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Abstract

Safety is a crucial necessity in many applica-
tions of reinforcement learning (RL), whether
robotic, automotive, or medical. Many existing
approaches to safe RL rely on receiving numeric
safety feedback, but in many cases this feedback
can only take binary values; that is, whether an
action in a given state is safe or unsafe. This
is particularly true when feedback comes from
human experts. We therefore consider the prob-
lem of provable safe RL when given access to an
offline oracle providing binary feedback on the
safety of state, action pairs. We provide a novel
meta algorithm, SABRE, which can be applied
to any MDP setting given access to a blackbox
PAC RL algorithm for that setting. SABRE ap-
plies concepts from active learning to reinforce-
ment learning to provably control the number
of queries to the safety oracle. SABRE works
by iteratively exploring the state space to find
regions where the agent is currently uncertain
about safety. Our main theoretical results shows
that, under appropriate technical assumptions,
SABRE never takes unsafe actions during train-
ing, and is guaranteed to return a near-optimal
safe policy with high probability. We provide a
discussion of how our meta-algorithm may be ap-
plied to various settings studied in both theoreti-
cal and empirical frameworks.

1 INTRODUCTION

Reinforcement learning (RL) is an important paradigm that
can be used to solve important dynamic decision-making
problems in a diverse set of fields, such as robotics, trans-
portation, healthcare, and user assistance. In recent years
there has been a significant increase in interest in this prob-
lem, with many proposed solutions. However, in many
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such applications there are important safety considerations
that are difficult to address with existing techniques.

Let us consider the running example of a cleaning robot,
whose task is to learn how to vacuum the floor of a house.
The primary goal of the robot, of course, is to learn to vac-
uum as efficiently as possible, which may be measured by
the amount cleaned in a given time. However, we would
also like to impose certain safety constraints on the robot’s
actions; for example, the robot should not roll off of a stair-
case where it could damage itself, it should not roll over
electrical cords, or it should not vacuum up the owner’s
possessions. In this example, there are several desirable
properties we would like a safety-aware learning algorithm
to have, including:

1. The agent should avoid taking any unsafe actions,
even during training

2. Since it is hard to concretely define a safety func-
tion from the robot’s sensory observations a priori, we
would like the agent to learn a safety function given
feedback of observed states

3. Since the notion of safety is human-defined, and we
would like the safety feedback to be manually pro-
vided by humans (e.g. the owner), we would want the
agent to ask for as little feedback as possible

4. We would like to use binary feedback (i.e. is an action
in a given state safe or unsafe) rather than numeric
feedback, as this is more natural for humans to provide

5. Since the agent may need to act in real time without
direct intervention, they should only ask for feedback
offline in between episodes

Moving away from our specific example, the above five
properties would be ideal for safe RL in many applications
where safety is naturally human-defined. Unfortunately,
there are no existing safe RL methods that can provably sat-
isfy all of these properties. In particular, existing safe RL
methods all fail to satisfy these properties for at least one
of the following reasons: (1) they assume a safety func-
tion is fully known (e.g. Chow et al., 2018; Simão et al.,
2021); (2) they learn safety using numeric feedback (e.g.
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Wachi and Sui, 2020; Amani et al., 2021); or (3) they re-
quire a human-in-the-loop who can intervene and monitors
the safety of every action taken in real time (Saunders et al.,
2018). In addition, none of these existing methods address
the issue of only asking for minimal feedback, which is
an important consideration which places the problem at the
interface of RL and active learning.

In this paper, we present a novel safe RL framework en-
compassing the above concerns, involving an offline safety-
labeling oracle that can provide binary feedback on the
safety of state, action pairs in between episodes. We pro-
vide a meta algorithm, SABRE, which can be applied
to any MDP class within this safety framework, given a
blackbox RL algorithm for the MDP class. This algo-
rithm utilizes ideas from disagreement-based active learn-
ing, by iteratively exploring the state space to find all re-
gions where there is disagreement on possible safety. Un-
der some appropriate technical assumptions, including that
the blackox RL algorithm can provably optimize any given
reward, SABRE will satisfy all of the above five properties,
and will return an approximately optimal safe policy with
high probability. Importantly, we provide high-probability
bounds on the number of samples and calls to the label-
ing oracle needed, and show that they are both polynomial,
and that the latter is lower order than the former. Finally,
we provide some discussion of how this meta-algorithm ap-
proach may be applied in various settings of both theoreti-
cal and practical interest.

Math Notation For any natural number n ∈ N, we let [n]
denote the set {1, 2, · · · , n}. For any countable set X , we
let ∆(X ) denote the space of all probability distributions
over X . Given sets X and Y , we let X → Y denote the set
of all functions from X to Y . Lastly, sign(y) denotes the
sign function which takes a value of 1 if y ≥ 0, or −1 if
y < 0.

2 PROBLEM SETUP

Markov Decision Process We consider learning in
finite-horizon Markov decision processes (MDPs).
A reward-free MDP is characterized by a tuple
(S,A, T, µ,H), where S is a given (potentially in-
finitely large) state space, A is a finite action space
with |A| = A, T : S × A → ∆(S) is a transition
operator, µ ∈ ∆(S) is an initial state distribution, and
H ∈ N is the horizon. An MDP (with reward) is a tuple
(S,A, T, R, µ,H), where R : S × A → [0, 1] is the
reward function. We assume that the transition operator
and reward function are time homogeneous; i.e., T and R
do not depend explicitly on the time index.1 We will let
(M,R) refer to the MDP we are learning in, where M is

1This is w.l.o.g. since we can always include the current time
index in the observation definition.

the corresponding reward-free MDP.

The agent interacts with an MDP over a series of rounds. In
each round the agent successively takes actions according
to some policy, which is a mapping from states to actions,
in order to generate an episode. Specifically, in the n’th
round for each n ∈ N, the agent selects some policy πn ∈
S → ∆(A), which it then uses in order to generate an
episode τn = (sn1 , a

n
1 , r

n
1 , . . . , s

n
H , anH , rnH , snH+1), where

sn1 ∼ µ(·), and for each h ∈ [H] we have anh ∼ πn(· | snh),
rnh = R(snh, a

n
h), and snh+1 ∼ T (· | snh, anh).

For any given policy π, we let Eπ[·] and Pπ(·) denote the
expectation and probability operators over trajectories gen-
erated using π in the MDP (M,R). Also, for any pol-
icy π, we define the value function V π ∈ S → R ac-
cording to V π(s) = Eπ[

∑H
h=1 R(sh, ah) | s1 = s], and

we similarly define the value of the policy according to
V (π) = Es∼µ(·)[V

π(s)].

Our main metric of success for reinforcement learning is
suboptimality (SubOpt). For any policy class Π ⊆ S →
∆(A) and any policy π̂ ∈ Π, we define SubOpt(π̂; Π) =
supπ∈Π V (π)−V (π̂). Then, one of our primary goals is to
learn a policy π̂ that has low suboptimality with respect to a
given set of policies that it must choose from, in a relatively
small number of episodes.

Over the past few decades, many reinforcement learning
algorithms have been developed that can provably obtain
low suboptimality using a small number of episodes, for
various classes of MDPs . Our focus is on adapting such RL
algorithms, in order to additionally take into account safety
considerations. For these reasons, we take a meta-learning
approach, and assume access to a blackbox reinforcement
learning algorithm Alg. We formalize this as follows:
Assumption 1. We have access to a blackbox RL algo-
rithm Alg for a set of reward-free MDPs M that con-
tains M . Specifically, given any reward function R′ :
S ×A → [0, 1] and policy class Π as input, along with any
ϵ, δ ∈ (0, 1), Alg(R′,Π, ϵ, δ) returns a policy π̂ ∈ Π such
that SubOpt(π̂; Π) ≤ ϵ with probability at least 1−δ. Fur-
thermore, it is guaranteed to do so after at most nAlg(ϵ, δ)
episodes, for some nAlg(ϵ, δ) = Poly(ϵ, log(1/δ)), while
only following policies in Π.

We refer to nAlg(ϵ, δ) as the sample complexity of Alg, and
note that it implicitly depends on the time horizon H . We
also note that the requirement that Alg only follows poli-
cies in Π is important, as in practice we will call Alg using
classes of policies that are guaranteed to be safe.

Safety Considerations In addition to the general MDP
setup presented above, we would also like to take safety
considerations into account. Specifically, we will use a bi-
nary notion of safety as follows: we assume there exists a
function f⋆ : S → {±1} such that f⋆(s, a) = 1 means
that taking action a in state s is safe, and otherwise ac-
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Figure 1: Illustrating the challenge with binary safety feedback. Left: we observe binary safe/unsafe labels (our setting)
and we know the safety function is a halfspace; the safety of state-action pairs in the region of disagreement (shaded gold
region) is uncertain, as there exist halfspaces consistent with both the observed data and these being either safe or unsafe.
Right: we observe noisy numeric safety values (positive being safe) and we know their mean is linear; the region of
disagreement (using 95% confidence) is far smaller because we can extrapolate to yet-unseen state-action pairs.

tion a in state s is unsafe. Importantly, we assume that the
safety function f⋆ is unknown, and we require the agent to
only take actions a in states s such that f⋆(s, a) = 1, even
during training. That is, the agent must learn the safety
relation, while simultaneously maintaining safety.

The assumption that the safety values are binary is in con-
trast to most of the literature, which mostly assumes that
these values are numeric (i.e. takes values in R rather than
{±1}, with safety given by sign(f⋆(s, a)); see Section 5
for a detailed discussion). To see why this makes the prob-
lem more challenging, consider for example the example
displayed in Figure 1. In this example, we consider the
case where S = R, and the safety function is assumed to
be linear. On the left we display a series of observed bi-
nary safety values for some fixed action, and on the right
we display the corresponding observations when the safety
values are numeric. In each case, we shade in gold the dis-
agreement region where we are unsure about safety values.
With the numeric observations, we can be sure of safety
for almost all states except near the f⋆(s, a) = 0 mar-
gin, whereas with the binary observations we are unsure of
safety for all states in between the two observed clusters.
Note that this is true even though the numeric observations
have noise, while the binary ones don’t. In other words,
when we receive binary safety feedback, we cannot easily
extrapolate safety beyond the observed states.

In order to make the task of learning given these safety
constraints feasible, we model f⋆ using some class F ⊆
S ×A → {±1} of candidate safety functions. This allows
us to ensure that f⋆ is learnable, by using a sufficiently
well-behaved class F . In particular, in our theory we will
focus on classes F with finite Vapnik-Chervonenkis (VC)
dimension (Dudley, 1987). Then, in order to make it fea-
sible to guarantee safety during training, we make the fol-
lowing core assumption on the setting.

Assumption 2. The safety class F is correctly specified;

that is, f⋆ ∈ F . Furthermore, there exists a policy πsafe ∈
Π that is known to always take safe actions.

To explain the importance of this assumption, let us define
the set of safe policies corresponding to each f ∈ F , by

Πsafe(f) = {πsafe}∪{π ∈ Π : f(s, π(s)) = 1 a.s. ∀s ∈ S} .

That is Πsafe(f) is the set of all policies that would be safe
if f was the true safety function, along with the known safe
policy. We similarly define the shorthand Πsafe = Πsafe(f

⋆)
for the actual set of safe policies. Then, the assumption that
F is correctly specified allows us to reason about which
policies are safe, since if π ∈ Πsafe(f) for all possible
f ∈ F that are consistent with our observations so far, we
are guaranteed that π ∈ Πsafe. Furthermore, the existence
of a known safe policy Πsafe allows the agent to avoid get-
ting stuck with no known safe action to perform. Note that
the definition of πsafe could be problem dependent. For ex-
ample, in the previous cleaning robot example, the policy
that always takes the “don’t move” action could qualify.
Alternatively, in different applications, πsafe could be de-
fined for example by taking a special action that terminates
the episode early, or has an expert take control.

Obtaining Safety Feedback A key motivation behind
using binary safety feedback rather than continuous is for
applications where safety is human-defined. In such ap-
plications, obtaining safety labels for (s, a) pairs may be
expensive or otherwise burdensome. This motivates an ac-
tive learning-style approach to the problem, where we have
to explicitly ask for labels of (s, a) pairs, with an additional
goal of minimizing the number of times we do so.

Concretely, our model for the labeling process is as fol-
lows. We assume access to a labeling oracle, which can
be given (s, a) pairs and returns the corresponding values
of f⋆(s, a). We assume that this oracle can be queried an
unlimited number of times in between episodes, and that



Provable Safe Reinforcement Learning with Binary Feedback

it can only be queried with states s that have been previ-
ously observed. The reason for the latter restriction is that
in many applications the state corresponds to some kind
of observation of the environment, such as an image, and
therefore the total space of states S is not a-priori known.

