
Beyond Black-Boxes: Teaching Complex Machine Learning Ideas through
Scaffolded Interactive Activities

Brian Broll1 and Shuchi Grover2

1Vanderbilt University
2Looking Glass Ventures

brian.broll@vanderbilt.edu, shuchig@cs.stanford.edu

Abstract

Existing approaches to teaching artificial intelligence and ma-
chine learning (ML) often focus on the use of pre-trained
models or fine-tuning an existing black-box architecture. We
believe ML techniques and core ML topics, such as opti-
mization and adversarial examples, can be designed for high
school age students given appropriate support. Our curricular
approach focuses on teaching ML ideas by enabling students
to develop deep intuition about these complex concepts by
first making them accessible to novices through interactive
tools, pre-programmed games, and carefully designed pro-
gramming activities. Then, students are able to engage with
the concepts via meaningful, hands-on experiences that span
the entire ML process from data collection to model optimiza-
tion and inspection. This paper describes our AI & Cyberse-
curity for Teens suite of curricular activities aimed at high
school students and teachers.

Introduction

By 2024, more than eight billion AI-powered digital voice
assistants (a number roughly equal to the world’s

population) will be in use globally (Thormundsson 2022).

There is growing recognition of the need to teach about
artificial intelligence and machine learning (AI/ML) at the
school level in light of the meteoric growth in the range
and diversity of application of machine learning (ML) in
all industries and everyday consumer products (Royal So-
ciety (Great Britain) 2017; Touretzky et al. 2019b). Efforts
to bring AI, especially ML, are being propelled by efforts
such as AI4K12 (Touretzky et al. 2019a) and technologi-
cal developments that allow sophisticated ML models to be
run in a web browser making these tools readily available
to learners of all ages. While these efforts span a variety of
learning goals captured by the AI4K12 “big ideas” frame-
work (Touretzky et al. 2019a), many focus on ML and intro-
duce the ideas surrounding ML, and give students a sense of
ML modeling techniques such as classifiers and neural net-
works through the use of examples and extant pre-trained
models and tools such as Google’s Quick, Draw!, Teach-
able Machine, and Tensorflow Playground. The goal in our
project is to take these learning experiences a step further

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and help secondary students build deeper understanding of
how AI/ML techniques work and how the machine actually
“learns”. Our innovation lies in resolving the challenge of
making concepts that involve complex mathematics acces-
sible to students that have not yet learnt those mathematical
ideas. Through making real-world connections along with
the interplay of mathematics apparent in learner-friendly
ways, we contend that students will build deeper and bet-
ter intuitions of ML techniques. We believe that such deeper
understanding also aids a more meaningful interrogation of
critical issues such as ethics and bias in AI/ML. We draw in-
spiration from Bruner, “any subject can be taught effectively
in some intellectually honest form to any child at any stage
of development.” (Bruner 1960) and past work in turtle ge-
ometry by pioneers such as Abelson and diSessa that made
sophisticated ideas in mathematics and physics accessible to
young learners through leveraging multiple representations
and programming (Abelson and DiSessa 1986).

In this paper, we describe our AI & Cybersecurity for
Teens (ACT) sequence of curricular activities for high school
classrooms that introduce key AI/ML ideas and techniques
such as rule-based AI, classification, decision trees, opti-
mization, gradient descent, neural networks, and adversarial
examples through a range of programming activities in Nets-
Blox (Broll et al. 2017, 2021)—an extension of the block-
based programming environment Snap! that includes fea-
tures for easy distributed computing—that help build intu-
itions and understanding through increasingly deeper levels
of engagement with ML algorithms and code. Although stu-
dents engage in playful explorations through designed non-
programming and digital games as well as existing interac-
tive tools as in existing efforts, our activities use these as
a gateway to actually lifting the hood on how such models
are coded. Our exploratory work involved getting feedback
from high school teachers who were trained on these activ-
ities through two workshops. Teacher feedback has helped
refine these activities. Our next steps involve getting feed-
back from classroom use by our participating teachers. In
our presentation, we hope to provide live, hands-on demon-
strations of our designed games and programming projects.

Background & Related Works

Several efforts are underway to build curricula that enable
students to interact with AI (Druga, Otero, and Ko 2022).

