From Inheritance to Mockito: An Automatic
Refactoring Approach

Xiao Wang, Lu Xiao, Tingting Yu, Anne Woepse, Sunny Wong

Abstract—Unit testing focuses on verifying the functions of
individual units of a software system. It is challenging due to
the high inter dependencies among software units. Developers
address this by mocking—replacing the dependency by a ‘fake”
object. Despite the existence of powerful, dedicated mocking
frameworks, developers often turn to a “hand-rolled” approach—
inheritance. That is, they create a subclass of the dependent class
and mock its behavior through method overriding. However, this
requires tedious implementation and compromises the design
quality of unit tests. This work contributes a fully automated
refactoring framework to identify and replace the usage of
inheritance by using Mockito—a well received mocking frame-
work. Our approach is built upon the empirical experience from
five open source projects that use inheritance for mocking. We
evaluate our approach on rine other projects. Results show that
our framework is efficient, generally applicable to new datasets,
mostly preserves test case behaviors in detecting defects (in the
form of mutants), and decouples test code from production code.
The qualitative evaluation by experienced developers suggests
that the auto-refactoring solutions generated by our framework
improve the quality of the unit test cases in various aspects, such
as making test conditions more explicit, as well as improved
cohesion, readability, understandability, and maintainability with
test cases. Finally, we submit 23 pull requests containing our
refactoring solutions to the open source projects. It turns our
that, 9 requests are accepted/merged, 6 requests are rejected, the
remaining requests are pending (5 requests), with unexpected
exceptions (2 requests), or undecided (1 request). In particular,
among the 21 open source developers that are involved in the
reviewing process, 81% give positive votes. This indicates that our
refactoring solutions are quite well received by the open source
projects and developers.

Index Terms—software refactoring, software testing, mocking

I. INTRODUCTION

Unit testing is an important phase of testing that focuses
on individual units of a software system [1]. However, the
challenge to unit testing is that software elements are inter-
dependent on each other [1], [2]. That is, when testing
one function, we have to consider its dependencies to other
functions. This hinders our ability to test easily and promptly.
For example, the function under test (FUT) may depend on an
external database that has not been deployed. This challenge
also applies to debugging — if a unit test fails, it is unclear
whether the failure is caused by the fault in FUT or its
dependent functions.

A general methodology to address this challenge is isolating
the core FUT from its dependencies through mocking [3], [4],
i.e., replacing the dependency by a “fake” object. For example,
instead of waiting until the external database is deployed,
developers create a “fake” database with dummy data populated

in a local file system and control its behavior to serve for
the testing purposes. There are various dedicated mocking
frameworks, such as easyMock, Mockito, and PowerMock [5]-
[7], which provide well constructed solutions to isolate FUT
from its dependencies. Specifically, they provide powerful
functions allowing developers to easily create mock objects,
control their behavior, and verify the execution/status of the
mock objects. These frameworks work together with classic
automated unit testing frameworks, such as JUnit [8] and
PyUnit [9].

Despite the existence of powerful mocking frame-
works, developers often turn to a “hand-rolled” approach—
inheritance [10]. That is, to create a “fake” object, developers
create a subclass of the dependent production class and control
its behavior through method overriding. For example, in
the fourteen open source projects examined in this study
(Section III-A and Section V-B), developers already adopt an
existing mocking framework for testing their systems. However,
in about half of the cases when mocking is potentially needed,
developers still use inheritance instead of using a mocking
framework. The problem is that inheritance is not intended for
mocking. As such, it requires tedious implementation when
being used for this purpose. In addition, it may compromise
the design quality of unit tests and lead to maintenance
difficulties in the test cases [11]-[14]. More specifically, as
illustrated in Section II, inheritance has the following drawbacks
compared to using a mocking framework such as Mockito.
First, inheritance implicit test condition and blurred test logic.
Second, inheritance make test code couples with the production
code and difficult to maintain. Third, inheritance separates the
mocking behavior from the test case that leverages it and makes
test design incohesive.