Problem Setup Summary. Given a class of MDPsM, a
policy class Π, a blackbox RL algorithm Alg, a safety func-
tion class F , a desired sub-optimality ϵ, and failure prob-
ability δ, we want to propose an online learning algorithm
that, for any unknown M ∈M and f⋆ ∈ F , interacts with
the MDP over N rounds and returns a policy π̂ ∈ Π such
that, with probability at least 1− δ, we have:

1. SubOpt(π̂; Π) ≤ ϵ (π̂ is approximately optimal)

2. π̂ ∈ Πsafe (the returned policy is safe)

3. f⋆(snh, a
n
h) = 1 for all h ∈ [H] and n ∈ [N ] (the

agent never takes unsafe actions during training)

In addition, we would like to establish sample-complexity
bounds on the number of episodes N needed to ensure the
above, in terms of 1/ϵ, log(1/δ), H , and nAlg(·). Finally,
we would like to establish corresponding high-probability
bounds on the total number of calls to the labelling oracle,
which are lower order than the total sample complexity.

3 LEARNING OF SAFETY VIA ACTIVE
LEARNING IN REINFORCEMENT
LEARNING

First, we establish some basic definitions and a result that
will form the basis for safety learning. For any safety-
labeled dataset D consisting of (s, a, f⋆(s, a)) tuples, we
define the corresponding version space of safety functions
consistent with D by

V(D) = {f ∈ F : f(s, a) = c ∀(s, a, c) ∈ D} .

Similarly, for any given a ∈ A, we can define the corre-
sponding region of disagreement of states where safety of
that action is not known given D by

RDa(D) = {s : ∃f, f ′ ∈ V(D) s.t. f(s, a) ̸= f ′(s, a)} .

Note that these are both standard definitions in
disagreement-based active learning (Hanneke, 2014).

Next, define the set of policies known to surely be safe
given D as follows:

Π(D) =
⋂

f∈V(D)

Πsafe(f) .

Note that given Assumption 2, Π(D) is always ensured to
be non-empty, as it will at least contain πsafe.

Given these definitions, we have the following lemma.

Lemma 1. For any safety labeled dataset D, let

U(D) = sup
π∈Πsafe

Pπ(∃h ∈ [H], a ∈ A : sh ∈ RDa(D)) .

Then, for any D and π̂ ∈ Π(D), we have

SubOpt(π̂; Πsafe) ≤ SubOpt(π̂; Π(D)) +HU(D) .

3.1 Challenges with a Naive Approach

This lemma in fact suggests a rather simple, naive ap-
proach, based on greedily trying to follow the blackbox RL
algorithm, and switching to πsafe and querying the safety or-
acle whenever we reach a state where safety is not known.
Before we outline our novel solution that addresses the
challenges outlined in the previous section, we consider the
limitations of this naive approach.

Given Lemma 1 and Assumption 1, we can easily ensure
sub-optimality of at most ϵ+HU(D) for any target ϵ using
a naive approach like above, where D is the labeled dataset
incidentally collected following this approach. However,
since this approach does nothing explicit to try to learn the
safety and shrink the region of disagreement, it is difficult
to provide any guarantees on how fast U(D) shrinks.

A second issue is that this approach provides no control
on the number of calls to the labelling oracle. Existing
analyses from disagreement-based active learning provide
bounds on the number of samples needed to shrink regions
of disagreement under fixed distributions, but the agent
may roll out with a different distribution every episode.

3.2 The SABRE Algorithm

Motivated by Lemma 1, as well as the limitations of the
above naive baseline approach, we now present our novel
algorithm in Algorithm 1. This algorithm is superficially
similar to the baseline approach, in the sense that it builds
a labeled dataset D over a series of rounds, and then es-
timates an optimal policy following Alg(R,Π(D), ϵ, δ).
However, the difference is in how the safety-labeled dataset
D is constructed. Instead of successively trying to optimize
the environmental reward, and labeling the states we hap-
pen observe in the process, our algorithm uses a strategy
for constructing D that explicitly targets U(D).

Our algorithm uses two loops to construct the safety-
labeled dataset. The outer loop runs over N epochs. In each
epoch it starts with the set Πn of policies known to be safe
at the start of the epoch, and holds this set fixed over the
entire epoch. Within each epoch, the inner loop performs
B iterations, alternating between the following two steps:
(1) (approximately) optimize a policy within Πn for hitting
the region of disagreement with the current D; and (2) roll
out with this policy for m episodes to collect additional la-
beled data to expand D with. The reason for having these
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Algorithm 1 SAfe Binary-feedback REinforcement learning (SABRE)

Input: Number of epochs N , number of iterations per epoch B, number of rollouts per batch m, accuracy parameters
ϵexplore and ϵR, and probability parameters δexplore and δR, initial safety-labeled dataset D(B)

0 (optional)
Output: Final policy π̂

1: for n = 1, 2, . . . , N do
2: Πn ← Π(D(B)

n−1) // define a safe policy class for the current safety labeled dataset D(B)
n−1

3: D(0)
n ← D(B)

n−1

4: for i = 1, 2, . . . , B do
5: R̃

(i)
n (·)← 1{∃a ∈ A : · ∈ RDa(D(i−1)

n )} // safety reward that incentivizes visiting region of disagreement
6: π̂

(i)
n ← Alg(R̃

(i)
n ,Πn, ϵexplore, δexplore) // call blackbox RL method with safety exploration reward

7: Roll out with π̂
(i)
n for m episodes, and collect all observed states in S(i)n

8: Expand D(i−1)
n to D(i)

n by labelling all s ∈ S(i)n and a ∈ A such that s ∈ RDa(D(i−1)
n )

9: return Alg(R,Π(D(B)
N ), ϵR, δR) // return a safe policy by optimizing the environment reward R

two separate loops is that it allows us to derive our formal
guarantees, as will be clear in the next section. However, it
is possible that an improved analysis in future work could
allow the algorithm to be simplified to a single loop.

Comparing with the naive approach discussed above, this
algorithm follows a strategy for expanding D based on
actually optimizing hitting the region of disagreement for
data collection, which is better tailored to explicitly reduc-
ing U(D). Furthermore, the data that is used for expanding
D within each epoch is collected by rolling out with fixed
policies, which allows stronger control on the number of
times the safety labeling oracle will be called.

Finally, we note that this algorithm is fairly generic and
abstract, and it is not immediately clear how to apply
and scale it to practical scenarios. We provide a detailed
discussion of this issue in Appendix A. First, we dis-
cuss how the constraint of the blackbox algorithm to poli-
cies in Π(D) may be easily implemented for most kinds
of general RL algorithms, as long as we can tractably
check whether (s, a) is known to be safe or not given D.
Then, we discuss how we may check the possible safety
of (s, a) given D for various safety classes of the form
F = {(s, a) 7→ sign(g(s, a)) : g ∈ G} for some base class
G ⊂ S × A → R. In particular, when G is a linear class
safety checking reduces to solving linear programs, and
when G is a kernel class safety checking reduces to solv-
ing quadratic programs. Finally, we discuss some heuristic
approaches for reducing the amount of computation or la-
beling required for such implementations, or for dealing
with more general safety classes F based on e.g. generic
machine learning methods.

4 THEORETICAL ANALYSIS

We now provide a theoretical analysis of our proposed al-
gorithm. First, by design SABRE only ever takes safe ac-
tions during training, and the final returned policy π̂ is al-

ways guaranteed to be safe. This holds with certainty, not
just with high probability, since by definition Π(D) con-
tains only safe policies, for any obtainable D. Given this,
we will focus on establishing approximate suboptimality,
along with high-probability bounds on the sample and la-
beling complexities.

Before we give our result, we must give some additional
technical assumptions. First, we require that the MDP M
has reasonably low complexity, as follows.

Assumption 3. There exists some positive integer dΠ such
that, for any given set of policies Π ⊆ Πsafe, there exists a
set of policies π1, . . . , πdΠ

satisfying

1

H

H∑
h=1

Pπ(sh ∈ S̃) ≤
dΠ∑
i=1

(
1

H

H∑
h=1

Pπi
(sh ∈ S̃)

)
,

for all measurable S̃ ⊆ S and π ∈ Π.

We call the smallest dΠ for which this assumption holds the
policy-cover dimension of the MDP. We give examples of
dΠ for some common MDP classes in Section 4.1.

In addition, we need need to assume a bound on the dis-
agreement coefficient of the distribution induced by any
policy, which is a standard joint complexity measure of
both distribution and hypothesis class, and is used to de-
rive upper and lower bounds for active learning in bi-
nary classification (Hanneke, 2014). Formally, for any
h ∈ [H] and f, f ′ ∈ F , let Eh(f, f ′) denote the event that
f(sh, a) ̸= f ′(sh, a) for some a ∈ A. That is, Eh(f, f ′)
denotes the event that f and f ′ do not fully agree on the
safety of sh. Then, for any π ∈ Π, h ∈ [H], and r ≥ 0, we
define the pseudometric ρh,π on F and the corresponding
ball Bh,π(r) about f⋆ by

ρh,π(f, f
′) = Pπ(Eh(f, f ′))

Bh,π(r) = {f ∈ F : ρh,π(f, f
⋆) ≤ r} .

Then, for any π ∈ Π, h ∈ [H], and r0 ≥ 0, we define the
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disagreement coefficient θh,π(r0) by

θh,π(r0) = sup
r>r0

Pπ(∃f, f ′ ∈ Bh,π(r) : Eh(f, f ′))

r
.

Note that clearly by construction θh,π(r0) is non-increasing
in r0. Then, we require the following technical assumption.
Assumption 4. There exists some fixed dθ < ∞ such that
θh,π(0) ≤ dθ for all h ∈ [H] and π ∈ Πsafe.

Note that for some problems we may have θh,π(0) = ∞.
In this case, we can still obtain a similar PAC bound given a
complex technical condition in terms of the rate of growth
of θh,π(r) as r → 0, which we present in the appendix.
However, we focus here on using Assumption 4 instead
since it is much simpler and already covers many impor-
tant settings, such as linear classifiers with bounded density
(Hanneke, 2014). We also refer readers to Hanneke (2014)
for a detailed discussion of known results on disagreement
coefficients.

Given these assumptions, we are ready to present our main
theoretical result.
Theorem 2. Let dVC denote the VC dimension of F , and
let some ϵ, δ ∈ (0, 1) be given. Suppose we run the
SABRE algorithm with N = H , B = nB(ϵ,H, dΠ),
m = nm(ϵ, δ,H, dΠ, dθ, dVC), ϵexplore =

1
8H

−2ϵ, ϵR = 1
2ϵ,

δexplore =
1

4NB δ, and δR = 1
2δ, for some

nB = O
(
log(ϵ−1) log(H)dΠ

)
nm = O

(
ϵ−1 log(δ−1)H3 log(H)2d2θdVC

)
.

Then, under Assumptions 1 to 4, the returned policy π̂ sat-
isfies SubOpt(π̂; Πsafe) ≤ ϵ with probability at least 1− δ.

Ignoring log terms, it follows that the total sample com-
plexity (number of episodes) of our algorithm is at most

nsample = Õ
(
H4ϵ−1 log(δ−1)dΠd

2
θdVC

+HdΠnAlg(H
−2ϵ, δ)

)
.

Finally, under an additional event with probability at least
1 − δ, the number of calls to the labeling oracle with the
above settings is bounded by

nlabel = Õ
(
A log(ϵ−1) log(δ−1)H2dΠd

2
θdVC

)
.

Importantly, Theorem 2 tells us that although we require
a sample complexity that depends on ϵ and H by at least
Õ(ϵ−1H4) (possibly greater depending on the complexity
of the blackbox algorithm), the corresponding dependence
for the sampling oracle is much smaller at Õ(log(ϵ−1)H2).
This is very desirable compared with naive baselines,
which may require a number of labels on the same order
as the sample complexity. We also note that finite classes
F have VC dimension at most log2(|F|), so in the case that
F is finite we can replace dVC by log(|F|).

Proof Overview Here we provide a brief overview of the
proof of Theorem 2. Full proof details, along with a gen-
eralized result using a relaxed version of Assumption 4, as
discussed above, are provided in the supplement.

First, by Lemma 1 and the guarantees of the blackbox al-
gorithm, if we can ensure U(D(B)

N ) ≤ 1
2H

−1ϵ with proba-
bility at least 1 − 1

2δ, then we have SubOpt(π̂; Πsafe) ≤ ϵ
with probability at least 1−δ by a union bound. Therefore,
the proof focuses on establishing this bound.

Now, define

G(π;D) = 1

H

H∑
h=1

Pπ(∃a : sh ∈ RDa(D))

and ∆ = 1
4H

−3ϵ. Given Assumption 4, we show that
our choice of m ensures that, after rolling out with any
fixed π for m iterations to expand D to D′, we will have
G(π;D′) ≤ 1

2 max(∆, G(π;D)) with high probability.

Furthermore, given Assumption 3 and any fixed Π, if we
find π̂ such that G(π̂;D) ≥ supπ∈Π G(π;D)− 1

2∆ (which
is ensured by our choice of ϵexplore, since the expected sum
of rewards R̃(i)

n under π is given by HG(π;D(i)
n )) and ex-

pand D to D′ such that G(π̂;D′) ≤ 1
2 max(∆, G(π̂;D))

at least B times, then at end of the process we have
supπ∈Π G(π;D) ≤ ∆ with certainty. That is, putting the
above together, the inner loop of our algorithm ensures with
high probability that supπ∈Πn

G(π;D(B)
n ) ≤ ∆.