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

15990



There are curricula being designed for school-going stu-
dents of all ages. Example efforts targeting diverse goals
include broad AI literacy of AI/ML techniques such as deci-
sion trees, supervised learning, neural networks, and GANs
along with related issues of ethics, awareness, and careers
(Lee et al. 2021), ethics-focused experiences (Payne 2019)
for middle school students, engaging high school girls in
socially-relevant AI experiences (Alvarez et al. 2022), teach-
ing AI basics from a computer science topics lens (Burg-
steiner, Kandlhofer, and Steinbauer 2016), connecting AI
tools and examples to core subjects (Van Brummelen and
Lin 2020), bringing AI education to elementary science
classrooms (Glazewski et al. 2022), and AI literacy among
young children through interactions with and lo-fi prototyp-
ing of AI agents (Druga et al. 2019; Druga and Ko 2021).

However, research on appropriate strategies and pedago-
gies for teaching ML, especially to K-12 students is still
evolving with little clarity on how—and at what depth—
to teach these complex ideas to younger learners (Evange-
lista, Blesio, and Benatti 2018; Hitron et al. 2019). Stud-
ies have demonstrated that children as young as 10-13 years
of age are able to understand key ideas of ML classifica-
tion (specifically data labeling and evaluation) through ap-
propriately designed experiences with pre-trained models
(Hitron et al. 2019). Hitron and colleagues (Hitron et al.
2019) also assert that merely interacting with AI agents and
ML models does not expose students to the underlying pro-
cesses of ML, and argue for helping students build appro-
priate mental models of ML through “uncovering the black-
boxed processes”. Although programming-focused curricu-
lar activities that leverage block-based programming envi-
ronments (Kahn and Winters 2017, 2021; Kahn et al. 2018;
Lane 2021) notably take steps toward uncovering ML black-
boxes, most rely on pre-trained models and APIs to demon-
strate ML. A few notable exceptions include (Jatzlau et al.
2019; Guerreiro-Santalla et al. 2022) which present AI tech-
niques such as Q-learning and clustering in a hands-on,
project-based curriculum. Our work follows a similar ap-
proach but attempts to explore deeper into fundamental con-
cepts like optimization then leverage this insight to inform
rich discussions around cybersecurity, ethics, and bias.

ACT Curricular Activities

Leveraging Block-Based Programming in NetsBlox

NetsBlox is a block-based programming environment based
(Broll et al. 2017) on Snap! which was designed to make
networking & distributed computing concepts accessible to
novices. It has also been used to introduce other advanced
CS topics, such as the Internet of Things and robotics, to
young learners (Broll et al. 2021). The main technical exten-
sions of Snap! (Harvey and Mönig 2017) are the networking
primitives for message passing and Remote Procedure Calls
(RPCs). Message passing allows users to send messages to
remote computers via the internet. This enables students to
make engaging multi-user applications.

RPCs allow users to invoke functionality on the NetsBlox
server. Conceptually, they are similar to custom blocks ex-
cept the code is (usually) implemented in another language

and runs on a remote server. RPCs with similar functionality
are grouped together into NetsBlox Services, such as Google
Maps, climate data, and the ParallelDots API for sen-
timent analysis (used in the ACT cyberbullying text classifi-
cation activity). Documentation for RPCs is integrated into
NetsBlox and contains helpful information with examples.

As an introduction to programming in NetsBlox, ACT
starts with a chat application, a project that is extended in
ACT activities. The chat application is a simple message
passing application with a single server and potentially many
clients. The instructor and students create their own projects
and the students are first tasked to send a message to the
teacher’s project. After sending a message to the teacher,
they extend their projects so they can view the messages of
their peers from their own project. This involves adding a
registration step with the server so the server can then relay
chat messages to the list of registered client projects.

An example chat client is shown in Figure 1. This
client connects to a hard-coded server address, “ACTChat-
Server@brian”, and then repeatedly sends user input to the
server. When it receives a chat message, it simply displays
the message on the screen. Not only is this project sim-
ple (requiring fewer than 20 blocks for the client) but it
also provides a foundation from which other cybersecu-
rity topics can be explored including Denial of Service at-
tacks and identity spoofing. This project also can be easily
connected to cryptography and/or cybersafety by encrypt-
ing messages before sending them or impersonating another
user by changing the “sender” field.

Figure 1. a) Completed client code for a chat app; b) An ex-
ample RPC call (to ParallelDots, to check if text is abusive).

Design Approach

ACT activities evolved following feedback from 7 high
school teachers who participated in a preliminary PD work-
shop, and then from 5 high school teachers who aim to in-
tegrate these activities in their classroom teaching. The fol-
lowing pedagogical strategies guide our work–

Learning in Context. The learning sciences strongly ad-
vocate for learning to occur in context (Bransford et al.
2000; Brown, Collins, and Duguid 1989) and through mak-
ing real-world connections to the content (Gainsburg 2008).