The goal of this work is to develop a fully automated
refactoring framework to identify and replace the usage of
inheritance by using Mockito for mocking in unit testing.
We choose Mockito because it is one of the most well received
mocking framework for Java projects [14]. It is adopted in both
commercial and open source projects [3]. The key challenge is
to preserve the test behaviors before and after the refactoring.
To overcome this challenge, we first conduct an empirical study
(Section III) involving five real-life, open-source projects as the
learning dataset. The goal is to gain empirical experience of
whether it is feasible and how to perform refactoring following
an automated procedure. Based on the empirical observations,
we formalize the problem definition of auto-refactoring to
replace inheritance by using Mockito (Section III-C). Next,
we propose a fully automated refactoring framework and

implement it as an Eclipse-Plugin (Section IV). This framework
first identifies all feasible refactoring candidates and then
performs the refactoring on each candidate for a given project.

We perform both quantitative and qualitative evaluation
(Section V) of the proposed framework using another nine
open-source projects.

The quantitative evaluation shows that Our approach derived
from the manual experience from five open source projects is
highly applicable to fourteen new open source projects. Sec-
ond, Our refactoring solutions especially reduce the coupling
between the test and production code. Third, The test cases
show high-level of behavior preservation before and after the
refactoring. Fourth, it is highly efficient to apply our automatic
refactoring tool on real-life projects.

In addition, the qualitative evaluation contains two separate
studies. In the first study, we invite experienced, full-time
developers from a company to evaluate the quality and value
of our refactoring solutions. In particular, we compare our
auto-generated refactoring solutions with manual refactoring
solutions created by the participating developers. The study
results show that the auto-refactoring solutions generated by
our approach are of good design quality and provide various
benefits for improving test code design.

In the second qualitative study, we submit a total of 23 pull
requests containing our auto-generated refactoring solutions
to the fourteen projects involved in this study. The goal is to
evaluate how well the open source projects actually receive the
refactoring solutions generated by our approach. We evaluate
this through the response rate and turn-around time to our pull
requests, especially when comparing to the average response
rate and turn-around time in the projects. In addition, we also
examine the acceptance rate based on pull requests and based
on developers that provided comments. The results show that
our refactoring solutions are quite well received from the above
metrics in open source projects. Finally, we summarize the
comments from the developers. These comments underscore the
strength of our tool, reveal concerns of developers who rejected
our pull requests, as well as highlight future improvement
opportunities identified in our approach.

In summary, this work makes the following contributions:

« An empirical study involving five open-source projects in-
vestigating whether it is feasible and how to automatically
replace inheritance by Mockito for mocking.

o A fully automated refactoring framework and its Eclipse-
Plugin implementation to identify feasible refactoring
candidates and perform the refactoring on each candidate.

« Quantitative and qualitative evaluation of the proposed
framework on nine open-source projects.

This work is an extension of our prior work [15]. The
extension is in four key aspects:

1) We improved our approach by loosening two refactoring
pre-conditions, which involve new public methods and
generic types in test subclasses for mocking. These cases
are considered infeasible for refactoring in the conference
version [15]; in this journal version, our approach can

handle cases with these two pre-conditions. The feasibility
of our approach has increased by 3% (from 40% to 43%
on the testing dataset) based on our experiment.

2) In [15], we only evaluated our refactoring approach on
4 projects. In this work, we have significantly extended
our evaluation for general applicability. In particular, to
test the general feasibility, we applied our refactoring pre-
conditions on 182 Apache java projects, and found that
26%—a total of 2,609—test sub-classes qualify as feasible
refactoring candidates for our approach. In addition, we
more than doubled the number of projects that actually
apply our auto-refactoring approach. The results show that
our approach has 82% success rate on feasible cases.

3) In this study, we added a new research question, namely
RQ7: How well do the open source projects receive the
refactoring solutions generated by our framework? We
conducted a pull-request study as mentioned earlier to
show that our approach have practical value from the
real-life developers’ perspective.

4) We added formal definition of refactoring preconditions
and the technical details of our refactoring framework,
which are not available in [15] due to space limit.