Finally, we show that after expanding D to D′ to ensure
that supπ∈Π(D) G(π;D′) ≤ ∆ at least H times, we are
ensured with certainty that at the end of this process we
have U(D) ≤ 1

2H
−1ϵ. This follows, intuitively, because

after repeating the above process h times, we will always
know safety values for the first h actions of any safe policy.

4.1 Examples

Finally we provide some examples that instantiate our the-
ory to some particular classes of MDPs. For each MDP
classM considered below we will provide a bound on dΠ,
an example blackbox algorithm Alg for this class, its sam-
ple complexity nAlg, and the corresponding sample com-
plexity of SABRE. We provide all of these bounds in Ta-
ble 1, and provide details on how the bounds on dΠ are
derived in the appendix.

Tabular MDPs Tabular MDPs is a simple MDP class
where S is finite, and no other structure is assumed. Let-
ting |S| = S, it is easy to show that dΠ ≤ S. In this
example, we consider the UCB-VI algorithm (Azar et al.,
2017), which is based on value iteration with an exploration
reward bonus, and is known to be minimax optimal for this
class. Note that Azar et al. (2017) only provided a regret
bound; we provide details of how we converted this to a
corresponding sample-complexity bound in the appendix.
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M dΠ bound Alg nAlg Corresponding SABRE sample complexity

Tabular MDP S UCB-VI Õ(H3SAϵ−2 log(δ−1)4) Õ(H8S2Aϵ−2 log(δ−1)4d2θdVC)

Block MDP S HOMER Õ(H4S8A4ϵ−2 log(δ−1)) Õ(H9S9A4ϵ−2 log(δ−1)d2θdVC)

Low NNR MDP dNNR Rep-UCB Õ(H5d4A2ϵ−2 log(δ−1)) Õ(H10d5A2ϵ−2 log(δ−1)d2θdVC)

Table 1: Summary of example instantiations of our theory for different MDP classes M, and corresponding blackbox
algorithms Alg. We consider UCB-VI (Azar et al., 2017), HOMER (Misra et al., 2020), and Rep-UCB (Uehara et al.,
2021). In each case we give a bounds dΠ, the nAlg, and the corresponding sample complexity of SABRE.

Block MDP Block MDP is an MDP class where S can be
general, but the transition dynamics are defined by an latent
tabular MDP. Specifically, the observed states are sampled
iid given the latent discrete state, and it is assumed that
the observed state distributions for each latent state do not
overlap.2 Let S denote the number of discrete latent states.
Then, it can be shown that we again have dΠ ≤ S. Here
we consider the HOMER algorithm of Misra et al. (2020),
which works by systematically exploring the latent state
space, while simultaneously learning a decoder to map ob-
served to latent states.

Low NNR MDP Finally, we consider the class of MDPs
with low non-negative rank (NNR). We define the NNR of
an MDP as the smallest integer dNNR such that the transition
operator can be written as

T (s′ | s, a) =
dNNR∑
z=1

P(z | s, a)P(s′ | z)

for some latent variable z ∈ [dNNR]. It can easily be shown
that this class generalizes both Block MDP and Tabular
MDP, and that we always have dΠ ≤ dNNR. For this ex-
ample we consider the Rep-UCB algorithm (Uehara et al.,
2021), which is an algorithm with an optimism-based ex-
ploration bonus, which simultaneously learns the low-rank
decomposition while exploring.

5 RELATED WORK

There has been a vast body of work on safe RL in re-
cent years; for an overview see for example Garcıa and
Fernández (2015), Gu et al. (2022), or Brunke et al.
(2022). Past work has considered many different ap-
proaches, including heuristic deep reinforcement learning
methods (Thomas et al., 2021; Luo and Ma, 2021), provid-
ing PAC bounds on both sample complexity and number
of safety violations (Ding et al., 2021; HasanzadeZonuzy
et al., 2021), safety in the context of transfer learning
(Srinivasan et al., 2020), safe offline RL (Amani and Yang,
2022), safe multi-agent RL (Lu et al., 2021), or providing
benchmark environments for safe RL (Ray et al., 2019).

2This ensures that the latent states are fully recoverable from
the observed states, and therefore the process is an MDP.

Within the vast body of work on safe RL, there is a sub-
area of particular relevance that focuses on guaranteeing
safety during all of training. One significant line of work
here focuses on the setting where the safety function is un-
known and numeric safety feedback is given, and work by
leveraging smoothness assumptions on the safety function
(Sui et al., 2015; Turchetta et al., 2016; Wachi et al., 2018;
Wachi and Sui, 2020; Cheng et al., 2019). However, these
papers require numeric feedback and deterministic state
transitions, and are limited to continuous control-like set-
tings. A related approach is taken by Berkenkamp et al.
(2017), who also consider a similar continuous control-like
setting, but define safety based on staying within the re-
gion of attraction of the system. A different line focuses
on settings where the safety function is known, with di-
verse approaches including safe versions of value and pol-
icy iteration (Chow et al., 2018), reducing to blackbox op-
timal control problems given differentiability of trajecto-
ries (Jin et al., 2021), or using MDP abstractions (Alshiekh
et al., 2018; Simão et al., 2021). However, these works are
not relevant when safety must be learned. Other works in
this sub-area include methods for low-rank MDPs with lin-
ear safety functions and numeric feedback (Amani et al.,
2021), settings with cost-based safety functions given a to-
tal safety budget (Huang et al., 2022), or using a human-in-
the-loop who can take control in real time (Saunders et al.,
2018; Turchetta et al., 2020; Peng et al., 2022). However,
these approaches all fail to meet our requirement of being
able to provably ensure safety during training given offline
binary feedback. Alternatively, Roderick et al. (2021) us-
ing “analogy” relationships to expand known sets of safe
state, action pairs, but this is limited to settings where such
a relationship is available. We also note that none of the
existing papers in this sub-area consider the problem of ac-
tively acquiring safety feedback, or minimizing the amount
of safety feedback required.

Another relevant subfield within safe RL considers the very
general constrained Markov decision (CMDP) setting (Alt-
man, 1999), where safety is defined by constraints on the
total accrued cost

∑H
h=1 c(sh, ah) given one or more cost

function c. These constraints may be e.g. bounds on the
expected total cost, high probability bounds on the total
cost, or other risk bounds on the distribution of the total
cost. Note also that cost function in general is unrelated to
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Figure 2: Left: Mean return of SABRE on the block MDP task. The red line shows the optimal return of 2.8. Middle:
Mean cumulative number of calls to the labeling oracle over episodes. Right: Mean cumulative number of unsafe actions
over episodes. For all plots the error bars correspond to the standard deviation over the 5 replications.

the reward function. Importantly, this is a very general set-
ting that can model binary safety feedback on state, action
pairs like we consider, and can even model high-probability
safety constraints on states alone rather than state, action
pairs (Wagener et al., 2021). There is a vast literature that
tackles this more general setting, with approaches based
on e.g. applying local policy optimization to the system’s
Lagrangian (Stooke et al., 2020; Chow et al., 2019; Ray
et al., 2019), or safe versions local policy search (Zhang
et al., 2020). Of particular interest, Cowen-Rivers et al.
(2022) provides a method inspired by active learning, but
unlike us they use active learning to generically encourage
exploration within the region currently known to be safe,
whereas we directly query labels for learning the safety re-
lation. However, although these methods generally try to
ensure safety during training, they do not actually provide
formal guarantees on this, and indeed in their presented re-
sults these methods make some safety violations. In addi-
tion, again, none of these works consider the problem of ac-
tively acquiring safety feedback, or minimizing the amount
of safety feedback required.

Finally, another relevant set of literature is on
disagreement-based active learning in the realizable
setting (Hanneke, 2014). In particular, both our algorithm
and analysis adopt ideas from the CAL algorithm of Cohn
et al. (1994), which is a simple approach that labels when-
ever we observe an input in the region of disagreement.
This algorithm was first formally analyzed by Balcan et al.
(2006), for agnostic active learning settings, and Hanneke
(2007) showed that its sample- and label-complexity can
be bounded in terms of the disagreement coefficient. In
addition, Hanneke (2011) establishes similar results for
the realizable setting. Other works related to this consider,
for example, bounding disagreement coefficients for
particular settings (for a detailed overview see Hanneke
(2014) and references therein), or providing lower and
upper bounds for the problem of realizable active learning
(Dasgupta, 2005; Balcan et al., 2007). However, these
works all consider standard binary classification settings
where data is sampled from a fixed distribution, rather

than RL settings where we would like to learn classifiers
(for safety) that are accurate under the state distributions
induced by a wide range of policies.

6 PROOF OF CONCEPT EXPERIMENTS

Finally, we provide some brief “proof of concept” ex-
periments to help highlight the correctness of our theory.
The focus here is to demonstrate that SABRE can achieve
near-optimal return in a reasonable number of episodes in
a non-trivial scenario, while never taking unsafe actions.
Code for fully reproducing our experiments is available at
https://github.com/CausalML/SABRE.

Environment We consider a particular Block MDP sce-
nario, which was introduced in Section 4.1. This sce-
nario has A = 4 actions, a time horizon of H = 5, and
S = 4H + 1 discrete latent states. The agent receives an
observed state s along with safety features ϕ(s, a) for ev-
ery action a. The underlying latent state space contains
four different paths the agent may take: an unsafe path
that the agent follows by taking unsafe actions; a high re-
ward path where the agent receives high rewards but learns
the safety features more slowly; a low reward path where
the agent receives low rewards but learns safety features
more quickly; and a safe path which the agent reaches by
following πsafe which is absorbing and gives no reward.
The idea of the scenario is that, to safely optimize reward
quickly, the agent should first follow the low-reward path
to learn the safety function quickly, rather than greedily try
to follow the high-reward path where the safety function is
learned more slowly. We provide full details of this envi-
ronment in the Appendix G.

Blackbox Algorithm We use Proximal Policy Optimiza-
tion as our blackbox RL algorithm Schulman et al. (2017).
PPO is a popular empirical RL method, and while not prov-
ably efficient, it is quite effective in practice for problems
that do not require strategic exploration. We describe the
specific details of our PPO implementation in Appendix G.

https://github.com/CausalML/SABRE
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Safety Class We let the safety class be given by F =
{sign(w⊤ϕ(s, a)) : ∥w∥∞ ≤ 1}. We note that check-
ing whether s ∈ RDa(D) for any (s, a), as required by
SABRE, can be reduced to solving linear programs. We
provide details of this in Appendix G.

Results We ran SABRE, implemented with the PPO
blackbox algorithm as discussed above on our Block MDP
environment, over a total of 7000 episodes. In addition, for
comparison we ran the PPO algorithm, directly optimizing
reward without any safety considerations. We note that al-
though the total number of episodes is the same for each
algorithm, SABRE spends the first 5500 episodes explor-
ing safety while ignoring return, the next 1000 episodes
optimizing return, and the final 500 episodes continuing to
roll out with the estimated optimal safe policy. In com-
parison, the unsafe PPO baseline spends all 7000 episodes
optimizing return. We repeated this over 5 random replica-
tions, and we present the results in Figure 2, with error bars
corresponding to the variance over these replications.

The left figure shows the episodic return against episodes
for both SABRE and PPO. In the case of SABRE, as ex-
pected, the agent initially receives negative reward as it ex-
plores the safety relation along the low reward path, and
then at the end once safety is approximately known it com-
putes a near-optimal policy. On the other hand, PPO takes
a more direct path, although they both end up with a simi-
larly optimal policy.

The middle figure shows the mean number of calls to the
labeling oracle over the same set of episodes. The total
number corresponds to only approximately 0.2% of the to-
tal number of state, action pairs encountered. This is very
encouraging, since although the block MDP environment
has a discrete latent state space, the actual state space is in-
finite, so there is no absolute maximum number of possible
calls to the safety oracle.

Next, on the right we plot the mean number of safety vio-
lations of the two methods. As expected, the unsafe PPO
baseline takes many unsafe actions, while SABRE never
takes any unsafe actions, as guaranteed by our theory.

Finally, we provide a more detailed presentation of results
in Appendix G. There, we provide similar results for a
range of different values on the number of iterations used
for safety exploration versus return optimization. In addi-
tion, we provide additional results for an implementation
of the naive baseline approach described in Section 3.1,
which greedily tries to optimize return using PPO while
only taking actions known to be safe, and labeling observed
states where safety is unknown at the same frequency as for
SABRE. In summary, we find that both SABRE and this
baseline approach perform very well in practice. However,
SABRE is better able to learn the safely function accurately
in fewer rounds of data collection for labeling, and conse-

quently obtain a near-optimal policy faster. This is consis-
tent with our theory, since unlike the baseline it can learn to
follow the low reward path where it learns safety functions
more quickly.

In summary, SABRE is able to achieve optimal return sim-
ilar to a standard PPO baseline, while taking no unsafe ac-
tions, and only making a tiny number of oracle calls. This
supports the theoretical findings described above.