15991



For this reason, and because cybersecurity is another grow-
ing subfield of computing that we believe students must
get exposure to, we situate our ML programming projects
and activities in the context of real world, topical cyberse-
curity issues such as detecting and mitigating cyber fraud
and Denial of Service (DoS) attacks, classifying phishing
emails, Twitter and registration bots, and understanding how
deep fakes are created (as examples of generative adversarial
models).

The design of relevant AI activities to be embedded within
cybersecurity learning are guided by a set of “big ideas” or
learning goals for our innovative designs. Through ACT ac-
tivities, students will develop a sense for:

1. How AI/ML plays a role in real-world cybersecu-
rity issues.

2. Key AI/ML techniques (such as decision trees, neu-
ral networks, and adversarial examples).

3. “How” the machine learns.

4. Data and its features.

5. Optimization (as learning).

6. Issues related to generalization (and overfitting/un-
derfitting) in AI/ML models.

7. How bias can impact aspects (and phases) of ML.

8. Issues of ethics.

9. Adversarial Thinking i.e. whenever we discuss an
ML model for classification/prediction, also think
of how it can be fooled or exploited.

Data exploration with Common Online Data Analysis
Platform (CODAP). CODAP empowers students to explore
data to gain insight about underlying patterns. Using CO-
DAP (Finzer 2016) from within NetsBlox allows students
to leverage the complementary strengths of each; NetsBlox
is used to preprocess or filter segments of the dataset while
CODAP is used to gain insight into the dataset as well as se-
lect regions of interest for further exploration (Figure 1). In
the context of ML, this is powerful when building rule-based
classifiers or decision trees.

Pre-programmed games and interactive explorations.
Pre-programmed games are used to introduce fundamental
ML topics in an interactive, engaging way prior to program-
ming activities. As these games are programmed in Nets-
Blox, students interested in learning more can easily probe
deeper into the application as it readily accessible in a fa-
miliar programming language. Along with pre-programmed
games, a variety of interactive web-based tools and visu-
alizations are used for introducing concepts and exploring
applications with real-world datasets. Pre-programmmed
games include the Find the Minimum Game (described be-
low) and a Registration Activity for collecting human bio-
metric data during account creation for a mock website. In-
teractive explorations include Adversarial JS (shown in Fig-
ure 7) and GAN Lab (Kahng et al. 2018). Unlike other cur-
ricula which may culminate in the use of some of the in-
teractive explorations, these are used in tandem with hands-
on interactions with the underlying algorithms to understand
the concept or explore the concept through alternative tools.

Leveraging research on multiple levels of abstraction,
Parson’s Problems and Subgoals for engaging with ML
models. In order to help learners at all levels of interest
and ability succeed in engaging with non-trivial ML al-
gorithms, we employ “levels of abstraction” (Csizmadia,
Standl, and Waite 2019; Waite et al. 2017) as a scaffold-
ing tool. We introduce the basic algorithm in pseudocode,
then provide “subgoal”-inspired (Morrison, Margulieux, and
Guzdial 2015) blocks for implementing the algorithm and
Parson’s problems (Denny, Luxton-Reilly, and Simon 2008;
Parsons and Haden 2006) for code completion that have
been shown to scaffold introductory programming (Eric-
son, Margulieux, and Rick 2017). At the lowest level, we
provide the entire code that implements the algorithm. The
level(s) provide teachers with options to help learners en-
gage at varying levels, while still ensuring that they all leave
with an intuition of how the ML technique works.

ACT Activities Sequence

Guided by the goals and big ideas described in the previ-
ous section, we started our work by identifying real world,
topical cybersecurity issues such as bots or Denial of Ser-
vice (DoS) attacks, or phishing (along with related arti-
cles or videos to serve as “hooks” in a learning setting).
We then conceptualized programming activities and projects
that mapped to key AI/ML concepts and our target big ideas
(Table 1). This mapping was refined and put into a coher-
ent sequence as activities were iteratively designed. The fol-
lowing sections describe the ACT sequence of activities and
NetsBlox-based programming projects.

Rule-Based AI to Mitigate Denial of Service Attacks
Denial of Service attacks are a simple vulnerability of the
naive chat application (involving a client and server chat
app) built while introducing NetsBlox. Not only are they a
natural extension of the initial NetsBlox activity, but they
are also common in the real-world with many stories of ef-
fective attacks and mitigations. In this activity, we explore
different techniques for mitigating denial of service attacks
and discuss how this can be viewed as classification through
a machine learning lens. That is, if we knew what requests
were from legitimate users and which were from malicious
users, denial of service mitigation would be simple!

