
Computationally Efficient PAC RL in POMDPs with Latent Determinism and
Conditional Embeddings

Masatoshi Uehara 1 Ayush Sekhari 1 Jason D. Lee 2 Nathan Kallus 1 Wen Sun 1

Abstract

We study reinforcement learning with function ap-
proximation for large-scale Partially Observable
Markov Decision Processes (POMDPs) where the
state space and observation space are large or
even continuous. Particularly, we consider Hilbert
space embeddings of POMDP where the feature
of latent states and the feature of observations ad-
mit a conditional Hilbert space embedding of the
observation emission process, and the latent state
transition is deterministic. Under the function ap-
proximation setup where the optimal latent state-
action Q-function is linear in the state feature,
and the optimal Q-function has a gap in actions,
we provide a computationally and statistically
efficient algorithm for finding the exact optimal
policy. We show our algorithm’s computational
and statistical complexities scale polynomially
with respect to the horizon and the intrinsic di-
mension of the feature on the observation space.
Furthermore, we show both the deterministic la-
tent transitions and gap assumptions are necessary
to avoid statistical complexity exponential in hori-
zon or dimension. Since our guarantee does not
have an explicit dependence on the size of the
state and observation spaces, our algorithm prov-
ably scales to large-scale POMDPs.

1. Introduction
In reinforcement learning (RL), we often encounter partial
observability of states (Kaelbling et al., 1998). Partial ob-
servability poses a serious challenge in RL from both com-
putational and statistical aspects since observations are no
longer Markovian. From a computational perspective, even
if we know the dynamics, planning problems in POMDPs
(partially observable Markov decision process) are known

*Equal contribution 1Cornell University 2Princeton Uni-
versity. Correspondence to: Masatoshi Uehara <uehara-
masatoshi136@gmail.com>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

to be NP-hard (Papadimitriou & Tsitsiklis, 1987). From a
statistical perspective, an exponential dependence on hori-
zon in sample complexity is not avoidable without further
assumptions (Jin et al., 2020a).

We consider computationally and statistically efficient learn-
ing on large-scale POMDPs with deterministic transitions
(but stochastic emissions). Here large-scale means that the
POMDP might have large or even continuous state and ob-
servation spaces, but they can be modeled using conditional
embeddings. Deterministic transitions and stochastic emis-
sions is a very practically-relevant setting. For example, in
robotic control, the dynamics of the robot itself is often deter-
ministic but the observation of its current state is distorted by
noise on the sensors (Platt Jr et al., 2010; Platt et al., 2017).
In human-robot-interaction, the robots’ dynamics is often
deterministic, while human’s actions can be modeled as un-
certain observations emitted from a distribution conditioned
on robot’s state and human’s pre-fixed goal (Javdani et al.,
2015). For autonomous driving, the dynamics of the car in
the 2d space is deterministic under normal road conditions,
while the sensory data (e.g. GPS, IMU data, and Lidar scans)
is modeled as stochastic. Besse & Chaib-Draa (2009) of-
fers further practical examples such as diagnosis of systems
(Pattipati & Alexandridis, 1990) and sensor management
(Ji et al., 2007). With known deterministic transitions, we
can obtain positive results from computational perspectives
for optimal planning (Littman, 1996; Bonet, 2012). How-
ever, when transitions are unknown, learning algorithms
that enjoy both computation and statistical efficiency are
still limited to the tabular setting (Jin et al., 2020a).

To design provably efficient RL algorithms for POMDPs
with large state and observation spaces, we need to leverage
function approximation. The key question that we aim
to answer here is, under what structural conditions of the
POMDPs, can we perform RL with function approximation
with both statistical and computational efficiency? Specif-
ically, we consider Hilbert space embeddings of POMDPs
(HSE-POMDPs), where both features on the observations
and latent states live in reproducing kernel Hilbert spaces
(RKHSs), which are equipped with conditional embedding
operators and the operators have non-zero singular values
(Boots et al., 2011). This assumption is similarly used in

1

Computationally Efficient PAC RL in POMDPs with Latent Determinism and Conditional Embeddings

Computationally
Efficient

Deterministic
Transition Non-tabular

Model-based or
Model-free

Guo et al. (2016); Azizzadenesheli et al. (2016)
Jin et al. (2020a); Li et al. (2021) No No No Model-based

Cai et al. (2022) No No Yes Model-based
Jin et al. (2020b) Yes Yes No Model-based

Our work Yes Yes Yes Model-free

Table 1. Summary of our work and representative existing works tackling statistically efficient learning on POMDPs. For details and
additional works, refer to Section 1.1. Note that deterministic transition does not preclude stochastic emissions and rewards.

prior works such as learning HSE hidden Markov models
(Song et al., 2010) and HSE predictive state representa-
tions (HSE-PSRs) (Boots et al., 2013), where both have
demonstrate that conditional embeddings are applicable
to real-world applications such as estimating the dynamics
of car from IMU data and estimating the configurations of
a robot arm with raw pixel images. Also, HSE-POMDPs
naturally capture undercomplete tabular POMDPs (Jin
et al., 2020a). For HSE-POMDPs with deterministic latent
transition, we show positive results under the function
approximation setting where the optimal Q-function over
latent state and action is linear in the state feature, and the
optimal Q-function has a non-trivial gap in the action space.

Our key contributions are as follows. Under the aforemen-
tioned setting, we propose an algorithm that learns the exact
optimal policy with computational complexity and statisti-
cal complexity both polynomial in the horizon and intrinsic
dimension (information gain) of the features. Notably, the
complexity has no explicit dependence on the size of the
problem including the sizes of the state and observation
space, thus provably scaling to large-scale POMDPs. In
particular, to the best of the author’s knowledge, our algo-
rithm is the first algorithm that enjoys both statistical and
computational efficiency in certain large-scale POMDPs as
summarized in Table 1. Our algorithm leverages a key
novel finding that the linear optimal Q-function in the latent
state’s feature together with the existence of the conditional
embedding operator implies that the Q-function’s value can
be estimated using new features constructed from the (possi-
bly multiple-step) future observations, which are observable
quantities. Our simple model-free algorithm operates com-
pletely using observable quantities and never tries to learn
latent state transition and observation emission distribution,
unlike existing works (Liu et al., 2022b; Guo et al., 2016;
Azizzadenesheli et al., 2016). We also provide lower bounds
indicating that in order to perform statistically efficient learn-
ing in POMDPs under linear function approximation, we
need both the gap condition and the deterministic latent
transition condition.

1.1. Related Works

We here review related works. A summary is in Table 1.

Computational challenge in POMDPs. The seminal
work (Papadimitriou & Tsitsiklis, 1987) showed finding
the optimal policy in POMPDPs is PSPACE-hard. Even
worse, finding ϵ-near optimal policy is PSPACE-hard, and
finding the best memoryless policy is NP-hard (Littman,
1994; Burago et al., 1996). Recently (Golowich et al., 2022)
showed that quasi-polynomial time planning is attainable
under the weak-observability assumption (Even-Dar et al.,
2007), which is similar to our assumption. However, their
lower bound suggests that polynomial computation is
still infeasible. Representative models that permit us to
get polynomial complexity results are POMDPs where
transitions are deterministic, but stochastic emissions
(Littman, 1996; Besse & Chaib-Draa, 2009; Jin et al.,
2020a). We also consider deterministic latent transition
with stochastic emission, but with function approximation.

Statistically efficient online learning in POMDPs.
(Even-Dar et al., 2005; Kearns et al., 1999) proposed al-
gorithms that have AH -type sample complexity, which is
prohibitively large in the horizon. (Guo et al., 2016; Aziz-
zadenesheli et al., 2016; Xiong et al., 2021; Jin et al., 2020a;
Liu et al., 2022b) show favorable sample complexities in
the tabular setting using a model-based spectral learning
framework (Hsu et al., 2012). Jin et al. (2020a) additionally
showed a computationally and statistically efficient algo-
rithm for tabular POMDPs with deterministic transitions.
However, their algorithm crucially relies on the discreteness
of the latent state space and it is unclear how to extend it
to continuous settings. Also, our approach is model-free so
does not need to model the emission process, which itself is
an extremely challenging task when observations are high
dimensional (e.g., raw-pixel images). In the non-tabular set-
ting, there are many works on learning uncontrolled dynami-
cal systems in HSE-POMDPs (Song et al., 2010; Boots et al.,
2013). These existing works do not tackle the challenge of
strategic exploration in online RL. Recent work (Cai et al.,
2022) shows guarantees for related models in which the
transition and observation dynamics are modeled by linear
mixture models; however, their approach is computationally
inefficient. We remark there are further works tackling on-
line RL in other POMDPs, such as LQG (Lale et al., 2021;
Simchowitz et al., 2020), latent POMDPs (Kwon et al.,

2

Computationally Efficient PAC RL in POMDPs with Latent Determinism and Conditional Embeddings

2021), reactive POMDPs (Krishnamurthy et al., 2016; Jiang
et al., 2017) and unified algorithms (Uehara et al., 2022;
Zhong et al., 2022; Chen et al., 2022; Zhan et al., 2022).
However, their algorithms are not computationally efficient.

RL with linear Q⋆ in MDPs. There is a large body
of literature on RL under the linear Q⋆-assumption with
deterministic transitions (Wen & Van Roy, 2013; Du et al.,
2019; 2020). The most relevant work is Du et al. (2020).
For a detailed comparison, refer to Remark 1.

2. Preliminaries
We introduce POMDPs, HSE-POMDPs, and our primary
assumptions.

2.1. Partially Observable Markov Decision Processes
We consider an episodic POMDP given by the tuple
(H,S,A,O,T,O,Y, s0). Here, H is the number of steps
in each episode, S is the set of states, A is the set of actions
with |A| = A, O is the set of observations, T = {Th}H−1

h=0

is the transition dynamics such that Th is a map from S ×A
to ∆(S), O = {Oh}H−1

h=0 is the set of emission distributions
such that Oh is a map from S to ∆(O), Y = {Yh}H−1

h=0

is the set of reward distributions such that Yh is a map
from S × A to ∆(R), and s0 is a fixed initial state. We
denote the conditional mean of the reward distribution by
rh : S × A → R and the noise by τ , so that rh(s, a) + τ
has law Yh(s, a). We suppose that Yh(s, a) lies in [0, 1].

In a POMDP, states are not observable to agents. Each
episode starts from s0 at h = 0. At each step h ∈ [H],
the agent observes oh ∈ O generated from the hidden state
sh ∈ S following Oh(· | sh), the agent picks an action
ah ∈ A, receives a reward rh following Yh(· | s, a), and
then transits to the next latent state sh+1 ∼ Th(·|sh, ah).

We streamline the notation as follows. We let o0:h denote
o0, . . . , oh, and similarly for a0:h. Given a matrix A, let
η(A) be its smallest singular value. Given a vector a and
matrix A, let ∥a∥2A = a⊤Aa. Give vectors a and b, we
define ⟨a, b⟩ = a⊤b, [H] := [0, · · · , H − 1].

2.2. Hilbert Space Embedding POMDPs
We introduce our model, HSE-POMDPs. For ease of presen-
tation, we first focus on the finite-dimensional setting with
1-step observability, i.e., using one-step future observation
for constructing the conditional mean embedding. We ex-
tend to infinite-dimensional RKHS in Section B. We extend
to multiple-step future observations in Section 5.

Consider two features, one on the observation, ψ : O → Rd,
and one on latent state, ϕ : S → Rds .

Assumption 1 (Existence of linear conditional mean embed-
ding and left invertibility). Assume ∀h ∈ [H], there exists
a left-invertible matrix Gh ∈ Rd×ds s.t. Eo∼Oh(s)[ψ(o)] =

Ghϕ(s).(∃G†
h ∈ Rds×d s.t. G†

hGh = I).

The left invertible condition is equivalent to saying that Gh

is full column rank (it also requires that d ≥ ds). This as-
sumption is widely used in the existing literature on learning
uncontrolled partially observable systems (Song et al., 2010;
2013; Boots et al., 2013). Later, this is relaxed in Section 5
to permit for the case d ≤ ds. Furthermore, we permit the
case where ds = ∞, d = ∞ as later formalized in Sec-
tion B. Finally, note our assumption is different from the
assumption in block MDPs (Du et al., 2019). In contrast to
block MDPs, we cannot generally decode latent states from
observations. We present two concrete examples below.

Example 1 (Undercomplete tabular POMDPs). Let ds =
|S| and d = |O|, define ϕ and ψ as one-hot encoding vec-
tors over S and O, respectively. We overload notation and
denote Oh ∈ Rd×ds as a matrix with entry (i, j) equal to
Oh(o = i|s = j). This Oh corresponds to Gh. Assumption
1 is satisfied if Oh is full column rank. This assumption is
used in Hsu et al. (2012) for learning tabular undercom-
plete HMMs. We discuss the overcomplete case |O| ≤ |S|
in Section 5.

Example 2 (Gaussian POMDPs with discrete latent states
(Liu et al., 2022a)). Suppose S is discrete but O is con-
tinuous, and Oh(· | s) = N (µs,h, I). Then, letting
Oh = [µ1:h, · · · , µ|S|:h] ∈ Rd×|S| and ϕ(·) be a one-hot
encoding vector over S, we have Eo∼Oh(·|s)[o] = Ohϕ(s).
Assumption 1 is satisfied when Oh is full-column rank, i.e.,
the means of the Gaussian distributions are linearly inde-
pendent.

