representation called gpNet that explicitly encodes
task-level and device-level information (Section 4).

• We evaluate GiPH in terms of the placement quality and
generalizability. GiPH finds placements that achieve up
to 30.5% lower completion times, with higher search
efficiency than prior work. It is comparable to HEFT,
a state-of-the-art but slow (Kiamari & Krishnamachari,
2021) heuristic specific to completion times (Section 5).

• We present a case study on applying GiPH to a complex
real-world application using cooperative sensor fusion
and demonstrate the practical effectiveness of GiPH.

2 RELATED WORK

Application placement is relevant to a variety of domains.
GiPH is inspired by the line of work on efficient device
placement for distributed neural network training with
RL (Mirhoseini et al., 2017; 2018; Zhou et al., 2019; Paliwal
et al., 2019; Addanki et al., 2019), where a policy for optmiz-
ing the device placement is trained through repeated trials.
Some of these works (Mirhoseini et al., 2017; 2018; Zhou
et al., 2019) use a recurrent neural network or an attention
network to predict a placement for each task and combine
them into a placement of the whole graph. Placeto (Addanki
et al., 2019) uses graph embedding with RL and searches for
better placements through a sequence of iterative placement
improvements. It is the closest prior work to ours and one
of our comparison baselines (Section 5).

These RL methods for device placement have two limita-
tions: 1) they consider a fixed device cluster; 2) the cost of
communicating between devices is not directly considered.
As a result, they generalize poorly to new device clusters.

Many prior works have also focused on specific types of
systems. GiPH, instead, solves general placement problems
without domain-specific assumptions. For example, unlike
fog/edge computing placement (Nayeri et al., 2021; Salaht
et al., 2020) with IoT (Pallewatta et al., 2022; Goudarzi et al.,
2021) that assumes a layered or hierarchical network struc-
ture, GiPH can be applied to any network topologies. Yan
et al. (2020); Dolati et al. (2019) solve the virtual network
embedding problems assuming a relatively static physical
network with a fixed number of devices, while GiPH al-
lows topological changes and targets application contexts
that are more dynamic (i.e., physical nodes can move and
dynamically enter or exit the network).

We consider the objective of makespan (i.e., completion
time) minimization. The Heterogeneous Earliest Finish
Time (HEFT) (Topcuoglu et al., 2002) scheduling algorithm
is a highly efficient scheduling algorithm that combines task
prioritization with a heuristic device placement strategy,
and is another one of our baselines. More recent work
(Mao et al., 2019; Luo et al., 2021) learns efficient online
schedules with GNNs and RL.

3 PLACEMENT IN HETEROGENEOUS
COMPUTING

We consider a general placement problem in heterogeneous
computing that aims to properly assign each task in a dis-
tributed application to a device in a target computing net-

GiPH: Generalizable Placement Learning for Adaptive Heterogeneous Computing

(c) gpNet representation. The pivots and the
edges between pivots are identified in bold.

!!

"" = {%#, d!}

"! = {%$, d%}

!"
!%

!&

!'

"% = {%#, d&}

"& = {%(, d&}

"' = {%$}

(b) Example task graph ! with
placement constraints

(*"))
"!

(*%))

!&

,%&* , ,&%*

d!

d" d%

d&

(,"))

,"!* , ,!"*

(a) Example device network with
symmetric communication links

{-#, -(} {-+}

-$, -,

(,!))

(,%))

(,&))

!", d"

!", d!

!!, d!

!!, d%

!%, d"
!%, d&

!&, d%

!', d!

!&, d&

O!O"

O&

O'O%

Figure 1. (a) Device network and (b) task graph of an example placement problem. The set of feasible devices for each task (placement
constraints) is shown in (b). Node and edge features are in parentheses. (c) shows the gpNet representation for (a) and (b).

work to optimize a performance criterion. We consider a
distributed computing environment with 1) heterogeneous
compute capabilities, 2) heterogeneous communication ca-
pabilities, and 3) placement constraints.

A target computing network (e.g., Fig. 1(a)) consists of
a cluster D = {d0, ..., dm�1} of interconnected devices.
The compute devices in the system can be CPUs and/or
GPUs that run at different speeds. For example, a CNN
can be much faster on a GPU than a CPU, and its actual
running time can differ on different GPU modules. Devices
have different compute capabilities (compute features) de-
pending on the processor types, clock rates, etc. We model
the compute capability of a device di by a vector of com-
pute features bn

i
(i.e., device compute speed, hardware type).

There are also placement constraints resulting from hard-
ware functionality and feasibility of devices, e.g., the task
of acquiring LIDAR data can only be placed on a LIDAR
sensor but not on a camera or an edge server.

We also consider a general heterogeneous communication
network. Devices can have different communication mecha-
nisms (wired connection or wireless networks) to send data
to each other. The specific means of communication de-
fines the speed of data transmission, which can be different
between pairs of devices. For example, a camera can be
directly wired to a server that communicates wirelessly with
mobile phones. We sometimes call a device cluster a de-
vice network to emphasize the role of device connectivity
in application performance. Each pair of devices (di, dj)
has communication link features be

ij
(e.g., bandwidth, de-

lay). For the purpose of this paper, we assume the devices
are fully connected and we only consider single-link paths
(represented by edges) between devices. It is easy to gen-
eralize to more complex topologies by attaching very high
communication losses to links that do not exist.

A distributed application is defined by a directed acyclic
task graph G = (V,E), as shown in Fig. 1(b), where
nodes V = {v0, ..., vn�1} represent computation tasks of
the application and edges E ⇢ V ⇥ V represent inter-task

data dependencies and communication. We define parents
of a task v as those tasks on which v has a data dependency,
i.e., {u|(u, v) 2 E}, and reversely v is a child of its parent.
Edges capture the precedence constraint that a child can only
start after it receives all data inputs from its parents. The
features of each node vi 2 V and each edge (vi, vj) 2 E,
represented by �n

i
and �e

ij
, respectively, should be defined

according to the optimization objective, e.g., to minimize
the completion time, node and edge features may include
the amount of compute of each task and data of each link.

Given a distributed application G = (V,E) and a device
network N , a placement maps each task in the application
to a device in the network M : V ! D. Each computation
task vi can only be mapped to a subset of devices Di ✓ D
(Figs. 1(a) and (b)) due to placement constraints. The goal
of the placement is to optimize a performance criterion
⇢(M|G,N) while satisfying M(vi) 2 Di for all vi 2 V .
(G,N) defines a specific problem instance, and we denote
a general placement as a triple P = (G,N,MG!N).

We take performance to be the makespan (i.e., completion
time) of an application, which is the time duration from the
start of the first task’s execution to the end of the last task’s
execution for a given application input. To simplify the
problem, we assume the makespan is input-agnostic, e.g.,
CNN inference will have similar latency for any image.

Due to the data dependencies that exist among tasks, a child
task can only start after it receives all the data from its par-
ents. Therefore, task execution must follow the precedence
constraints defined by the application DAG (i.e., a partial
order). If we associate each node i with a cost ci, and each
edge (i, j) with a cost cij , representing the computation and
communication latency, respectively, the objective is

min
M

⇢(M|G,N) = min
M

max
p2P (G)

0

@
X

i2p

ci +
X

(i,j)2p

cij

1

A ,

where P (G) is the set of all paths from an entry node to an
exit node in graph G, and p is composed of all nodes and

GiPH: Generalizable Placement Learning for Adaptive Heterogeneous Computing

!!, !"

##, #$
##, #%

#&, #%

!'
#%
!(

##

#&

#&

#$

#$

(a) Two task example

!" !!
"" = {%#, d!}

"! = {%$, d%} #& = (&&, '&)
= (&&, '#)
#$ = (&#, '#)
#% = (&#, '$)

Action space

(b) MDP state action diagram for the example in (a).

ℳ!
&& &#
)!)"

&& &#
)!)(

&& &#
)()"

ℳ"&& &#
)()(

"#

ℳ$

Figure 2. MDP (Markov decision process) of the placement search
for a 2-task graph on 3 devices.

edges along the path. (The dependence of ci and cij on M

is omitted for simplicity.) Given a placement, the makespan
is the total cost along the critical path (i.e., the path with
the highest cost), which can be determined in O(|E|+ |V |)
time by traversing the graph in topological order.

This placement problem is NP-hard, which means finding
an exact optimal solution requires exhaustive search. A
simpler version of the problem, which assumes unit-time
computation and no communication delay, has been proven
to be NP-complete (Ullman, 1975). Therefore, a simple
one-step classification approach, where each node’s “class”
is the device on which it is placed, is not a viable solution.
Like most prior work, GiPH tackles this challenge by con-
sidering task placement individually instead of attempting
to determine the placement of the entire graph all at once,
making the problem more tractable.

4 GIPH
This section introduces GiPH, an RL method that improves
placement by relocating tasks. In §4.1, we describe the for-
mulation of the search problem and the associated Markov
decision process (MDP) that underlies our RL approach. In
§4.2, we propose GiPH, which utilizes a novel gpNet rep-
resentation to encode task-level and device-level features,
along with a scalable neural network design that summarizes
the graph information and makes relocation decisions.

4.1 Markov Decision Process Formalism

We formulate the placement problem as a search problem,
where given an initial placement, a learned policy iteratively
relocates some of the tasks. Through making these incre-
mental changes, the policy is able to search through the

solution space and find better placements. Instead of try-
ing to learn a policy that places the whole graph at once,
our search approach makes the learning simpler by only
considering a small local search space at a time. Focusing
on incremental changes further allows us to generalize to
arbitrary application task graphs and device clusters (§4.2).