Text Classification & Cyberbullying After introducing
the concept of classification with the chat application, we ex-
tend it further to add content moderation using AI. Using the
ParallelDots service from NetsBlox, students can eas-
ily leverage natural language processing (NLP) models such
as those for classifying abusive text (shown in Figure 1b).
This activity gives students a bit of freedom to explore how
they might use the NLP tools to add content moderation
capabilities. For example, students may choose to disable
abusive text being sent from their client as well as filter out
harmful text received from other students. As with most of
the activities, this activity is designed to have many opportu-
nities for customization and for the students to really person-
alize the project as they see fit. For example, color-coding
text based on detected sentiment or sarcasm are a couple

15992



Figure 2. Dynamic data exploration with CODAP within NetsBlox. The data explorer window has multiple plots showing
different features and their correlation with the label of each point. NetsBlox scripts filter the dataset and retrieve the current
selection from the plots.

Figure 3. “Layers of Abstraction”: Students can explore the
gray blocks on the left that represent subgoals for the algo-
rithm and are implemented so students get feedback on a
correct/incorrect sequence. Interested students can also use
the blocks presented on the right as a Parson’s problem to
implement each subgoal.

easy extensions which students could implement with rela-
tively little difficulty. Although they are not yet creating their
own models, this activity allows students to gain more fa-
miliarity with fundamental machine learning concepts while
using an existing pre-trained model.

Twitter Bot Classification & Decision Tree Building
The first ML algorithm that we implement is aimed at build-
ing a decision tree. This activity begins with exploring a syn-
thetic Twitter account dataset using CODAP (Finzer 2016).
Dynamic data exploration helps the students examine fea-

tures in a dataset and gain hands-on experience with con-
cepts like linear separability. Easily separable classes, like
the orange class shown in Fig. 2, provide an opportunity to
teach some fundamental ML concepts such as feature selec-
tion and classification. More challenging classes enable us to
introduce probabilistic concepts such as model confidence in
classification. Exploration of possible features around which
the data can be classified allow students to then build a clas-
sifier using techniques such as decision trees.

After the CODAP exploration, students first implement a
simple set of rules (composed largely of just if statements)
to predict if an account is a human or bot. During the pro-
cess, students iteratively explore how different features are
related to the labels i.e., “bot” or “not bot” of the data and
then choose a way to split the data that seems to best separate
the bots from the human accounts.

Figure 4. Exploring a decision tree learned from a Twitter
bot dataset.

15993



Programming Project AI/ML Concepts

Project 1: Build a text-
msg (chat). Intro to Nets-
Blox

Project 2: DoS example &
rule-based AI systems

Rule-based AI systems;
classification

Project 3: Sentimental
writer (also introduces
RPC block) or Moderated
Chat Client

Use of Parallel Dots NLP
API to classify chat text as
abusive or not (or neutral)

Project 4a: Twitter bot
classification (start with
CODAP data exploration)
Project 4b: Phishing data
- building intuitions about
data/features/classification

Decision trees, classifica-
tion, intuition about data
and its features & labels

Project 5a: Introduce reg-
istration bot activity. Cre-
ate your own registration
bot!
Project 5b: Play the Gra-
dient Descent game; En-
gage in abstrations of GD
algorithm; Train a bot de-
tection model using GD.

Neural networks; opti-
mization (as learning);
gradient descent

Project 6: Explore how
we can fool the bot de-
tection model by generat-
ing adversarial examples.
Generate adversarial ex-
amples using Adversari-
alJS online.

Adversarial examples; op-
timization

Project 7: What if we cre-
ate a model to make ad-
versarial examples? Circle
GA(N) exercise; GAN lab
activity

Realistic content genera-
tion via AI; GANs; opti-
mization

Table 1. ACT NetsBlox programming activities sequence
along with targeted AI topics.

After creating a rule-based classifier, we reflect on how
these sets of if statements could be viewed as a decision
tree. In a metacognitive step, we reflect on our process of
manually creating rules to classify the data and consider
how this could be automated. Students then formalize it with
pseudocode, and then complete a decision tree building al-
gorithm presented as a Parson’s problem—first at a higher
level of abstraction where they use subgoals instead of prim-
itive blocks, and then implement the subgoals in code.