2.3. Assumptions and function approximation
We introduce three additional assumptions: deterministic
transitions, linear Q⋆, and the existence of an optimality
gap. The first assumption is as follows.

Assumption 2 (Systems with deterministic state transitions
and initial distributions). The transition dynamics Th is
deterministic, i.e., there exists a mapping ph : S ×A → S
s.t. Th(· | s, a) is Dirac at ph(s, a). The initial state is
deterministic.

Notice Assumption 2 ensures the globally optimal policy
π⋆ = argmaxπ Eπ[

∑
h rh] is given as a sequence of (non-

history-dependent and deterministic) actions a⋆0:H−1.

Here, we stress three points. First, rewards and emission
probabilities can still be stochastic. Second, Assumption
2 is standard in the literature on MDPs (Wen & Van Roy,
2013; Krishnamurthy et al., 2016; Du et al., 2020; Dann
et al., 2018) and POMDPs (Bonet, 2012; Littman, 1996)
. As mentioned in Section 1, this setting is practical in
many real-world applications. Third, while we can consider
learning about POMDPs with stochastic transitions, even if
we know the transitions and focus on planning, computing
a near-optimal policy is PSPACE-hard (Papadimitriou &
Tsitsiklis, 1987). This implies we must need additional

3

Computationally Efficient PAC RL in POMDPs with Latent Determinism and Conditional Embeddings

conditions. Deterministic transitions can be regarded as one
such possible condition, in particular one that is relevant to
many real-world applications as discussed in Section 1.

Next, we suppose the optimal latent Q-function is lin-
ear in the state feature. Given a level h ∈ [H]
and state-action pair (s, a) ∈ S × A, the optimal Q-
function on the latent state is recursively defined as
Q⋆

h(s, a) = r(s, a) + maxa′ Q⋆
h+1(ph(s, a), a

′) start-
ing from Q⋆

H(s, a) = 0, ∀s, a. We define V ⋆
h (s) =

maxaQ
⋆
h(s, a). Now we are ready to introduce the linearity

assumption.
Assumption 3 (Linear Q⋆). Given the state feature ϕ :
S → Rds , for any h ∈ [H] and any a ∈ [A], there exists
w⋆

a;h ∈ Rds such that Q⋆
h(s, a) = ⟨w⋆

a;h, ϕ(s)⟩ for any
s ∈ S and ∥w⋆

a;h∥ ≤W .

This assumption is widely used in RL (Du et al., 2019;
2020; Li et al., 2021; Du et al., 2021). We further consider
the infinite-dimensional case in Section B.

Next, we assume an optimality gap. For any h ∈ [H], define
gaph(s, a) = V ⋆

h (s)−Q⋆
h(s, a).

Assumption 4 (Optimality Gap). min(h,s,a){gaph(s, a) :
gaph(s, a) > 0} ≥ ∆ for some ∆ > 0.

This assumption is extensively used in bandits (Auer et al.,
2002; Dani et al., 2008) and RL (Du et al., 2019; 2020;
Simchowitz & Jamieson, 2019; Li et al., 2021; He et al.,
2021; Lykouris et al., 2021; Hu et al., 2021; Wu et al., 2022).
For its plausibility refer to Du et al. (2019).

3. Lower Bounds
Before presenting our algorithm, we show via lower bounds
that Assumptions 2 and 4 are each minimal by themselves,
meaning that if we omit just one of them and make no
further assumptions then we cannot learn with polynomial
sample complexity. All details are deferred to Appendix A.

We first consider the role of Assumption 4 and show that one
can not hope to learn with sample complexity that scales as
poly(min(d,H)) under latent determinism and linear Q⋆,
but no gap.
Theorem 1 (Optimality-gap assumption is minimal). Let
d,H be sufficiently large constants, and consider any
online learning algorithm ALG. Then, there exists state
and observation feature vectors ϕ : S → Rd and ψ :
O → Rd with maxs,o{∥ϕ(s)∥, ∥ψ(o)∥} ≤ 1, and a
POMDP (H,S,A,O,T,O,Y, s0) that satisfies Assump-
tions 1, 2, and 3 with respect to features ψ and ϕ such
that with probability at least 1/10 ALG requires at least

1
d1/5∧H1/2 2

Ω(d1/5∧H1/2) many samples to return a 1/10
suboptimal policy for this POMDP.

Theorem 1 is proved by lifting the construction in (Weisz
et al., 2021) to the POMDP setting, and consists of an un-

derlying deterministic dynamics (on the state space) with
stochastic rewards.

In our next result, we consider the role of Assumption 2 and
show that one cannot hope to learn with sample complexity
that scales as poly(min(d,H)) if the underlying state space
dynamics is stochastic even if all other assumptions hold.
Here we take the linear Q⋆ lower bound MDP construction
from Wang et al. (2021) and lift it to a POMDP by simply
treating the original MDP’s state as observation.

Theorem 2 (Deterministic state space dynamics assumption
is minimal). Let d,H be sufficiently large constants and
consider any online learning algorithm ALG. Then, there
exists state and observation feature vectors ϕ : S → Rd

and ψ : O → Rd with maxs,o{∥ϕ(s)∥, ∥ψ(o)∥} ≤ 1, and
a POMDP (H,S,A,O,T,O,Y, s0) that satisfies Assump-
tions 1, 3 and 4 w.r.t features ψ and ϕ such that with proba-
bility at least 1/10 ALG requires at least Ω

(
2Ω(min{d,H}))

many samples to return a 1/20 suboptimal policy for this
POMDP.

The above two results indicate that neither latent determin-
ism nor gap condition alone can ensure statistically efficient
learning, so our assumptions are minimal. In the next sec-
tion, we show that efficient PAC learning is possible when
latent determinism and gap conditions are combined.

4. Algorithm for HSE-POMDPs
In this section, we discuss the case where features are finite-
dimensional and propose a new algorithm. Before present-
ing our algorithm, we review some useful observations.

When latent transition dynamics and initial states are deter-
ministic, given any sequence a0:h−1, the latent state that it
reaches is fixed. We denote the latent state corresponding to
a0:h−1 as sh(a0:h−1). Since latent states are not observable,
even if we knew Q⋆

h(s, a), ∀s, a, we cannot extract the opti-
mal policy easily since during execution we never observe a
latent state sh. To overcome this issue, we leverage the exis-
tence of left-invertible linear conditional mean embedding
operator in Assumption 1: Q⋆

h(s, a) is equal to

⟨w⋆
a;h, G

†
hGhϕ(s)⟩ = ⟨{G†

h}
⊤w⋆

a;h,Eo∼Oh(s)[ψ(o)]⟩.

Hence, letting θ⋆a;h = {G†
h}⊤w⋆

a;h, the function Q⋆
h(s, a)

is linear in a new latent-state feature Eo∼Oh(s)[ψ(o)]. By
leveraging the determinism in the latent transition, given
a sequence of actions a0:h−1, we can estimate the ob-
servable feature xh(a0:h−1) := Eo∼Oh(sh(a0:h−1))[ψ(o)]
by repeatedly executing a0:h−1 M times from the begin-
ning, recording the M i.i.d observations {o(i)}Mi=1 gener-
ated from Oh(·|sh(a0:h−1)), resulting in an estimator de-
fined as: x̂h(a0:h−1) =

∑
j ψ(o

(j))/M . Now, if we knew
θ⋆a;h, we could consistently estimate Q⋆

h(sh(a0:h−1), a) by
θ⋆a;h

⊤x̂h(a0:h−1) using the observable quantity x̂h(a0:h−1).

4

Computationally Efficient PAC RL in POMDPs with Latent Determinism and Conditional Embeddings

The remaining challenge is to learn θ⋆a;h. At high-
level, if we knew V ⋆

h+1(sh+1(a0:h−1, a)), then we can
estimate θ⋆a;h by regressing target rh(sh(a0:h−1), a) +
V ⋆
h+1(sh+1(a0:h−1, a)) on the feature x̂h(a0:h−1). Below,

we present our recursion based algorithm that recursively es-
timates V ⋆

h and also performs exploration at the same time.

4.1. Algorithm
We present the description of our algorithm. The algo-
rithm is divided into two parts: Algorithm 1, in which we
define the main loop, and Algorithm 2, in which we de-
fine a recursion-based subroutine. Intuitively, Algorithm 2
takes any sequence of actions a0:h−1 as input, and re-
turns a Monte-Carlo estimator of V ⋆

h (sh(a0:h−1)) with suf-
ficiently small error. We keep two data sets Dh,Da;h in
the algorithm. Dh simply stores features in the format
of x̂h(a0:h−1), and Da;h stores pairs of feature and scalar
(x̂h(a0:h−1), y) where as we will explain later y approxi-
mates Q⋆

h(s(a0:h−1), a). The dataset Da;h will be used for
linear regression.

The high-level idea behind our algorithm is that at a latent
state reached by a0:h−1, we use least squares to predict
the optimal action when the data at hand is exploratory
enough to cover x̂h(a0:h−1) (intuitively, coverage means
x̂h(a0:h−1) lives in the span of the features in Dh). Once
we predict the optimal action a, we execute that action a and
call Algorithm 2 to estimate the value V ⋆

h+1(sh(a0:h−1, a)),
which together with the reward rh(sh(a0:h−1), a), gives us
an estimate of V ⋆

h (sh(a0:h−1)). On the other hand, if the
data Dh does not cover x̂h(a0:h−1), which means that we
cannot rely on least square predictions to confidently pick
the optimal action at sh(a0:h−1), we simply try out all pos-
sible actions a ∈ A, each followed by a call to Algorithm 2
to compute the value of Compute-V ⋆(a0:h−1, a). Once we
estimate Q⋆

h(sh(a0:h−1), a), ∀a ∈ A, we can select the op-
timal action. To avoid making too many recursive calls,
we notice that whenever our algorithm encounters the sit-
uation where the current data does not cover the test point
x̂h(a0:h−1) (i.e., a bad event), we add x̂h(a0:h−1) to the
dataset Dh to expand the coverage of Dh.

We first explain Algorithm 1 assuming Algorithm 2 re-
turns the optimal V ⋆

h (sh(a0:h−1)) with small error when
the input is a0:h−1. In line 6, we recursively estimate
Q⋆

h(sh(a0:h−1), a) by running least squares regression. If
at every level the data is exploratory in line 8, then we re-
turn the set of actions in line 9 and terminate the algorithm.
We later prove that this returned sequence of actions is in-
deed the globally optimal sequence of actions. If the data
is not exploratory at some level h, the estimation based on
least squares regression would not be accurate enough, we
query recursive calls for all actions and get an estimation of
Q⋆

h(sh(a0:h−1), a)) for all a ∈ A. Whenever line 11 is trig-
gered, it means that we run into a state sh(a0:h−1) whose

feature x̂h(a0:h−1) is not covered by the training data Dh.
Hence, to keep track of the progress of learning, we add all
new data collected at s(a0:h−1) into the existing data set in
line 14 and line 17.

Next, we explain Algorithm 2 whose goal is to return an
estimate of V ⋆

h (sh(a0:h−1)) with sufficiently small error for
a given sequence a0:h−1. This algorithm is recursively de-
fined. In line 7, we judge whether the data is exploratory
enough so that least square predictions can be accurate.
If it is, we choose the optimal action using estimate of
Q⋆

h(sh(a0:h−1), a) for each a on the data set Da;h, i.e.,
⟨θ̂a;h, x̂h(a0:h−1)⟩ by running least squares regression in
line 8. While the data set has good coverage, the finite sam-
ple error still remains in this estimation step. Thanks to the
gap in Assumption 4, even if there is certain estimation error
in ⟨θ̂a;h, x̂h(a0:h−1)⟩, as long as that is smaller than half
of the gap, the selected action ah in line 8 is correct (i.e.,
ah is the optimal action at latent state sh(a0:h−1)). Then,
after rolling out this ah and calling the recursion at h+ 1 in
line 10, we get a Monte-Carlo estimate of V ⋆

h (sh(a0:h−1))
with sufficiently small error as proved by induction later.

We consider bad events where the data is not exploratory.
In this case, for each action a′ ∈ A, we call the recursion
in line 14. Since this call gives a Monte-Carlo estimate of
V ⋆
h+1(sh+1(a0:h−1, a

′)), we can obtain a Monte-Carlo es-
timator of Q⋆

h(sh(a0:h−1), a) by adding r̂h(sh(a0:h−1), a).
In bad events, we record the pair of {x̂h(a0:h−1), ya;h} for
each a ∈ A in Line 14 and record x̂h(a0:h−1) in line 17.
Whenever these bad events happen, by adding new data to
the datasets, we have explored. In line 18, we return an
estimate of V ⋆

h (sh(a0:h−1)) with small error.

4.2. Analysis
The following theorems are our main results. We can en-
sure our algorithm is both statistically and computationally
efficient. Our work is the first work with such a favorable
guarantee on POMDPs.
Theorem 3 (Sample Complexity). Suppose Assumption 1,
2, 3 and 4 hold. Assume ∥ψ(o)∥ ≤ 1 for any o ∈ O. Define
Θ =W/minh η(Gh) where η(Gh) is the smallest singular
value of Gh. By properly setting λ,M, ε, with probability
1 − δ, the algorithm outputs the optimal actions a⋆0:H−1

after using at most the following number of samples

Õ
(
H5Θ5d2A2(1/∆)5 ln(1/δ)

)
.