7 CONCLUSION

We presented a novel algorithm, SABRE, which addresses
the problem of safe RL, where the safety function must be
learned via binary feedback that is actively acquired in be-
tween episodes. Under appropriate assumptions, SABRE
is guaranteed to return a policy that only takes safe ac-
tions, and to never take unsafe actions during training. In
addition, given access to a PAC blackbox RL algorithm
for optimizing arbitrary reward functions in the underly-
ing MDP class, it is guaranteed with high probability an
approximately-optimal safe policy with polynomial sam-
ple complexity. Furthermore, it only requires labels for a
relatively minimal number of state, action pairs, with a la-
bel complexity that scales in H2 log(ϵ−1) as opposed to a
sample complexity that scales in H4ϵ−1.

There are multiple avenues for future research. First, im-
proved concepts from realizable active learning could be
used to further reduce the label complexity of the algo-
rithm, by using a more sophisticated strategy rather than
always labeling states in the region of disagreement (Das-
gupta, 2005). Second, it is possible that an improved the-
oretical analysis could find settings under which the sim-
pler baseline approach described in Section 3.1 has some
provable guarantees. Indeed, it is apparent from the ad-
ditional experimental results in Appendix G that this can
be a strong algorithm, so it would be interesting to deter-
mine both whether it can obtain similar formal guarantees
to SABRE, and also whether this baseline approach has any
failure cases. Similarly, an improved theoretical analysis
could allow SABRE to be simplified or improved; for ex-
ample, it may be sufficient to have a single loop where the
policy class is updated every iteration, or it may be possible
to simultaneously perform reward optimization and safety
learning. Future work may also consider how to relax the
realizability assumption, and provide some kind of guar-
antees when function approximation is used to model f⋆.
This is important, since a major limitation of our work is
that the safety guarantees only hold as long as we satisfy
Assumption 2. In addition, it may consider how to imple-
ment SABRE with more complex choices of F than the
linear classes we considered in our experiments; for exam-
ple, it may consider classes defined by kernels or neural
nets. Finally, it would be exciting to see applications of our
theory to practical safety problems.



Provable Safe Reinforcement Learning with Binary Feedback

References

M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer,
S. Niekum, and U. Topcu. Safe reinforcement learning
via shielding. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 32, 2018.

E. Altman. Constrained Markov Decision Processes, vol-
ume 7. CRC Press, 1999.

S. Amani and L. F. Yang. Doubly pessimistic algorithms
for strictly safe off-policy optimization. In 2022 56th An-
nual Conference on Information Sciences and Systems
(CISS), pages 113–118. IEEE, 2022.

S. Amani, C. Thrampoulidis, and L. Yang. Safe reinforce-
ment learning with linear function approximation. In
International Conference on Machine Learning, pages
243–253. PMLR, 2021.

M. G. Azar, I. Osband, and R. Munos. Minimax regret
bounds for reinforcement learning. In International Con-
ference on Machine Learning, pages 263–272. PMLR,
2017.

M.-F. Balcan, A. Beygelzimer, and J. Langford. Agnostic
active learning. In Proceedings of the 23rd international
conference on Machine learning, pages 65–72, 2006.

M.-F. Balcan, A. Broder, and T. Zhang. Margin based ac-
tive learning. In International Conference on Computa-
tional Learning Theory, pages 35–50. Springer, 2007.

F. Berkenkamp, M. Turchetta, A. Schoellig, and A. Krause.
Safe model-based reinforcement learning with stability
guarantees. Advances in neural information processing
systems, 30, 2017.

L. Brunke, M. Greeff, A. W. Hall, Z. Yuan, S. Zhou,
J. Panerati, and A. P. Schoellig. Safe learning in robotics:
From learning-based control to safe reinforcement learn-
ing. Annual Review of Control, Robotics, and Au-
tonomous Systems, 5:411–444, 2022.

R. Cheng, G. Orosz, R. M. Murray, and J. W. Burdick.
End-to-end safe reinforcement learning through barrier
functions for safety-critical continuous control tasks. In
Proceedings of the AAAI Conference on Artificial Intel-
ligence, volume 33, pages 3387–3395, 2019.

Y. Chow, O. Nachum, E. Duenez-Guzman, and
M. Ghavamzadeh. A lyapunov-based approach to
safe reinforcement learning. In Proceedings of the
32nd International Conference on Neural Information
Processing Systems, pages 8103–8112, 2018.

Y. Chow, O. Nachum, A. Faust, E. Duenez-Guzman,
and M. Ghavamzadeh. Lyapunov-based safe policy
optimization for continuous control. arXiv preprint
arXiv:1901.10031, 2019.

D. Cohn, L. Atlas, and R. Ladner. Improving generalization
with active learning. Machine learning, 15(2):201–221,
1994.

A. I. Cowen-Rivers, D. Palenicek, V. Moens, M. A. Abdul-
lah, A. Sootla, J. Wang, and H. Bou-Ammar. Samba:
Safe model-based & active reinforcement learning. Ma-
chine Learning, 111(1):173–203, 2022.

S. Dasgupta. Coarse sample complexity bounds for active
learning. Advances in neural information processing sys-
tems, 18, 2005.

D. Ding, X. Wei, Z. Yang, Z. Wang, and M. Jovanovic.
Provably efficient safe exploration via primal-dual policy
optimization. In International Conference on Artificial
Intelligence and Statistics, pages 3304–3312. PMLR,
2021.

S. Du, A. Krishnamurthy, N. Jiang, A. Agarwal, M. Dudik,
and J. Langford. Provably efficient rl with rich observa-
tions via latent state decoding. In International Confer-
ence on Machine Learning, pages 1665–1674. PMLR,
2019.

R. M. Dudley. Universal donsker classes and metric en-
tropy. Annals of probability, 15(4):1306–1326, 1987.

J. Garcıa and F. Fernández. A comprehensive survey on
safe reinforcement learning. Journal of Machine Learn-
ing Research, 16(1):1437–1480, 2015.

S. Gu, L. Yang, Y. Du, G. Chen, F. Walter, J. Wang,
Y. Yang, and A. Knoll. A review of safe reinforce-
ment learning: Methods, theory and applications. arXiv
preprint arXiv:2205.10330, 2022.

S. Hanneke. A bound on the label complexity of agnostic
active learning. In Proceedings of the 24th international
conference on Machine learning, pages 353–360, 2007.

S. Hanneke. Rates of convergence in active learning. The
Annals of Statistics, pages 333–361, 2011.

S. Hanneke. Theory of active learning. Foundations and
Trends in Machine Learning, 7(2-3), 2014.

A. HasanzadeZonuzy, A. Bura, D. Kalathil, and
S. Shakkottai. Learning with safety constraints: Sam-
ple complexity of reinforcement learning for constrained
mdps. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 35, pages 7667–7674, 2021.

R. Huang, J. Yang, and Y. Liang. Safe exploration incurs
nearly no additional sample complexity for reward-free
rl. arXiv preprint arXiv:2206.14057, 2022.

W. Jin, S. Mou, and G. J. Pappas. Safe pontryagin differ-
entiable programming. Advances in Neural Information
Processing Systems, 34:16034–16050, 2021.

S. Lu, K. Zhang, T. Chen, T. Başar, and L. Horesh. De-
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A DISCUSSION OF PRACTICAL IMPLEMENTATIONS OF SABRE

A.1 Implementation of Blackbox RL Algorithm with Policy Constraints

One concern an astute reader may have about our requirement of the blackbox algorithm in Assumption 1 is that it not only
needs to be able to optimize any reward function, but it needs to be able to do so over any given policy set Π′, while only
taking actions in Π′. While this may seem like a major requirement and limitation, we explain here why this is not so, and
provide a general recipe for dealing with these constraints, as long as we can check whether any given action a is known
to be safe in any given state s given any safety-labeled dataset D.

First, note that the policy sets Π′ that we require Alg to be actually able to work with are all of the form Π(D). These all
look like Π, except with some constraints added on which actions are allowed in any given state (i.e. based on whether
or not that state, action pair is known to be safe or not given D). Now, for any given D, let us consider the MDP M(D),
which is defined identically to the actual MDP M , except whenever the agent would take an action a in state s that is not
known to be safe according to D the MDP transitions following T (· | s, πsafe(s)) rather than T (· | s, a). Next, note that if
we add a layer of abstraction between the agent and the MDP M , which checks any action the agent takes, and converts it
to πsafe(s) if it is not known to be safe, then interacting with M via this abstraction layer is equivalent to interacting with
M(D).

Now, let π⋆ be an ϵ-optimal policy over Π for M(D), and π̃⋆ be the policy given by following π⋆, and converting its action
to πsafe(s) whenever the action is not known to be safe given D. By construction, following π⋆ in M(D) is equivalent to
following π̃⋆ in M , and also by construction the optimal return in M over Π(D) is the same as the optimal return in M(D)
over Π. Therefore, it is clear that we have SubOpt(π̃⋆; Π(D)) ≤ ϵ. Furthermore, as long as the class Π is not defined in
some absurd or pathological way, we should have π̃⋆ ∈ Π, in which case we would also have π̃⋆ ∈ Π(D). That is, π̃⋆

would be an ϵ-optimal policy over Π(D) for M . Note that the above condition that π̃⋆ ∈ Π is trivial for example if Π
consists of all policies, or all deterministic policies.

Given the above reasoning, as long as the MDP M(D) is still within the classM, we can implement the blackbox algorithm
by estimating an ϵ-optimal policy for M(D) over Π(D), using the kind of abstraction layer discussed above. Since
M(D) ∈ M, the blackbox PAC guarantees of Assumption 1 will still apply to this estimation. The returned policy will
then correspond to an ϵ-optimal policy over Π(D), given by converting potentially unsafe actions to πsafe(s) as required.
That being said, this is not necessarily the best approach for implementing Alg, since optimizing over the duplicated πsafe(s)
actions may lead to both computational and statistical inefficiencies. More efficient implementations will be dependent on
M and the choice of blackbox algorithm (we discuss a particular case for a better implementation of PPO with arbitrary
Π(D) in our experimental details).

Finally, we note that the above argument relied on the assumption that M(D) was still in the class M, so the PAC
guarantees of the algorithm would still apply to M(D). This is definitely the case for all of the MDP classes considered in
Section 4.1. For example, in the case of low non-negative rank MDPs, the MDP M(D) will have non-negative rank less
than or equal to that of M . To see this, note that for any (s, a) that is known to be safe, we still have the decomposition
T (· | s, a) =

∑d
z=1 P(z | s, a)P′(· | z), for some P and P′ and for any (s, a) that is not known to be safe we have

T (· | s, a) =
∑d

z=1 P(z | s, πsafe(s))P′(· | z), which is a decomposition of the same rank. Similar logic easily extends to
Tabular and Block MDPs.

A.2 Implementation of Safety Checking

Next, we discuss how we can determine the possible safety of a given (s, a) pair given an arbitrary safety labeled dataset
D. Here we will focus on safety classes F that take the form F = {(s, a) 7→ sign(g(s, a)) : g ∈ G} for some base
numeric class G ⊂ S × A → R. Note that this is without loss of generality, since for any F ⊂ S × A → {±1} we have
F = {(s, a) 7→ sign(g(s, a)) : g ∈ F}. In general given F specified in such a way, we can reduce the problem of checking
the possible safety of (s, a) given D = {(s1, a1, c1), . . . , (sn, an, cn)} to computing the maximum and minimum possible
values of g(s, a) for g ∈ G such that g(si, ai)ci ≥ 0 for all i ∈ [n]. If both minimum and maximum are non-negative
then the action is known to be safe, if both are negative then the action is known to be unsafe, and otherwise we have
s ∈ RDa(D). We discuss below some specific cases of G where this is a tractable optimization problem.

First, we consider the case that G is a linear class. Specifically, suppose that G = {(s, a) 7→ w⊤ϕ(s, a) : ∥w∥∞ ≤ 1} for
some fixed embedding function ϕ : S×A → Rd, and some d ∈ N. In this case, the above safety checking problem reduces
to computing the maximum and minimum possible values of w⊤ϕ(s, a) such that w⊤ϕ(si, ai)ci ≥ 0 for all i ∈ [n], and
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−1 ≤ wj ≤ 1 for all j ∈ [d]. We note that this is a linear program with n+2d constraints and d variables. Therefore, with
linear G, checking safety reduces to linear programming. This is very appealing, since linear programming problems are
very quick and tractable to solve, which suggests that such linear classes with an appropriate embedding function may be
very practical.

For some scenarios, the above approach based on a linear safety class with a fixed embedding function may not be reason-
able. One approach in such settings may be to try to learn a safety features embedding function ϕ such that we can apply
this method. For example, we may try to learn ϕ to be able to linearly classify observed training data using deep learning.
We could then treat these learnt embeddings as the true ones, and hope that the class {sign(w⊤ϕ̂(s, a) ≥ 0 : ∥w∥∞ ≤ 1}
contains f⋆. Alternatively, we could be more robust by incorporating the error in these embeddings within our safety
class; for example, we could consider F = {sign(w⊤(ϕ̂(s, a) + g(s, a)) : ∥w∥∞ ≤ 1, ∥g∥ ≤ ϵ}, for some maximum ϵ
and norm on the error g. In the latter case, if we modeled the error by a reproducing kernel Hilbert space (RKHS), then
checking the safety of any (s, a) could be reduced to solving some quadratically constrained linear programs (QCLPs).
To see this, note that by the representer theorem, we can optimize over g of the form g(s, a) =

∑
i βiK((s, a), (si, ai))

without loss of generality, in which case ∥g∥2 = β⊤Lβ, where K is the kernel function and Li,j = K((si, ai), (sj , aj)).
Although quadratic programs are more expensive to solve than linear programs, this still may be a reasonable approach.
Alternatively, if we used a generic class for modeling the error g, such as neural networks, we may be able to solve the
corresponding min/max optimization problems using e.g. Lagrangian-based approaches.