State: Consider a single problem instance (G,N). For
the search problem, we define the state space as the set of all
feasible placements SG,N = {M|M(vi) 2 Di, 8vi 2 V }.
(State and placement terms are interchangeably used in the
paper.) The size of the state space |SG,N | =

Q|V |�1
i=0 |Di|,

since each task can be placed on any of the feasible devices
for it. When there is no placement constraint (i.e., Di = D
for all tasks), |SG,N | = |D|

|V |. For the two-task example
shown in Fig. 2(a), there are a total of 4 feasible placements,
all shown as states in the transition diagram of Fig. 2(b).

Action: Observing that different placement configurations
(states) differ in the placements of specific tasks, we define
an action to be a task and device pair (vi, dj) 2 V ⇥D that
places vi on device dj . By including task selection in the
action, we allow the policy to relocate tasks in any order and
relocate for more than once. In this way, the search-based
policy can go back and adjust the placement of the same task
again after moving other tasks, exploring the state space.
This is different from Placeto, which traverses each node in
the graph only once and in an arbitrary order, impeding its
ability to fully explore possible placement options.

We only consider feasible actions (vi, dj) such that dj 2 Di.
The size of the action space is thus |AG,N | =

P|V |�1
i=0 |Di|,

which is |V ||D| if there are no placement constraints. Fig.
2(b) lists all four actions for the simple two-task example
and shows the deterministic state transition given an action
taken at each state. Note that the diameter, i.e., the length of
the longest shortest path between any two states in the state
transition diagram, is |V | because one can always change
from one placement to any other placement by moving each
task node at most once. Therefore, even though the size of
the state space grows exponentially with |V |, we can reach
any state from any other state in |V | steps.

Reward: The objective function ⇢(M|G,N) reflects how
good a state s = M is. We assign intermediate reward
rt = ⇢(st+1|G,N)� ⇢(st|G,N), which mimics the advan-
tage function (Sutton & Barto, 1998) indicating the perfor-
mance improvement after taking an action at at a given state
st. The goal of RL is to learn to take actions in order to
maximize the expected return

P
T

t=0 �
trt, where T is the

episode length. When � = 1, the expected return is the ex-
pected performance improvement between the final state sT
and an initialized state s0, i.e., the policy tries to maximize
E[⇢(sT |G,N)]� E[⇢(s0|G,N)]. When the distribution of

GiPH: Generalizable Placement Learning for Adaptive Heterogeneous Computing

the initial placement is fixed, the latter term is constant for
a (G,N) pair and RL is effectively improving the expected
performance of the final placement through maximizing the
expected return. When � < 1, the policy seeks more imme-
diate reward as future rewards are discounted. In this case,
the policy learns to search more efficiently (i.e., increase the
reward the most) at the beginning of the RL episodes.

4.2 GiPH Framework

By leveraging the MDP, GiPH can learn to iteratively op-
timize a placement by relocating tasks. The framework
of GiPH is shown in Fig. 3. Given a placement problem
of an arbitrary task graph Gi and target network Ni, the
placement agent starts a search from an initial placement
M

Gi!Ni
0 . This initial placement can be generated using

some simple strategies, or it can be a placement that requires
improvement. Following the MDP, at each step, the agent
takes as input the current state of the search, st = M

Gi!Ni
t

,
decides a task relocation step at 2 AGi,Ni that modifies the
current placement to st+1, and observes the improvement
of the objective ⇢ as the reward rt.

GiPH comprises three key components. Firstly, the novel
graph representation gpNet (§4.2.1) explicitly encodes both
task-level and device-level features of the current placement
state. This facilitates the learning of a fully generalizable
policy that can be applied to different placement problems.
Secondly, a graph neural network (§4.2.2) computes an em-
bedding for each action (i.e., a task relocation step) based
on the gpNet representation. The GNN leverages the graph
structure of the placement problem to summarize relevant
information and generate high-quality embeddings. Finally,
a policy network (§4.2.3) uses a score function to make
decisions on which action to take. The GNN and the pol-
icy network are jointly trained to optimize the placement
policy.

4.2.1 gpNet Representation

We have formulated a discrete MDP for the placement
search problem given (G,N). For the learned policy to
be fully generalizable across different problem instances,
we need a representation for a general placement P =
(G,N,MG!N). This representation must capture the com-
pute and communication requirements of the task graph
G and the compute and communication capabilities of the
device network N , enabling the policy to learn the perfor-
mance function ⇢ given P . This general representation en-
ables the learned policy to be applied to different placement
problems without being specific to a particular task graph or
device network, improving the policy’s ability to generalize
and achieve good performance in various scenarios.

To this end, we present gpNet, a novel and universal graph
representation of the placement that encapsulates features of

both the task graphs and the device networks with placement
constraints. gpNet generates a unique graph H = (VH , EH)
given a general placement P = (G,N,MG!N), where
G = (V,E) is an arbitrary task graph with node features
�n and edge features �e, and N is an arbitrary device net-
work composed of a device cluster D with device compute
features bn and communication link features be. H

gpNet
�
G = (V,E,�n,�e), N = (D, bn, be),MG!N

�
.

Node generation: VH = {(vi, dj)|dj 2 Di for i =
0, ..., |V |� 1}. Each node in H represents a feasible place-
ment of vi 2 V on device dj 2 Di, and is labeled (vi, dj),
e.g., Fig. 1(c). The node features xn

u
of a node u = (vi, dj)

are a function, fn, of the task features �n

i
and the device

features bn
j

, i.e., xn

u
= fn(�n

i
, bn

j
). The set of nodes for all

possible placements of a task vi forms a group of placement
options Oi = {(vi, ·)} ✓ VH . Nodes whose labels are in
the current placement MG!N are called pivots and form a
set VH,P ✓ VH . The subgraph induced by VH,P thus con-
tains all information about the current placement MG!N .
Non-pivot nodes, on the other hand, represent a potential
task re-placement. Each node in H also corresponds to one
action defined in the search problem described in §4.1.

Edge generation: We add edge (u1, u2) with u1 =
(vi, dk), u2 = (vj , dl) to the gpNet H if (vi, vj) 2 E and
at least one of u1 and u2 is a pivot, i.e., u1 2 VH,P or u2 2

VH,P . In this way, each non-pivot node (vi, dj) only has
edges pointing to or from pivots that contain the current
placement information of its parents and children. For ex-
ample, in Fig. 1(c), (v1, d2) has an incoming edge from
(v0, d0), which contains the current placement informa-
tion of v1’s parent task v0, and outgoing edges to (v3, d2)
and (v4, d1), which contain the current placement infor-
mation of v1’s child tasks v3 and v4. Thus, non-pivot
node (vi, dj) has a local graph structure corresponding
to vi being re-placed to dj . The edge feature xe

u1u2
of

(u1 = (vi, dk), u2 = (vj , dl)) is a function, fe, of the data
link features �e

ij
and the communication link features be

kl
.

The resulting graph H has |VH | =
P|V |�1

i=0 |Di| nodes and
|EH | =

P|V |�1
i=0 (|Di||Ei|)� |E| edges, where |Ei| is the

degree of vi in G. Both fn and fe can be any functions
that combine the features of the task graph and the device
network (e.g., concatenation).

See Appendix B.1 for the full algorithm. Our proposed gp-
Net unifies a given application graph G and device cluster N
into a single graph that captures all device- and task-related
features for making a placement update decision. The origi-
nal task dependencies in G and placement constraints are
implicitly present in the output gpNet H by construction.
gpNet also generalizes to different problem instances: we
can construct a gpNet for any placement of an arbitrary task
graph-device network problem pair (G,N).

GiPH: Generalizable Placement Learning for Adaptive Heterogeneous Computing

…

…

Problem Instances

Placement Agent
/- = ℳ-

.!→0!

#! $!

#& $&

…

…

gpNet)" , +" ,ℳ#
$!→&!

Graph
Neural

Network

1! 2!

M
LP …

M
ask

Softm
ax

Policy Network
Action
Selection
- ./0123

3-
(1, 4
'" ∈)#!
* ∈ +"$!

ℳ,-"
.!→0!

…

(1
4

…

&.! '0!

)45"
reward (, = * +,-" #1 , $1 − * +, #1 , $1

sample#1 , $1

5!)
5!#*

5#)

Figure 3. GiPH neural network design. A given problem instance (Gi, Ni) is first transformed into a graphical gpNet representation,
which is then passed through a GNN to generate feature embeddings for each feasible task-device placement pair. The policy network
then chooses an action (an incremental task-device re-placement) by estimating its performance improvement.

4.2.2 Scalable and Generalizable Graph Embedding

GiPH must first convert the placement information, repre-
sented in graphical form by gpNet(Gi, Ni,M

Gi!Ni
t

), into
features that can be passed to the policy network. Creating
a flat vector representation is not scalable because it cannot
handle graphs of arbitrary sizes and shapes (which depend
on the specific task graph, target network and constraints).

GiPH achieves scalability using a graph neural network
(GNN) (Dai et al., 2017; Battaglia et al., 2018) that em-
beds the state information in a set of embedding vectors.
Taking a gpNet as input with node features xn and edge fea-
tures xe composed as described in §4.2.1, GiPH propagates
information in a sequence of message passing

eu = h2

0

@
X

v2⇠(u)

h1 ([ev k x
e

vu
])

1

A+ xn

u
, (1)

for each node u in the gpNet, where ⇠(u) is the set of par-
ents of u, who have aggregated messages from all of their
parents. h1(·) and h2(·) are non-linear transformations over
vector inputs with trainable parameters. The message pass-
ing is done in both forward and backward directions with
separate parameters, each summarizing information about
the subgraph of nodes that can be reached from u and nodes
that can reach u. GiPH concatenates the two summaries
along each direction as the node embeddings. For a node
with label (v, d), this embedding thus captures the local
placement information if v is placed on d (i.e., if an action
(v, d) is taken). Adopting a GNN also helps generalizability
because it automatically learns high-level features that are
statistically important through end-to-end training, and the
model learned can generalize (and scale) to unseen graphs.

