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ABSTRACT

We formulate the problem of performing optimal data com-
pression under the constraints that compressed data can be
used for accurate classification in machine learning. We show
that this translates to a problem of minimizing the mutual
information between data and its compressed version under
the constraint on error probability of classification is small
when using the compressed data for machine learning. We
then provide analytical and computational methods to char-
acterize the optimal trade-off between data compression and
classification error probability. First, we provide an analytical
characterization for the optimal compression strategy for data
with binary labels. Second, for data with multiple labels, we
formulate a set of convex optimization problems to charac-
terize the optimal tradeoff, from which the optimal trade-off
between the classification error and compression efficiency
can be obtained by numerically solving the formulated op-
timization problems. We further show the improvement of
our formulations over the information-bottleneck methods in
classification performance.

Index Terms— classification, error probability, compres-
sion, mutual information, rate-distortion theory

1. INTRODUCTION

Machine learning plays an important role in science and en-
gineering. Among machine learning tasks, classification is an
important one which has many applications in communica-
tion and signal processing, for example, image recognition.
Machine learning needs sensor data to make inference or
to perform classification [1, 2]. These sensor data are first
collected, and then stored in storage or transmitted through
communication channels to classifiers. However, the capac-
ities of storage or communication channel are often limited.
Thus, there is often a need to compress sensing data for more
efficient storage or transmission. [3, 4, 5]. A fundamental
question is hence how much compression one can achieve for
sensing data such that machine learning tasks can still be exe-
cuted with a certain given accuracy? In this paper, we propose
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a formulation of this problem, and try to answer this question
for classification from an information-theoretic perspective.

In classification, we assume that labels (denoted by ran-
dom variable Y) generate data (denoted by X) according to
data generation distribution P(X|Y"). Data X is fully known
to the data compressor. The data compressor compresses X
into compressed data X. The goal for the compressor is to
compress X as much as possible for efficient communica-
tion or storage while allowing the classification task to be
performed still with a specified fidelity: namely the label Y
can still be sufficiently accurately recovered using only com-
pressed data X . Towards this end, we propose to minimize the
mutual information between X and X while minimizing the
error probability (or generalized costs associated with classi-
fication errors).

In classical rate-distortion theory for lossy data compres-
sion, data compression is performed so that the mutual infor-
mation between data X and compressed data X is minimized
under the constraint on a distortion criterion between X and
X [6]. The distortion criterion in rate-distortion theory is of-
ten a direct distortion measure depending on the original data
X and the compressed data X . In contrast, in this paper, for
the classification task, we are considering the distortion be-
tween the original label and the recovered label (Y) for clas-
sification, rather than the direct distortion between X and X.

Our research problem is connected with the information
bottleneck principle [7][8][9][10], which was proposed to
study data compression under the constraint of preserving
classification labels to a certain fidelity. The information
bottleneck principle uses the mutual information between
label (V) and compressed data (X) as a simple proxy for
the fidelity in preserving the label information. However,
mutual information may not be an accurate indicator of the
distortion between the recovered label ¥ and the original
label Y in the classification task. This is especially true if
the distortion in classification is asymmetric: the distortion
for mis-classifying an object with label “a” to label “b” is
weighted higher than mis-classifying an object with label “b”
to label “a”. In addition, [11, 12] looked at rate-limited com-
munication of training data in machine learning and derived
performance limits of constructed predictors based on such
rate-limited communication.
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In this paper, we directly consider more relevant metrics
for characterizing classification performances in determining
optimal compression of sensing data. In particular, we study
the problem of minimizing the mutual information between
data and compressed data under constraints on classification
error probability (or or generalized costs associated with clas-
sification errors), which are widely used performance metric
for evaluating a classifier. The rest of this paper is organized
as follows. In Section 2, we formulate the problem of op-
timally compressing data under classification error probabil-
ity constraints. In Section 3, we analytically characterize the
optimal compression strategy for binary symmetric channel
connecting label and sensing data. In Section 4, we propose a
general optimization framework to calculate the optimal com-
pression and resulting minimum classification error probabil-
ity. In Section 5, we present numerical results showing the
optimal trade-off between data compression and classification
error probability.