The following of this paper is organized as follows. Section II
introduces the background knowledge and motivation of this
paper. Section III introduces an empirical study to manually
refactor sub-classing by mocking. It lays the foundation of the
proposed auto-refactoring framework. Section III-C formally
defines the refactoring problem that replaces sub-classing by
mocking based on the empirical study. Section IV introduces
the implementation of the auto-refactoring framework and tool.
Section V describes the research questions and evaluation
rationale. Section VI discusses the quantitative evaluation
results (RQ1-RQ4); and Section VII discusses the qualitative
evaluation results (RQS5 and RQ6). Section VIII discusses the
limitations of our approach. Section IX talks about related
work. Section X concludes this paper.

II. BACKGROUND AND MOTIVATION

This section introduces the basic concepts of unit testing,
and a motivating example comparing the difference between
mocking through inheritance and through Mockito.

A. Unit Testing

Unit testing aims at validating that each unit of function
performs as expected [1], [16]. The unit test code is composed
of test classes, test cases, and test suites. A test class is similar
to a production class. A fest class contains one or more fest
cases. Each test case focuses on verifying the behavior of
a certain unit of function (e.g. method) in the project. A
test case should follow the “AAA (Arrange, Act, Assert)”
pattern—arrange for setting up required test environment; act
for invocation of the function being tested; and assert for
checking whether the expectations were met [17]. A group of
test cases for testing related functions are grouped and executed
together as a test suite.

The interdependence among software units hinder our ability
to perform unit testing. A key for creating high-quality, easy-to-
maintain and debug unit test cases is to isolate the core FUT
from its dependencies. In practice, this is achieved through
mocking—replacing the dependency by a “faked” object.

B. A Motivating Example

Suppose, there is an e-Commerce system, which allows
users to subscribe to its service. This function is achieved by
a class named CustomerService. CustomerService defines a
function, subscribeCustomer, to subscribe customers by email.
The method, subscribeCustomer, depends on another class,
EmailManager, which is responsible of managing and sending
emails. Its method, subscribe, first sends an email to the
customer to confirm the address; once confirmed, it stores
the email address in a database. Another method, sendEmail,
sends email through an external server. We aim to test the
logic of subscribeCustomer in CustomerService. The problem
is that, its dependency functions, EmailManager, is not fully
implemented yet—mneither the database nor the external service
is available. Thus, we isolate the FUT, subscribeCustomer,
from its dependency, EmailManager, by mocking the latter.
Next, we illustrate mocking through inheritance and Mockito:

1) Mocking by Inheritance: Inheritance is a mechanism to
derive a subclass from a base class. The subclass inherits
the attributes and methods of the base class. Meanwhile,
method overriding allows the subclass to replace certain method
implementation of the base class. Inheritance is used as a “hand-
rolled” approach for mocking. Developers define a test subclass
to “mock”™ certain behaviors of the production class through
method overriding or interface implementation for testing.

In Figure la, MockEmailManager extends the
EmailManager (line 1). The former mocks the behaviors—
subscribe and sendEmail—of the latter through method
overriding. Two new private attributes, subscribed (line 2)
and num (line 3), are defined for tracking the execution of
the two overridden methods. That is, subscribed is set to be
true (line 6) when subscribe executes; while num increments
(line 10) each time sendEmail executes. Of particular note,
since the logic defined in this subclass prepares mocking
behaviors for the unit test case, it is part of the “Arrange” in
the “AAA” pattern.

The test case, testSubscribeCustomer, follows the “AAA”
pattern. First, it arranges the environment for testing. This
includes creating an instance of MockEmail Manager—
emailManager—(line 15), and creating an instance of
CustomerService, myservice, which is the FUT. Next, it
acts the FUT (line 17 and line 18). Lastly, the test case asserts
the value of subscribed and num with M ock Email M anager
(line 19 and 20). They confirm that subscribed is true,
indicating method subscribed is executed; and that num equals
2, indicating that two emails are sent (one asks the customer
to confirm; the other sends a confirmation of subscription).