Here, we Õ suppresses polylog(H, d, ln(1/δ), 1/∆, A,Θ)
multiplicative factors.

Note Theorem 3 is a PAC result, except there is no “approx-
imately” (the “A” of “PAC”) because we output the true
optimal action sequence with probability 1− δ. I.e., we are
simply probably correct.
Corollary 1 (Computational complexity). Assume basic
arithmetic operations +,−,×,÷, sampling one sample,

5

Computationally Efficient PAC RL in POMDPs with Latent Determinism and Conditional Embeddings

Algorithm 1 Efficient Q-learning for Deterministic
POMDPs (EQDP)

1: Input: parameters M, ε, λ
2: Initialize datasets Da;0, . . . ,Da;H−1 for any a ∈ A and

D0, . . . ,DH−1. Given Da;h and Dh,

θ̂a;h(Da;h) := Σ−1
h (Dh)

∑|Dh|
j=1 x̂h(a

(j)
0:h−1)y

(j)
a;h,

Σh(Dh) :=
∑|Dh|

j=1 x̂h(a
(j)
0:h−1)x̂

⊤
h (a

(j)
0:h−1) + λI

where Da;h = {x̂h(a(j)0:h−1), y
(j)
a;h} and Dh =

{x̂h(a(j)0:h−1)}.
3: while true do
4: for h = 0 → H − 1 do
5: Collect M i.i.d samples from Oh(· | sh(a0:h−1))

by executing {a0:h−1} and construct an estimated
feature x̂h(a0:h−1) = (1/M)

∑
ψ(o(i))

6: Set ah = argmaxa⟨θ̂a;h(Da;h), x̂h(a0:h−1)⟩
7: end for
8: if ∀h : ∥x̂h(a0:h−1)∥Σ−1

h (Dh)
≤ ε then

9: Return {a0, . . . , aH−1}
10: else
11: Find the smallest h such that

∥x̂h(a0:h−1)∥Σ−1
h (Dh)

> ε

12: for ∀a′ ∈ A do
13: Collect M i.i.d samples from Yh(· |

sh(a0:h−1), a
′) by executing {a0:h−1, a

′} and
compute r̂h(sh(a0:h−1), a

′) by taking its mean
14: Compute ya′;h = r̂h(sh(a0:h−1), a

′) +
Compute-V ⋆(h+ 1; {a0:h−1, a

′})
15: Add Da′;h = Da′;h + {x̂h(a0:h−1), ya′;h}
16: end for
17: Add Dh = Dh + {x̂h(a0:h−1)}
18: end if
19: end while

comparison of two values, take unit time. The computa-
tional complexity 1 is poly(H, d,Θ, ln(1/δ), 1/∆, A).

We provide the sketch of the proof. For ease of understand-
ing, suppose the reward is deterministic; thus, r̂h = rh. The
full proof is deferred to Section C. The proof consists of
three steps:

1. Show Compute-V ⋆ always returns V ⋆
h (sh(a0:h−1))

given input a0:h−1 in high probability.

2. Show when the algorithm terminates, it returns the
optimal policy.

3. Show the number of samples we use is upper-bounded
by poly(H, d,Θ, ln(1/δ), 1/∆, A).

1We ignore the bit complexity following the convention. We
focus on arithmetic complexity.

Algorithm 2 Compute-V ⋆

1: Input: time step h, state a0:h−1

2: if h = H − 1 then
3: Collect M i.i.d samples from Yh(· | sh(a0:h−1), a

′)
by executing {a0:h−1, a

′} and compute
r̂h(sh(a0:h−1), a

′) by taking its mean for any
a′ ∈ A

4: Return maxa r̂h(a0:H−2, a)
5: else
6: Collect M i.i.d samples from Oh(· | sh(a0:h−1))

by executing {a0:h−1} and construct an estimated
feature x̂h(a0:h−1) = 1/M

∑
ψ(o(i))

7: if ∥x̂h(a0:h−1)∥Σ−1
h (Dh)

≤ ε then
8: Set ah = argmaxa⟨θ̂a;h(Da;h), x̂(a0:h−1)⟩
9: Collect M i.i.d samples from Yh(· |

sh(a0:h−1), ah) by executing {a0:h−1, ah}
and compute r̂h(sh(a0:h−1), ah) by taking its
mean

10: Return r̂h(sh(a0:h−1), ah) + Compute-V ⋆(h +
1; {a0:h−1, ah})

11: else
12: for a′ ∈ A do
13: Collect M i.i.d samples from Yh(· |

sh(a0:h−1), a
′) by executing {a0:h−1, a

′} and
compute r̂h(sh(a0:h−1), a

′) by taking its mean
14: ya′;h = r̂h(sh(a0:h−1), a

′)+Compute-V ⋆(h+
1; {a0:h−1, a

′})
15: Da′;h := Da′;h + {x̂h(a0:h−1), ya′;h}
16: end for
17: Add Dh := Dh + {x̂h(a0:h−1)}
18: Return maxa ya;h
19: end if
20: end if

Hereafter, we always condition on events ∥x̂h(a0:h−1) −
xh(a0:h−1)∥ is small enough every time when we generate
x̂h(a0:h−1). Before proceeding, we remark in MDPs with
deterministic transitions, a similar strategy is employed (Du
et al., 2020; Wen & Van Roy, 2013). Compared to them, we
need to handle the unique challenge of uncertainty about x̂h.
Recall we cannot use the true xh.

First step. We use induction regarding h ∈ [H]. The
correctness of the base case (h = H − 1) is immedi-
ately verified. Thus, we prove this is true at h assuming
Compute-V ⋆(h+1, a0:h) returns V ⋆

h+1(sh+1(a0:h)) at h+1
for any possible inputs a0:h in the algorithm.

We need to consider two cases. The first case is a good
event when ∥x̂h(a0:h−1)∥Σ−1

h (Dh)
≤ ε. In this case, we

first regress ya;h on x̂h and obtain ⟨θ̂a;h, x̂h(a0:h−1)⟩. As
we mentioned, the challenge is that the estimated feature
x̂h(a0:h−1) is not equal to the true feature xh(a0:h−1). Here,

6

Computationally Efficient PAC RL in POMDPs with Latent Determinism and Conditional Embeddings

we have
|⟨θ̂a;h, x̂h(a0:h−1)⟩ −Q⋆

h(sh(a0:h−1), a)|

= |⟨θ̂a;h, x̂h(a0:h−1)⟩ − ⟨θ⋆a;h, xh(a0:h−1)⟩|

≤ |⟨θ̂a;h, x̂h(a0:h−1)⟩ − ⟨θ⋆a;h, x̂h(a0:h−1)⟩|
+ |θ⋆a;h, x̂h(a0:h−1)⟩ − ⟨θ⋆a;h, xh(a0:h−1)⟩|
≤ poly(1/M, d,Θ, H)∥x̂h(a0:h−1)∥Σ−1

h (Dh)︸ ︷︷ ︸
(a)

+Θ∥x̂h(a0:h−1)− xh(a0:h−1)∥︸ ︷︷ ︸
(b)

.

From the second line to the third line, we use some
non-trivial reformulation as explained in Section C. In
(a), the term ∥x̂h(a0:h−1)∥Σ−1

h (Dh)
is upper-bounded

by ε. By setting ε properly and taking large M , we
can ensure the term (a) is less than ∆/4. Similarly,
by taking large M , we can ensure the term (b) is
upper-bounded by ∆/4. Therefore, we can show
|⟨θ̂a;h, x̂h(a0:h−1)⟩ − Q⋆

h(sh(a0:h−1), a)| < ∆/2 for any
a ∈ A. Since |⟨θ̂a;h, x̂h(a0:h−1)⟩ −Q⋆

h(sh(a0:h−1), a)| <
∆/2 for any a ∈ A, together with the gap assump-
tion, by setting M = poly(H, d,Θ, ln(1/δ), 1/∆, A),
we can ensure argmaxa⟨θ̂a;h, x̂h(a0:h−1)⟩ =
argmaxaQ

⋆
h(sh(a0:h−1), a) in line 8 in Algorithm 2.

Since this selected action ah is optimal (after a0:h−1), by
inductive hypothesis, we ensure to return V ⋆

h (sh(a0:h−1))
recalling Compute-V ⋆(h+ 1; a0:h) = V ⋆

h+1(sh+1(a0:h)).

Next, we consider a bad event when
∥x̂h(a0:h−1)∥Σ−1

h (Dh)
> ε. In this case, we query

the recursion for any a′ ∈ A. By inductive hypothesis, we
can ensure ya′;h = Q⋆

h(sh(a0:h−1), a
′). Hence, in Line 18

in Algorithm 2, maxa ya;h = V ⋆
h (sh(a0:h−1)) is returned.

Second step. When the algorithm terminates, i.e.,
∥x̂h(a0:h−1)∥Σ−1

h (Dh)
< ε for all h, following the first-step,

we can show ah = argmaxa⟨θ̂a;h, x̂h(a0:h−1)⟩ always re-
turns the optimal action a⋆h.

Third step. The total number of bad events
∥x̂h(a0:h−1)∥Σ−1

h (Dh)
> ε (line 10 in Algorithm 1 and

line 11 in Algorithm 2) for any h can be bounded in the
order of O(d/ε2) via a standard elliptical potential argu-
ment. Once no such bad events happen, the termination
criteria in the main algorithm ensures we will terminate.
With some additional argument, we can also show the num-
ber of times we visit Line 10 and line 14 in Algorithm 2 is
upper-bounded by O(H2Ad/ε2). Thus the algorithm must
terminate in polynomial number of calls of Compute-V ⋆.
Each procedure Compute-V ⋆ collects O(M) fresh samples
in line 6. Thus the total sample complexity is bounded by
O(H2MAd/ε2).
Remark 1 (Comparison to Du et al. (2020)). In determinis-
tic MDPs, Du et al. (2020) uses a gap assumption to tackle

agnostic learning, i.e., model misspecification. The reason
we use the gap is different from theirs. We use the gap as-
sumption to handle the noise from estimating features using
future observations. We additionally deal with the unique
challenge arising from uncertainty in features.

Remark 2 (Practical performance of algorithm). We con-
sider experiments using grid-world environments where we
observe noisy observations of the latent state due to imper-
fect sensors in Section G. As mentioned in Section 1, this ex-
periment is motivated by practical scenarios in autonomous
driving. Similar experimental settings are considered in Du
et al. (2019). We demonstrate our proposed method can
return the optimal policy with low sample complexity.

4.3. Examples
We instantiate our results with tabular POMDPs and Gaus-
sian POMDPs.

Example 3 (continues=ex:undercomplete). Let |S| =
S, |O| = O. In the tabular case, we suppose S ≤ O.
Here, d = O. Recall we suppose the reward at any step lies
in [0, 1]. Since Q⋆

h(s, a) belongs to {⟨θa;h, ϕ(s)⟩; ∥θa∥ ≤√
SH} where ϕ(·) is a one-hot encoding vector over S , we

can set Θ =
√
SH/(minh η(Oh)). The sample complexity

is Õ(H10S5/2A2O2 ln(1/δ)/{minh η(Oh)
5∆5}).

Jin et al. (2020a) obtain a similar result in the tabular setting
without a gap condition to get an ε-near optimal policy.
Together with the gap, their algorithm can also output the
exact optimal policy with polynomial sample complexity
like our guarantee. However, it is unclear whether their
algorithm can be extended to HSE-POMDPs where state
space or observation space is continuous.

Example 4 (continues=ex:gaussian). In Gaussian
POMDPs, we assume S ≤ d. Recall we suppose
the reward at any step lies in [0, 1]. Since Q⋆

h(s, a)

belongs to {⟨θa;h, ϕ(s)⟩; ∥θa;h∥ ≤
√
SH} where

ϕ(·) is a one-hot encoding vector over S, we can set
Θ =

√
SH/(minh η(Oh)). The sample complexity is

Õ(H10S5/2A2d2 ln(1/δ)/{minh η(Oh)
5∆5}). Notably,

this result does not depend on |O|.

4.4. Infinite-Dimensional Case
We briefly discuss the case when ϕ and ψ are infinite-
dimensional. The detail is deferred to Section B. We intro-
duce a kernel kS(·, ·) : S ×S → R and kO(·, ·) : O×O →
R and denote the corresponding feature vector ψ : S → R
and ϕ : O → R, respectively. Then, when Q⋆

h(·, a) be-
longs to HS which is an RKHS corresponding to kS , if
there exists a left invertible conditional embedding, we can
ensure Q⋆(·, a) is linear in Eo∼Oh(·)[ψ(o)]. After this obser-
vation, we can use a similar algorithm as Algorithm 1 and
Algorithm 2 by replacing linear regression with kernel ridge
regression using kS(·, ·) and kO(·, ·). Finally, the sample

7

Computationally Efficient PAC RL in POMDPs with Latent Determinism and Conditional Embeddings

complexity is similarly obtained by replacing d with the
maximum information gain over ψ(·) denoted by d̃. The
rate of maximum information gain is known in many ker-
nels such as Matérn kernel or Gaussian kernel (Valko et al.,
2013; Srinivas et al., 2009; Chowdhury & Gopalan, 2017).
In terms of computation, we can still ensure the polynomial
complexity with respect to d̃ noting kernel ridge regression
just requires O(n3) computation when we have n data at
hand (n depends on d̃).

5. Learning with Multi-step Futures
We have so far considered a one-step future that has some
signal of latent states. In this section, we show we can
use multi-step futures that can be useful in settings such as
overcomplete POMDPs. To build intuition, we first focus
on the tabular case.