An alternative to the above linear class would be to consider kernel-based classes, where G is a norm-constrained ball of
a reproducing kernell Hilbert space, which are much more expressive. If we use a universal kernel (such as the Gaussian
kernel), then this approach has a slight complication that all all possible labellings are feasible, so all points will always
be in the region of disagreement. Note that this is still an issue if we have a norm-constraint on G, since {(s, a) 7→
sign(g(s, a)) : ∥g∥K ≤ M ′} = {(s, a) 7→ sign(g(s, a)) : ∥g∥K ≤ M} for every M,M ′ ∈ (0,∞]; this latter fact follows
because sign(cg(s, a)) = sign(g(s, a)) for every c > 0. However, we could get around this by enforcing a minimum
margin size in the separation of the safe and unsafe points; that is, we could enforce that |g⋆(s, a)| ≥ 1 for all (s, a), for
some g⋆ such that sign(g⋆(·)) = f⋆(·) and ∥g⋆∥K ≤ M . Then, we can determine the possible safety of any (s, a) by
computing the minimum and maximum possible values of g(s, a) such that g(si, ai)ci ≥ 1 for all safety-labelled triplets
(si, ai, ci), and ∥g∥K ≤ M . Then, following the respresenter theorem, as described above, these min and max problems
reduce to QCLPs.

A.3 Additional Heuristics

Finally, we discuss some additional heuristics that may be useful for practical implementations of SABRE.

In the case that we use a class F such that safety checking reduces to solving some convex optimization problems, we
may apply some heuristics to reduce the number of such problems that need to be solved, or to simplify these problems.
As an example, we could justify that some new point (s, a) is known to be safe/unsafe by finding feasible dual solutions
to the max/min problems with the same sign; then, for example, if we cache previous dual solutions, then we could check
the sign/feasibility of these solutions first with the new (s, a) to possibly avoid re-solving. In addition, we may improve
scalability by identifying redundant labeled triplets (si, ai, ci) that do not change the set of feasible solutions, and removing
these; for example, it is easy to argue that if (si, ai) is not in the region of disagreement given all other labeled triplets,
then (si, ai, ci) is redundant. This may be helpful in reducing the number of constraints needed for solving the required
convex optimization problems. Also, when we are required to label a batch of (s, a) at each stage of the inner loop of our
algorithm, we may apply heuristics to decide what order to label these in, in order to maximize the chance that the safety
of later pairs becomes known during the labeling so fewer labels are needed.

In addition, we could apply heuristic methods for using classes F for which safety checking does not easily reduce to
solving some tractable convex optimization problems. For example, if we fit the function f⋆ based on the labeled data using
some generic class F and method that permits uniform confidence intervals, then we could decide on the possible values
of f⋆(s, a) based on the confidence interval of f̂(s, a). As another example, we could consider using ensemble methods
to estimate f⋆, and decide on the possible values of f⋆(s, a) based on the range of predictions within the ensemble. We
caution that such heuristic methods could represent a departure from our theory, and therefore our safety guarantees may no
longer hold. However, they may be practical and perform well, and the safety guarantees may still mostly hold in practice
if the heuristics are reasonably accurate.



Provable Safe Reinforcement Learning with Binary Feedback

B PROOF OF LEMMA 1

Proof. First, let some arbitrary π⋆ ∈ argmaxπ∈Πsafe
V (π) be given, and let us define a policy π̃(D) as follows:

• If sh /∈ RDa(D) for any a ∈ A, then π̃(D)(· | sh) = π⋆(· | sh)

• Otherwise, π̃(D)(· | sh) = πsafe(· | sh)

Note that by construction we have π̃(D) ∈ Π(D), since it only ever takes actions that are known to be safe given D. In
addition, let E denote the event where sh /∈ RDa(D) for any a ∈ A or h ∈ [H]. Note that under event E , it follows π̃(D)
takes actions identically to π⋆. Therefore, we have

SubOpt(π̃(D); Πsafe) ≤ HPπ̃(D)(¬E) ,

since the difference in the sum of rewards received between π⋆ and π̃(D) can never be greater than H . Furthermore, by
the definition of U(D) we have Pπ(¬E) ≤ U(D) for every π ∈ Πsafe, so therefore

SubOpt(π̃(D); Πsafe) ≤ HU(D) .

Then, given this, we can bound

SubOpt(π̂; Πsafe) = V (π⋆)− V (π̂)

= V (π̃(D))− V (π̂) + SubOpt(π̃(D); Πsafe)

≤ SubOpt(π̂; Π(D)) + SubOpt(π̃(D); Πsafe)

≤ SubOpt(π̂; Π(D)) +HU(D) ,

where the second equality follows by adding and subtracting V (π̃(D)) and plugging in the suboptimality definition, the
first inequality follows since π̃(D) ∈ Π(D) by construction, and the second follows from the previous bounds. This is our
required bound, so we can conclude.

C PROOF OF THEOREM 2

Before we present the main proof, we present some additional lemmas from which the proof can be built. In these lemmas,
we will define

RD(D) =
⋃
a∈A

RDa(D) ,

for every safety-labeled dataset D. Also, let

G(π;D) = 1

H

H∑
h=1

Pπ(sh ∈ RD(D)) ,

for any policy π and safety-labeled dataset D.

First, the following lemma provides a guarantee on the behavior of the inner loop of SABRE, as long as m is sufficiently
large.

Lemma 3. Let Assumption 3 be given. Suppose that for some given n ∈ [N ] in the execution of Algorithm 1, we have the
events

G(π̂(i)
n ;D(i−1)

n ) ≥ sup
π∈Πn

G(π;D(i−1)
n )− 1

2
∆ ∀i ∈ [B] , (1)

and
G(π̂(i)

n ;D(i)
n ) ≤ 1

2
max

{
∆, G(π̂(i)

n ;D(i−1)
n )

}
∀i ∈ [B] , (2)

for some ∆ ∈ (0, 1). In addition, suppose that B ≥ 8dΠ⌈log2(∆−1)⌉. Then, under these conditions, we are ensured that

sup
π∈Πn

G(π;D(B)
n ) ≤ ∆ .
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Next, the following lemma analyzes the outer loop of SABRE, under the assumptions and events detailed in Lemma 3.

Lemma 4. Suppose that the conditions of Lemma 3 holds for every epoch n ∈ [N ], with ∆ ≤ 1
2H

−2ϵ for some ϵ ∈ (0, 1
2 ).

Suppose also, that N ≥ H . Then, the final dataset D(B)
N satisfies

U(D(B)
N ) ≤ ϵ .

Next, we note that in order to apply the above lemmas, we need to be able to establish the conditions of Lemma 3. For (1),
we can rely on the guarantees of the blackbox algorithm Alg. However, for (2), we can instead appeal to an additional
lemma. For this lemma, we introduce the following assumption, which is a weaker version of Assumption 4.

Assumption 5. There exists some continuous, non-increasing function θ⋆ : R+ → R+ such that

θ⋆(r) ≥ θh,π(r) ∀r > 0, h ∈ [H], π ∈ Πsafe .

Furthermore, this function satisfies limr→∞ θ⋆(r)r =∞, and limr→0 rθ
⋆r = 0

Furthermore, we will define the function θmin : R+ → R+, according to

θmin(x) := inf
r>0:rθ⋆(r)≥x

θ⋆(r) .

We note that given Assumption 5, {r > 0 : rθ⋆(r) ≤ x} must be non-empty for every x > 0, so this is a well-defined
function. Also, we note that in the case that θ⋆(0) < ∞, we clearly have θmin(x) ≤ θ⋆(0) for every x > 0, since θ⋆ is
non-increasing.

Lemma 5. Let Assumption 4 be given. Consider some arbitrary n ∈ [N ] and i ∈ [B] in the running of Algorithm 1. Then,
as long as m ≥ nm(∆, θmin, dVC, δ,H), for some

nm(∆, θmin, dVC, δ,H) = O

(
∆−1θmin(∆/32)2dVC log(1/δ) log(H)

)
,

we have

G(π̂(i)
n ;D(i)

n ) ≤ 1

2
max

{
∆, G(π̂(i)

n ;D(i−1)
n )

}
,

with probability at least 1− δ.

Given the above lemmas, we can provide the main proof.

Proof of Theorem 2. First, we note that applying Lemma 5 with δ = δexplore and ∆ = 1
4H

−3ϵ, the corresponding choice of
m given by this lemma ensures that Lemma 5 holds at each iteration of the algorithm with probability at least 1− δexplore.
Then, applying a union bound over these NB events, we have that (2) holds for every n ∈ [N ] with probability at least
1− δ/4.

Next, given the guarantee of Alg, and the setting of ϵexplore and noting that HG(π;D(i−1)
n ) corresponds to the expected

sum of rewards policy π under R̃(i)
n , we are ensured with probability at least 1− δexplore

HG(π̂(i)
n ;D(i−1)

n ) ≥ sup
π∈Πn

HG(π;D(i−1)
n )− 1

8
H−2ϵ

⇐⇒ G(π̂(i)
n ;D(i−1)

n ) ≥ sup
π∈Πn

G(π;D(i−1)
n )− 1

2
∆ ,

at any given i ∈ [B] and n ∈ [N ]. Then, by a union bound over all NB calls to Algduring the exploratory loops of the
algorithm, and noting the value of δexplore, we have that (1) holds for every n ∈ [N ] and ∆ = 1

4H
−3ϵ with probability at

least 1 − δ/4. Then, as long as B is at least 8dΠ⌈log2( 14H
3ϵ−1)⌉, the conditions of Lemma 3 hold for every n ∈ [N ], so

by Lemma 4 we have

U(D(B)
N ) ≤ 1

2
H−1ϵ ,
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under the above high probability events. Then, by Lemma 1, we have

SubOpt(π̂; Πsafe) ≤ SubOpt(π̂; Π(D(B)
N )) +HU(D(B)

N )

≤ SubOpt(π̂; Π(D(B)
N )) +

1

2
ϵ .

Furthermore, following the high-probability guarantee of the final call to Alg, and the settings of ϵR and δR, we have

SubOpt(π̂; Π(D(B)
N )) ≤ 1

2
ϵ ,

with probability at least 1− δ/2. Then, combining the above three high probability events, and the previous two bounds, a
union bound gives us

SubOpt(π̂; Πsafe) ≤ ϵ ,

with probability at least 1− δ, as required.

Next, let us analyze the above choices of m and B. Plugging in the settings for N and B, the above choices of m and B
satisfy

m = O
(
ϵ−1H3 log(H)θmin(H

−3ϵ/128)2dVC log((δ/(4NB))−1)
)

= O
(
ϵ−1 log log(ϵ−1)H3 log(H)2 log log(H) log(dΠ)θmin(H

−3ϵ/128)2dVC log(δ−1)
)

= O
(
ϵ−1 log(ϵ−1)H3 log(H)3 log(dΠ)θmin(H

−3ϵ/128)2dVC log(δ−1)
)

and
B = O

(
log(ϵ−1) log(H)dΠ

)
.

Then, throwing away log-factors, and noting again that N = H , the total number of iterations is given by

nsample(ϵ, δ,H, dΠ, dθ, dVC) = NB
(
nAlg

(1
8
H−2ϵ, δ/(4NB)

)
+ Õ

(
ϵ−1H3θmin(H

−3ϵ/128)2dVC log(δ−1))
))

= Õ

(
HdΠ

(
nAlg(H

−2ϵ, δ) +H3θmin(H
−3ϵ/128)2dVC log(δ−1)

))
,

where in the second equality we apply the assumption that nAlg(ϵ, δ) is polynomial in ϵ−1 and log(δ), so therefore hiding
log terms we have nAlg(

1
4H

−3ϵ, δ/(4NB)) = Õ(nAlg(H
−3ϵ, δ)).

Next, let us analyze the number of calls to the labeling oracle. Following the proof of Lemma 5, for any given ∆, after
labeling at most k states for each h ∈ [H], for some

k = O(θmin(∆/32)2dVC log(δ−1) log(H)) ,

we are ensured that, with probability at least 1−δ, the probability of encountering additional sh ∈ RD(D) for each h ∈ [H]
is either reduced by a factor of 4, or that probability was already less than ∆/8. This implies that after at most

Õ(H log(∆−1)θmin(∆/32)2dVC log(δ−1)A)

queries to the labeling oracle in a given iteration, we are ensured that the probability of encountering sh ∈ RD(D) is at
mostO(∆) for every h ∈ [H], with probability at most 1− δ. Then, applying a union bound over the m rollouts in a single
iteration with ∆ = δ/m, after the above maximum number of

Õ(H log(m)θmin(δ/(32m))2dVC log(δ−1)2A)
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queries to the labeling oracle, we will make no further queries in that iteration with probability at least 1 − δ. Given this,
replacing δ in this bound with δ/(2NB), and applying a union bound over all iterations, with probability at most 1− δ we
make no more than

Õ(NBH log(m) log(NB)θmin(δ/(64mNB))2dVC log(δ−1)2A)

= Õ(H2 log(ϵ−1)dΠθmin(δ/64(NmB))2dVC log(δ−1)2A)

total calls to the labeling oracle.