4.2.3 Policy Network and Actions

The policy network consists of a multi-layer perceptron
(MLP), an optional mask layer, and a softmax layer (Fig. 3).

We use the per-node embedding from the GNN to compute
a score qa = g(ea) for each action a in the action space
AGi,Ni (represented as nodes in the gpNet). g(·) is a score
function implemented as a MLP that computes a scalar
value for an embedding vector. The score qa quantifies how
good an action is given the current state s. GiPH then uses a
softmax layer to output a probability of selecting each action
based on the score P (a|s) = exp (qa)/

P
b2AGi,Ni

exp (qb).
An optional mask layer can be placed before the softmax to
mask out undesired actions. The final output is a probability
distribution over all feasible actions.

Since we may have input gpNets of arbitrary sizes, instead of
using a fixed-size policy network, the GiPH policy network
adopts a score function to evaluate individual actions (i.e.,
nodes in gpNet), based on their local graph connectivity and
encoded placement information. Thus, it does not depend
on the size of gpNet.

To improve the sample efficiency and force exploration, we
mask out actions that do not change the current placement
(e.g., a0, a1 at state M0 in the example Fig. 2(b)) because
no new information will be acquired by taking those actions.
We also mask out actions that will result in moving the same
task consecutively twice because we expect the policy to
find a better device for a task within one move.

5 EVALUATION

In this section, we evaluate the performance of our proposed
GiPH for makespan minimization. We assume a heteroge-
neous computing environment where the computation time
and communication time can be estimated from compute
(task) and communication (data link) features of the device
network. We first evaluate GiPH using synthetic data with
randomly generated task graphs and device networks that
cover a wide range of cases in §5.1, and specifically test on
deep learning graphs in §5.2. In §5.3 we present a case study
of applying GiPH to a realistic setting of autonomous inter-

GiPH: Generalizable Placement Learning for Adaptive Heterogeneous Computing

section management for Connected Autonomous Vehicles
(CAVs) using cooperative sensor fusion.

We compare GiPH with the following baseline algorithms:

• Random placement sampling: generating random place-
ments of the task graph by sampling a feasible placement
for each task from a uniform random distribution. This
random baseline is representative of the average place-
ment “quality” without GiPH’s intelligent search.

• HEFT (Topcuoglu et al., 2002): the state-of-the-art
heuristic scheduling algorithm for heterogeneous com-
puting that we use as benchmark. It prioritizes tasks with
high-level features and allocates each task, in order of pri-
ority, to a device that finishes the task the earliest (Earliest
Finish Time (EFT) device selection).

• Random task selection + EFT device selection: a heuris-
tic of placement search, where at each step a task in the
graph is randomly selected and placed according to EFT.
It is a direct adaption of HEFT as a search-based policy.

• GiPH task selection + EFT device selection: the version
of GiPH without gpNet (ablation study). At each step,
instead of deciding a task-device pair, the RL agent only
selects a task. The task is then placed according to EFT.

• Placeto (Addanki et al., 2019): a search-based device
placement algorithm that is the closest prior work to ours.
It also does incremental placement, but does not consider
re-placing the same task or device network features.

• RNN-based placer: another RL baseline based on the hi-
erarchical model for device placement (HDP) (Mirhoseini
et al., 2018). The Placer traverses the graph in topological
order and directly decides the device assignment of each
operator through an RNN-based policy network.

Evaluation metrics: We evaluate each algorithm’s place-
ment quality and adaptivity. We evaluate the placement
quality through the completion time of a task graph, i.e.,
makespan. Since the makespan can vary significantly on dif-
ferent problem instances, we follow Topcuoglu et al. (2002)
in normalizing the makespan to an instance-dependent lower
bound, defining the Schedule Length Ratio:

SLR =
makespanP

vi2CPMIN
mindj2Di wi,j

,

where wi,j is the expected time of running task vi on device
dj and CPMIN is the critical path based on the minimum
computation cost of each task node. The placement algo-
rithm that gives the lowest SLR is the best with respect to
the placement performance. We report the average SLR of
different problem instances. We evaluate the adaptivity of
the algorithms by measuring the average SLR achieved after

each network change following a random device addition
and deletion procedure.

Experiment details: Both GiPH and Placeto use a two-
layer feed-forward neural network (FNN) with the same
number of hidden units as the input dimension for node
and/or edge feature pre-embedding before message passing.
Messages are aggregated by mean. GNN implementations
of GiPH and Placeto have comparable sizes, and are de-
tailed in Appendix B.7 (e.g., features, neural network sizes,
running time). Both are trained using the policy gradient
method REINFORCE (Williams, 1992) with 200 episodes.

For the RNN-based placer network, we follow the HDP
paper and use a sequence-to-sequence model with a bi-
LSTM for the encoder and a unidirectional LSTM with an
attention mechanism for the decoder. Since HDP does not
aim to generalize to new device networks or new application
graphs, we only compare the placement quality by training
a new Placer policy on each test case with 4 Placer samples
each time until the latency is no longer improved.

All policies are trained using Adam optimizer with a fixed
learning rate 0.01. ReLU activation is used. The discounting
factor � = 0.97. The placement performance is evaluated
using a runtime simulator (execution model and latency
model detailed in Appendix B.5).

We separately generate training and test datasets, each com-
posed of a set of task graphs and a set of device networks.
For testing, all search-based policies start from the same
initial placement for fair comparison. Since the action space
grows linearly with the number of computational tasks, we
set the episode length to be multiples of the number of tasks
in the task graph, and empirically find that twice the size of
the graph 2|V | step are enough for the policy to converge to
a solution. Since Placeto fixes the number of search steps
to |V |, we start a new search episode for Placeto after |V |

steps. Each policy outputs the SLR of the best placement
found so far within the episode.

5.1 General Task Graphs and Networks

Dataset: We follow the parametric method used by
Topcuoglu et al. (2002) to generate random task graphs
and random device networks with various characteristics
(e.g., number of devices, average delay of the device net-
works, etc.) depending on the input parameters. To evaluate
our work on a full range of task graphs and device networks,
we decouple their parameters so that each can be gener-
ated independently. The data generation process is detailed
in Appendix B.2. Our generators also randomly specify
placement constraints by adding a hardware-requirement
property to each task and a corresponding hardware-support
property to each device. One input parameter specifies the
average number of feasible devices for each task.

GiPH: Generalizable Placement Learning for Adaptive Heterogeneous Computing

Figure 4. Placement quality and search efficiency of search-based policies. Noise=0.2 means the communication and computation time
can vary up to 20% of the average value. GiPH consistently finds placements with the lowest SLR (i.e., best performance).

Team each four

(w/ retraining) (w/ retraining)�

Figure 5. Average SLR with respect to the depth of the task graph. The background colorbars show the standard deviation of SLR for each
method in the order they are listed in the legend.

Generalizability: We consider two cases: (1) The single-
device-network case, where the search-based methods are
trained and tested on a single device network. This case
mainly considers application-level generalization, and is the
problem setting used in prior work, including Placeto. A
set of 300 randomly sampled task graphs is split equally for
training and testing. (2) The multiple-device-network case,
where multiple device networks, with varying compute and
communication capacities per device, are used for training
and testing. This case further includes device-network gen-
eralization. 500 test cases are sampled from combinations
of 10 device networks and 120 graphs. All experiments are
done with and without 20% noise added to the computation
and communication times, which can model the random
performance of real systems and estimation errors.

The average SLR across test cases as a function of the num-
ber of the search steps is shown in Fig. 4. In all cases, our
GiPH policy outperforms other search policies and more
rapidly finds better placements within fewer search steps.
It achieves up to 30.4% lower completion time compared

to the random baseline, which represents the average place-
ment “quality”. GiPH also exhibits resistance to variations
in the communication and computation times (noise). GiPH-
task-EFT, without using gpNet, is not as good as GiPH, but
the RL on the task selection still allows it to outperform the
random selection under the Random-task-EFT policy. In
contrast, the performance of the Placeto policy significantly
degrades under noise, probably because the agent cannot de-
couple the noise sources without a proper representation of
the device network. When multiple networks are involved,
Placeto even becomes worse than random because, without
considering device-level features, the policy learns false
local optima that no longer exist in a new device network.

Fig. 5 shows the SLR of the final placements found by
different algorithms on the testset with respect to the depth
of the task graph. As the task graph grows in depth, the
SLRs for all methods increase because the critical paths are
longer, increasing the makespan of the task graphs. GiPH
outperforms other search-based methods in most of the cases
and is comparable to the state-of-the-art HEFT.

GiPH: Generalizable Placement Learning for Adaptive Heterogeneous Computing

(w/ retraining)

Figure 6. Adaptivity to device network changes. GiPH maintains
stable performance, while other search methods achieve worse
SLR as the network changes more.

Adaptivity: We evaluate the performance of the learned
policies on a changing device network. The network ini-
tially has 20 devices, and as the network evolves, some of
the devices are randomly removed and later replaced with
new devices of lower capacities (i.e., higher cost). The total
number of devices is between 16 and 20. This may model
devices running out of battery over time; to conserve energy,
they may reduce their compute and communication resource
expenditures. Fig. 6 shows the average SLRs of different al-
gorithms compared to the HEFT baseline, calculated across
20 different application graphs running on the contrived
device network. As the number of high-cost devices grows,
the SLR for random samples increases due to higher average
compute and communication times. Placeto again performs
worse than random, being unable to adjust its policy as the
device cluster changes. GiPH-task-eft fails to adapt because,
without using gpNet to encode information about alternative
placements, the policy cannot correctly decide which task
to relocate next. Another baseline is the RNN-based placer,
whose policy is retrained every time the network changes.
With significant retraining, it maintains a low SLR value.
However, GiPH learns a fully generalizable policy, and is
the only search-based method that maintains stable perfor-
mance (with almost the same SLR as HEFT) and adapts
well to the changes in the device network without retraining.