Tabular overcomplete POMDPs. Consider a distribution
S → ∆(OK): P(oh:h+K−1 | sh; ah:h+K−2) which means
the conditional distribution of oh:h+K−1 given sh when
we execute actions ah:h+K−2. Let P[K]

h (ah:h+K−2) ∈
ROK×S be the corresponding matrix where each entry
is P(oh:h+K−1 | sh; ah:h+K−2). For undercomplete
POMDPs, we have P[1]

h = Oh and P[1]
h being full column

rank. Note there is no dependence of actions when K = 1.

Assumption 5. Given K ∈ N+, there exists an (unknown)
sequence a⋄h:h+K−2 ∈ AK−1 such that P[K]

h (a⋄h:h+K−2) is

full-column rank, i.e., rank(P[K]
h (a⋄h:h+K−2)) = S.

This assumption says a multi-step future after executing
some (unknown) action sequence with length K − 1 has
some signal of latent states. Executing such a sequence of
actions can be considered as performing the procedure of
information gathering (i.e., a robot hand with touch sensors
can always execute the sequential actions of touching an
object from multiple angles to localize the object before
grasping it). This assumption is weaker than rank(P1

h) = S
and extensively used in the literature on PSRs (Boots et al.,
2011; Littman & Sutton, 2001; Singh et al., 2004). This
assumption permits learning in the overcomplete case S >
O. Under Assumption 5, we can show Q⋆

h is still linear in
some estimable feature.

Lemma 1. For an overcomplete tabular POMDP, sup-
pose Assumption 5 holds. Define a mapping z

[K]
h :

S → ROK×AK−1

as z
[K]
h (sh) = {P(oh:h+K−1 |

sh; ah:h+K−2)}. For ∀a ∈ A, there exists θ⋆a;h such that

Q⋆
h(s, a) = ⟨θ⋆a;h, z

[K]
h (s)⟩.

Non-tabular setting. We return to the non-tabular setting.
We define a feature ψ : OK → Rd. We need the following
assumption, which is a generalization of Assumption 5.

Assumption 6. Given K ∈ N+, there exists an (un-
known) sequence a⋄h:h+K−2 ∈ AK−1 and a left-invertible

matrix Gh such that E[ψ(oh:h+K−1) | sh; a⋄h:h+K−2] =
Ghϕ(sh).

Then, we can ensure Q⋆
h(s, a) is linear in some estimable

feature. This is a generalization of Lemma 1.
Lemma 2. Suppose Assumption 6. We define a fea-
ture z[K]

h : S → RdAK−1

where z[K]
h (sh) is defined as

a dAK−1-dimensional vector stacking E[ψ(oh:h+K−1) |
sh; ah:h+K−2] for each ah:h+K−2 ∈ AK−1. Then, for
each a ∈ A, there exists θ⋆a;h ∈ RdAK−1

such that

Q⋆
h(s, a) = ⟨θ⋆a;h, z

[K]
h (s)⟩

The above lemma suggests that Q⋆
h(s, a) is linear in z[K]

h (s)
for each a ∈ A. However, since we cannot exactly know
z
[K]
h (s), we need to estimate this new feature. Compared

to the case with K = 1, we need to execute multiple
(K − 1) actions. Given a sequence a0:h−1, we want to
estimate x[K](a0:h−1) := z

[K]
h (sh(a0:h−1)) since our aim

is to estimate Q⋆
h(sh(a0:h−1), a) for any a ∈ A at time

step h. The feature x[K](a0:h−1) ∈ RdAK−1

is estimated
by taking an empirical approximation of E[ψ(oh:h+K−1) |
sh(a0:h−1); ah:h+K−2] by rolling out every possible ac-
tions of ah:h+K−2 after a0:h−1. We denote this estimate by
x̂
[K]
h (a0:h−1). Therefore, we can run the same algorithm as

Algorithm 1 and Algorithm 2 by just replacing x̂h(a0:h−1)

with x̂
[K]
h (a0:h−1). Compared to the case with K = 1,

when K > 1, we need to pay an additional multiplicative
AK−1 factor to try every possible action with length K − 1.
We have the following guarantee.
Theorem 4 (Sample complexity). Suppose Assumptions
2, 3,4, 6 hold. Assume ∥ψ(o)∥ ≤ 1 for any o ∈ O. Let
Θ = W/minh η(Gh) . By properly setting λ,M and ε,
with probability 1 − δ, the algorithm outputs the optimal
actions a⋆0:H−1 after using the following number of samples

Õ
(
H5Θ5A3K−1d2(1/∆)5 ln(1/δ)

)
.

Comparing to Theorem 3, we would incur additional
O(AK). In the tabular case, noting d = OK , we would
additionally incur O(OK). Computationally, we also need
to pay O(AK). Hence, there is some tradeoff between the
weakness of the assumption and the sample/computational
complexity.

6. Summary
We propose a computationally and statistically efficient al-
gorithm on large-scale POMDPs where transitions are deter-
ministic and emission have conditional mean embeddings.

Acknowledgement
WS acknowledges funding support from NSF IIS-2154711.
NK acknowledge funding support from NSF IIS-1846210.

8

Computationally Efficient PAC RL in POMDPs with Latent Determinism and Conditional Embeddings

References
Agarwal, A., Jiang, N., Kakade, S. M., and Sun, W. Rein-

forcement learning: Theory and algorithms. CS Dept.,
UW Seattle, Seattle, WA, USA, Tech. Rep, 2019.

Auer, P., Cesa-Bianchi, N., and Fischer, P. Finite-time
analysis of the multiarmed bandit problem. Machine
learning, 47(2):235–256, 2002.

Azizzadenesheli, K., Lazaric, A., and Anandkumar, A. Re-
inforcement learning of pomdps using spectral methods.
In Conference on Learning Theory, pp. 193–256. PMLR,
2016.

Besse, C. and Chaib-Draa, B. Quasi-deterministic partially
observable markov decision processes. In International
Conference on Neural Information Processing, pp. 237–
246. Springer, 2009.

Bonet, B. Deterministic pomdps revisited. arXiv preprint
arXiv:1205.2659, 2012.

Boots, B., Siddiqi, S. M., and Gordon, G. J. Closing the
learning-planning loop with predictive state representa-
tions. The International Journal of Robotics Research,
30(7):954–966, 2011.

Boots, B., Gordon, G., and Gretton, A. Hilbert space embed-
dings of predictive state representations. arXiv preprint
arXiv:1309.6819, 2013.

Burago, D., De Rougemont, M., and Slissenko, A. On
the complexity of partially observed markov decision
processes. Theoretical Computer Science, 157(2):161–
183, 1996.

Cai, Q., Yang, Z., and Wang, Z. Sample-efficient reinforce-
ment learning for pomdps with linear function approxi-
mations. arXiv preprint arXiv:2204.09787, 2022.

Chen, F., Bai, Y., and Mei, S. Partially observable rl with
b-stability: Unified structural condition and sharp sample-
efficient algorithms. arXiv preprint arXiv:2209.14990,
2022.

Chowdhury, S. R. and Gopalan, A. On kernelized multi-
armed bandits. In International Conference on Machine
Learning, pp. 844–853. PMLR, 2017.

Chowdhury, S. R. and Oliveira, R. No-regret reinforcement
learning with value function approximation: a kernel
embedding approach. arXiv preprint arXiv:2011.07881,
2020.

Dani, V., Hayes, T. P., and Kakade, S. M. Stochastic linear
optimization under bandit feedback. 2008.

Dann, C., Jiang, N., Krishnamurthy, A., Agarwal, A., Lang-
ford, J., and Schapire, R. E. On oracle-efficient pac rl
with rich observations. Advances in neural information
processing systems, 31, 2018.

Dikkala, N., Lewis, G., Mackey, L., and Syrgkanis, V. Mini-
max estimation of conditional moment models. Advances
in Neural Information Processing Systems, 33:12248–
12262, 2020.

Du, S., Kakade, S., Lee, J., Lovett, S., Mahajan, G., Sun, W.,
and Wang, R. Bilinear classes: A structural framework for
provable generalization in rl. In International Conference
on Machine Learning, pp. 2826–2836. PMLR, 2021.

Du, S. S., Luo, Y., Wang, R., and Zhang, H. Provably
efficient q-learning with function approximation via dis-
tribution shift error checking oracle. Advances in Neural
Information Processing Systems, 32, 2019.

Du, S. S., Lee, J. D., Mahajan, G., and Wang, R. Agnostic
q-learning with function approximation in deterministic
systems: Near-optimal bounds on approximation error
and sample complexity. Advances in Neural Information
Processing Systems, 33:22327–22337, 2020.

Even-Dar, E., Kakade, S. M., and Mansour, Y. Reinforce-
ment learning in pomdps without resets. 2005.

Even-Dar, E., Kakade, S. M., and Mansour, Y. The value of
observation for monitoring dynamic systems. In IJCAI,
pp. 2474–2479, 2007.

Golowich, N., Moitra, A., and Rohatgi, D. Planning in ob-
servable pomdps in quasipolynomial time. arXiv preprint
arXiv:2201.04735, 2022.

Guo, Z. D., Doroudi, S., and Brunskill, E. A pac rl algo-
rithm for episodic pomdps. In Artificial Intelligence and
Statistics, pp. 510–518. PMLR, 2016.

He, J., Zhou, D., and Gu, Q. Logarithmic regret for rein-
forcement learning with linear function approximation.
In International Conference on Machine Learning, pp.
4171–4180. PMLR, 2021.

Hsu, D., Kakade, S. M., and Zhang, T. A spectral algorithm
for learning hidden markov models. Journal of Computer
and System Sciences, 78(5):1460–1480, 2012.

Hu, Y., Kallus, N., and Uehara, M. Fast rates for the re-
gret of offline reinforcement learning. arXiv preprint
arXiv:2102.00479, 2021.

Javdani, S., Srinivasa, S. S., and Bagnell, J. A. Shared
autonomy via hindsight optimization. Robotics science
and systems: online proceedings, 2015, 2015.

9

Computationally Efficient PAC RL in POMDPs with Latent Determinism and Conditional Embeddings

Ji, S., Parr, R., and Carin, L. Nonmyopic multiaspect sens-
ing with partially observable markov decision processes.
IEEE Transactions on Signal Processing, 55(6):2720–
2730, 2007.

Jiang, N., Krishnamurthy, A., Agarwal, A., Langford, J.,
and Schapire, R. E. Contextual decision processes with
low bellman rank are pac-learnable. In International Con-
ference on Machine Learning, pp. 1704–1713. PMLR,
2017.

Jin, C., Kakade, S., Krishnamurthy, A., and Liu, Q.
Sample-efficient reinforcement learning of undercom-
plete pomdps. Advances in Neural Information Process-
ing Systems, 33:18530–18539, 2020a.

Jin, C., Yang, Z., Wang, Z., and Jordan, M. I. Provably
efficient reinforcement learning with linear function ap-
proximation. In Conference on Learning Theory, pp.
2137–2143. PMLR, 2020b.

Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. Plan-
ning and acting in partially observable stochastic domains.
Artificial intelligence, 101(1-2):99–134, 1998.

Kearns, M., Mansour, Y., and Ng, A. Approximate planning
in large pomdps via reusable trajectories. Advances in
Neural Information Processing Systems, 12, 1999.

Krishnamurthy, A., Agarwal, A., and Langford, J. Pac
reinforcement learning with rich observations. Advances
in Neural Information Processing Systems, 29, 2016.

Kwon, J., Efroni, Y., Caramanis, C., and Mannor, S. Rl
for latent mdps: Regret guarantees and a lower bound.
Advances in Neural Information Processing Systems, 34,
2021.

Lale, S., Azizzadenesheli, K., Hassibi, B., and Anandku-
mar, A. Adaptive control and regret minimization in
linear quadratic gaussian (lqg) setting. In 2021 American
Control Conference (ACC), pp. 2517–2522. IEEE, 2021.

Li, G., Chen, Y., Chi, Y., Gu, Y., and Wei, Y. Sample-
efficient reinforcement learning is feasible for linearly
realizable mdps with limited revisiting. Advances in
Neural Information Processing Systems, 34, 2021.

Littman, M. and Sutton, R. S. Predictive representations of
state. Advances in neural information processing systems,
14, 2001.

Littman, M. L. Memoryless policies: Theoretical limita-
tions and practical results. In From Animals to Animats
3: Proceedings of the third international conference on
simulation of adaptive behavior, volume 3, pp. 238. Cam-
bridge, MA, 1994.

Littman, M. L. Algorithms for sequential decision-making.
Brown University, 1996.

Liu, B., Hsu, D., Ravikumar, P., and Risteski, A. Masked
prediction tasks: a parameter identifiability view. arXiv
preprint arXiv:2202.09305, 2022a.

Liu, Q., Chung, A., Szepesvári, C., and Jin, C. When is
partially observable reinforcement learning not scary?
arXiv preprint arXiv:2204.08967, 2022b.

Lykouris, T., Simchowitz, M., Slivkins, A., and Sun, W.
Corruption-robust exploration in episodic reinforcement
learning. In Conference on Learning Theory, pp. 3242–
3245. PMLR, 2021.

Papadimitriou, C. H. and Tsitsiklis, J. N. The complexity of
markov decision processes. Mathematics of operations
research, 12(3):441–450, 1987.