Finally, we note that for the simplified version of the results presented in the main paper, we assumed that Assumption 4,
which is stronger than Assumption 5, and implies that we have θmin(x) ≤ dθ for all x > 0. Therefore, we can obtain the
result in the main paper by replacing θmin(·) with dθ everywhere.

D PROOFS OF ADDITIONAL LEMMAS

D.1 Proof of Lemma 3

Proof. First, for any i ∈ {0, 1, . . . , B}, let

µi = sup
π∈Πn

G(π;D(i)
n ) .

Under the events of the lemma statement, we will argue that

µ8dΠ+i ≤ max
{
∆,

1

2
µi

}
, (3)

for every i ≤ B − 8dΠ. Given this result the overall lemma easily follows, by chaining this result s times, where s =
⌈log2(∆−1)⌉. Under the assumption that B ≥ 8dΠs, and the fact that µi is non-increasing, this gives us µB ≤ µ8dΠs ≤
max{∆, 2−sµ0} ≤ ∆. Note that the last inequality follows since our choice of s satisfies 2−sµ0 ≤ ∆.

Now, let π̃1, . . . , π̃dΠ ∈ Πn be the policy cover of Πn ensured by Assumption 3. Note that for any π ∈ Πn and i ∈ [B],
we have

dΠ∑
k=1

(
G(π̃k;D(i−1)

n )−G(π̃k;D(i)
n )
)
=

dΠ∑
k=1

( 1

H
Pπ̃k

(sh ∈ RD(Di−1
n ) \ RD(Di

n))
)

≥ 1

H
Pπ(sh ∈ RD(Di−1

n ) \ RD(Di
n))

= G(π;D(i−1)
n )−G(π;D(i)

n )
)
,

where the first and last equalities follow because RD(D(i)
n ) ⊆ RD(D(i−1)

n ).

Next, let some arbitrary i ≤ B − 8dΠ be given, and suppose that (3) does not hold. Given this, it must be the case that
µi+j > ∆ for all j ∈ [8dΠ], so for the corresponding iterations (2) can be strengthened to

G(π̂(i+j)
n ;D(i+j)

n ) ≤ 1

2
G(π̂(i+j)

n ;D(i+j−1)
n ) ∀j ∈ [8dΠ] . (4)
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Then, for every j ∈ [8dΠ] we have

dΠ∑
k=1

(
G(π̃k;D(i+j−1)

n )−G(π̃k;D(i+j)
n )

)
≥ G(π̂(i+j)

n ;D(i+j−1)
n )−G(π̂(i+j)

n ;D(i+j)
n )

≥ 1

2
G(π̂(i+j)

n ;D(i+j−1)
n )

≥ 1

2
µi+j−1 −

1

4
∆

≥ 1

2
µi+8dΠ

− 1

4
∆

>
1

2
max

{
∆,

1

2
µi

}
− 1

4
∆

≥ 1

4
max

{
∆,

1

2
µi

}
≥ 1

8
µi ,

where the strict inequality step follows from the assumption that (3) doesn’t hold. Then, summing across j and noting that
this is a telescoping sum, we have

1

8
(8dΠ)µi <

dΠ∑
k=1

(
G(π̃k;D(i)

n )−G(π̃k;D(i+8dΠ)
n )

)
≤

dΠ∑
k=1

G(π̃k;D(i)
n )

≤ dΠ sup
π∈Πn

G(π;D(i)
n )

= dΠµi ,

But this is impossible, because we cannot have µi < µi. Therefore, we have proved by contradiction that (3) holds. Also,
since we argued the above for an arbitrary i ≤ B − 8dΠ, (3) must hold for every such i, so we are done.

D.2 Proof of Lemma 4

Proof. We will prove that under these conditions, we are ensured that

sup
π∈Πsafe

Pπ

(
∃h ∈ [n] : sh ∈ RD(D(B)

n )
)
≤ n

H
ϵ , (5)

for every n ∈ [H]. The required result then follows from this by plugging in n = H , since

U(D) = sup
π∈Πsafe

Pπ

(
∃h ∈ [H] : sh ∈ RD(D)

)
,

and because U(D(B)
N ); Πsafe) ≤ U(D(B)

H ), as we assumed N ≥ H .

In the remainder of this proof, we establish (5) for every n ∈ [H] by forward induction on n.

Base Case

First, for the base case, we note that after the first inner loop, by Lemma 3 we are ensured that

sup
π∈Π1

1

H

H∑
h=1

Pπ(sh ∈ RD(D(B)
1 )) ≤ 1

2H2
∆ ≤ 1

H2
∆ .
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Therefore, by simple algebra, for every π ∈ Π1 we have

Pπ(s1 ∈ RD(D(B)
1 )) ≤ 1

H
∆ .

Now, for any policy π, the distribution s1 is always the same (it is always equal to the initial state distribution), so therefore
the previous inequality is equivalent to

sup
π∈Πsafe

Pπ(s1 ∈ RD(D(B)
1 )) ≤ 1

H
∆ ,

which establishes the base case.

Inductive Case

Suppose that (5) holds for some arbitrary n− 1 ∈ [H − 1]. We will argue that it then holds for n. Now, let

π⋆ ∈ argmax
π∈Πsafe

Pπ

(
∃h ∈ [n] : sh ∈ RD(D(B)

n )
)
.

Also, let π̃ be some element of Πn that is defined identically to π⋆ at every sh such that sh /∈ RD(D(B)
n ), and is defined

arbitrarily otherwise. Also, let E denote the event that sh /∈ RD(D(B)
n ) for every h ∈ [n− 1]. Note that under event E, π⋆

and π̃ take identical actions at the first n− 1 time steps, so therefore the distribution of s1, . . . , sn conditional on E is the
same under π⋆ and π̂. Therefore, we can bound

Pπ⋆

(
∃h ∈ [n] : sh ∈ RD(D(B)

n )
)

= Pπ⋆(E)Pπ⋆

(
∃h ∈ [n] : sh ∈ RD(Dn) | E

)
+ Pπ⋆(¬E)Pπ⋆

(
∃h ∈ [n] : sh ∈ RD(Dn) | ¬E

)
≤ Pπ⋆(E)Pπ⋆

(
∃h ∈ [n] : sh ∈ RD(Dn) | E

)
+

n− 1

H
∆Pπ⋆

(
∃h ∈ [n] : sh ∈ RD(Dn) | ¬E

)
≤ Pπ̃

(
∃h ∈ [n] : sh ∈ RD(Dn) | E

)
+

n− 1

H
ϵ

≤
Pπ̃

(
∃h ∈ [n] : sh ∈ RD(Dn)

)
Pπ̃

(
E
) +

n− 1

H
ϵ

≤

∑t
h=1 Pπ̃

(
sh ∈ RD(Dn)

)
1− n−1

H ϵ
+

n− 1

H
ϵ

≤ 2
t∑

h=1

Pπ̃

(
sh ∈ RD(Dn)

)
+

n− 1

H
ϵ .

Note that in these bounds we apply the inductive assumption, which gives us

Pπ

(
¬E
)
= Pπ

(
∃h ∈ [n− 1] : sh ∈ RD(D(B)

n )
)

≤ Pπ

(
∃h ∈ [n− 1] : sh ∈ RD(D(B)

n−1)
)

≤ n− 1

H
ϵ ,

for every π ∈ Πsafe. Also, we apply the assumption that ϵ ≤ 1
2 , which gives us (1 − n−1

H ϵ)−1 ≤ 2, the fact that
Pπ̃(· | E) = Pπ⋆(· | E), and the fact that P(A | B) ≤ P(A)/P(B) for generic events A and B.
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Next, given the assumption that we satisfy the conditions of Lemma 3 with ∆ = 1
2H

−2ϵ, we have

sup
π∈Πn

1

H

H∑
h=1

Pπ

(
sh ∈ RD(D(B)

n )
)
≤ 1

2H2
ϵ .

This then implies that

n∑
h=1

Pπ

(
sh ∈ RD(D(B)

n )
)
≤ 1

2H
ϵ ,

for every π ∈ Πn.

Then, noting that by construction π̃ ∈ Πn, putting together the prior bounds gives us

Pπ⋆

(
∃h ∈ [n] : sh ∈ RD(D(B)

n )
)
≤ 1

H
ϵ+

n− 1

H
ϵ

≤ n

H
ϵ .

Finally, noting the definition of π⋆, the above is equivalent to

sup
π∈Πsafe

Pπ

(
∃h ∈ [n] : sh ∈ RD(D(B)

n )
)
≤ n

H
ϵ ,

which completes the inductive case.

D.3 Proof of Lemma 5

Proof. Let D be an arbitrary label dataset, π ∈ Π be an arbitrary policy to run, and D′ be the dataset that is obtained by
running π for m episodes, and for all encountered states sh labeling and adding to D all (sh, a) such that sh ∈ RDa(D). It
is sufficient to argue that, for any choice of D and π such that

G(π;D) ≥ 1

2
∆ , (6)

we have with probability at least 1− δ after performing the above process for m episodes that

G(π;D′) ≤ 1

2
G(π;D) .

In the remainder of the proof, we will consider an arbitrarily chosenD and π that satisfy (6), and we will reason about how
large m needs to be to ensure the above fact.

First, for every h ∈ [H] and safety labeled dataset D̃, let

µh(D̃) = Pπ(sh ∈ RD(D̃)) .

Note that according to this definition, we have G(π; D̃) = 1
H

∑H
h=1 µh(D̃). Now, even though (6) ensures that we can

bound µh(D) from below on average across h ∈ [H], there might be some h for which µh(D) is arbitrarily small, or even
zero. Therefore, it may be very inefficient or even infeasible to try to ensure that µh(D′) ≤ 1

2µh(D) simultaneously for
every h ∈ [H].

Instead, we will proceed by defining a target set H := {h ∈ [H] : µh ≥ 1
8∆} of time indices for which we would like to
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reduce µh(D). Suppose we were able to ensure that µh(D′) ≤ 1
4µh(D) for all h ∈ H. Then, we would have

1

H

H∑
h=1

µh(D′) ≤ 1

4

1

H

∑
h∈H

µh(D) +
1

H

∑
h/∈H

µh(D)

≤ 1

4

1

H

H∑
h=1

µh(D) +
1

8
∆

≤ 1

4

1

H

H∑
h=1

µh(D) +
1

4

1

H

H∑
h=1

µh(D)

=
1

2

1

H

H∑
h=1

µh(D) ,

where in the final inequality we apply (6). Therefore, if we were able to prove that

µh(D′) ≤ 1

4
µh(D) w.p. at least 1−H−1δ ∀h ∈ H , (7)

then our required result would follow by a union bound on h ∈ H. Therefore, in the remainder of the proof we will
consider an arbitrary h such that h ∈ H.

Next, let rh defined such that

rhθ
⋆(rh) =

1

4
µh(D) .

Note that by Assumption 5, rθ⋆(r) is continuous and non-decreasing in r with limr→0 rθ
⋆(r) = 0, and limr→∞ r⋆θ⋆(r) =

∞, so clearly such an rh must exist. Furthermore, given the condition on µh(D) we have rhθ
⋆(rh) ≥ 1

32∆, which allows
us to bound

θ⋆(rh) ≤ θmin(∆/32) .

Now, let PU
h,π denote the distribution of sh induced by π, conditional on sh ∈ RD(D). Given the above definitions, for any

given f /∈ Bh,π(rh), we can bound

PU
h,π(∃a : f(sh, a) ̸= f⋆(sh, a)) =

Pπ(∃a : f(sh, a) ̸= f⋆(sh, a))

µh(D)

≥ rh
µh(D)

=
1

4
θh(r

′
h)

−1

≥ 1

4
θmin(∆/32)−1 . (8)

Next, suppose we draw k iid samples s
(1)
h , . . . , s

(k)
h from PU

h,π , and let Fh = {f ∈ F : f /∈ Bh,π(rh)}. Now, suppose

further that it were the case that for every f ∈ Fh we had f(s
(i)
h , a) ̸= f⋆(s

(i)
h , a) for some i ∈ [k] and a ∈ A. If this

were the case, then by labeling these k points we would eliminate all hypotheses outside of Bh,π(rh). Therefore, letting
Dk denote the dataset obtained by labeling all of these points and adding them to D, we would have

µh(Dk) = Pπ(sh ∈ RD(V(Dk)))

≤ Pπ(sh ∈ RD(Bh(rh)))

≤ θh,π(rh)rh

≤ θ⋆(rh)rh

=
1

4
µh(D) ,

which is our required condition. Therefore, we can proceed by: (1) finding k such that the above occurs with probability
at least 1 − δ/(2H); and (2) finding m such that event sh ∈ RD(D) occurs at least k times with probability at least
1− δ/(2H). Then, applying a union bound we would be done. We will do these things one at a time.
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Finding sufficiently large k

First, let us define the following stochastic process indexed by F :

Gk(f) =
1

k

k∑
i=1

c(s
(i)
h , f)− EU

π,h[c(sh, f)] ,

where
c(s, f) = 1{∀a ∈ A : f(s, a) = f⋆(s, a)} .