2. MODEL FORMULATION

Suppose that we have m labels in the label set ), which is
{Y1,Y2,-,Ym}. We let the prior probability for the labels
be P(y;), ¢ = 1,2,...,m. Then the label (Y) will generate
data, and we denote the set of possible data as X'. We assume
that X has n elements, and its elements are x1,Zo,...,Zy.
We denote the transition probability between each label and
any possible data as P(z;|y;), where ¢ = 1,2,...,m; and
7 = 1,2,...,n. For efficient storage and communication,
we want to compress data X to compressed data X, which
are sampled from set X' of cardinality [. To be exact, X in-
cludes z1, T2, ..., ; as its elements. Furthermore, we define
that the transition probability between each data X and its

compressed data X as P(i|z;), where j = 1,2,...,n, and
k=1,2,...,1. We assume that the decoder or machine learn-
label data compressed data decoded label
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Fig. 1. Transition probabilities between labels, data, and com-
pressed data

ing algorithms use the maximum a posteriori (MAP) decoder

(or the minimum-cost decoder when general costs associated
with decoding errors are considered) to decode compressed
data 7}, to label ¢z, , where 1 < k < [. The job of the
compressor is to design the transition probabilities P(Zy|x;)’s
such that the mutual information I(X, X) is minimized for
most efficient compression, while keeping the decoding error
probability (the probability that the decoded label is not equal
to the original label) smaller than a certain threshold.

3. OPTIMAL COMPRESSION FOR BINARY
SYMMETRIC CHANNEL: ANALYTICAL RESULTS

While it is difficult to obtain analytical solutions to the pro-
posed problem in general, we are able to analytically de-
rive analytical optimal compression strategies for binary
labels and data. We consider the case of binary labels
and we assume that there are also two elements in the
alphabet for data and the alphabet for compressed data.
We assume that P(Y = 0) = 1, and P(Y = 1) = 1.
We try to minimize the mutual information between X
and X (subject to MAP decoding error threshold con-
straints) over the following transition probabilities pi, ps
and p3: P(X = 1Y =0) = P(X =0]Y = 1) = py,

P(X = 1|X = 0) = pg, and P(X = 0|X = 1) = ps.
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Fig. 2. Transition probabilities for binary data.

OROIS

Theorem 1. For binary data, where each label has equal
probability, and with symmetric crossover transition proba-
bilities that are less than % between label and data, the opti-
mal trade-off in terms of classification error probability and
data compression is achieved by having symmetric transi-
tion probabilities between data and compressed data (namely
pa =p3 < % ). Then the smallest achievable mutual informa-

tion between X and X is I = 1—ps log p%—(l—pg)log 1—1p2

corresponding to an error probability no bigger than Pe =
p1+p2 — 2p1p2.

Proof. In this proof, we show that if po ## p3, we can always
make the crossover probability symmetric and equal to the
average of py and ps, without increasing I (X, X ) and without
increasing the MAP decoding error probability.
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. P(Y =1,X =0)

PY=1X=0)= -
P(X =0)
_ b + p3 — p1p2 — P1P3
1—p2+p3
Similarly,
P(Y = O|X —1) = P1+ P2 —p1p3 *plpz'
1+p2—p3
Then, P(Y = 0|X =0) = 1—P(Y = 1|X = 0), P(Y =
1|X =1) =P(Y = 0|X = 1). Since p; < 3 and py is fixed,
if pp < 1—p3, wehave P(Y = 1|1X =1) > P(Y = 0|X =
1)and P(Y = 0|X =0) > P(Y = 1|X = 0). This gives us
1. - 1 -
Pe= P(X =0]Y =1)+ ;P(X =1y =0)
+ -
=p1(1 —p2 —p3) + b2 2 B,
Otherwise, if po > 1 — p3, similarly, it follows:
+
Pe=1-pi(1—p2—ps3) - w
Next, we do the convex combination of ps and p3, such that
P(X:1|X:O):P(X:O|X:1):]¥,

Since p; < 3 and p1 is fixed, by the same process as above,

ifpy <1— p3,we have Pe = 1P(X = 0Y = 1)+ JP(X =

1Y =0) = p1(1 — pa — p3) + b2dfps Otherw1se, if po >

1—ps, similarly, Pe = 1P( f0|YfO) IP(X =1y =
P2+P3

1)=1-pi(1—p2—p3)—
In conclusion, we notice that Pe remains the same be-
fore and after doing convex combination. Since the mutual
information is convex function of the transition probability
between X and X for fixed P(X) [6], mutual information is
not increased after doing convex combination while Pe does
not increase. This implies that the optimal transition proba-
bility should be symmetric.
Finally, with this conclusion, we can focus on a symmet-
ric crossover probability po, namely, P(X = 1|X = 0) =
P(X = 0|X = 1) = py. Then,

P(Y =1|X =0) =P(Y =0|X = 1) = p1 +p2 — 2p1p2,

Now suppose that p; < % and we notice that if we also have
p2 < 3, then, P(Y = 0|X = 0) > P(Y = 1|X = 0) and
P(Y = I\f( =1)>PY = O|X = 1). This suggests that
Pe = p1 + p2 — 2p1p2 and the mutual information is given
bylprIOgP%f(lpr)log 1_1p2. O

Remarks: Our proof is different from showing that sym-
metric transition probabilities achieve optimal rate-distortion
tradeoff involving I(X, X) and binary distortion between X
and X. Here we consider the decoding error probability for
label Y, making our proof arguably more involved.