Pattipati, K. R. and Alexandridis, M. G. Application of
heuristic search and information theory to sequential fault
diagnosis. IEEE Transactions on Systems, Man, and
Cybernetics, 20(4):872–887, 1990.

Platt, R., Kaelbling, L., Lozano-Perez, T., and Tedrake, R.
Efficient planning in non-gaussian belief spaces and its
application to robot grasping. In Robotics Research, pp.
253–269. Springer, 2017.

Platt Jr, R., Tedrake, R., Kaelbling, L., and Lozano-Perez,
T. Belief space planning assuming maximum likelihood
observations. 2010.

Simchowitz, M. and Jamieson, K. G. Non-asymptotic gap-
dependent regret bounds for tabular mdps. Advances in
Neural Information Processing Systems, 32, 2019.

Simchowitz, M., Singh, K., and Hazan, E. Improper learning
for non-stochastic control. In Conference on Learning
Theory, pp. 3320–3436. PMLR, 2020.

Singh, S., James, M. R., and Rudary, M. R. Predictive
state representations: a new theory for modeling dynam-
ical systems. In Proceedings of the 20th conference on
Uncertainty in artificial intelligence, pp. 512–519, 2004.

Song, L., Boots, B., Siddiqi, S., Gordon, G. J., and Smola,
A. Hilbert space embeddings of hidden markov models.
2010.

Song, L., Fukumizu, K., and Gretton, A. Kernel embeddings
of conditional distributions: A unified kernel framework
for nonparametric inference in graphical models. IEEE
Signal Processing Magazine, 30(4):98–111, 2013.

Srinivas, N., Krause, A., Kakade, S. M., and Seeger,
M. Gaussian process optimization in the bandit set-
ting: No regret and experimental design. arXiv preprint
arXiv:0912.3995, 2009.

10

Computationally Efficient PAC RL in POMDPs with Latent Determinism and Conditional Embeddings

Uehara, M., Sekhari, A., Lee, J. D., Kallus, N., and Sun,
W. Provably efficient reinforcement learning in par-
tially observable dynamical systems. arXiv preprint
arXiv:2206.12020, 2022.

Valko, M., Korda, N., Munos, R., Flaounas, I., and Cris-
tianini, N. Finite-time analysis of kernelised contextual
bandits. arXiv preprint arXiv:1309.6869, 2013.

Wang, Y., Wang, R., and Kakade, S. An exponential lower
bound for linearly realizable mdp with constant subopti-
mality gap. Advances in Neural Information Processing
Systems, 34, 2021.

Weisz, G., Szepesvári, C., and György, A. Tensorplan and
the few actions lower bound for planning in mdps under
linear realizability of optimal value functions. arXiv
preprint arXiv:2110.02195, 2021.

Wen, Z. and Van Roy, B. Efficient exploration and value
function generalization in deterministic systems. Ad-
vances in Neural Information Processing Systems, 26,
2013.

Wu, J., Braverman, V., and Yang, L. Gap-dependent un-
supervised exploration for reinforcement learning. In
International Conference on Artificial Intelligence and
Statistics, pp. 4109–4131. PMLR, 2022.

Xiong, Y., Chen, N., Gao, X., and Zhou, X. Sublinear regret
for learning pomdps. arXiv preprint arXiv:2107.03635,
2021.

Zhan, W., Uehara, M., Sun, W., and Lee, J. D. Pac reinforce-
ment learning for predictive state representations. arXiv
preprint arXiv:2207.05738, 2022.

Zhong, H., Xiong, W., Zheng, S., Wang, L., Wang, Z.,
Yang, Z., and Zhang, T. A posterior sampling frame-
work for interactive decision making. arXiv preprint
arXiv:2211.01962, 2022.

11

Computationally Efficient PAC RL in POMDPs with Latent Determinism and Conditional Embeddings

A. Proof of Lower bounds
A.1. Proof of Theorem 1

The proof of Theorem 1 is based on the lower bounds in (Weisz et al., 2021), and consists of an underlying deterministic
dynamics (on the state space) with stochastic rewards. We recall the following result from (Weisz et al., 2021):

Theorem 5 (Theorem 1.1 (Weisz et al., 2021) rephrased, Lower bound for the MDP setting). Suppose the learner has
access to the features φ : S ×A → Rd such that maxs{∥ψ(s)∥ ≤ 1}. Furthermore, let W,d,H be large enough constants
There exists a class M of MDPs with deterministic transitions, stochastic rewards, action space A with |A| = d1/4 ∧H1/2,
and linearly realizable Q∗ w.r.t. feature φ (i.e. Q∗(s, a) = (w∗)⊤ϕ(s, a) with ∥w∗∥ ≤W), such that any online planner
that even has the ability to query a simulator at any state and action of its choice, must query at least Ω

(
2Ω(d1/4∧H1/2)

)
many samples (in expectation) to find an 1/10-optimal policy for some MDP in this class.

Since learning is harder than planning, the lower bound also extends to the online learning setting.

An important thing to note about the above construction is that the suboptimality-gap is exponentially small in d, i.e.
∆ = O(A−d). The above lower bound can be immediately extended to the POMDP setting. The key idea is to encode the
stochastic rewards as ”stochastic observations” while still preserving the linear structure. However, one needs to be careful
of the fact that in our setting the features only depend on the states whereas in the above lower bound, the features depend
on both state and actions. This can be easily fixed for finite action setting as shown in the following.

Proof. The proof follows by lifting the class of MDPs M in Theorem 5 to POMDPs. Consider any MDP M =
(S,A,T, H, d′, s0, φ) ∈ M. Note that the construction of M guarantees that for M ∈ M,

(a) There exists a w∗ with ∥w∗∥ ≤W such that for any s, Q∗(s, a) = (w∗)⊤φ(s, a).

(b) There exists a stochastic reward function Y(s, a) for any (s, a).

(c) |A| = d′1/4 ∧H1/2.

In the following, for each MDP M ∈ M, we define a corresponding POMDP PM . The underlying dynamics of the state
space remains the same. The feature vector for any s ∈ S is defined as

ϕ(s) = ((φ(s, a), r(s, a))a∈A).

where the dimensionality of ϕ is given by d = (d′ + 1)|A| = (d′ + 1)(d′1/4 ∧H1/2) ≤ 2(d′5/4 ∧ d′H1/2). Furthermore,
we define w∗

a = ((w∗ 1I{a′ = a}, 0)a′∈A) ∈ Rd and note that

Q∗(s, a) = w⊤φ(s, a) = ⟨((w 1I{a′ = a}, 0)a′∈A), ((φ(s, a), r(s, a))a∈A)⟩
= w⊤

a ϕ(s), (1)

and thus the above feature maps satisfies the linear Q∗ property w.r.t. the features ϕ. By Theorem 5, ∥wa∥ ≤ W
(Assumption 3 satisfied).

We next define the emission distribution O and the feature maps ψ : O → Rd. At any state s, we have stochastic observations
o of the form

ψ(o) = ((φ(s, a),Y(s, a))a∈A),

Since the rewards are stochastic, the observations above are also stochastic and clearly the emission distribution O is
partitioned into |S| many components since each o ∈ O is associated with only one state s ∈ S. Furthermore, the above
definition satisfies the relation s

Eo∼O(·|s)[ψ(o)] = ϕ(s). (2)

Clearly, the above shows that Assumption 1 holds. Finally, Assumption 2 is satisfied by the construction in Theorem 5.
Thus, the POMDP PM constructed above satisfies Assumption 1, 2 and 3. We can similarly lift every MDP M ∈ M to

12

Computationally Efficient PAC RL in POMDPs with Latent Determinism and Conditional Embeddings

construct the POMDP class P = (PM)M∈M. Clearly, the observations in the POMDP (and the corresponding feature
vectors) do not reveal any new information to the learner that can not be accessed by making A many calls in the underlying
MDP at the same state (which due to deterministic state space dynamics can be simulated by taking all the other actions
same till the last step, and then trying all other actions at the last step). Thus, from the query complexity lower bound in
Theorem 5, we immediately get that there must exist some POMDP in the class P for which we need to collect

Ω
(1

|A|
2Ω(d′1/4∧H1/2)

)
many samples (in expectation) in order to find an 1/10-optimal policy, where the Ω(·) notation hides polynomial dependence
on W,d and H . Plugging in the relation d = d′5/4 ∧H1/2 in the above, we get the lower bound

Ω
(1

d1/5 ∧H1/2
2Ω(d

1/5∧H1/2)
)
.

A.2. Proof of Theorem 2

The proof of Theorem 2 is based on the lower bounds in (Wang et al., 2021), and consists of an underlying MDP with
stochastic transitions (on the state space) and deterministic rewards. We recall the following result from (Wang et al., 2021).

Theorem 6 (Theorem 1 (Wang et al., 2021) rephrased, Lower bound for the MDP setting). Fix any ∆ > 0, and consider
any online RL algorithm ALG that takes the state feature mapping φ : S → Rd and action feature mapping χ : A → Rd

as input. There exists a pair of state and action feature mappings (φ, χ) with maxs,a {∥φ(s), χ(a)∥} ≤ 1, and an MDP
(S,A,T, H, r) such that:

(a) (Linear Q∗ property) There exists an M ∈ Rd×d such that Q∗(s, a) = φ(s)TMχ(a) for any (s, a). Furthermore,
∥M∥ ≤ B for some universal constant B.

(b) (Suboptimality gap) There exists a ∆ > 0 such that minh∈[H],s,a {gaph(s, a) | gaph(s, a) > 0} = ∆ where gaph(s, a)
is defined as V ∗

h (s)−Q∗
h(s, a).

(c) The state space dynamics T is not deterministic.

Furthermore, ALG requires at least Ω
(
2Ω(min{d,H})) samples to find an 1/20-suboptimal policy for this MDP with

probability at least 1/10.

Proof. The proof is almost identical to the proof of Theorem 1 in (Wang et al., 2021). However, there is a subtle difference
in the feature mapping considered. (Wang et al., 2021) consider feature mappings that take both s and a as inputs, however
for our result we need separate state features and actions features. A closer analysis of (Wang et al., 2021) reveals that one
can in-fact replicate their lower bounds with separate state features and action features. In particular, note that the result in
(Wang et al., 2021) follows by associating a vector vs ∈ Rd′

with each state s and a vector ua ∈ Rd′
with each action a such

that:

Q∗(s, a) = (⟨vs, ua⟩+ 2α)⟨vs, va∗⟩,

where α is a universal constant and a∗ is a fixed special action. Clearly, we can define the feature φ(s) = vec([1, vs] ⊗
[1, vs]) ∈ Rd, the feature χ(a) = vec([1, va]⊗ [1, va]) ∈ Rd and the matrix M ∈ Rd×d with d = 2d′ + 2 such that

Q∗(s, a) = φ(s)⊤Mχ(a).

The minimum suboptimality-gap assumption and the lower bound now follow immediately from their result. We refer the
reader to (Wang et al., 2021) for complete details of the construction.

Note that the above construction has stochastic state space dynamics. The above lower bound can be immediately extended
to our POMDP settings as shown below.

13

Computationally Efficient PAC RL in POMDPs with Latent Determinism and Conditional Embeddings

Proof. The POMDP that we construct is essentially the MDP given in Theorem 6. We define the features ϕ(s) = φ(s)
(where φ are the features defined in Theorem 6)

We set the observations to exactly contain the underlying state, i.e. O = S and O[o, s] = 1I(s = o). Further, for any o, we
define the features ψ(o) = ϕ(s) where s is the corresponding state for o. Clearly, Assumption 1 is satisfied.

We next note that Q∗(s, a) = ϕ(s)⊤Mχ(a) = w⊤
a ϕ(s), where wa = Mχ(a) and satisfies ∥wa∥ ≤ ∥M∥∥χ(a)∥ ≤ B.

Thus, Assumption 3 is satisfied. Finally, Assumption 4 is satisfied by the statement of Theorem 6. Finally, note that learning
in this POMDP is exactly equivalent to learning in the corresponding MDP and thus the lower bound extends naturally.

B. Learning in Infinite Dimensional HSE-POMDPs
We consider the extension to infinite-dimensional RKHS. We introduce several definitions, provide an algorithm and show
the guarantee. To simplify the notation, we assume Oh = O for any h ∈ [H].

Let kS(·, ·) be a (positive-definite) kernel over a state space. We denote the corresponding RKHS and feature vector as
HS and ϕ(·), respectively. We list several key properties in RKHS (?)Chapter 12]wainwright2019high. First, for any
f ∈ F , there exists {ai} such that f =

∑
i aiϕi and the following holds Es∼uS(s)[ϕi(s)ϕi(s)] = I(i = j)µi where

uS(s) is some distribution over S. Besides, we have k(·, ·) =
∑

i ϕi(·)ϕi(·) and the inner product of f, g in HS satisfies
⟨f, g⟩HS = ⟨

∑
i aiϕi,

∑
i biϕi⟩HS =

∑
i aibi. Similarly, let kO(·, ·) be a (positive-definite) kernel over the observation

space with feature ψ(o) such that Eo∼uO(o)[ψi(o)ψj(o)] = I(i = j)νi where uO(·) is some distribution over O.

Then, the new kernel Eo∼z(s),o′∼z(s′)[kO(o, o
′)] over S×S is induced. We denote this kernel by k̄(·, ·) and the corresponding

RKHS by HS̄ .