Then, we have

sup
f∈Fh

1

k

k∑
i=1

c(s
(i)
h , f) ≤ sup

f∈Fh

EU
π,h[c(sh, f)] + sup

f∈Fh

Gk(f)

≤ 1− 1

4
θmin(∆/32)−1 + sup

f∈Fh

Gk(f) ,

where in the second inequality follows by applying (8). Furthermore, we have

sup
f∈Fh

Gk(f) ≤
(

sup
f∈Fh

Gk(f)− E[ sup
f∈Fh

Gk(f)]
)
+ E[ sup

f∈Fh

Gk(f)] ,

where E[supf∈Fh
Gk(f)] is the expected value of the random variable supf∈Fh

Gk(f) under the k iid draws from PU
π,h

(we will let this distribution be implicit in the rest of this sub-section of the proof). We will proceed by bounding these
two terms one by one. Specifically, under any event where both terms are at most 1

10θmin(∆/32)−1, we would have
supf∈Fk

Gk(f) ≤ 1
5θmin(∆/32)−1 < 1

4θmin(∆/32)−1. Therefore, we would have supf∈Fh

1
k

∑k
i=1 c(s

(i)
h , f) < 1, which

implies that for every f ∈ Fh we have f(s(i)h , a) ̸= f⋆(s
(i)
h , a) for some i ∈ [k] and a ∈ A, which is our required condition.

For the first of these terms, let s̃(1)h , . . . , s̃
(k)
h be an arbitrary sequence such that s̃(i)h = s

(i)
h for all i ̸= j, for some j ∈ [k].

Then, we can bound

sup
f∈Fh

1

k

k∑
i=1

c(s
(i)
h , f)− sup

f∈Fh

1

k

k∑
i=1

c(s̃
(i)
h , f)

≤ sup
f∈Fh

∣∣∣1
k

k∑
i=1

c(s
(i)
h , f)− c(s̃

(i)
h , f)

∣∣∣
=

1

k
sup
f∈Fh

∣∣∣c(s(j)h , f)− c(s̃
(j)
h , f)

∣∣∣
≤ 1

k
.

Therefore, we can apply the bounded differences inequality inequality to the first term, which gives us

sup
f∈Fh

Gk(f)− E[ sup
f∈Fh

Gk(f)] ≤
1

10
θmin(∆/32)−1 ,

with probability at least 1 − exp(−kθmin(∆/32)−2/50). We can ensure that this event occurs with probability at least
1− δ/(2H), by noting

exp(−kθmin(∆/32)−2/50) ≤ δ/(2H)

⇐⇒ k ≥ 50θmin(∆/32)2 log(2H/δ) .

Next, for the second term above, we will follow a standard symmetrization argument. Let ϵ1, . . . , ϵk be k iid Rademacher
random variables (random variables such that Prob(ϵi = 1) = Prob(ϵi = −1) = 1

2 for every i ∈ [k]). Also, let
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s̄
(1)
h , . . . , s̄

(k)
h be a collection shadow variables that are distributed independent from and identically to s

(1)
h , . . . , s

(k)
h . Then,

we have

E[ sup
f∈Fh

Gk(f)] = E
s
(1:k)
h ∼PU

π,h

[
sup
f∈Fh

1

k

k∑
i=1

c(s
(i)
h , f)− Esh∼PU

π,h
[c(sh, f)]

]

= E
s̄
(1:k)
h ∼PU

π,h

[
sup
f∈Fh

1

k

k∑
i=1

c(s̄
(i)
h , f)− Esh∼PU

π,h
[c(sh, f)]

]

≤ E
s
(1:k)
h ,s̄

(1:k)
h ∼PU

π,h

[
sup
f∈Fh

1

k

k∑
i=1

c(s̄
(i)
h , f)− 1

k

k∑
i=1

c(sh, f)

]

= E
s
(1:k)
h ,s̄

(1:k)
h ∼PU

π,h,ϵ1:k∼Unif(−1,1)

[
sup
f∈Fh

1

k

k∑
i=1

ϵi

(
c(s̄

(i)
h , f)− c(sh, f)

)]

≤ 2E
s
(1:k)
h ∼PU

π,h,ϵ1:k∼Unif(−1,1)

[
sup
f∈Fh

1

k

k∑
i=1

ϵic(s
(i)
h , f)

]
,

where the first inequality follows from Jensen’s, the subsequent equality follows by symmetry, and the final inequality
follows since sup(a+ b) ≤ sup a+ sup b, and since by symmetry on the definitions of ϵi, s

(i)
h , and s̄

(i)
h . Next, suppressing

the subscript in the expectation for brevity, we note that

2E

[
sup
f∈Fh

1

k

k∑
i=1

ϵic(s
(i)
h , f)

]
= 2E

[
sup
f∈Fh

1

k

k∑
i=1

ϵi1{∀a ∈ A : f(s
(i)
h , a) = f⋆(s

(i)
h , a)}

]

≤ 2E

[
sup
f∈Fh

1

k

k∑
i=1

ϵi1{f(s(i)h , a
(i)
h ) = f⋆(s

(i)
h , a

(i)
h )}

]

= E

[
sup
f∈Fh

1

k

k∑
i=1

ϵi

(
21{f(s(i)h , a

(i)
h ) = f⋆(s

(i)
h , a

(i)
h )} − 1

)]

= E

[
sup
f∈Fh

1

k

k∑
i=1

ϵif(s
(i)
h , a

(i)
h )

]
,

where the inequality step follows because∣∣∣1{∀a ∈ A : f(s
(i)
h , a)) = f⋆(s

(i)
h , a)}

∣∣∣ ≤ Ea∼P

[∣∣∣1{f(s(i)h , a)) = f⋆(s
(i)
h , a)}

∣∣∣] ∀ P ,

and also by applying Jensen’s inequality, the second equality follows because E[
∑k

i=1 ϵi] = 0, and the final equality
follows because 21{f(s, a)) = f⋆(s, a)} − 1 = f(s, a)f⋆(s, a), and by symmetry ϵif

⋆(s
(i)
h , a

(i)
h ) and ϵi are identically

distributed for each i ∈ [k].

Next, note that the final bound is the Rademacher complexity of Fh (under some distribution of state, action pairs). Since
by assumption F has VC dimension at most dVC, so does Fh, so by Rebeschini (2020, Theorem 5.6) we have

E

[
sup
f∈Fh

1

k

k∑
i=1

ϵif(s
(i)
h , a))

]
≤ C

√
dVC

k
,

for some universal constant C, regardless of the distribution over state, action pairs. Therefore, we have

E
[
sup
f∈Fh

Gk(f)
]
≤ C

√
dVC

k
,

so we can ensure that E[supf∈Fh
Gk(f)] ≤ 1

10θmin(∆/32)−1 as long as

k ≥ 100C2θmin(∆/32)2dVC .
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Therefore, putting the above together, as long as

k ≤ max
(
50θmin(∆/32)2 log(2H/δ), 100C2θmin(∆/32)2dVC

)
≤ 50θmin(∆/32)2(2C2dVC + log(2H/δ)) ,

then both bounds hold with probability at least 1 − δ/(2H), and therefore we have our required event that every f ∈ Fh

disagrees with f⋆ on at least one of the sampled states s(i)h with this probability.

Finding sufficiently large m

Next, for our target value of k samples from P, the the remaining question is how large does m need to be to ensure we
have at least k samples of sh where sh ∈ RD(D), with probability at least 1− δ/(2H)? We know that for sampled sh, this
event occurs with probability at least ∆/8 by the construction ofH.

Now, suppose we set m = k(∆/8)−1 + t for some t ≥ 0, and let X1 . . . , Xm be a set of iid {0, 1}-valued random variable
such that Prob(Xi = 1) = ∆/8 for each i ∈ [m]. Also, let X̄ =

∑m
i=1 Xi. Applying Bernstein’s inequality, we have

Prob(X̄ ≤ k) = Prob(X̄ − E[X̄] ≤ −t∆/8)

≤ exp

(
−

1
2 t

2(∆/8)2

m(∆/8)(1−∆/8) + 1
3 t∆/8

)
.

Now, in order to ensure that this probability is smaller than δ/(2H), it is sufficient to solve

exp

(
−

1
2 t

2(∆/8)2

m(∆/8)(1−∆/8) + 1
3 t∆/8

)
= δ/(2H)

⇐⇒ 1

2
(∆/8)2t2 − (4/3−∆/8)(∆/8) log(2H/δ)t− (1−∆/8) log(2H/δ)k = 0 .

Now, letting t+ be the greater solution of this quadratic equation,

t⋆ =
(4/3−∆/8)(∆/8) log(2H/δ)

(∆/8)2

+

√(
(4/3−∆/8)(∆/8) log(2H/δ)

)2
+ 2(∆/8)2(1−∆/8) log(2H/δ)k

(∆/8)2

≤ 2(4/3−∆/8)(∆/8)−1 log(2H/δ) + (∆/8)−1
√

2(1−∆/8) log(2H/δ)k

≤ 3(∆/8)−1 log(2H/δ)
√
k ,

where in the first inequality we apply apply the fact that
√
a+ b ≤

√
a+
√
b for a, b > 0, and in the second inequality we

note that ∆/8 ≤ 1/3 for any ∆ ∈ (0, 1), so (4/3−∆/8) ≤ 1, and 2(1−∆/8) ≤ 1.

Finally, we note that since the probability that sh ∈ RD(D) is at least ∆/8, the probability that we have fewer than k
successes in m samples is no greater than Prob(X̄ ≤ k), and therefore from the above bounds any choice of

m ≥ (∆/8)−1
(
k + 3 log(2H/δ)

√
k
)

is sufficient to ensure that this probability is at most δ/(2H).

Putting Everything Together

Given the analysis, if we set

k ≥ 50θmin(∆/32)2
(
2C2dVC + log(2H/δ)

)
and m ≥ 8∆−1

(
k + 3 log(2H/δ)

√
k
)
,
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then our required result is ensured with probability at least 1− δ.

We note that this setting of m satisfies the growth bound

m = Θ

(
∆−1θmin(∆/32)2dVC log(1/δ) log(H)

)
,

which is our required result.

E DERIVATIONS OF POLICY COVER DIMENSION BOUNDS

Here we provide the derivations of our policy cover dimension bounds given in Section 4.1.

Tabular MDP Let some policy class Π′ be given, and assume the MDP has S total states, and denote these by S1, . . . ,SS .
Then, for each i ∈ [d], we define the policy πi ∈ Π′ accoding to

πi = argmin
π∈Π′

Eπ

[ H∑
h=1

1{sh = Si}
]
.

That is, πi is the optimal policy in Π′ for the reward function given by reaching the i’th state. Now, let some arbitrary
subset S̃ ⊆ S, and arbitrary π ∈ Π be given. Then, we have

1

H

H∑
h=1

Pπ(sh ∈ S̃) ≤ 1

H

H∑
h=1

∑
s∈S̃

Pπ(sh = s)

≤ 1

H

H∑
h=1

S∑
i=1

Pπ(sh = Si)

=

S∑
i=1

Eπ

[ 1
H

H∑
h=1

1{sh = Si}
]

≤
S∑

i=1

Eπi

[ 1
H

H∑
h=1

1{sh = Si}
]
.

Since the above holds for arbitrary S̃ and π, we have that {π1, . . . , πS} is a policy cover for Π′. That is, we always have a
policy cover of size at most S, so dΠ ≤ S.

Block MDP and Non-negative Rank MDP The reasoning here in both cases is similar to the tabular MDP case. In
both cases, we can model the MDP as transitioning from (s, a) to an intermediate discrete latent state z following some
distribution P(· | s, a), and then sampling the next state s′ following another distribution P′(· | z). Let d be the number
of discrete latent states, which corresponds to S for Block MDP and dNNR for Non-negative Rank MDP in terms of our
notation in Section 4.1. Also, for each h ∈ [h], let zh denote the discrete latent state that generated sh at time h, and let
Z1, . . . ,Zd denote the possible values of z. Then, following analogous reasoning as above, define

πi = argmin
π∈Π′

Eπ

[ H∑
h=1

1{zh = Zi}
]
,
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for some given policy class Π′ Also, let some arbitrary measurable S̃ ⊆ S be given, along with some arbitrary policy
π ∈ Π′. Then, we have

1

H

H∑
h=1

Pπ(sh ∈ S̃) =
1

H

H∑
h=1

d∑
i=1

Pπ(zh = Zi)P′(S̃ | z = Zi)

=
d∑

i=1

P′(S̃ | z = Zi)Eπ

[ 1
H

H∑
h=1

1{zh = Zi}
]

≤
d∑

i=1

P′(S̃ | z = Zi)Eπi

[ 1
H

H∑
h=1

1{zh = Zi}
]

=
1

H

H∑
h=1

d∑
i=1

Pπi
(zh = Zi)P′(S̃ | z = Zi)

≤
d∑

i=1

1

H

H∑
h=1

d∑
j=1

Pπi
(zh = Zj)P′(S̃ | z = Zj)

=

d∑
i=1

1

H

H∑
h=1

Pπi(sh ∈ S̃) ,

where the the above bounds we apply the fact that the distribution P′ for generating s given z does not depend on either the
policy or h, and the second inequality follows because we are just introducing additional non-negative summands. That is,
we always have a policy cover of size d, so the policy cover dimension is at most d. So, for Block MDP we have dΠ ≤ S,
and for Low Non-negative Rank MDP we have dΠ ≤ dNNR.