4. OPTIMIZATION FORMULATION FOR
COMPUTING OPTIMAL COMPRESSION

Suppose that we have m labels in the label set ), and we
denote them by y1,y2,...,ym. We denote the prior proba-
bility for each label as P(y;), ¢ = 1,2,...,m. Then these
labels generate data sampled from set X of cardinality 7.
Specifically, the elements in A" are x1,x2,...,2,. We de-
note the transition probability between each label and possi-
ble element for data as P(x;|y;), where i = 1,2,...,m; j =
1,2,...,n. We want to map (compress) the data to [ possible
letters in the compressed data set X of cardinality [, which in-
cludes &1, %o, ..., ; as its elements. Furthermore, we define
the transition probability between x; and compressed data Ty,
as P(Zp|xj), where j =1,2,...,n;k=1,2,...,L.

Our goal is to minimize the mutual information between
X and X by optimizing over the transition probabilities
P(Zx|z;), subject to the constraint that the classification error
probability is smaller than a certain threshold e. However, this
optimization problem is a non-convex optimization problem.
We propose to obtain global optimal solution by dividing
this optimization problem into multiple convex optimization
problems, based on different MAP decoding rules.

We assume that for a given letter x5, the MAP rule de-
codes it to label {3, , which is from the set Y. We notice that
there are m! possible MAP maps from X to . For each MAP
decoding rule, we are trying to minimize the mutual informa-
tion between X and X. So for a particular MAP decoding
rule, minimizing I(X; X ) is equivalent to the following con-
vex programming:

min I(X; X)
P(Zg|x;)
subject to Pe—z Z ZP (yi)P(x;|yi)P(Tk|z;) <,

k=1y;#9z, j=1

P(i‘k|x]) >0, VJ?]‘ e X,z € )E'

MN

P((Z’k‘w]) =1, VI'j exX

=
Il

1

M=

P(yi)P(x;|y: ) P(Zx|x;)

<.
Il
3

P(9z,, )P(w;]9z, )P(Tk|z;) VK, Vy; # Gz,

Jj=1

where € is the given error probability tolerance threshold. We
have proved that the minimum objective value among these
m! such convex optimization problems give the globally op-
timal compression under a constraint on error probability.
This formulation also extends to asymmetrical cost for de-

coding error.
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5. NUMERICAL RESULTS

In this section, we present numerical results for characterizing
the optimal tradeoff between compression and classification
accuracy.

In Fig.3, we calculate the curve of the allowed mutual infor-
mation between data (X) and compressed data, against the
classification error probability for the binary data under the
parameters p; = 0.3. The plot is generated by using the result
in Theorem 1. From the plotted curve, we can see that, when
the mutual information between data X and compressed data
X is allowed to be large, the classification error probability
can be reduced, but at the expense of compression efficiency.

0.5

0.48

0.46

0.44

042

0.4

Pe

0.38

0.36

0.34

032

0.3

0 0.2 0.4 0.6 0.8 1
Mutual Information (bits)

Fig. 3. Mutual information between data and compressed data
against classification error probability for p; = 0.3.

We further consider the case where the costs of decoding to
incorrect labels are asymmetrical. In Fig.4, we plot the op-
timal classification cost and data compression trade-off, for
a classification task with 3 labels, 4 data letters and 3 com-
pressed data letters, with transition probabilities in the first
channel and costs of incorrectly decoding from each label to
decoded label shown as follows (the prior probability for each
label is 1/3). Note that when the ¢ = 1, the cost is equivalent
to the decoding error probability.

P(x;|y: Y1 Y2 Y3 = — —~
( ;J : 0.995 | 0.001 | 0.002 cost | ¥ R
72 0.001 | 0.996 | 0.002 b1 X (C) T
T3 0.002 | 0.001 | 0.994 Y2
T4 0.002 | 0.002 | 0.002 Ys ! ! 0

Next, we consider the case with 3 labels, 3 data letters and 2
compressed data letters where costs of incorrectly decoding
from each label to decoded label and transition probabilities
between label and data are shown in the following tables.(the
prior probability for each label is 1/4, 1/4 and 1/2)
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Fig. 4. Optimal cost against mutual information between data
and compressed data for different c.
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Fig. 5. Optimal cost and compression tradeoff for our ap-
proach, and comparison with the performance of information
bottleneck approach.

In Fig.5, compared with Information Bottleneck Principle
(IBP, which directly maximizes mutual information between
label and compressed data), we get a curve of decoding
cost against the mutual information between data (X) and
compressed data (X). As we can see, our newly proposed
approach can significantly outperform the IBP approach in
achieving minimum decoding cost and highest compression
efficiency. The reason is that the information bottleneck
approach was not optimized for minimizing the cost.
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