Now, we introduce the following assumption which corresponds to Assumption 1.
Assumption 7 (Existence of linear mean embedding and its well-posedness). Suppose HS̄ = HS and

sup
∥p∥≤1

p⊤Eu∼uS(s)[ϕ(s)ϕ(s)
⊤]p

p⊤Eu∼uS(s)[Eo∼O[ψ(o) | s]Eo∼O[ψ(o) | s]⊤]p
< ι2. (3)

The first assumption states that for any a⊤ϕ(s) in HS , there exists b⊤Es∼O[ψ(o)] and the vice versa holds. This is a common
assumption to ensure the existence of linear mean embedding operators (Song et al., 2010; Chowdhury & Oliveira, 2020).
Equation 3 is a technical condition to impose constraints on the norms. For example, when ψ and ϕ are finite-dimensional,
we can obtain this condition by setting ι = 1/(minh η(Kh)). We remark a similar assumption is often imposed in the
literature on instrumental variables (Dikkala et al., 2020). Under the above assumption, we can obtain the following lemma.
Lemma 3. Given a⊤ϕ(s) ∈ HS s.t. ∥a∥ ≤ 1, there exists b s.t. a⊤ϕ(s) = b⊤Eo∼O(s)[ψ(o)] and ∥b∥ ≤ c.

When linear Q⋆-assumption holds as Q⋆
h(·, a) ∈ HS(∀a ∈ A), since Q⋆

h(·, a) ∈ HS̄(∀a ∈ A) from the assumption, we can
run a kernel regression corresponding to k̄(·, ·) to estimate Q⋆

h(·, a). The challenge here is we cannot directly use k̄(·, ·) in
HS̄ . We can only obtain an estimate of k̄(·, ·). More concretely, given a0:h−1, an estimate of k̄(sh(a0:h−1), sh(a0:h−1)) is
given by

k̂
(
Z(a0:h−1), Z(a

′
0:h−1)

)
= 1/M2

∑
zi∈Z(a0:h−1),z′

j∈Z(a′
0:h−1)

kO(zi, z
′
j)

where Z(a0:h−1) is a set of i.i.dM samples following O(· | sh(a0:h−1)) and Z(a′0:h−1) is a set of i.i.dM samples following
O(· | sh(a′0:h−1)).

B.1. Algorithm

With slight modification, we can use the same algorithm as Algorithm 3 and Algorithm 4. The only modification is changing
the forms of µa;h and σ2

h using (nonparametric) kernel regression. Here, we define

µa;h(Z(a0:h−1),Da;h) = k̂(Z(a0:h−1),Da;h)
⊤(K̂(Dh) + λI)−1Y(Da;h),

σ2
h({a0:h−1},Dh) = k̂(Z(a0:h−1), Z(a0:h−1))− ∥k̂(Z(a0:h−1),Dh)∥2(K̂(Dh)+λI)−1 .

14

Computationally Efficient PAC RL in POMDPs with Latent Determinism and Conditional Embeddings

Algorithm 3 Deterministic POMDP

1: Initialize datasets Da;0, . . . ,Da;H−1 for any a ∈ A and D0, . . . ,DH−1

2: while true do
3: for h = 0 → H − 1 do
4: Collect M i.i.d samples Z({a0:h−1}) ∼ Oh(· | sh(a0:h−1)) by executing {a0:h−1}
5: Set ah = argmaxa µa;h(Z(a0:h−1),Da;h)
6: end for
7: if ∀h : σh(Z(a0:h−1),Dh) ≤ ε then
8: Return {a0, . . . , aH−1}
9: else

10: Find the smallest h such that σh(Z(a0:h−1),Dh) > ε,
11: for ∀a′ ∈ A do
12: Collect M ′ i.i.d samples from Yh(· | sh(a0:h−1), a

′) by executing {a0:h−1, a
′} and compute r̂h(sh(a0:h−1), a

′)
by taking its mean

13: Compute ya′;h = r̂h(sh(a0:h−1), a
′) + Compute-V ⋆(h+ 1; {a0:h−1, a

′})
14: Add Da′;h = Da′;h + {Z(a0:h−1), ya′;h}
15: end for
16: Add Dh = Dh + {Z(a0:h−1)}
17: end if
18: end while

where

k̂(Z(x),Dh) = {k̂(Z(x), Z(xi))}|Dh|
i=1 , K̂(Dh) = {k̂

(
Z(xi), Z(xj)

)
}|Dh|,|Dh|
i=1,j=1 , Y(Da;h) = {yia}

|Da;h|
i=1 .

Note when features are finite-dimensional, they are reduced to Algorithm 1 and Algorithm 2.

B.2. Analysis

Let γ(N ; kO) be a maximum information gain corresponding to a kernel kO(·, ·) defined by maxC⊂O:|C|=N ln(det(I +
KC)) where KC is a kernel matrix whose (i, j)-th entry is kO(xi, xj) when C = {xi}. This corresponds to d in the
finite-dimensional setting. Maximum information gain can be computed in many kernel such as Gaussian kernels or Matérn
kernels (Srinivas et al., 2009; Valko et al., 2013).

Theorem 7. Suppose for any a ∈ A, h ∈ [H], Q⋆
h(·, a) ∈ HS such that ∥Q⋆

h(·, a)∥HS ≤ W , Assumption 2, 3, 4 and 7.
Then, when γ(N ; kO) = ΓNα(0 < α < 1) and kO(·, ·) ≤ 1, with probability 1 − δ, the algorithm outputs the optimal
sequence of actions a⋆0:H−1 using at most the following number of samples:

poly(W, ι, log(1/δ), H,Γ, 1/∆, A).

The computational complexity is poly(W, ι, log(1/δ), H,Γ, 1/∆, A) as well.

C. Proof of Section 4
The proof consists of three steps. We flip the order of the first and third step comparing to the main body to formalize the
proof. To make the proof clear, we write the number of samples we use to construct r̂h by M ′. In the end, we set M =M ′.
Besides, we set λ = 1. In the proof, c1, c2, · · · are universal constants.

C.1. First Step

We start with the following lemma to show the algorithm terminates and the sample complexity is poly(M,M ′, H, d, 1/ε).
We will later set appropriate M,M ′, ε.

Lemma 4 (Sample complexity). Algorithm 1 terminates after using O((M +M ′)H3Ad/ε2 ln(1/ε)) samples.

Proof. The proof consists of two steps.

15

Computationally Efficient PAC RL in POMDPs with Latent Determinism and Conditional Embeddings

Algorithm 4 Compute-V ⋆

1: Input: time step h, state a0:h−1

2: if h = H − 1 then
3: Collect M ′ i.i.d samples from Yh(· | sh(a0:h−1), a

′) by executing {a0:h−1, a
′} and compute r̂h(sh(a0:h−1), a

′) by
taking its mean for any a′ ∈ A

4: Return maxa r̂h(a0:H−2, a)
5: else
6: Collect M i.i.d samples Z({a0:h−1}) ∼ Oh(· | sh(a0:h−1)) by executing {a0:h−1}
7: if σh(Z(a0:h−1),Dh) ≤ ε then
8: Set ah = argmaxa µa;h(Z(a0:h−1),Da;h)
9: Collect M ′ i.i.d samples from Yh(· | sh(a0:h−1), ah) by executing {a0:h} and compute r̂h(sh(a0:h−1), ah) by

taking its mean
10: Return r̂h(sh(a0:h−1), ah) + Compute-V ⋆(h+ 1; {a0:h−1, ah})
11: else
12: for a′ ∈ A do
13: Collect M ′ i.i.d samples from Yh(· | sh(a0:h−1), a

′) by executing {a0:h−1, a
′} and compute r̂h(sh(a0:h−1), a

′)
by taking its mean

14: ya′;h = r̂h(sh(a0:h−1), a
′) + Compute-V ⋆(h+ 1; {a0:h−1, a

′})
15: Da′;h := Da′;h + {Z(a0:h−1), ya′;h}
16: end for
17: Add Dh = Dh + {Z(a0:h−1)}
18: Return maxa ya;h
19: end if
20: end if

The number of times we call Line 11 in Algorithm 1 (Imax) is upper-bounded by O(Hd/ε2 ln(dHA/ε)) At horizon
h, when the new data x̂h(a0:h−1) is added, we always have ∥x̂h(a0:h−1)∥Σ−1

h
> ε (Line 11 in Algorithm 1 or Line 11 in

Algorithm 2). Let the total number of times we call Line 11 in Algorithm 1 and Line 11 in Algorithm 2 be N ′. Then, we
have

N ′∑
i=1

∥x̂(i)h ∥Σ−1
h

≤
√
dN ′ ln(1 +N ′/d). (4)

Thus, the following holds

εN ′ ≤ c4
√
dN ′ ln(1 +N ′/d).

This implies N ′ is upper-bounded by

O(d/ε2 ln(1/ε)).

Thus, the number of we call Line 11 in Algorithm 1 is upper-bounded by O(d/ε2 ln(1/ε)) for any layer h. Considering the
whole layer, Imax is upper-bounded by O(Hd/ε2 ln(1/ε)).

Calculation of total sample complexity When we call Line 11 in Algorithm 1, we consider the running time from Line
11 to 11. Let m− 1 be the number of times we already visit Line 11 in Algorithm 1. Recall the maximum of m is at most
O(Hd/ε2 ln(1/ε)).

Hereafter, we consider the case at iteration m. When we visit Line 14 in Algorithm 1, we need to start the recursion step in
Algorithm 2. This recursion is repeated in a DFS manner from h to H − 1 as in Figure ??. When the algorithm moves from
some layer to another layer, the algorithm calls Line 10 or Line 11, i.e., Line 14 |A| times in Algorithm 2. Let the number of
total times the algorithm calls Line 10 in Algorithm 2 (g in Figure ??) be αm. Let the number of times the algorithm visits
Line 14 in Algorithm 2 and Line 14 in Algorithm 1 (ba in Figure ??) be βm, respectively.

16

Computationally Efficient PAC RL in POMDPs with Latent Determinism and Conditional Embeddings

Figure 1. The root node corresponds to Line 14 in Algorithm 1. We denote Line 10 in Algorithm 2 by g. We denote line 14 in Algorithm 2
and Line 14 in Algorithm 1 corresponding to a ∈ A by ba. In the illustration, we set A = 3. The example of paths the algorithm traverse
is marked in orange. This corresponds to a graph Ω̃m. The number αm is the total number of times the algorithm visits g at iteration m.
The number βm is the total number of times the algorithm visits {ba} at iteration m.

Then, the total sample complexity is upper-bounded by

HMImax︸ ︷︷ ︸
(a)

+

Imax∑
m=1

(M +M ′(A+ 1))Hαm + (M/A+M ′(A+ 1))Hβm}︸ ︷︷ ︸
(b)

.

The term (a) comes from samples we use line 4 to line 7 in Algorithm 1. Note H is the number of samples we need to reset,
M is the number of samples in x̂h(a0:h−1) and N ′ upper-bounds the number of iterations in the main loop. Next, we see
the term (b). Here, M ′ is the number of samples in r̂h. More specifically, we need MH samples in line 6 in Algorithm 2,
which we traverse in both good and bad events (per bad event, we just use MH/A samples). Additionally, we need M ′H
samples in line 10 in Algorithm 2 in good events and M ′H samples in line 14 in Algorithm 2 in bad events. When we call
H − 1, we use additionally use AM ′H samples. For each visit, we use at most (A+ 1)M ′H samples in line 3.

Next, we show αm ≤ Hβm. First, we denote sets of all g and ba nodes the algorithm traverse at iteration m in the tree by
Gm and Bm, respectively. We denote a subgraph on the tree consisting of nodes and edges which the algorithm traverses by
Ω̃m. We denote a subgraph in Ω̃m consisting of nodes Gm and edges whose both sides belong to Gm by G̃m. We divide G̃m

into connected components on Ω̃m. Here, each component has at most H nodes. The most upstream node in a component is
adjacent to some node in Bm on Ω̃m. Besides, this node in Bm is not shared by other connected components in G̃m. This
ensures that αm ≤ Hβm.

Finally, we use
∑

m βm ≤ O(HAd/ε2 ln(1/ε)) as we see the number of times we call Line 11 in Algorithm 1 and Line 11

17

Computationally Efficient PAC RL in POMDPs with Latent Determinism and Conditional Embeddings

in Algorithm 2 at h ∈ [H] is upper-bounded by O(d/ε2 ln(1/ε)) and we multiply it by HA. Thus,

HMImax +

Imax∑
m=1

(M +M ′(A+ 1))Hαm + (M/A+M ′(A+ 1))Hβm}

= O((M +M ′)H3A2d/ε2 ln(1/ε)).

In this lemma, as a corollary, the following statement holds:

• The number of times we visit line 6 in Algorithm 2 is upper-bounded by
∑

m(βm/A+ αm).

• The number of times we visit line 3, line 9 and line 13 in Algorithm 2 is upper-bounded by
∑

m(βm + αm)(A+ 1).

Here, we have

Imax∑
m=1

βm = O(HAd/ε2 ln(1/ε)),

Imax∑
m=1

αm = O(H2Ad/ε2 ln(1/ε)).

C.2. Second Step

We prove some lemma which implies that Algorithm 2 always returns a good estimate of V ⋆
h (sh(a0:h−1)) in the algorithm

in high probability. Before providing the statement, we explain several events we need to condition on.