F TABULAR MDP SAMPLE COMPLEXITY BOUND

The actual bound available in Azar et al. (2017) is a regret bound. Given N total episodes, as long as N is sufficiently large
(specifically, if N ≥ S3A), and H ≤ SA (which is reasonable in non-trivial settings) they bound the total regret by

Regret(N) ≤ Õ
(√

H3SAN log(δ−1)2
)
,

with probability at least 1 − δ. Now, suppose we run UCB-VI over N total episodes, for large N , and let π̂ denote the
average policy over all these episodes. Then, under the same high-probability event, the suboptimality of this average
policy must be bounded by Regret(N)/N . That is,

SubOpt(π̂; Π) ≤ Õ

(
log(δ−1)2

√
H3SA

N

)
.

Now, suppose we wish the sub-optimality to be bounded by some given ϵ ∈ (0, 1). Then solving for N , this corresponds
to

Õ

(
log(δ−1)2

√
H3SA

N

)
≤ ϵ

⇐⇒ N ≥ Õ
(
H3SAϵ−2 log(δ−1)4

)
,

which is our presented sample complexity.

G EXPERIMENTAL DETAILS AND ADDITIONAL EXPERIMENTS

We show the promise of SABRE on a rich observation MDP setting called Block MDP Du et al. (2019); Misra et al. (2020).
In this setting, the agent receives observations generated from a latent state. Further, no two states can generate the same
observation. This is an expressive MDP setting which can capture non-trivial practical problems. Our goal is to discuss
the implementation details for SABRE and show that it can achieve optimal return, while not taking unsafe actions, and
minimizing the calls to safety oracle. Note that all details of our environment and methodology will also be available in
our code release, which can be used to fully reproduce all of our results, which is currently withheld to preserve anonymity
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Environment. For a given horizon H , an instance of the environment has 4H + 1 states and K = 4 actions. One of the
action is a known safe action asafe. These states are labeled as S = {s1,0} ∪ {si,h}i∈[4],h∈[H]. For a state si,h, the index
i denotes its type and h denotes the level. We view states with index i ∈ {1, 2} as normal states, while states index i = 3
are considered safe states and those with i = 4 are unsafe states. The agent never observes the state but instead receives
an observation x ∼ q(· | x) generated by an emission process q. The rich-observation setting implies that no two different
states can generate the same observation.

The agent starts deterministically in s1,0. All latent state transitions occur deterministically. After taking h actions, the
agent is in one of these four states: {sj,h}j∈[4]. Each environment instance has two action sequences (a1, · · · , aH) and
(a′1, · · · , a′H) with ah ̸= a′h, ah ̸= asafe and a′h ̸= asafe, for all h ∈ [H]. We view the a′h as the unsafe action and ah as the
continue action for time step h.

For any i ∈ {1, 2} and h ∈ [H], transitions in the normal state si,h operate as follows: taking the continue action ah leads
to the next normal state si,h+1 of same type, taking asafe leads to the safe state s3,h+1, taking the unsafe action a′h leads
to the unsafe state s4,h+1, while the remaining action leads to the normal state normal state s3−i,h of the other type. All
actions in the safe state s3,h leads to the next safe state s3,h+1. Finally, in the unsafe state s4,h, taking any action except
asafe leads to the next unsafe state s4,h+1, while taking asafe leads to the safe state s3,h+1.

For a given transition (s, a, s′), the reward function R(s, a, s′) depends only on s′. For s′ = si,h, the reward r is defined
as follows: if i = 1 and h < H , then r = 1/H; for i = 1 and h = H + 1, r = 2.0, if i = 2 then r = −1, if i = 3 then
r = 0 and if i = 4 then -1. The optimal return of 2.8 is achieved by staying on states with index 1.

An observation is stochastically generated from a state si,h each time the agent visits the state. This is done by first
concatenating two 1-sparse vectors encoding i and h, and adding independent Gaussian noise to each dimension sampled
from a 0 mean and 0.1 standard deviation. Let the resultant vector be z′ and it has H + 5 dimensions (4 dimensions to
to encode i and H + 1 dimensions to encode h). We concatenate z′ with a 0 vector of size 2log2⌈H+5⌉ − (H + 5). Let z
be the final vector and its dimensionality is given by k = 2log2⌈H+5⌉. The observation is generated by multiplying z with
a Hadamard matrix of size k × k in order to mix its dimensions. We use Sylvester’s construction to create a Hadamard
matrix Hk of size k × k. This is an inductive approach that works for k = 2l for some l ∈ N. It defines H1 = [1] and

H2n =

[
Hn Hn

Hn −Hn

]
for every n ∈ N. We borrowed the observation process from Misra et al. (2020).

In addition to the observation, the agent receives (H + 1)B-dimensional safety features {ϕ(s, a)}a∈A for every action
upon visiting a state. We assume that the safety function f⋆ is given by f⋆(s, a) = wTϕ(s, a) + b for some unknown
(w, b). In practice, these safety features can include readings from various safety devices attached to an agent (such as
a LIDAR sensor, or temperature readings) which can be different from observation (e.g., camera image) which is used
for dynamics. The agent receives a constant safe and unsafe feature for all states of type 3 and 4. States of type 2, have
variance in safety features along all dimensions. Vising these states can help us learn safety function faster, but this comes
at the cost of a negative reward associated with visiting these states. Finally, a state s1,h only have variance in safety
features along the {(hB + 1, · · · , hB + 1} dimensions. Visiting s1,h gives higher reward but reveals the safety features
more slowly. Therefore, an optimal agent must balance between optimizing reward and minimizing safety oracle calls by
exploring safety features quickly.

SABRE Implementation. We use Proximal Policy Optimization (Schulman et al., 2017) (PPO) as our blackbox RL
algorithm. PPO is a popular empirical RL method and while not a PAC RL algorithm, is quite effective in practice for
problems that do not require strategic exploration. We define the policy class Π and the value network in PPO using a
two-layer feed forward neural network with Leaky ReLU non-linearity.

We implement queries to region of disagreement by reducing it to linear programming. Formally, given a safety labeled
dataset D = {(ϕ(si, ai), yi)}ni=1, we solve for whether ϕ(s, a) is in RDa(D), by first returning False if a = asafe, and
otherwise, solving the following two linear programs to compute the value of cmax and cmin:

cmax =max
w,b

wTϕ(s, a) + b, such that,

∀i ∈ [d], yi(w
Tϕ(si, ai) + bi) ≥ 0,

∥w∥∞ ≤ 1, |b| ≤ 1.
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and

cmin =min
w,b

wTϕ(s, a) + b, such that,

∀i ∈ [d], yi(w
Tϕ(si, ai) + bi) ≥ 0,

∥w∥∞ ≤ 1, |b| ≤ 1.

The given feature ϕ(s, a) is in RD(D) if and only if either cmax ≥ 0 and cmin < 0, or cmax > 0 and cmin ≤ 0.

We implement Π(D) by mapping each policy π ∈ Π to a known safe policy πD and defining Π(D) = {πD | π ∈ Π}. Let
(s, a) ∈ SurelySafe(D) denote set membership in the set of surely safe state-action pairs. We define πD given π as

πD(a | s) =
1 {(s, a) ∈ SurelySafe(D)}π(a | s)∑

a′∈A 1 {(s, a′) ∈ SurelySafe(D)}π(a′ | s)
.

When the agent visits a state s, we allow the agent to receive the safety features for all actions {ϕ(s, a′)}a′∈A. We test for
set membership (s, a) ∈ SurelySafe(D) by first returning True if a = asafe, and otherwise, solving the linear programs
described above using the feature ϕ(s, a) and returning True if and only if cmax ≥ 0 and cmin ≥ 0.

Our implementation of SABRE closely follows Algorithm 1. One notable departure for efficiency is that we update the
region of disagreement incrementally, rather than in batch.

Hyperparameters. We list hyperparameters that we use for SABRE for Table 2 and for the PPO baseline in Table 3. Note
that we do not provide explicit values for the hyperparameters ϵexplore, ϵR, δexplore, and δR in SABRE. Instead, in practice
these are implicitly determined by the other hyperparameters relating to the PPO blackbox algorithm. For example, the
greater the total number of iterations of PPO is, the stronger guarantees we can make for the algorithm with respect to
ϵ and δ; i.e. the greater the number of iterations, the smaller the implicit ϵ and δ are. The hyperparameters N , B, and
m in Table 2 correspond to those in Algorithm 1. The remaining hyperparameters in Table 2 are for the PPO blackbox
algorithm, which are the same as the hyperparameters used by the unsafe PPO baseline that are listed in Table 3. Note that
we use the same hyperparameter values for the PPO blackbox algorithm both when it is called on line 6 for safety learning,
or line 9 for return optimization, in Algorithm 1. The hyperparameters used by PPO are the following:

• Iterations of PPO denotes the number of episodes used by each call to the PPO. Note that each time we call PPO in
Algorithm 1 we start with a randomly initialized policy.

• Gradient Clip Is a maximum absolute value of all gradients for PPO updates; any gradients with absolute values above
this threshold are clipped, which helps regularize and avoid extreme updates.

• Number of PPO Updates refers to the number of iterations of gradient descent optimization that we perform for each
sampled batch. We use Adam optimization for training the policy parameters.

• Ratio clipping coefficient is a parameter used by PPO to control probability ratios, and limit how much the policy can
change in each update.

• Entropy coefficient is the coefficient of entropy regularization for PPO, which encourages greater exploration and
helps avoid convergence to a sub-optimal deterministic policy.

G.1 Additional Experiments

We also compare SABRE with a baseline SABRE-RO, which is based on the naive baseline algorithm described in Sec-
tion 3.1. Like SABRE, SABRE-RO only ever takes actions that are known to be safe. In addition, to make the comparison
fair, it labels data offline in batches at the same frequency as SABRE. However, instead explicitly exploring safety to di-
rectly learn f⋆, it greedily tries to optimize return following the PPO algorithm (under the safety constraint). Specifically,
each time it labels data, it sequentially labels (s, a) for all previously observed s and a ∈ A where s ∈ RDa(D), updating
D after each call to the labeling oracle. We compare each method for various values of N and m.
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Hyperparameter Value
N 5
B 1
m 100

Iterations of PPO 1000
Learning Rate 0.001

Batch Size 32
Gradient Clip 20

Number of PPO Updates 10
Ratio Clipping Coefficient 0.1

Entropy Coefficient 0.01

Table 2: Hyperparameters for SABRE

Hyperparameter Value
Iterations of PPO 6500

Learning Rate 0.001
Batch Size 32

Gradient Clip 20
Number of PPO Updates 10

Ratio Clipping Coefficient 0.1
Entropy Coefficient 0.01

Table 3: Hyperparameters for PPO

Results . We present mean return and cumulative oracle calls in Figure 3. We observed that SABRE-RO optimizes the
environment reward which doesn’t lead to the negative reward that SABRE accumulates early in the training. Further, if
we consider the goal of achieving at least a return of 1.9 which is 1/2 the optimal return of 2.8, then SABRE achieves
this for N = 2 and m = 100, with least number of oracle calls of around 70. This is possible since SABRE can quickly
learn the safety function by reaching the safe but low reward path, and then using it to optimize the environment reward.
However, overall SABRE-RO is a strong baseline and almost as competitive as the SABRE. We leave a more detailed
study and questions of lower bound for passive safety learning for future work.
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(a) Mean return for N = 2 and m = 40 (b) Oracle calls for N = 2 and m = 40

(c) Mean return for N = 2 and m = 100 (d) Oracle calls for N = 2 and m = 100

(e) Mean return for N = 5 and m = 40 (f) Oracle calls for N = 5 and m = 40

(g) Mean return for N = 5 and m = 100 (h) Oracle calls for N = 5 and m = 100

Figure 3: Comparison of SABRE with a baseline SABRE-RO that only optimizes environment reward. Left: Shows the
moving average of episodic return during training. Red dashed line denotes the optimal return V ⋆ = 2.8. Right: Shows
the cumulative calls to the safety oracle made during training for various values of N and m. SABRE-RO only optimizes
reward and labels state action pairs sampled from the learned policy’s episode in the region of disagreement.
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