Alternative implementations: Our GNN design has two
key aspects: (1) It fully incorporates per-edge features. (2)
It takes into account the partial ordering that defines the
acyclic dependency of computation, by constructing mes-
sage passing in both forward and backward directions with
separate parameters. We further evaluate GiPH (1) without
GNN, (2) without per-edge features, (3) with uni-directional
GraphSAGE layers, (4) with k-step two-way message pass-

(a) SLR values during the search across test cases.

(b) The distribution of task relocation counts during the search.

Figure 7. (a) Performance evaluation on deep learning computation
graphs. (b) Counts distribution (only considering non-zero counts),
with some tasks being relocated more frequently than others.

ing, and (5) without gpNet. Our proposed GNN design
shows better convergence properties (Appendix B.6).

5.2 Deep Learning Graphs

We specifically look at deep learning (DL) applications and
evaluate GiPH on DL computation graphs generated by
ENAS (Pham et al., 2018), an automatic model design ap-
proach. A dataset of 300 graphs, using the recurrent cell
designs from ENAS on the Penn Treebank benchmark for
language models (details in Appendix B.3), is split equally
for training and testing. Each graph contains 200-300 op-
erators. Similar to Addanki et al. (2019); Mirhoseini et al.
(2018), we partition the operators into predetermined groups
and place operators from the same group on the same device.
The grouping is done by iteratively merging the operator
with in-degree one and lowest cost into its sole predecessor
until the graph size is reduced to 40 nodes.

Training and testing are both done on one single simulated
device network containing 8 devices. The evaluation re-
sults are shown in Fig. 7(a), where all search-based policies
start from the same initial placement for fair comparison.
GiPH again outperforms all the baselines by selectively
relocating specific task groups based on their current place-
ment, resulting in improved search efficiency compared to
Placeto. Placeto traverses the graph and visits all nodes
equally, whereas GiPH can adjust the placement of “crit-
ical” nodes more frequently within the same number of
search steps. Figure 7(b) depicts the frequency distribution
of relocation counts during the search using GiPH.

GiPH: Generalizable Placement Learning for Adaptive Heterogeneous Computing

Table 1. Running time measurements of each task on device types
A, B, and C with standard deviation values (in milliseconds)

TYPE A TYPE B TYPE C

CAMERA 53±22 36±8 9±4
LIDAR 14±3 7±3 3±2

CAV DATA FUSION 35±9 35±4 11±9
RSU DATA FUSION 250±430 250±370 28±22

5.3 Case Study: Cooperative Sensor Fusion

We present an experimental case study of applying GiPH to
a realistic setting of autonomous intersection management
in CAVs. We consider an autonomous driving scenario
where Roadside Units (RSUs) at major intersections gather
real-time image data from connected infrastructure cam-
era sensors (ISs) and camera and LIDAR data from CAVs
around the intersection to plan the CAV trajectories in a
timely manner. The data collection, communication, and
processing form a time-sensitive dataflow task graph whose
feasible placements need to be rapidly determined as CAVs
move and their communication costs change.

Realistic application traces: We use a traffic simulation
tool Simulation of Urban MObility (SUMO) (Lopez et al.,
2018) to simulate traffic within a 6-block area in the cen-
ter of Tempe AZ (Figure 8(a)). Each major intersection is
equipped with one RSU and four CISs, and will “interact”
with CAVs if they are within 400m of the RSU. We consider
the sensor fusion pipelines in Andert & Shrivastava (2022)
for sensing and localization, which involve camera object
detection, LIDAR object detection, and fusion of the pro-
cessed data for localization. The first two tasks need to run
on GPUs, and the last one can run on any compute devices
(CPU). We simulate the traffic with 3980 vehicles generated
in an hour period (10% of CAVs) and collect application
traces at 10 second intervals (Figure 8(b) as an example).

Placement experiment: We first establish a realistic la-
tency model by measuring the actual running time of each
task on Jetson Nano (Type A), Jetson TX2 (Type B), and
Core i7 7700K with GTX1080 (Type C). The measurements
are summarized in Table 1.

There are 36 RSUs located in the major intersections. We
model them as Type-C devices. To introduce alternative
placement options for running the sensor fusion pipelines,
we randomly place 40 edge compute devices (10 type-A, 10
type-B, and 20 type-C devices) in the simulated area that can
serve as additional RSUs for sensor fusion and trajectory
planning. Finally, we model the communication network
with a data rate that decays exponentially with distance.
Details are included in the Appendix B.4.

(a)

IS camera

LIDAR

CAV
camera

Intersection

Intersection

CAV
Path planning/

actuation

RSU Fusion

Camera Proc
LIDAR Proc
CAV Fusion

Intersection

(b)

IS camera
IS

camera

Figure 8. (a): SUMO traffic simulation area. (b): A snapshot of the
application graph of autonomous traffic management for a CAV
between three intersections.

Figure 9. Case study using the application traces for autonomous
intersection traffic management. (a) Search efficiency of search-
based policies. (b) SLR distribution (under 100) with mean values
included in the legend. Data distribution above 100 is very sparse
and not shown in the figure for visualization.

CAVs
(Type A/B)

RSU
(Type C)

IS cameras

Figure 10. Real-world deployment of the sensor fusion pipeline
(source: Andert & Shrivastava (2022))

GiPH: Generalizable Placement Learning for Adaptive Heterogeneous Computing

Table 2. Measurements of the relocation overhead of each task in a small-scale deployment.
DATA MIGRATION

(BYTES)
STATIC INITIALIZATION

DATA (KILOBYTES)
STARTUP TIME
TYPE A (MS)

STARTUP TIME
TYPE C (MS)

CAMERA 11494 72173.525 4273.73 794.66
LIDAR 560 24.576 60.98 9.26

CAV DATA FUSION 11796 38.110 0.39 0.11
RSU DATA FUSION 20907 38.950 2.83 1.00

(m
s)

Figure 11. Left: incurred relocation cost with respect to pipeline
frequency. Right: Using the placement found by GiPH, HEFT, and
Random policy, the total energy cost across test cases.

We evaluate GiPH and other search-based policies on over
900 placement cases that are extracted from the applica-
tion trace. They are evenly divided for training and testing.
Figure 9(a) shows the average SLRs across 300 test cases
during the placement search. GiPH again outperforms other
policies and more rapidly finds better placements within
fewer search steps. Figure 9(b) shows the SLR distribution
of the final placement across test cases. GiPH is comparable
to HEFT with a lower average SLR across test cases.

Real-world deployment and practical aspects: We mea-
sure the real-world relocation cost of each task of the co-
operative sensor fusion in terms of the data migration, task
initialization (static data), and startup times in a small-scale
deployment (Fig. 10). The measured relocation overhead is
summarized in Table 2.

To evaluate GiPH’s practical handling of task relocation,
we have integrated relocation costs into the simulator and
measure the cost incurred when applying the learned policy
as a certain network change occurs. The relocation cost
is defined to be the sum of the data migration time and
startup time. It is worth noting that most data processing
applications run recurrently to collect and process new data,
similar to our sensor fusion pipeline that processes video
streams and LIDAR data at a fixed frequency. Thus, a single
relocation may benefit future runs of the application.

To balance the trade-off between relocation costs and latency
reduction, we divide the relocation cost by the frequency
of pipeline runs. This allows us to assess the impact of
relocation on pipeline performance over time by considering

the potential value of task relocation in reducing the cost
of multiple future runs of the application. Fig. 11(left)
illustrates the amount of relocation cost that GiPH’s policy
would introduce at various pipeline frequencies, based on
our relocation cost model. Our analysis shows that GiPH
is more likely to relocate a task at a higher cost when the
pipeline runs at a higher frequency.

6 CONCLUSION AND DISCUSSION

We present GiPH, an RL-based framework for learning gen-
eralizable placement policies that improves upon a given
placement through incremental task relocation. We formu-
late the learning problem as a search problem such that the
policy outputs incremental placement improvement steps.
Using gpNet, a graph representation that captures rele-
vant task-level and device-level features for placement, our
framework accommodates task graphs and device networks
of arbitrary size and characteristics. GiPH learns generaliz-
able policies that find better placement results, faster than
other search-based algorithms. We present a case study
using realistic application traces for autonomous intersec-
tion management that utilizes the cost measurements in a
real-world deployment. Although GiPH is only comparable
to HEFT on makespan minimization, HEFT runs slowly
in practice (Kiamari & Krishnamachari, 2021) and is spe-
cific to makespan optimization, while GiPH can optimize
a wide range of objectives defined by the reward function
(e.g., resource utilization, energy cost). Fig. 11(right) shows
that GiPH outperforms random and HEFT in energy cost
minimization by simply switching to a different reward func-
tion. We plan to further deploy GiPH on real-world device
clusters with realistic dynamics that account for potential
relocation overhead and dynmic application arrivals. Our
preliminary results suggest that GiPH’s results may vary de-
pending on the stopping criterion for the placement search,
and we will explore different criteria to ensure that GiPH
learns a “good” application placement.

ACKNOWLEDGEMENTS

This work was supported by funding from NSF grants CPS-
1645578, CPS-1646235, CNS-2106891, and USDOT UTC
grant 69A3551747111. We also wish to thank the reviewers
for providing valuable feedback on earlier paper drafts.