C.2.1. PREPARATION

We first note for in the data Da;h, a value ya:h corresponding to x̂h(a0:h−1) is always in the form of

ya:h = E[
H∑

k=h

rk | sh(a1:h−1); ah = a, ah+1:H−1 = a′h+1:H−1] +
H∑

k=h

νk, νk = 1/M ′
M ′∑
i=1

τ
[i]
k

for some (random) action sequence a′h:H−1. Note this is not a high probability statement. Here, τa;h is an i.i.d noise in
rewards which come from line 3 in Algorithm 2 (when h = H − 1), line 9 in Algorithm 2 (good events in when h < H − 1),
and in line 13 in Algorithm 2 (bad events in when h < H − 1). We denote the whole noise part in ya:h by

za;h =

H∑
k=h

νk.

C.2.2. EVENTS WE NEED TO CONDITION ON

In the lemma, we need to condition on two types of events.

First event Firstly, we condition on the event

∀a ∈ A; |⟨θ⋆a;h, xh(a0:h−1)− x̂h(a0:h−1)⟩| ≤ min

(
∆

6
,

∆

12
√
N ′ε

)
(5)

every time we visit line 6 in Algorithm 2 and line 5 in Algorithm 1. The concentration is obtained noting θ⊤a;h{x̂h(a0:h−1)−
xh(a0:h−1)} is a Θ2/M sub-Gaussian random variable with mean zero conditional on xh(a0:h−1). Formally, by properly
setting M , we use the following lemma (simple application of Hoeffeding’s inequality).

Lemma 5 (Concentration of feature estimators). With probability 1− δ′,

∀a; |⟨θ⋆a;h, xh(a0:h−1)− x̂h(a0:h−1)⟩| ≤ Θ
√
ln(A/δ′)/M.

18

Computationally Efficient PAC RL in POMDPs with Latent Determinism and Conditional Embeddings

We later choose M so that (5) holds. Note the number of visitation is

ImaxH +
∑
m

(αm + βm/A) = O(H2Ad/ε2 ln(1/ε)).

We take the union bound later.

Second event We condition on the event

|νk| ≤ min

{
∆/(6H),

∆

12
√
N ′ε

}
(6)

every time we visit line 3 in Algorithm 2 (when h = H − 1), line 13 in Algorithm 2 (good events in h ≤ H − 1), and
line 17 in Algorithm 2 (bad events in h ≤ H − 1). By properly setting M ′, the concentration is obtained noting νk is a
1/M2-sub-Gaussian variable as follows. This is derived as a simple application of Hoeffeding’s inequality.

Lemma 6 (Concentration of reward estimators). With probability 1− δ′,

|νk| ≤ 2
√
ln(1/δ′)/M ′.

Later, we choose M ′ so that (6) is satisfied. Note the number of times we visit is

Imax∑
m=1

(αm + βm)(A+ 1) = O((M +M ′)H2A2d/ϵ2 ln(1/ϵ)).

We take the union bound later.

Accuracy of Compute-V ⋆ When the above events hold, we can ensure Algorithm 2 always returns V ⋆
h (sh(a0:h−1)) with

some small deviation error.

Lemma 7 (The accuracy of Compute-V ⋆). We set ε such that ε = ∆/(6Θ). Let a⋆h:H(a0:h−1) ∈ AH−h be the optimal
action sequence from h to H − 1 after a0:h−1. We condition on the events we have mentioned above. Then, in the algorithm,
we always have

Compute-V ⋆(h; a0:h−1) = V ⋆
h (sh(a0:h−1)) +

H−1∑
k=h

νk.

Proof. We prove by induction. We want to prove this statement for any query we have in the algorithm. Suppose we already
visit Line 11 in Algorithm 1 m− 1 times. In other words, we are now at the episode at m. Thus, we use induction in the
sense that assuming the statement holds in all queries in the previous episodes before m and all queries from level h+ 1 to
level H − 1 in episode m, we want to prove the statement holds for all queries at level h in episode m.

We first start with the base case level H − 1 at episode m. When h = H − 1, our procedure sim-
ply returns maxa r̂H−1(sH−1(a0:H−2), a). From the gap assumption, we have maxa r̂H−1(sH−1(a0:H−2), a) =
maxa∈A rH−1(sH−1(a0:H−2), a) noting we condition on the event the difference is upper-bounded by ∆/(6H) from
(6). Thus, V ⋆

H−1(sH−1(a0:H−2)) + νH−1 by definition.

Now assume that the conclusion holds for all queries at level h+ 1 in episode m and all queries in the previous episodes
before episode m. We prove the statement also holds for all queries at level h in episode m when h < H − 1.

We divide into two cases.

Case 1: ∥x̂h(a0:h−1)∥Σ−1
h

> ε The first case is ∥x̂h(a0:h−1)∥Σ−1
h

> ε. In this case, we aim to calculate
Q⋆

h(sh(a0:h−1), a
′) for all a′ ∈ A by calling Compute-V ⋆ at layer h + 1 with input {a0:h−1, a

′}. Note that by inductive
hypothesis, we have

Compute-V ⋆(h+ 1; {a0:h−1, a
′}) = V ⋆

h+1(sh(a0:h−1, a
′)) +

H−1∑
k=h+1

νk.

19

Computationally Efficient PAC RL in POMDPs with Latent Determinism and Conditional Embeddings

Hence, from the definition of ya′;h,

ya′;h = r̂h(sh(a0:h−1, a
′) + V ⋆

h+1(sh(a0:h−1, a
′)) +

H−1∑
k=h+1

νk

= Q⋆
h(sh(a0:h−1), a

′) +

H−1∑
k=h

νk.

Thus, noting we condition on the event νk are upper-bounded by ∆/(6H) in the algorithm, we have

|ya′;h −Q⋆
h(sh(a0:h−1), a

′)| ≤ (H − h)∆/(6H).

From the gap assumption (Assumption 4), thus argmaxa′ ya′;h = argmaxa′ Q⋆
h(sh(a0:h−1), a

′) = a⋆h(a0:h−1). Thus, after
choosing the optimal action we return

V ⋆
h (sh(a0:h−1)) +

H−1∑
k=h

νk.

This implies that the conclusion holds for queries at level h in the first case.

Case 2: ∥x̂h(a0:h−1)∥Σ−1
h

≤ ε The second case is ∥x̂h(a0:h−1)∥Σ−1
h

≤ ε. We first note from the inductive hypothesis, in
the data Da;h, for any x̂h(a0:h−1), the corresponding ya;h is

ya;h = Q⋆
h(sh(a0:h−1), a) +

H∑
k=h

νk

Recall that Q⋆
h(sh(a0:h−1), a) = (θ⋆a;h)

⊤xh(a0:h−1). Then, for any a ∈ A,

θ̂a;h = Σ−1
h

|Da;h|∑
i=1

x̂
(i)
h (a0:h−1){⟨x(i)h (a0:h−1), θ

⋆
a;h⟩+ z

(i)
a;h}

= Σ−1
h

|Da;h|∑
i=1

x̂h(a0:h−1){⟨x(i)h (a0:h−1)− x̂
(i)
h (a0:h−1), θ

⋆
a;h⟩+ ⟨x̂(i)h (a0:h−1), θ

⋆
a;h⟩+ z

(i)
a;h}

= θ⋆a;h − λΣ−1
h θ⋆a;h +Σ−1

h

|Da;h|∑
i=1

x̂
(i)
h (a0:h−1){⟨x(i)h (a0:h−1)− x̂

(i)
h (a0:h−1), θ

⋆
a;h⟩+ z

(i)
a;h}

= θ⋆a;h − λΣ−1
h θ⋆a;h +Σ−1

h

|Da;h|∑
i=1

x̂
(i)
h (a0:h−1)w

(i)
a;h

where w(i)
a;h = ⟨x̂(i)h (a0:h−1)−x(i)h (a0:h−1), θ

⋆
a;h⟩+ z

(i)
a;h. On the events we condition ((5) and (6)), we have |w(i)

a;h| ≤ Error
where

Error := ∆/(6
√
N ′ε).

Using the above, at level h in episode m,

∀a :
∣∣∣θ̂⊤a;hx̂h(a0:h−1)− (θ⋆a;h)

⊤xh(a0:h−1)
∣∣∣

≤
∣∣∣(θ̂a;h − θ⋆a;h)

⊤x̂h(a0:h−1)
∣∣∣+ ∣∣(θ⋆a;h)⊤(x̂h(a0:h−1)− xh(a0:h−1))

∣∣
≤

∣∣⟨λΣ−1
h θ⋆a;h, x̂h(a0:h−1)⟩

∣∣︸ ︷︷ ︸
(a)

+

∣∣∣∣∣∣⟨Σ−1
h

|Da;h|∑
i=1

x̂
(i)
h (a0:h−1)w

(i)
a;h, x̂h(a0:h−1)⟩

∣∣∣∣∣∣︸ ︷︷ ︸
(b)

+∆/6. (Use (5))

20

Computationally Efficient PAC RL in POMDPs with Latent Determinism and Conditional Embeddings

The first term (a) is upper-bounded by∣∣⟨λΣ−1
h θ⋆a;h, x̂h(a0:h−1)⟩

∣∣ ≤ λ∥Σ−1
h θ⋆a;h∥Σh

∥x̂h(a0:h−1)∥Σ−1
h

(CS inequality)

≤
√
λΘε (θ⋆a;h ≤ Θ and ∥x̂h(a0:h−1)∥Σ−1

h
≤ ε)

≤ ∆/6. (We set a parameter ε to satisfy this condition)

The second term (b) is upper-bounded by

Error×
|Da;h|∑
i=1

|x̂⊤h (a0:h−1)Σ
−1
h x

(i)
h (a0:h−1)|

≤ Error×

√√√√|Da;h|x̂⊤hΣ
−1
h

|Da;h|∑
i=1

x
(i)
h (a0:h−1)x

(i)
h (a0:h−1)⊤Σ

−1
h x̂h (From L1 norm to L2 norm)

≤ Error×

√√√√N ′x̂⊤hΣ
−1
h

|Da;h|∑
i=1

x
(i)
h (a0:h−1)x

(i)
h (a0:h−1)⊤Σ

−1
h x̂h (N ′ upper-bounds |Da;h|)

≤ Error×
√
N ′ε

≤ ∆/6. (We set M,M ′, ε to satisfy this condition)

From the third line to the fourth line, we use a general fact when x⊤(C + λI)−1x ≤ ε is satisfied, we have x⊤(C +
λI)−1C(C + λI)−1x ≤ ε for any matrix C and vector x.

Thus, we have that:

∀a :
∣∣∣θ̂⊤a;hx̂h(a0:h−1)− (θ⋆a;h)

⊤xh(a0:h−1)
∣∣∣ ≤ ∆/2.

Together with the gap assumption, this means

argmax
a

θ̂⊤a;hx̂h(a0:h−1) = argmax
a

(θ⋆a;h)
⊤xh(a0:h−1) = a⋆h(a0:h−1).

Thus, we select a⋆h(a0:h−1) at h. Then, when we query Compute-V ⋆(h + 1; {a0:h−1, a
⋆
h(a0:h−1)}), which by inductive

hypothesis we return

V ⋆
h+1(sh+1({a0:h−1, a

⋆
h(a0:h−1)})) +

H−1∑
k=h+1

νk.

Finally, adding the reward, we return

V ⋆
h (sh(a0:h−1)) +

H−1∑
k=h

νk.

This implies that the conclusion holds for any queries at level h in the second case.

C.3. Third Step

The next lemma shows that when the algorithm terminates, we must find an exact optimal policy.

Lemma 8 (Optimality upon termination). Algorithm 1 returns an optimal policy on termination.

Proof. Recall we denote the optimal trajectory by {s⋆h, a⋆h}
H−1
h=0 where s⋆h = sh(a

⋆
0:h−1). Upon termination of Algorithm 1,

we have ∀h : ∥x̂h(a0:h−1)∥Σ−1
h

≤ ε. We prove the theorem by induction. At h = 0, we know that s0 = s⋆0. By our linear
regression guarantee as we see in the second step of the proof, we can ensure that for all a ∈ A,∣∣θ⊤a;0x̂0 − (θ⋆a;0)

⊤x0
∣∣ ≤ ∆/2,

21

Computationally Efficient PAC RL in POMDPs with Latent Determinism and Conditional Embeddings

which means that a0 = argmaxa θ
⊤
a;0x0 = a⋆0. This completes the base case.

Now we assume it holds a step 0 to h. We prove the statement for step h+ 1. Thus, we can again use the linear regression
guarantee to show that the prediction error for all a must be less than ∆/2, i.e.,∣∣θ⊤a;hx̂h(a⋆0:h−1)− (θ⋆a;h)

⊤xh(a
⋆
0:h−1)

∣∣ ≤ ∆/2.

This indicates that at h+ 1, we will pick the correct action a⋆h+1. This completes the proof.

Finally, combining lemmas so far, we derive the final sample complexity.

Theorem 8. With probability 1− δ, the algorithms output the optimal actions after using at most the following number of
samples

Õ

(
H5AΘ5d2 ln(1/δ)

∆5

)
.

Here, we ignore Polylog(H, d, ln(1/δ), 1/∆, |A|,Θ).

Proof. Recall we use the following number of samples:

O((M +M ′)H3Ad/ε2 ln(d/ε))

Here, the rest of the task is to properly set M,M ′, ε.