2) Mocking by Mockito: Mockito offers three aspects of
capabilities for mocking. First, Mockito allows easy creation
of a mock object as a “mock” or a “spy”. The “mock” is a

class MockEmailManager extends EmailManager {
private boolean subscribed = false;
private int num = 0;
4 @override
public boolean subscribe ()
{ subscribed = true;

w N

Arrange

Subclass sendEmail () ;

return true;}
@override

10 public void sendEmail() {num#+;}—s

11 4y

12 sclass TestCustomerService {

13 @Test

4 public void testSubscribeCustomer() {

15 MockEmailManager emailManager = new MockEmailManager();

Arrange s g CustomerService myservice = new CustomerService():
y. ;

myservice.subscribeCustomer (emailManager) ;

myservice.emailCustomers (emailManager) ;

assertTrue (MockEmailManager.subscribed) ;

o) assertEquals (2, MockEmailManager.num) ;}

Mock through method overriding

Act

Assert

—_
TR ==
@

(a) Mocking by Inheritance

23 vclass TestCustomerService {

2 @Test
Arra nge{'/

public void testSubscribeCustomer() {
Act

EmailManager emailManager = mock(EmailManager.class);
Mock Mockito.when (emailManager.subscribe ()) .thenAnswer (invo -> {
. emailManager.sendEmail () ;

sendEmtmi: s

return true;});
CustomerService myservice = new CustomerService();
‘{ 3 myservice.subscribeCustomer (emailManager) ;
32 myservice.emailCustomers (emailManager) ;
{ Mockito.verify (emailManager, Mockito.atLeastOnce ()).subscribe ();

Assert gy Mockito.verify(emailManager, Mockito.times(2)).sendEmail();}

(b) Mocking by Mockito

Fig. 1: A Motivating Example

completely fake object and is entirely instrumented to track
the interactions with it. In comparison, the “spy” wraps a real
instance of the mocked object. The “spy” should be used when
the execution of real methods is necessary in testing. Second,
Mockito offers light-weighted method stubbing for controlling
the behaviors of the mock object for testing purposes. Mockito
provides dedicated syntax for different types of behavior—i.e.
a void method, a return method, or a method for throwing
exceptions. Third, Mockito provides explicit mechanism for
verifying the behaviors/status of the mock objects. For instance,
Mockito can ensure whether a mock method is being called or
not, check on the number of calls made on a particular method,
and take care of the order of calls, etc.

In Figure 1b, Mockito directly creates a “mock” of the
EmailManager (line 26), since the goal is to avoid its real exe-
cution and focus on its interactions with subscribeCustomer.
In line 27-29, we stub the mocking behavior when subscribe
is invoked. The send Email should do nothing, since we want
to avoid sending real emails. Thus, there is no need to stub
it. Acting the FUT (line 31 and line 32) remains the same as
using inheritance. Finally, in line 33 and 34, we directly verify
the execution of subscribe and sendEmail.

3) Benefits of Mockito Over Inheritance: Mockito enables
explicit and easy to understand testing logic. It allows easy
creation of mock objects for different levels of function isolation
(i.e. “mock” and “spy”). The verify functions in Mockito
provide an explicit mechanism for checking the execution and
status of the mock objects. In comparison, inheritance requires
the developer to manually craft additional attributes/features
in the subclass for tracking the execution of the mock objects.
For example, new attributes, subscribed and num, are used
to keep track of method execution in the mock object. The
logic behind the attributes is implicit, and may blur the testing
logic.

Mockito decouples test and production code to ease the
maintenance of the test code. Renaming methods/interfaces or
reordering parameters in the production code will not break the
test code, since Mockito wires the mock objects at run-time. In
comparison, inheritance relationship increases the coupling
between the test and production code. This unnecessarily
cripples the inheritance hierarchy and increases maintenance
difficulty. When the production code changes, its subclasses
have to change accordingly.

Mockito improves the cohesion of test design by enforcing
the “AAA” pattern of unit test case. Method stubbing through
Mockito cohesively associates with the mock object when it
is arranged in the test case. In comparison, in inheritance, the
mock behavior (which is part of the “Arrange”) is defined in
a separate subclass through method overriding. It is detached
from where the behavior is used for testing. This increases the
cognitive load for understanding the test behavior.