GiPH: Generalizable Placement Learning for Adaptive Heterogeneous Computing

REFERENCES

Addanki, R., Venkatakrishnan, S. B., Gupta, S., Mao, H.,
and Alizadeh, M. Placeto: Learning generalizable device
placement algorithms for distributed machine learning,
2019.

Andert, E. and Shrivastava, A. Accurate cooperative sensor
fusion by parameterized covariance generation for sens-
ing and localization pipelines in cavs. In 2022 IEEE 25th
International Conference on Intelligent Transportation
Systems (ITSC), pp. 3595–3602. IEEE, 2022.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-
Gonzalez, A., Zambaldi, V. F., Malinowski, M., Tac-
chetti, A., Raposo, D., Santoro, A., Faulkner, R., Çaglar
Gülçehre, Song, H. F., Ballard, A. J., Gilmer, J., Dahl,
G. E., Vaswani, A., Allen, K. R., Nash, C., Langston,
V., Dyer, C., Heess, N. M. O., Wierstra, D., Kohli, P.,
Botvinick, M. M., Vinyals, O., Li, Y., and Pascanu, R.
Relational inductive biases, deep learning, and graph net-
works. ArXiv, abs/1806.01261, 2018.

Dai, H., Khalil, E. B., Zhang, Y., Dilkina, B., and Song,
L. Learning combinatorial optimization algorithms
over graphs. In Proceedings of the 31st International
Conference on Neural Information Processing Systems,
NIPS’17, pp. 6351–6361, Red Hook, NY, USA, 2017.
Curran Associates Inc. ISBN 9781510860964.

Dolati, M., Hassanpour, S. B., Ghaderi, M., and Khonsari,
A. Deepvine: Virtual network embedding with deep
reinforcement learning. In IEEE INFOCOM 2019 - IEEE
Conference on Computer Communications Workshops
(INFOCOM WKSHPS), pp. 879–885, 2019. doi: 10.
1109/INFCOMW.2019.8845171.

Goudarzi, M., Palaniswami, M., and Buyya, R. A distributed
deep reinforcement learning technique for application
placement in edge and fog computing environments, 2021.
URL https://arxiv.org/abs/2110.12415.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive
representation learning on large graphs. In Guyon, I.,
Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vish-
wanathan, S., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems, volume 30. Curran As-
sociates, Inc., 2017. URL https://proceedings.
neurips.cc/paper/2017/file/
5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.
pdf.

Hoque, M. A., Hasan, R., and Hasan, R. R-cav: On-demand
edge computing platform for connected autonomous ve-
hicles. In 2021 IEEE 7th World Forum on Internet of
Things (WF-IoT), pp. 65–70. IEEE, 2021.

Kiamari, M. and Krishnamachari, B. Gcnscheduler:
Scheduling distributed computing applications using
graph convolutional networks. CoRR, abs/2110.11552,
2021. URL https://arxiv.org/abs/2110.
11552.

Lopez, P. A., Behrisch, M., Bieker-Walz, L., Erdmann, J.,
Flötteröd, Y.-P., Hilbrich, R., Lücken, L., Rummel, J.,
Wagner, P., and Wießner, E. Microscopic traffic simula-
tion using sumo. In The 21st IEEE International Confer-
ence on Intelligent Transportation Systems. IEEE, 2018.
URL https://elib.dlr.de/124092/.

Luo, J., Li, X., Yuan, M., Yao, J., and Zeng, J. Learning to
optimize dag scheduling in heterogeneous environment.
ArXiv, abs/2103.06980, 2021.

Mao, H., Schwarzkopf, M., Venkatakrishnan, S. B., Meng,
Z., and Alizadeh, M. Learning scheduling algorithms for
data processing clusters. In Proceedings of the ACM Spe-
cial Interest Group on Data Communication, SIGCOMM
’19, pp. 270–288, New York, NY, USA, 2019. Associa-
tion for Computing Machinery. ISBN 9781450359566.
doi: 10.1145/3341302.3342080. URL https://doi.
org/10.1145/3341302.3342080.

Mirhoseini, A., Pham, H., Le, Q. V., Steiner, B., Larsen,
R., Zhou, Y., Kumar, N., Norouzi, M., Bengio, S., and
Dean, J. Device placement optimization with reinforce-
ment learning. In Proceedings of the 34th International
Conference on Machine Learning - Volume 70, ICML’17,
pp. 2430–2439. JMLR.org, 2017.

Mirhoseini, A., Goldie, A., Pham, H., Steiner, B., Le, Q. V.,
and Dean, J. A hierarchical model for device placement.
In ICLR, 2018.

Nayeri, Z. M., Ghafarian, T., and Javadi, B. Application
placement in fog computing with ai approach: Taxonomy
and a state of the art survey. Journal of Network and
Computer Applications, 185:103078, 2021. ISSN 1084-
8045. doi: https://doi.org/10.1016/j.jnca.2021.103078.
URL https://www.sciencedirect.com/
science/article/pii/S1084804521000989.

Paliwal, A. S., Gimeno, F., Nair, V., Li, Y., Lubin, M., Kohli,
P., and Vinyals, O. Regal: Transfer learning for fast opti-
mization of computation graphs. ArXiv, abs/1905.02494,
2019.

Pallewatta, S., Kostakos, V., and Buyya, R. Qos-
aware placement of microservices-based iot applica-
tions in fog computing environments. Future Gener-
ation Computer Systems, 131:121–136, 2022. ISSN
0167-739X. doi: https://doi.org/10.1016/j.future.2022.01.
012. URL https://www.sciencedirect.com/
science/article/pii/S0167739X22000206.

https://arxiv.org/abs/2110.12415
https://proceedings.neurips.cc/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://arxiv.org/abs/2110.11552
https://arxiv.org/abs/2110.11552
https://elib.dlr.de/124092/
https://doi.org/10.1145/3341302.3342080
https://doi.org/10.1145/3341302.3342080
https://www.sciencedirect.com/science/article/pii/S1084804521000989
https://www.sciencedirect.com/science/article/pii/S1084804521000989
https://www.sciencedirect.com/science/article/pii/S0167739X22000206
https://www.sciencedirect.com/science/article/pii/S0167739X22000206

GiPH: Generalizable Placement Learning for Adaptive Heterogeneous Computing

Pham, H., Guan, M., Zoph, B., Le, Q., and Dean, J. Ef-
ficient neural architecture search via parameters shar-
ing. In Dy, J. and Krause, A. (eds.), Proceedings of
the 35th International Conference on Machine Learn-
ing, volume 80 of Proceedings of Machine Learn-
ing Research, pp. 4095–4104. PMLR, 10–15 Jul 2018.
URL https://proceedings.mlr.press/v80/
pham18a.html.

Salaht, F. A., Desprez, F., and Lebre, A. An overview of
service placement problem in fog and edge computing.
ACM Computing Surveys (CSUR), 53(3):1–35, 2020.

Sutton, R. S. and Barto, A. G. Reinforcement Learning: an
Introduction. MIT Press, 1998.

Topcuoglu, H., Hariri, S., and Wu, M.-Y. Performance-
effective and low-complexity task scheduling for het-
erogeneous computing. IEEE Transactions on Paral-
lel and Distributed Systems, 13(3):260–274, 2002. doi:
10.1109/71.993206.

Tu, Y., Ruan, Y., Wagle, S., Brinton, C. G., and Joe-Wong,
C. Network-aware optimization of distributed learning
for fog computing. In IEEE INFOCOM 2020-IEEE Con-
ference on Computer Communications, pp. 2509–2518.
IEEE, 2020.

Ullman, J. Np-complete scheduling problems.
Journal of Computer and System Sciences, 10
(3):384–393, 1975. ISSN 0022-0000. doi:
https://doi.org/10.1016/S0022-0000(75)80008-0.
URL https://www.sciencedirect.com/
science/article/pii/S0022000075800080.

Wang, L., Jiao, L., He, T., Li, J., and Mühlhäuser, M. Ser-
vice entity placement for social virtual reality applica-
tions in edge computing. In IEEE INFOCOM 2018-IEEE
Conference on Computer Communications, pp. 468–476.
IEEE, 2018.

Weaver, L. and Tao, N. The optimal reward baseline for
gradient-based reinforcement learning. In Proceedings of
the Seventeenth Conference on Uncertainty in Artificial
Intelligence, UAI’01, pp. 538–545, San Francisco, CA,
USA, 2001. Morgan Kaufmann Publishers Inc. ISBN
1558608001.

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Mach.
Learn., 8(3–4):229–256, may 1992. ISSN 0885-6125.
doi: 10.1007/BF00992696. URL https://doi.org/
10.1007/BF00992696.

Yan, Z., Ge, J., Wu, Y., Li, L., and Li, T. Automatic virtual
network embedding: A deep reinforcement learning ap-
proach with graph convolutional networks. IEEE Journal

on Selected Areas in Communications, 38(6):1040–1057,
2020. doi: 10.1109/JSAC.2020.2986662.

Zhou, Y., Roy, S., Abdolrashidi, A., Wong, D., Ma, P. C.,
Xu, Q., Zhong, M., Liu, H., Goldie, A., Mirhoseini, A.,
and Laudon, J. Gdp: Generalized device placement for
dataflow graphs, 2019. URL https://arxiv.org/
abs/1910.01578.

https://proceedings.mlr.press/v80/pham18a.html
https://proceedings.mlr.press/v80/pham18a.html
https://www.sciencedirect.com/science/article/pii/S0022000075800080
https://www.sciencedirect.com/science/article/pii/S0022000075800080
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://arxiv.org/abs/1910.01578
https://arxiv.org/abs/1910.01578

GiPH: Generalizable Placement Learning for Adaptive Heterogeneous Computing

A ARTIFACT APPENDIX

A.1 Abstract

The artifact contains the implementation of the learning-
based placement algorithm GiPH in the paper GiPH: Gener-
alizable Placement Learning for Adaptive Heterogeneous
Computing. This artifact appendix contains information on
how to use the reference implementations to reproduce the
main experiment results presented in the paper. We show
(1) how to create the synthetic program graph and device
network datasets, (2) how to train GiPH and other baselines,
and (3) how to evaluate the learned model on a test set.