Number of times we use concentration inequalities We use high probability statements to bound three-types of terms:

∀a ∈ A; |⟨θ⋆a;h, x̂h(a0:h−1)− xh(a0:h−1)⟩| ≤ 2Θ
√
ln(1/δ′)/M, (7)

|νk| ≤ 2
√
ln(1/δ′)/M ′. (8)

Let N ′ = O(Hd/ε2 ln(d/ε)). We also set ε = O(∆/Θ). Recall we need to set M and M ′ such that

2Θ
√
ln(1/δ′)/M ≤ min

(
∆/6,∆/(12

√
N ′ε)

)
, 2

√
ln(1/δ′)/M ′ ≤ min

(
∆/(6H),∆/(12

√
N ′ε)

)
.

Thus, we set

M = O

(
ln(1/δ′)Θ3Hd ln(dΘ/∆)

∆3

)
, M ′ = O

(
ln(1/δ′)ΘH2d ln(dΘ/∆)

∆3

)
.

Here, events (7) and (8) are called O(
∑

(αm + βm)) times. Thus, we set δ′ = δ/(
∑

(αm + βm)).

Collect all events Recall we need the following number of samples:

O
(
(M +M ′)H3A2d/ε2 ln(d/ε)

)
.

Thus, the total sample complexity is

N = Õ

(
H2dΘ3 ln(1/δ′)

∆3
× H3A2d×Θ2

∆2

)
where 1/δ′ = 1/δ ×O(

∑
(αm + βm). Hence,

N = Õ

(
H5A2Θ5d2 ln(1/δ)

∆5

)
.

22

Computationally Efficient PAC RL in POMDPs with Latent Determinism and Conditional Embeddings

D. Proof of Section B
D.1. Proof of Lemma 3

Since a⊤ϕ(s) ∈ HS̄ , it can be written in the form of

a⊤ϕ(·) =
∞∑
i=1

αik̄(·, s[i]).

where s[i] ∈ S . Then, it is equal to

∞∑
i=1

αik̄(·, s(i)) =
∞∑
i=1

αiEo′∼O(s(i)),o∼O(·)[ψ
⊤(o′)ψ(o)]

= ⟨
∞∑
i=1

αiEo′∼O(s(i))[ψ
⊤(o′)],Eo∼O(·)[ψ(o)]⟩

Thus, there exists b s.t. a⊤ϕ(·) = b⊤Eo∼O(·)[ψ(o)]. Finally,

1 ≥ a⊤Es∼uS(s)[ϕ(s)ϕ
⊤(s)]a = b⊤Es∼uS(s)[Eo∼O(s)[ψ(o)]Eo∼O(s)[ψ

⊤(o′)]]b

≥ b⊤Es∼uS(s)[ϕ(s)ϕ
⊤(s)]b(1/ι)2 = ∥b∥22(1/ι)2.

Hence, ∥b∥22 ≤ ι2.

D.2. Proof of Theorem 7

We first introduce several notations. We set λ = 1.

We define feature vectors xh(a0:h−1) = Eo∼O(sh(a0:h−1))[ψ(o)], x̂h(a0:h−1) = Êo∼O(sh(a0:h−1))[ψ(o)] where ·̂ means
empirical approximation using M samples. Then,

k̂(a0:h−1, a
′
0:h−1) = x̂h(a0:h−1)

⊤x̂h(a
′
0:h−1), k(a0:h−1, a

′
0:h−1) = xh(a0:h−1)

⊤xh(a
′
0:h−1).

Primal representation We mainly use a primal representation in the analysis. Let Q⋆
h(·, a) = ⟨θ⋆a;h, ϕ(s)⟩. Then,

µa;h(a0:h−1,Da;h) = x̂⊤h (a0:h−1)θ̂a;h, θ̂a;h = Σ−1
h

|Da;h|∑
i=1

y
(i)
a;hx̂h(a

(i)
0:h−1),

σh(a0:h−1,Dh) = ∥x̂h(a0:h−1)∥Σ−1
h
, Σh =

|Dh|∑
j=1

x̂h(a
(j)
0:h−1)x̂h(a

(j)
0:h−1)

⊤ + λI,

Regarding the derivation, for example, refer to (Chowdhury & Gopalan, 2017). 2

Most of the proof in Section C similarly goes through. We list parts where we need to change as follows:

1. We need to modify (4) in the first step of Section C to upper-bound the number of bad events we encounter.

2. We need to modify Lemma 5.

Then, we can similarly conclude that the sample complexity is poly(W, ι, ln(1/δ), H,Γ, 1/∆, A),

2Formally, we should use notation based on operators But following the convention on these literature, we use a matrix representation.
Every argument is still valid.

23

Computationally Efficient PAC RL in POMDPs with Latent Determinism and Conditional Embeddings

First modification Recall γ(N ; kO) is defined by max|C|=N ln det(I + KC) where KC is a N × N matrix where
(i, j)-th entry is kO(xi, xj) when C = {xi}.
Lemma 9 (Information gain on the estimated feature in RKHS). Let |Dh| = N .

ln det(I + K̂(Dh)) ≤Mγ(N ; kO).

Proof. Recall K̂(Dh) = 1/M
∑M

j=1 Kj where Kj is a N ×N matrix with an entry {kO(·, ⋄)}·∈Dh,⋄∈Dh
. Then,

ln det(I + 1/M
M∑
j=1

Kj) ≤ ln
M∏
i=1

det(I + 1/MKj))

≤
M∑
j=1

ln(det(I + 1/MKj)) ≤Mγ(N ; kO).

Then, in (4) in the first step of Section C, we can use the following inequality

εN ′ ≤
N ′∑
i=1

∥x̂(i)h ∥−1
Σh

≤ c

√
N ′ ln det(I + K̂(Dh)) ≤ c

√
N ′Mγ(N ′; kO).

Letting O(ΓN ′α) = γ(N ′; kO),

N ′ =

(
Γ1/2M1/2

ε

)2/(1−α)

.

Second modification We first check the concentration on the estimated feature.
Lemma 10 (Concentration of the estimated feature). Suppose kO(·, ·) ≤ 1. Then, (x̂h(a0:h−1)− xh(a0:h−1))

⊤θ⋆a;h is a
Θ2/M sub-Gaussian random variable.

Proof. Here,

∥ψ(o)⊤θ⋆a;h∥ ≤ ∥ψ(o)∥∥θ⋆a;h∥ ≤ kO(o, o)
1/2Θ ≤ Θ.

Then, we use Hoeffeding’s inequality.

E. Proof of Section 5
E.1. Proof of Lemma 1

Recall our assumption is

Q⋆
h(sh, a) = ⟨w⋆

a;h, ϕ(sh)⟩ = ⟨w⋆
a;h, G

†
hGhϕ(sh)⟩

= ⟨{G†
h}

⊤w⋆
a;h, Ghϕ(sh)⟩ = ⟨{G†

h}
⊤w⋆

a;h,E[ψ(oh:h+K−1) | sh; a⋄h:h+K−2]⟩.

Thus, the above is written in the form of ⟨θ⋆a;h, z
[K]
h (sh)⟩ noting E[ψ(oh:h+K−1) | sh; a⋄h:h+K−2] is a sub-vector of z[K]

h (sh).

E.2. Proof of Lemma 2

Let ψ(·) be a one-hot encoding vector over S . We have

Q⋆
h(s, a) = ⟨w⋆

a;h, ψ(s)⟩ = ⟨{P[K]
h (a⋄h:h+K−2)}†w⋆

a;h,P
[K]
h (a⋄h:h+K−2)ψ(s)⟩

Since z[K]
h (s) includes P[K]

h (a⋄h:h+K−2)ψ(s), the statement is concluded.

24

Computationally Efficient PAC RL in POMDPs with Latent Determinism and Conditional Embeddings

E.3. Proof of Theorem 4

Most part of the proof is similarly completed as the proof of Theorem 3. We need to take the following differences into
account:

• M needs to be multiplied by AK−1,

• d needs to be multiplied by AK−1.

Then, the sample complexity is

Õ

(
H5A3K−1Θ5d2 ln(1/δ)

∆5

)
.

F. Auxiliary lemmas
Refer to Agarwal et al. (2019, Chapter 6) for the lemma below.

Lemma 11 (Potential function lemma). Suppose ∥Xi∥ ≤ B and Σi =
∑i

k=1XkX
⊤
k . Then,

N∑
i=1

X⊤
i Σ−1

i−1Xi ≤ ln(det(ΣN)/ det(λI)) ≤ d ln

(
1 +

NB2

dλ

)
.

G. Experiment
We consider experiments using grid-world environments where we observe noisy observations of the latent state due to
imperfect sensors. As mentioned in Section 1, this experiment is motivated by possible practical scenarios in autonomous
driving. Similar experimental settings are considered in Du et al. (2019). We demonstrate our proposed method can return
the optimal policy with low sample complexity.

(a) Cliff walking with H = 8. A state s = 25 is an initial state
and s = 32 is a goal. We obtain reward −1 at s ∈ (1, · · · , 25),
reward −100 at s ∈ (26, · · · , 31) and a reward H + 1 at the
goal.

(b) Observation process. For example, when s = 10, with
probability α, we observe 1 and with probability 1 − α, we
observe 10.

Figure 2. Our environment

The environments. We consider the environment, “cliff walking” as illustrated in Figure 2a. The implementation
of the environment is given in https://github.com/openai/gym/blob/master/gym/envs/toy_text/
cliffwalking.py. 3. The number of actions is 4 and the number of state space is 4 ×H where H is the number of
columns. There are four actions “up, down, right, and left”. We get a reward −100 at the cliff, a reward H at the goal, and

3In the original implementation, the reward at the goal is 0 and H = 12. In our setting, we vary H and set the reward at the goal to be
H + 1 so that the cumulative reward of the optimal trajectory is 0.

25

https://github.com/openai/gym/blob/master/gym/envs/toy_text/cliffwalking.py
https://github.com/openai/gym/blob/master/gym/envs/toy_text/cliffwalking.py

Computationally Efficient PAC RL in POMDPs with Latent Determinism and Conditional Embeddings

get a reward −1 at other states. The optimal path, which has a cumulative reward 0, is depicted in pink. We want to identify
this optimal path in a sample efficient manner.

In our experiment, we consider a scenario where we can only get noise observations but not latent states. The observation
process is illustrated in Figure 2b. When agents are in the blue states, with probability α, observations are given as
s −H − 1 and with probability 1 − α, we observe s. Note these environments do not belong to block MDPs since we
cannot uniquely decode latent states from the whole historical observations. For example, when we observe a sequence
(s0, s1, s2) = (25, 17, 18), the possible latent state at h = 2 is 9 or 18.

Baseline, hyperparameters. The most naive baseline is exploring all four directions at every time step and selecting
the action sequence with the highest value. This approach requires at least 4(H+1) samples, which is prohibitively large.
Additionally, we consider the following two methods.

• Our proposal. We set M = 50, ϵ = 0.6, λ = 0.1 unless otherwise noted. We confirm our proposal is robust to
hyperparameters as will be discussed later.

• Naive Q-learning with ϵ (= 0.1) greedy action selection that uses current observations as inputs. This is a standard
method for MDPs. It is expected to fail since Markovinity breaks down.

Note methods for block MDPs (Du et al., 2019) are expected to fail since our environment is not a block MDP.

0.0 0.1 0.2 0.3 0.4
Strength of Noise ()

20

15

10

5

0

Va
lu

e
of

 th
e

O
ut

ou
t P

ol
ic

y

Our
Naive Q-learning

(a) Comparison between our proposal and the naive Q-
learning in terms of the quality of outputs

0 5 10 15 20 25 30 35 40
Number of Columns (H)

0

5

10

15

20

25

30

35

40

S
am

pl
e

C
om

pl
ex

ity
 (l

og
4)

Our proposal
Uniform exploration

(b) Comparison between our proposal and uniform explo-
ration in terms of sample complexities

0 10 20 30 40 50
Parameter M

25

20

15

10

5

0

Va
lu

e
of

 th
e

O
ut

ou
t P

ol
ic

y

Our proposal

(c) Sensitivity analysis

Figure 3. Results of experiments

Results. We first confirm our methods can return the optimal policy in high probability. The result is illustrated Figure 3a.
We run our proposal and the naive Q-learning 10 times and take each average of the values of output policies. We set

26

Computationally Efficient PAC RL in POMDPs with Latent Determinism and Conditional Embeddings

H = 20 and vary α ∈ (0, 0.1, 0.2, 0.3, 0.4). Recall the value of the optimal policy is 0. It is seen that our proposal always
returns the optimal policy. In contrast, the naive Q-learning fails to identify the optimal policy when α ̸= 0.

Next, we investigate the sample complexity, which is the number of samples to get the optimal policy. We set α = 0.3 and
vary H ∈ (5, 12, 20, 30, 40). The result is illustrated in Figure 3b. We calculate the sample complexity of our proposal by
running algorithms 10 times and taking the average. Since the naive Q-learning method cannot return the optimal policy , it
is not included in the graph. It is seen that compared to uniform exploration, our proposal is much more efficient and the
sample complexity does not grow exponentially in horizon.

Finally, we confirm the robustness of our proposal in Figure 3c. We set H = 20, α = 0.3. We vary M ∈ (20, 50, 100, 200).
Figure 3c demonstrates the proposal can identify the optimal policy as long as M is larger than 20. Practically, we
recommend we repeat running the algorithm by gradually increasing M every time till the value of the output policy is
stable. Besides, we confirm our proposal is robust to ϵ and λ in that the proposal can identify the optimal policy when ϵ and
λ are less than 1 if M is large enough.

27