Adversarial thinking is a useful skill in computing, in-
cluding in cybersecurity and AI/ML (Young and Krishna-
murthi 2021). Thinking about how models can be fooled
through adversarial examples is one rich application of this
skill which challenges the students to critically examine the
ML model for vulnerabilities. Interpretable models, like de-

cision trees, provide an easy introduction to the topic. Build-
ing intuition through hands-on experience can be relatively
simple. We use the visualization of the classifier (Fig. 4) to
extend the Twitter Bot classification exercise with a follow-
up one: Can you construct an example that is classified as
“not bot”? It is an organic next step to investigate how to
change an existing bot to be misclassified.

Finally, students then apply their understanding from the
Twitter bot activity to a phishing dataset, starting with exam-
ining features of phishing vs non-phishing emails and end-
ing with use the decision tree model coded earlier to classify
phishing emails.

Optimization & Find the Minimum Game Students
must understand that the “learning” problem in machine
learning is essentially an optimization problem, where an
objective, fitness, or error function is defined and the goal
of the algorithm is to either maximize or minimize the given
function. Students of this age/ability are not in a position
to code complex optimization, but we believe they can de-
velop intuitions through carefully selected activities, games,
or code examples that bring home the fundamental ways
in which optimization works. For example, if abstractions
are presented to make gradients accessible without requiring
mastery of calculus, gradient descent is a relatively simple
concept that can be made accessible to early teen students.

We designed an interactive game, “Find the Minimum
Game” (Fig 5), to introduce the idea of learning through
minimizing error (optimization) and build an intuition of
gradient descent (Ruder 2016), an algorithm often used in
neural networks. Students embody an optimizer and try to
find the minimum of an unknown/invisible function/graph.
At every click on the blank screen, an arrow at the mouse
x-coordinate and y-value of the function shows the slope of
the function and directs the player toward the minimum.

Figure 5. “Find the Minimum” game helps develop prelimi-
nary intuition of how the gradient descent algorithm works.

15994



Registration Bot Detection with Gradient Descent This
activity uses detection of a “registration bot” (based on
mouse movement data) as a cybersecurity context for using
gradient descent. Given mouse movement data of humans
and bots while registering for a mock website (generated
from an earlier activity), students create a ML model to clas-
sify a registration as performed by a human or a bot. First,
we explore the dataset and choose a way to represent the
data such as its length and average speed. Next, we come
up with a simple way to classify the data points where we
just learn an “importance number” (or weight) for each of
the features and then combine them to get the prediction. Fi-
nally, we connect this with the earlier “Find the Minimum”
activity and formalize the training algorithm through pseu-
docode, subgoals, then a Parson’s problem.

Figure 6. Visualization of model performance while training
registration bot classifier.

Unlike projects in many existing AI/ML curricula, this ac-
tivity introduces students to the entire lifecycle of designing
an ML model. Students are thus able to not only build in-
tuition through hands-on experience with ML but also ex-
plore cybersecurity aspects more deeply. For example, stu-
dents may try to improve their registration bot to fool the
model. Alternatively, students can perform a data poison-
ing attack and try to generate human data that behaves more
like a bot to make the model misclassify their current bot.
These types of extensions both exercise students’ adversar-
ial thinking and help them build a deeper intuition about
ML concepts themselves. Additionally, understanding the
relationship between optimization and machine learning em-
powers students to think critically about AI and bias in ML
models (see below), and, importantly, avoid falling prey to
widespread anthropomorphization of ML and AI.

Generative Adversarial Models Building on both the
earlier themes of optimization and adversarial thinking, we
introduce generative adversarial networks (GANs)1. This

1We use simpler models than neural networks so they are tech-
nically not generative adversarial networks.

Figure 7. Students explore adversarial examples with real-
world datasets in Adversarial JS before implementing them.

activity starts by building on the adversarial examples cre-
ated using the registration bot detection activity. However,
rather than creating a single point to fool the model, students
are asked if we could train a model to automatically cre-
ate point(s) to fool the model. Following the approach used
in the prior activities, we frame the task as an optimization
problem by deciding what we would like to minimize and
what parameters we are changing to do so. When only con-
sidering the generator, this is almost identical to the original
gradient descent problem except we are trying to guess the
“incorrect” label given by the discriminator.

As in the earlier activities, we start with the “big idea” ap-
proach and then discuss how this might look in pseudocode.
After completing the pseudocode as a class, students are
tasked with implementing the training of the generator as a
Parson’s problem using subgoal blocks. Although not likely
suitable for every class, we also have a Parson’s problem for
the low-level blocks in which students implement each of
the subgoals with the provided blocks.

After completing the training algorithm for the generator,
students have a functional example of training a GAN in the
browser. The completed project is shown in Figure 8. In this
example, the user has created the positive examples in the
lower left. The generator was randomly initialized and cre-
ated the negative examples in the top right. The circle is a
visualization of the discriminator’s predictions and is effec-
tively circling only the positive points. As the generator is
trained, the synthetic points in the top right will move to-
ward the center of the circle.