A.2 Artifact check-list (meta-information)
• Data set: Synthetic data, workload trace

• Output: Model parameters, latency trace, intermediate sam-
ple of placement configuration

• Publicly available: Yes, at https://github.com/
uidmice/placement-rl

• Code licenses: MIT

• Archived: Zenodo. DOI: 10.5281/zenodo.7879679

A.3 Description

A.3.1 How delivered

The artifact is publicly achieved using Zenodo with DOI
10.5281/zenodo.7879679 and available at https://github.
com/uidmice/placement-rl.

A.3.2 Hardware dependencies

No hardware dependency required. All experiments in the paper
are done on CPUs only, but the code allows the use of CUDA. If
running on an arm mac you need to run the x86 version of conda
through rosetta as DGL requires x86 architecture.

A.3.3 Software dependencies

This project is best run in a conda environment to satisfy version
requirements, these are contained in requirements.txt. The
prototype is done using DGL 0.9.1 with a Pytorch 1.13.0 backend.

A.3.4 Data sets

The method used to generate the dataset of program graphs
and devices networks are detailed in Appendix B.2. The
implementation with detailed explanations are included in
Generate data.ipynb available in the repository. The note-
book also includes visualization of the distribution of average
communication and computation cost given the parameters.

Upon starting the experiment, a set of parameters will be
fetched from the path specified by the --data parameters
command and used to generate the dataset for training and
evaluation. The exact parameters for generating the dataset
used in the paper are in parameters/. By default,
parameters/single network.txt is used.

We also allow passing customized graphs and networks
for training and testing. The specific datasets used for
the adaptivity experiment are available to download:
https://drive.google.com/drive/folders/
12nztX3XfJh3uFsTGTY2DdluQGsson2Am?usp=
share_link.

A.4 Installation
Run the following commands to create a virtual environment and
install relevant packages:

$ conda create -n placement matplotlib
=3.5.1 networkx=2.5 numpy=1.19 python
=3.8.10 pytorch=1.13.0 requests tqdm -
c pytorch

$ conda activate placement
$ pip3 install simpy
$ conda install -c dglteam dgl=0.9.1

A.5 Experiment workflow
The pipeline can be run to create a trained model and testing results
by running main.py.

To train and evaluate the model on default parameters:

$ python main.py --train

To train and evaluate the model with customized dataset:

$ python main.py --train
--load_train_graphs data/single-network/

train_program.pkl
--load_test_graphs data/single-network/

eval_program.pkl
--load_train_networks data/single-

network/train_network.pkl
--load_test_networks data/single-network

/eval_network.pkl

Each run creates a subfolder inside the log directory, --logdir,
with a date/time stamp. The following are saved:

1. The model parameters of both the GNN
(embedding *.pk) and the policy network
(policy *.pk).

2. Episodic training data (train data.pkl), including the
latency traces, intermediate sample placements, etc.

3. Episodic evaluation results (eval data.pkl), if enabled,
performed every after a few model updates are made.

4. The argument inputs (args.pkl).

We can also use main.py to run Placeto, GiPH-task-eft, and
alternative GiPH implementations described in Appendix B.6, by
providing additional command line arguments.

A.6 Evaluation and expected result
After finish training, we can use main.py to load a learned model
from a run directory and run a specified amount of tests on it. For
evaluation, --run folder must be provided.

https://github.com/uidmice/placement-rl
https://github.com/uidmice/placement-rl
https://github.com/uidmice/placement-rl
https://github.com/uidmice/placement-rl
https://drive.google.com/drive/folders/12nztX3XfJh3uFsTGTY2DdluQGsson2Am?usp=share_link
https://drive.google.com/drive/folders/12nztX3XfJh3uFsTGTY2DdluQGsson2Am?usp=share_link
https://drive.google.com/drive/folders/12nztX3XfJh3uFsTGTY2DdluQGsson2Am?usp=share_link

GiPH: Generalizable Placement Learning for Adaptive Heterogeneous Computing

$ python main.py --test
--run_folder (logdir)/yyyy-mm-dd_hh-mm-

ss_(suffix)
--num_testing_cases 200

By default, the last saved model will be loaded. To load the model
parameters from an earlier save, we can do the following:

$ python main.py --test
--run_folder (logdir)/yyyy-mm-dd_hh-mm-

ss_(suffix)
--policy_model policy_20.pk
--embedding_model embedding_20.pk

Each test will create a subfolder inside the run directory with a
name starting with test and date/time stamp. The evaluation on
individual test cases (a pair of a program and a device network)
will be saved individually.

A.7 Experiment customization
main.py supports command line arguments to modify the op-
eration and parameters of the experiment pipeline, including the
learning rate, the random seed, how often we evaluate the model
during training, how many times we repeat the same test cases, etc.
See README.md.

B APPENDIX

B.1 gpNet Algorithm

Algorithm gpNet
Require: G = (V,E,�n,�e), N = (D, bn, be),MG!N

1: Initialize an empty graph H = (VH , EH ,xn,xe)
2: VH,P = {} {The set of pivots}
3: for vi 2 V do
4: Oi = {} {The placement options of vi}
5: for dj 2 Di do
6: add node u = (vi, dj) to VH and Oi

7: node feature of u: xn

u
= fn(�n

i
, bn

i
)

8: if MG!N (vi) = dj then
9: add u = (vi, dj) to VH,P

10: end if
11: end for
12: end for
13: for (vi, vj) 2 E do
14: for u1 = (vi, dk) 2 Oi, u2 = (vj , dl) 2 Oj do
15: if u1 2 VH,P or u2 2 VH,P then
16: add edge c = (u1, u2) to EH

17: edge feature of c: xe

c
= fe(�e

ij
, be

kl
)

18: end if
19: end for
20: end for
21: return H {gpNet representation of the placement}

B.2 Synthetic Data Generation
Following the parametric method used by Topcuoglu et al.
(Topcuoglu et al., 2002), we implement a random graph generator
and a random device network generator to generate task graphs
and device networks with various characteristics depending on
input parameters.

Task graph generator: The task graph generator builds
single-entry and single-exit task graphs, i.e., exactly one task (en-
try) is without any parent and exactly one task (exit) is without
any child in the graph. For application graphs with more than one
entry (exit) task, those tasks can be connected to a pseudo entry
(exit) task with zero-cost edges. The following input parameters
are used to build task DAGs:

• Number of tasks in the graph M .

• Shape parameter ↵. The depth of the DAG (i.e., the length
of the longest path) is randomly generated from a uniform
distribution with a mean value

p
M/↵. The width for each

level is randomly generated from a uniform distribution with
a mean value ↵

p
M .

• Connection probability pc. The probability of having a di-
rected edge (data link) from a node at a higher level to a node
at a lower level.

• Average compute requirement of tasks C.

• Average amount of data transmission along data links B.

• Heterogeneity factor for compute requirements among tasks
✏C . The compute requirement Ci of a task i is uniformly
sampled from the range

⇥
C ⇥ (1� ✏C), C ⇥ (1 + ✏C)

⇤
.

• Heterogeneity factor for the amount of data transmission
✏B . The amount of data to be transferred along the data
link (vi, vj), Bij , is uniformly sampled from the range⇥
B ⇥ (1� ✏B), B ⇥ (1 + ✏B)

⇤
.

Two example graphs with different shape parameters and hetero-
geneity factors are shown in Fig. 12. Note that a larger shape
parameter (↵ = 1 instead of ↵ = 0.5) leads to a visibly wider
and shorter graph. Similarly, larger ✏B and ✏C values exhibit more
variability in the amount of data transmission and task compute
respectively.

Device network generator: The following input parameters
are used to generate device networks:

• Number of devices m.

• Average compute speed of devices SP .

• Average bandwidth between devices BW .

• Average communication delay between devices DL. The
communication delay DLkl between device k and l, with
k 6= l, is uniformly sampled from [0, 2⇥DL]. The delay to
the device itself is zero, i.e., DLkk = 0 for all dk.

• Heterogeneity factor for compute speed among devices ✏SP .
The compute speed SPk of a device k is uniformly sampled
from the range

⇥
SP ⇥ (1� ✏SP), SP ⇥ (1 + ✏SP)

⇤
.

GiPH: Generalizable Placement Learning for Adaptive Heterogeneous Computing

Table 3. Notation used throughout the paper

Symbol Description

G Task graph
V The set of nodes (task)
E The set of edges (data links/dependencies)
vi Task i
�n

i
,�e

ij
Node feature of task i, edge feature of data link (vi, vj), for the task graph

N Device network
D The set of devices
Di The set of feasible devices for task i
dk Device k
bn
k
, be

kl
Compute feature of device k, communication feature between device k and l

M
G!N ,M A mapping from task V (of G) to device D (of N)

P A general placement described by a tuple (G,N,MG!N)
⇢ The objective function as a function of the placement
SG,N , AG,N The state space and action space of the MDP for a given problem instance
st, at, rt The state, action, and reward at step t
H = (VH , EH) gpNet graph representation, with nodes VH and edges EH

Oi The set of placement options for a task i
VH,P The set of pivots of H
xn

u
, xe

uv
The composed node feature of u and edge feature of (u, v) in gpNet H

eu The embedding of node (action) u
qu Node (action) score of u

(a) ! = 0.5, '" = 0.2, '# = 0.2! = 20
%# = 0.1
̅) = 100
*+ = 100

(b) ! = 1, '" = 0.4, '# = 0.4

Figure 12. Example task graphs

GiPH: Generalizable Placement Learning for Adaptive Heterogeneous Computing

Figure 13. Sample RNN cell design from ENAS

• Heterogeneity factor for the communication bandwidth
✏BW . The communication bandwidth BWkl between de-
vice k and l, with k 6= l, is uniformly sampled from⇥
BW ⇥ (1� ✏BW), BW ⇥ (1 + ✏BW)

⇤
. The bandwidth

for sending data to the device itself is infinite, i.e., BWkk =
1 for all dk.