III. EMPIRICAL STUDY

We first conduct an empirical study to investigate whether
it is feasible and how to automatically replace inheritance by
Mockito.

A. Dataset

We select five open source projects as our empirical study
subjects—they are Dubbo [18], Druid [19], Accumulo [20],
Cayenne [21], and CloudStack [22]. We select these projects
because, first, they are popular open source projects from
diverse problem domains. Second, test-production inheritance
is common—each project contains 81 (CloudStack) to 291
(Druid) test subclasses for mocking. Thirdly, we are able to run
the test cases in these projects, which is important for verifying
the correctness of the manual refactoring. Most importantly,
these projects already use Mockito.

B. Study Process

For each case where a test subclass inherits or implements
a production class or interface, we investigate the following
questions: Can we manually refactor the inheritance by using
Mockito based on our understanding? If so, is the refactoring
process automatable? If not, what is the reason that makes the
refactoring—and the automation—infeasible? One author—the
driver—manually reviews and refactors each test subclass, and
the research team meets weekly to inspect and discuss the
manual refactoring solutions:

1) If the manual refactoring is not feasible or not successful,
the driver records detailed reasons.

2) For each refactored case, the driver summarizes the key
refactoring steps, and determines whether the refactoring
procedure can be automated. If automation is not possible,
the driver records the reasons.

3) In the weekly meetings, the team: i) discuss and improve
the manual refactoring solutions, and ii) discuss and define
the auto-refactoring problem formalization.

C. Problem Formalization

Based on cases that are refactored in the empirical study,
we formalize the auto-refactoring problem. It is a conversion
from the left side to the right side:

Refactor(codeinperitance) — code!

mocking*

Before: Code;peritance After: Code’

testSubClass extends productionClass{

mocking

testClass’{

Type attribute; ———————————| > [attribute]*
new testSubClass(){...} ———————] > [constructor]* @test ,
overriddenMethod(){...} ——————— > [overriddenMethod]* testCase’(){
privateMethod(){...} ———————— [privateMethod]*
) lp 1 ?{cnnstruction’]
testClass { — [stubMethod]
@test
testCase(){ | — [reference’]+
testSubClass X = new testSubClass(); - [construction]
X.overridenMethod(); — — — —— — — t [reference]+ }//end testCase’
assert(expected, X.attribute); —! t— [privateMethod’]*
}//end testCase }//end testClass’

}//end testClass

Fig. 2: Illustration of Refactoring

a) Before Refactoring: A refactoring
code;nheritance €an be abstracted as a triad:

candidate

codeinheritance =
< testSubClass, productionClass, testClass >

Here, testSubClass extends the productionClass. The
testClass leverages testSubClass to assist testing. The left-
side code snippets in Figure 2 illustrates the formalization of
COdeinheritance~

The testSubClass is further consisted of four key elements
(The convention “[]*” indicates that there is zero or more of
a design element). The upper-left code snippet illustrates an
example testSubClass.

testSubClass =< [constructor]*, [attribute]x,
[overridden M ethod]x, [private M ethod]* >

o constructor creates a testSubClass instance.

« attribute is for tracking the execution of testSubClass.

o overriddenMethod defines dummy implementation of a
function in productionClass.

o privateMethod defines additional
testSubClass.

A testClass leverages the testSubClass for testing, which
can be formalized as following:

function in

testClass =< [testCase]+ >

testCase =< [construction], [reference]+ >

A testClass contains at least one testCase. A testCase
involves a testSubClass in two parts for fulfilling the testing
goal: First, construction, which invokes a constructor of
testSubClass to create an instance. Second, reference, which
accesses the attributes or call the methods of the instance. The
lower-left code snippet of Figure 2 illustrates a simple example.

b) After Refactoring: The original code;nneritance 18
refactored into code’ which eliminates testSubClass

) mocking’® ;
and replaces it by a mock object:

/
mocking

code =< productionClass, testClass’ >

Thus testClass becomes testClass’, and each testCase
in it becomes testCase’:

testClass’ =< [testCase'|+, [privateMethod'|* >
testCase’ =
< [construction'], [stubM ethod]x, [re ference']+ >