Generalization & Over/Underfitting

The ability of a model to generalize to unseen points is crit-
ical when training ML models and is complementary to ad-
versarial examples. Models that generalize poorly are often
easy to fool. This is no surprise after exploring the learned
decision tree (as shown above); the individual parameters
that have been learned may seem somewhat arbitrary. En-
abling students to train both interpretable and black-box ML
models empowers them to gain hands-on experience with

15995



Figure 8. Circle GAN activity: a classifier is trained to circle
only the green points (created by the user). The generator
creates the red points and is trained to fool the classifier.

over/underfitting as well as investigate the impact of differ-
ent data sampling approaches on the resultant models.

Understanding Bias and Critical Interrogation of
the Impacts of ML Models.

Although AI/ML algorithms are not inherently biased, bias
in a dataset or decisions related to feature selection or opti-
mization can have serious consequences when an ML model
is put to use in decision-making that impacts people and
real-world situations. As the usage of AI/ML models be-
comes increasingly ubiquitous, the impact of bias and un-
derstanding of what a model has in fact learned has become
increasingly important. Building intuition through hands-on
experiences that “lift the hood” on ML as our activities do,
enables students to gain a deeper understanding about the
impact of the dataset and objective.

When combined with the other key ideas listed above, stu-
dents are able to have deeper insight about potential causes
and impacts of bias. For example, the first key idea facili-
tates simple early questions about the features used to repre-
sent the data points. Learning about generalization can be a
catalyst for interrogating the origins of a dataset. How might
that impact the under- or overrepresentation of various types
of data in the dataset? How will this affect generalization?
Viewing machine learning as an optimization problem raises
questions about the quantity that is being optimized. How
does this compare to the way the model is going to be used
when deployed? If we are training the model to predict on
historical data, are we sure that the past data is something we
want to try to replicate? What if there were social or cultural
issues that disenfranchised some demographic?

Teacher Professional Development+Feedback

Pilot #1. We first conducted a 15 hour pilot online teacher
workshop over a period of 4 sessions in Fall 2021 with 7
high school teachers from across the US, with the stated
goal of gathering feedback. 6 teachers completed the pre-
post survey. Post-survey responses suggested that teachers
found the pilot activities intertwining AI and cybersecurity
to be suitable, innovative, and helpful for their own learn-
ing. Based on teacher feedback, activities were refined to
add more levels of scaffolding.

The mean rating of activities on the innovativeness of the
ACT curriculum (1=Not at all innovative; 5=Very innova-
tive) was 4.5. Mean teacher rating on the appropriateness
of the intertwining of AI & Cybersecurity in the activi-
ties (1=Not at all connected/Does not make sense; 5=Very
well connected/Makes sense) was 4.3. Mean teacher com-
fort level with AI topics changed from 2.7 to 3.7 (1=Not at
all familiar (it’s totally new to me); 5= I’m an expert (I teach
it to middle/high school or older students)). In rating spe-
cific ACT activities with choices: Not a great activity (least
favorite); Good idea but needs a lot of improvement; Almost
there- good activity/experience;Great Activity (among my
faves); Did not attend session, responses to most activities
was mostly “Almost there” or “Great Activity” Two or more
teachers indicated that message passing (chat) & DoS, Cy-
berBullying, Decision Tree/TwitterBot, Gradient Descent,
were a “Great Activity (among my faves)”. The most pop-
ular was the cyberbullying/sentiment analysis activity with
4 teachers marking that as “Great”; next was the Twitter-
Bot/Phishing/Decision Tree activity with 3 teachers marking
that as “Great Activity”.

Pilot #2. We then recruited 7 teachers for a week-long on-
line summer workshop. Once again, the overall the response
to the second workshop was overwhelmingly positive. In re-
sponse to the question: How important is it to understand
AI and machine learning as it is related to cybersecurity?
4 teachers marked extremely important and 1 teacher, very
important. They hailed the curriculum as innovative and that
it did a great job of intertwining AI and cybersecurity.

Conclusion & Next Steps

In this work, we explore how we can lift the hood on fun-
damental ML concepts for high school students with mini-
mal required prerequisites. This includes the use of a block-
based programming environment, Parson’s problems, levels
of abstraction, carefully designed abstractions, and subgoals
to make the activities more accessible. Through supporting a
rich interaction with the concepts through hands-on experi-
ences and programming, we hope to help students better de-
velop intuition about the core ML concepts which can then
be applied to both other ML contexts and discussions about
the use and challenges of AI/ML in the real-world. Our next
steps include continuing to develop the activities including
differentiation for students of different interests and abilities.
We plan to pilot this in classes in Fall 2022 and will use the
feedback to continue to refine the activities and curriculum.