The placement constraints are specified by adding a hardware-
requirement property to each task and a corresponding hardware-
support property to each device with non-zero probability. Given
a task graph and a device network, each task can only run on
devices with the hardware support the task requires. A higher
probability for a hardware support results in a larger number of
feasible devices for a task requiring that hardware.

Our simulator also allows for assigning multiple values to each
parameter used by the generators. A specific combination of pa-
rameter values is used to generate data. The source code of the
generators are included in the supplementary material together
with the parameters used for the experiments in this paper.

B.3 Deep Learning Graphs Generation
To evaluate GiPH on deep learning graphs, we use ENAS (Pham
et al., 2018) to generate different neural network architectures.
Specifically, we sample 10 recurrent cell designs from ENAS on
the Penn Treebank benchmark for language models. One sample
graph is shown in Fig. 13. For each cell design, we vary the
number of unrolled steps and workload in terms of the batch size
to generate 30 different deep learning graphs. The dataset contains
300 graphs in total. The number of unrolled steps is uniformly
sampled from 20 to 30, and the batch size from 80 to 150.

B.4 Case Study Details
Task/device features: We define an average compute require-
ment C for each of the four tasks and a pair of compute features
T and S for the CPU and GPU of each type of devices. T is a
measure of the time used for running a unit of compute and S
is a measure of the startup time of that type of device, both in
milliseconds. The values are determined by fitting a computation
latency model that satisfies CiTj + Sj = µi,j , where µi,j is the
measured average time of running task i on device j according to
Table 1.

Communication/link features: We estimate the sizes of
the data transfer Bij in bytes between tasks i and j based on
the hardware and experiment setup as described by Andert &
Shrivastava (2022). We assume a communication bandwidth be-
tween devices that decays exponentially with distance BW =
60 exp (�d/100)Mbps, where d is the distance in meters between
two devices.

B.5 Simulator
We built a Python-based runtime simulator to model a distributed
computing environment with the following characteristics: (1)
Each device executes runnable tasks in a first-in-first-out (FIFO)
manner. (2) Task execution is non-preemptive, i.e., not interrupt-
ible by other tasks once the execution starts. (3) At most one task
can run on a device at a time. (4) Computation can be overlapped
with communication. The above aspects match with the real execu-
tion models in some existing distributed computing environments
(e.g., Tensorflow, as demonstrated in (Addanki et al., 2019)).

Task model: A task is a unit of compute that can run on devices
with the hardware support the task requires. A non-entry task v
is runnable on a device d when all of its parents have finished
execution and all of the data inputs from parents that the task takes
to run are available on d (i.e., the inputs to v have been either
locally produced on d or transferred from other devices to d). An
entry task is always runnable. The data outputs of a task v become
available for use on d or ready to be transferred from d once task
v’s execution finishes.

Device model: Each device can execute at most one task at a
time, and the task execution is assumed to be nonpreemptive. Each
device keeps runnable tasks in a FIFO quene and executes them
in the order they become runnable. Inter-device communication
is assumed to perform without contention, and therefore, sending
output data to multiple devices at the end of task execution is mod-
eled to happen concurrently without queueing. We also assume
that computation can be overlapped with communication.

Latency model (synthetic data): We model the execution
(computation) time wi,k of running a task vi on a device dk to be
proportional to the compute requirement of the task and inversely
proportional to the compute speed of the device:

wi,k =
Ci

SPk
. (2)

The data transmission (communication) time cij,kl of a data link
(vi, vj), with vi mapped to device dk and vj mapped to device dl,
is calculated as:

cij,kl = DLkl +
Bij

BWkl
. (3)

Note that the communication time is zero if the two tasks are
placed on the same device because we set zero delay and infinite
bandwidth for local data transmission when generating the device
network (Appendix B.2).

With non-zero noise � 2 (0, 1), Equations 2 and 3 give the
expected computation and communication times, but their re-
alizations are sampled from a uniform distribution with range
[wi,k(1 � �), wi,k(1 + �)] for computation time and range
[cij,kl(1� �), cij,kl(1 + �)] for communication time. In a more
realistic setting, the latency model can also be replaced by real

GiPH: Generalizable Placement Learning for Adaptive Heterogeneous Computing

measurements of communication and computation times from
profiling tools.

A discrete event simulation tool for Python, SimPy, is used to
handle the interactions between the start and end of data transmis-
sion/task execution across devices. Each device dk keeps a FIFO
queue Qk for all runnable tasks on it. The queue is dequeued when
dk is not busy or have finished executing the previous task. We
define the following events with corresponding event handlers:

• Task start tsi : Used to mark the start time of the execution of
a task vi. Given M(vi) = dk, its timestamp tsi is the time
when the task is dequeued from Qk. Device dk becomes
busy at tsi and stays busy until tsi + wi,k.

• Task done tdi : Used to mark the end of the execution of a task
vi. Given M(vi) = dk, its timestamp tdi = tsi + wi,k. The
device becomes free (not occupied) when the task is done.
This event also triggers the data transmission to other devices
where the child tasks reside, i.e., data communication from
dk to M(vj) for (vi, vj) 2 E.

• Transmission start tsij : Used to mark the start of the trans-
mission of the data link (vi, vj). Its timestamp is the same as
the task done event of vi, i.e., tsij = tdi for all (vi, vj) 2 E.

• Transmission done tdij : Used to mark the end of the trans-
mission of the data link (vi, vj). Given M(vi) = dk and
M(vj) = dl, the timestamp tdij = tsij + cij,kl.

• Task runnable tri : Used to signal a task vi becomes runnable
after receiving all inputs, i.e., tri = max(vj ,vi)2E tdji. When
a task vi becomes runnable, it is inserted to the FIFO queue
of the device dk where the task is placed (i.e., M(vi) = dk).

After the entry task starts and the data flows through the whole
graph, the completion time (makespan) of the task graph is the
time duration from the start of the entry task to the end of the exit
task, i.e., tdexit � tsentry .

B.6 Implementation Alternatives
We compare with the following GNN alternatives:

1. GiPH-NE: GiPH’s two-way message passing without edge
features. To compensate for the loss of edge information, the
mean feature value of out edges of a node is appended to its
node feature.

2. GraphSAGE-NE: With the same node features as used
by GiPH-NE, GraphSAGE-NE replaces the two-way mes-
sage passing with a 3-layer uni-directional GraphSAGE net-
work (Hamilton et al., 2017).

3. GiPH-NE-Pol: GiPH without GNN. GiPH-NE-Pol directly
feeds the same raw node features as used by GiPH-NE to the
policy network.

While combining per-edge information with node features, these
implementations still use the gpNet as inputs. The effect of using
gpNet can be seen by comparing to GiPH-task-eft, which does not
use gpNet to encode the placement information.

4. GiPH-task-eft: GiPH task selection with EFT device se-
lection. Without using gpNet, selecting a task and deciding
where to place it are done separately.

The number of message passing steps in GiPH is equal to the depth
of the graph, which can be time-consuming for large graphs. We
consider the following GNN alternative that limits the number of
steps to propagate local structural information.

5. GiPH-k: GiPH k-step two-way message passing defined by:

et+1
u = hc

2

0

@
X

v2⇠(u)

hc
1

�
[etv k xe

vu]
�
1

A+ hc
3(x

n
u), (4)

for t = 0, ..., k with e0u = xn
u . hc

1(·), hc
2(·) and hc

3(·)
are feed-forward neural networks with trainable parameters
shared for message passing steps in each direction.

Neural network implementation: For the k-step message
passing GiPH-k, a two-layer FNN (hc

3) with the same number of
hidden units as the input dimension is used to pre-embed node
features to a higher-dimensional space. We set the output dimen-
sion to be 10. Similar to GiPH, the message passing and message
aggregation use single-layer FNNs. Details are included in Table
4 and Table 5.

Policy convergence: We train the policies using different im-
plementations with the same training dataset for 200 training
episodes and test the policy convergence by evaluating the learned
policies every 5 training episodes. The evaluation is done by ap-
plying the learned policies to the same set of 20 evaluation cases,
whose task graphs and device networks are not in the training
dataset.

The experiment results are shown in Fig. 14. For the result on the
right hand side, we use the same device network throughout the
training and testing. For the middle plot, we use fixed-sized device
networks, and for plot on the right hand side, we further vary the
size of the device networks. For the first two experiments, we also
include Placeto for comparison. We find that the policies tend to
vary less when trained on device networks of various sizes, which
suggests the benefit of having diverse training data.

The policies of GiPH, GiPH-3, GiPH-5 and GiPH-NE-Pol con-
verge in both cases. GiPH-task-eft fails to converge in both cases,
probably because it does not have a unified placement update pol-
icy without using gpNet. The separation of the device selection
with the RL policy for task selection makes the policy learning
harder. GraphSAGE-NE and GiPH-NE both incorporate edge fea-
tures into the node features; while GiPH-NE constructs message
passing in both forward and backward directions, the message
passing of GraphSAGE-NE is uni-directional, which may be the
cause of divergence of GraphSAGE-NE in both cases.