15996



Acknowledgements

This material is based upon work supported by the National
Science Foundation under grant number 2113803. We are
grateful to Derek Babb for his contributions to this project.

References

Abelson, H.; and DiSessa, A. 1986. Turtle geometry: The
computer as a medium for exploring mathematics. MIT
press.

Alvarez, L.; Gransbury, I.; Cateté, V.; Barnes, T.; Ledéczi, ;
and Grover, S. 2022. A Socially Relevant Focused AI Cur-
riculum Designed for Female High School Students. Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
36(11): 12698–12705.

Bransford, J. D.; Brown, A. L.; Cocking, R. R.; et al. 2000.
How people learn, volume 11. Washington, DC: National
academy press.

Broll, B.; Lédeczi, A.; Stein, G.; Jean, D.; Brady, C.; Grover,
S.; Catete, V.; and Barnes, T. 2021. Removing the Walls
Around Visual Educational Programming Environments. In
2021 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), 1–9. IEEE.

Broll, B.; Lédeczi, A.; Volgyesi, P.; Sallai, J.; Maroti, M.;
Carrillo, A.; Weeden-Wright, S. L.; Vanags, C.; Swartz,
J. D.; and Lu, M. 2017. A visual programming environ-
ment for learning distributed programming. In Proceedings
of the 2017 ACM SIGCSE technical symposium on computer
science education, 81–86.

Brown, J. S.; Collins, A.; and Duguid, P. 1989. Situated cog-
nition and the culture of learning. Educational researcher,
18(1): 32–42.

Bruner, J. S. 1960. The process of education. Harvard Uni-
versity Press.

Burgsteiner, H.; Kandlhofer, M.; and Steinbauer, G. 2016.
Irobot: Teaching the basics of artificial intelligence in high
schools. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 30.

Csizmadia, A.; Standl, B.; and Waite, J. 2019. Integrat-
ing the constructionist learning theory with computational
thinking classroom activities. Informatics in Education,
18(1): 41–67.

Denny, P.; Luxton-Reilly, A.; and Simon, B. 2008. Evaluat-
ing a new exam question: Parsons problems. In Proceedings
of the fourth international workshop on computing educa-
tion research, 113–124.

Druga, S.; and Ko, A. J. 2021. How do children’s percep-
tions of machine intelligence change when training and cod-
ing smart programs? In Interaction design and children, 49–
61.

Druga, S.; Otero, N.; and Ko, A. J. 2022. The Landscape
of Teaching Resources for AI Education. In Proceedings of
the 27th ACM Conference on on Innovation and Technology
in Computer Science Education Vol. 1, ITiCSE ’22, 96–102.
New York, NY, USA: Association for Computing Machin-
ery. ISBN 9781450392013.

Druga, S.; Vu, S. T.; Likhith, E.; and Qiu, T. 2019. Inclusive
AI literacy for kids around the world. In Proceedings of
FabLearn 2019, 104–111.

Ericson, B. J.; Margulieux, L. E.; and Rick, J. 2017. Solving
parsons problems versus fixing and writing code. In Pro-
ceedings of the 17th Koli Calling International Conference
on Computing Education Research, 20–29.

Evangelista, I.; Blesio, G.; and Benatti, E. 2018. Why are
we not teaching machine learning at high school? A pro-
posal. In 2018 World Engineering Education Forum-Global
Engineering Deans Council (WEEF-GEDC), 1–6. IEEE.

Finzer, W. 2016. Common online data analysis plat-
form (CODAP). Emeryville, CA: The Concord Consor-
tium.[Online: concord. org/codap].

Gainsburg, J. 2008. Real-world connections in secondary
mathematics teaching. Journal of Mathematics Teacher Ed-
ucation, 11(3): 199–219.

Glazewski, K.; Ottenbreit-Leftwich, A.; Jantaraweragul, K.;
Jeon, M.; Hmelo-Silver, C.; Scribner, J. A.; Lee, S.; Mott,
B.; and Lester, J. 2022. PrimaryAI: Co-Designing Immer-
sive Problem-Based Learning for Upper Elementary Student
Learning of AI Concepts and Practices. In Proceedings of
the 27th ACM Conference on on Innovation and Technology
in Computer Science Education Vol. 2, 628–628.