We attribute the success of GiPH-NE-Pol to our feature selection
described in Appendix B.7. Specifically, the start-time potential
as a node feature itself provides aggregated information of the
neighbors, which may greatly help the policies to converge. We
further repeat the multisized-device-network experiment without
using the start-time potential as a node feature. The convergence
of GiPH, GiPH-3, GiPH-5 and GiPH-NE-Pol is shown in Fig.
15. In this case, without using GNN, GiPH-NE-Pol performs
poorly and the policy does not improve the average SLR at all. In
contrast, GiPH still successfully creates a sharp drop of SLR at
the beginning of the training. The training efficiency of all four
policies decreases after removing the start-time potential node
feature, with GiPH being the least-influenced.

GiPH: Generalizable Placement Learning for Adaptive Heterogeneous Computing

Table 4. Dimension Summary

GiPH GiPH-k GiPH-
NE

GiPH-
NE-Pol

GraphSAGE-
NE Placeto RNN-

Placer

Node
feature
dimn

4 4 8 8 8 5 -

Edge
feature
dime

4 4 - - - - -

Embed-
ding
dimo

5 5 5 - 10 5
ntype + 1

+max(dout)
+nnodes

Table 5. Neural network implementation details.

Node
transform

layer

Message
function

Aggregation
function

Message
passing

k

Node
summery

dim
Policy

GiPH
dimn

dimn

dimo

dimo + dime

dimo + dime

dimo + dime

dimo

Graph
depth

dimo ⇤ 2
= 10

10
16
1

GiPH-k
dimn

dimn

dimo

dimo + dime

dimo + dime

dimo + dime

dimo
k

dimo ⇤ 2
= 10

10
16
1

GiPH-
NE - dimn

dimn

dimn

dimo

Graph
depth

dimo ⇤ 2
= 10

10
16
1

GiPH-
NE-Pol - - - - -

8
16
1

Graph-
SAGE
-NE

dimn

16
16
16

16
dimo

3
dimo

= 10

10
16
1

Placeto
dimn

dimn

dimn

dimn

dimn

dimn

dimn

dimn

dimn

8
dimo ⇤ 2 ⇤ 4

= 40

40
32

ndev

GiPH: Generalizable Placement Learning for Adaptive Heterogeneous Computing

Single network Multiple networks with the same size Multiple networks with different sizes

Figure 14. Average SLR across 20 evaluation cases with respect to the number of training episodes. Left: Training and evaluating on a
single network. Middle: Training and evaluating on fixed-sized device networks. Right: Training and evaluating on device networks of
various sizes.

Figure 15. Convergence result after removing the start-time poten-
tial as a node feature.

Placement quality: We randomly select 1000 test cases from
the test dataset to test learned policies. We count the number of
occurrences of better placements among GiPH, its variants and
HEFT. The result is summarized in Table 6. In general, GiPH is
better than its variants and produces comparable results as HEFT.

B.7 Experiment Details
Features: The node feature vector of (vi, dk) in gpNet consists
of: (1) the compute requirement of the task Ci, (2) the compute
speed of the device SPk, (3) the expected compute time wi,k, and
(4) the start-time potential of task vi on dk, which is defined as the
time difference between the earliest possible start time of vi on dk
and the actual start time of vi.

The edge feature vector of ((vi, dk), (vj , dl)) in gpNet consists
of: (1) the amount of data transmission from vi to vj , Bij , (2)
the communication bandwidth from device dk to dl, BWkl, (3)

the communication start-up delay DLkl, and (4) the expected
communication time cij,kl.

For Placeto, the node feature vector of each operator is created by
concatenating (1) the average compute time, (2) the average output
data bytes, (3) the current placement, (4) an indicator of whether
the operator is the current one to be placed, and (5) an indicator of
whether the operator has been placed in the episode.

For the RNN-based placer, the input embedding of each operator
is created by concatenating four vectors: (1) a one-hot encoding
of the type of hardware requirement for placement constraints, (2)
a scalar of its compute requirement, (3) a vector containing the
number of data bytes of all its outgoing edges, of size equal to
the maximum out-degree of the graph, and (4) a vector for the
adjacency of the operator, of size equal to the number of operators
in the graph. The dimensions of the node feature, edge feature,
and embedding are summarized in Table 4.

RL training: The policy gradient method REINFORCE is used
for training the RL policy (Williams, 1992). During each episode,
a placement problem (G,N) is sampled from a training set GT ⇥
NT . Starting from a random placement s0, the agent collects
observations (st, at, rt) at each step t = 0, ..., T following the
current policy ⇡✓ . It updates its policy parameters at the end of
each episode

✓ ✓ + ↵
TX

t=0

�tr✓ log ⇡✓(at|st)

TX

t0=t

�t0�trt0 � bt

!
,

where ↵ is the learning rate, � is the discounting factor, and bt is a
baseline for reducing the variance of the policy gradient (Weaver
& Tao, 2001). bt can be any function as long as it does not depend
on the action at time t. We set it to be the average reward before
step t in an episode.

Running time: We report the average training and running
times of each policy. All experiments are done on CPUs only.
Both the training time and the running time include the time used
to generate the input graphs (with features) and run the policy (for
placement updates), and training has additional gradient update
steps at the end of each episode. The values reported in Table 7
are averaged over placement samples taken during the training
and testing (given the same training and testing datasets). Fig.

GiPH: Generalizable Placement Learning for Adaptive Heterogeneous Computing

Table 6. Pair-wise placement quality comparison, showing the percentage of test cases for which the method in the row index has SLR
that is better than/equal to/worse than the SLR for the method in the column index. For example, GiPH’s SLR is better than GiPH-3’s for
53.0% of the test cases and equal to GiPH-3’s for 7.0% of the test cases.

GiPH GiPH-3 GiPH-5 GiPH-
NE

GiPH-
NE-Pol

GiPH-
task-eft

HEFT

GiPH
Better 53.0% 55.2% 74.8% 60.6% 82.2% 59.0%
Equal 7.0% 6.4% 2.4% 6.0% 3.0% 5.2%
Worse 40.0% 38.4% 22.8% 33.4% 14.8% 35.8%

GiPH-3
Better 40.0% 51.6% 68.8% 55.8% 74.6% 51.4%
Equal 7.0% 5.0% 1.8% 5.3% 3.0% 4.4%
Worse 53.0% 43.4% 29.4% 38.9% 22.4% 44.2%

GiPH-5
Better 38.4% 43.4% 66.0% 52.0% 74.8% 51.2%
Equal 6.4% 5.0% 1.8% 3.6% 2.2% 3.0%
Worse 55.2% 51.6% 32.2% 44.4% 23.0% 45.8%

GiPH-
NE

Better 38.4% 29.4% 32.2% 32.6% 61.1% 32.6%
Equal 2.4% 1.8% 1.8% 1.4% 0.7% 2.2%
Worse 74.8% 68.8% 66.0% 66.0% 38.2% 65.2%

GiPH-
NE-Pol

Better 33.4% 38.9% 44.4% 66.0% 70.4% 44.6%
Equal 6.0% 5.3% 3.6% 1.4% 2.6% 2.8%
Worse 60.6% 55.8% 52.0% 32.6% 27.0% 52.6%

GiPH-
task-eft

Better 14.8% 22.4% 23.0% 38.2% 27.0% 29.2%
Equal 3.0% 3.0% 2.2% 0.7% 2.6% 6.4%
Worse 82.2% 74.6% 74.8% 61.1% 70.4% 64.4%

17 shows how the policy running and training times vary with
the size of the application graphs. Since in GiPH the message
passing runs sequentially from entry node to the exit node, the
policy running time of GiPH grows with the size of the input
graph. Limiting the number of message passing steps to k (GiPH-
3, GiPH-5) significantly reduces the overhead of running the policy.

B.8 Supplementary Results
Total cost minimization: To demonstrate that GiPH provides
a general learning framework for optimizing a variety of objectives

(e.g., resource utilization and balancing, energy cost, etc.), we
also test GiPH performance for cost minimization, where the cost
is defined as the sum of communication cost of each data link
and computation cost of each task, i.e., Cost =

P
i2V wi,M(i) +P

ij2E cij,M(i)M(j) minimized over feasible mapping M.

We use the same training and testing datasets as in the multiple-
device-network case, and simply replace the reward with the cost
reduction at each step. Fig. 16 (left) shows the search efficiency
for cost minimization compared with a random sampling baseline
and Fig. 16 (right) reports the total cost of the final placements
across testing cases found by GiPH, random sampling, and HEFT.

GiPH: Generalizable Placement Learning for Adaptive Heterogeneous Computing

Table 7. Policy Running Time per Placement Sample

GiPH GiPH-3 GiPH-5 GiPH-
NE

GiPH-
NE-Pol

Graph-
SAGE-

NE

Placeto

Training time
per placement
sample (sec)

0.565±
0.353

0.145±
0.049

0.178±
0.064

0.360±
0.257

0.027±
0.011

0.157±
0.075

0.255±
0.040

Running time
per placement
sample (sec)

0.340±
0.256

0.114±
0.026

0.132±
0.035

0.240±
0.187

0.027±
0.008

0.138±
0.051

0.162±
0.051

Figure 16. The total communication and computation cost of the placement found by HEFT, GiPH, and random sampling, as a function of
depth of the task graph.

Figure 17. Left: Average training time averaged over all placement samples taken during training. Right: Average policy running time
averaged over all placement samples taken during testing.