Guerreiro-Santalla, S.; Mallo, A.; Baamonde, T.; and Bellas,
F. 2022. Smartphone-Based Game Development to Intro-
duce K12 Students in Applied Artificial Intelligence. Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
36(11): 12758–12765.

Harvey, B.; and Mönig, J. 2017. Snap! reference manual.
URL http://snap. berkeley. edu/SnapManual. pdf.

Hitron, T.; Orlev, Y.; Wald, I.; Shamir, A.; Erel, H.; and
Zuckerman, O. 2019. Can children understand machine
learning concepts? The effect of uncovering black boxes. In
Proceedings of the 2019 CHI conference on human factors
in computing systems, 1–11.

Jatzlau, S.; Michaeli, T.; Seegerer, S.; and Romeike, R. 2019.
It’s not magic after all–machine learning in snap! using rein-
forcement learning. In 2019 IEEE blocks and beyond work-
shop (B&B), 37–41. IEEE.

Kahn, K.; Megasari, R.; Piantari, E.; and Junaeti, E. 2018.
AI Programming by Children using Snap! Block Program-
ming in a Developing Country. In European Conference on
Technology Enhanced Learning.

Kahn, K.; and Winters, N. 2017. Child-friendly program-
ming interfaces to AI cloud services. In European Confer-
ence on Technology Enhanced Learning, 566–570. Springer.

Kahn, K.; and Winters, N. 2021. Learning by enhancing
half-baked AI projects. KI-Künstliche Intelligenz, 35(2):
201–205.

Kahng, M.; Thorat, N.; Chau, D. H.; Viégas, F. B.; and Wat-
tenberg, M. 2018. Gan lab: Understanding complex deep
generative models using interactive visual experimentation.
IEEE transactions on visualization and computer graphics,
25(1): 310–320.

15997



Lane, D. 2021. Machine learning for kids: A project-based
introduction to artificial intelligence. No Starch Press.

Lee, I.; Ali, S.; Zhang, H.; DiPaola, D.; and Breazeal, C.
2021. Developing Middle School Students’ AI Literacy. In
Proceedings of the 52nd ACM technical symposium on com-
puter science education, 191–197.

Morrison, B. B.; Margulieux, L. E.; and Guzdial, M. 2015.
Subgoals, Context, and Worked Examples in Learning Com-
puting Problem Solving. In Proceedings of the Eleventh
Annual International Conference on International Com-
puting Education Research, ICER ’15, 21–29. New York,
NY, USA: Association for Computing Machinery. ISBN
9781450336307.

Parsons, D.; and Haden, P. 2006. Parson’s programming
puzzles: a fun and effective learning tool for first program-
ming courses. In Proceedings of the 8th Australasian Con-
ference on Computing Education-Volume 52, 157–163.

Payne, B. H. 2019. An ethics of artificial intelligence cur-
riculum for middle school students. MIT Media Lab Per-
sonal Robots Group. Retrieved Oct, 10: 2019.

Royal Society (Great Britain). 2017. Machine Learning: The
Power and Promise of Computers That Learn by Example.
Royal Society. ISBN 9781782522591.

Ruder, S. 2016. An overview of gradient descent optimiza-
tion algorithms. arXiv preprint arXiv:1609.04747.

Thormundsson, B. 2022. Virtual As-
sistant Technology - Statistics Facts.
https://www.statista.com/topics/5572/virtual-assistants/.
Accessed: 2022-09-30.

Touretzky, D.; Gardner-McCune, C.; Martin, F.; and See-
horn, D. 2019a. Envisioning AI for K-12: What should every
child know about AI? In Proceedings of the AAAI confer-
ence on artificial intelligence, volume 33, 9795–9799.

Touretzky, D. S.; Gardner-McCune, C.; Martin, F.; and See-
horn, D. 2019b. K-12 guidelines for artificial intelligence:
what students should know. In Proc. of the ISTE Conference.

Van Brummelen, J.; and Lin, P. 2020. Engaging teachers
to co-design integrated AI curriculum for K-12 classrooms.
arXiv preprint arXiv:2009.11100.

Waite, J.; Curzon, P.; Marsh, W.; and Sentance, S. 2017. K-
5 Teachers’ Uses of Levels of Abstraction Focusing on De-
sign. In Proceedings of the 12th Workshop on Primary and
Secondary Computing Education, 115–116.

Young, N.; and Krishnamurthi, S. 2021. Early Post-
Secondary Student Performance of Adversarial Thinking. In
Proceedings of the 17th ACM Conference on International
Computing Education Research, 213–224.

15998