As illustrated in the right-side code snippet in Figure 2,
testClass’ is composed of festCase’ and [privateMethod'].
The [privateMethod'] is the [privateMethod] moved from
testSubClass to testClass’. And, each refactored testCase’ is
consisted of three components. First, [construction’] to create a
mock object of the productionClass, which replaces the instance
created by [construction] in testCase. Second, [stubMethod],
which replaces the [overridenMethod] in testSubClass. Third,
[reference’] to the mock object, which replaces the respective
[reference] to the testSubClass instance in testCase. We will
explain the formal refactoring procedure in Section IV-A.

c) Refactoring Pre-conditions: Based on the empirical
study, we summarize ten refactoring pre-conditions. For
any refactoring candidate, denoted as Codeinheritance =<
testSubClass, productionClass, testClass >, the three ele-
ments and/or their relations must satisfy certain pre-conditions
to match the refactoring formalization defined above. Otherwise,
it is infeasible to refactor the Code;pheritance 1NStance or
the refactoring requires case-by-case effort and cannot fol-
low any automated process. Following, we formally define
each pre-condition, in the notion of the three elements in
Code;nheritance—namely testSubClass, productionClass,
and testClass to specify the characteristics and relations
that must be met, and provide the rationale behind each pre-
condition:

1) The testSubClass implements or extends one and only

one productionClass.

onlyOneSuperClass =

AlproductionClass |

extend(testSubClass, productionClass)
Vimplement(testSubClass, productionClass)

Rationale: It is possible that testSubClass extends a
parent class, and implement multiple other classes. If
this happens, it implies that testSubClass may mock
the behavior of multiple production interfaces. However,
in Mockito, mocking multiple productionClasses is not
recommended [23]. If we force the refactoring, we need to
use extralnterfaces() to bind to multiple interfaces. In the
method stubbing, we need to cast the mock object to the
respective interface type when calling the Mockito.when().
Mockito generally does not recommend such usage in their
official documentation “This mysterious feature should be
used very occasionally. The object under test should know
exactly its collaborators dependencies. If you happen
to use it often than please make sure you are really
producing simple, clean readable code.” '. Our initial

Uhttps://javadoc.io/static/org.mockito/mockito- core/3.1.0/org/mockito/
MockSettings.html#extralnterfaces-java.lang.Class...-

motivation behind refactoring is to improve the design
and understanding of test cases by using Mockito, but
such refactoring may contradict our initial goal. This pre-
condition should apply regardless of the choice of mocking
framework as mocking multiple production interfaces with
one mock object generally complicates the design and
hinders comprehension.

The testSubClass does not override two JDK APIs, i.e.
equals() and hashCode().

2

~

doNotOverrideJDK =

B method € testSubClass |

override(method, java.lang.Object.equals())

V override(method, java.lang.Object.hashCode())

Rationale: A general design principle in using mocking is
that “Only mock types you own” [12]. Thus, developers
should generally avoid mocking JDK APIs which are
not owned by their project. Mockito is built upon the
two JDK APIs, namely java.lang.Object.equals() and
Jjava.lang.Object.hashCode() [24]. In addition, mocking
the behavior of these two APIs will endanger the normal
functions of Mockito. As Mockito states in their WiKi
page that “Mockito Cannot mock equals(), hashCode().
Firstly, you should not mock those methods. Secondly,
Mockito defines and depends upon a specific implemen-
tation of these methods. Redefining them might break
Mockito.”?. Even other mocking frameworks may not be
built on these two APIs in specific, this pre-condition
should still apply due to the general principle of “Only
mock types you own’.

The testSubclass does not contain any new public
method that is not defined in its parent productionClass,
and, this method is used somewhere else other than
testSubclass:

3

~

noNewPublicMethod =
Bpublic method € testSubclass |
method & productionClass

A method used outside testSubclass

Rationale: If testSubClass contains a public method
that is not defined in the productionClass, and this
new method is used somewhere by testClass, it implies
that testSubClass contains extra, new behaviors com-
pared to productionClass. In this case, testSubClass
with the extra function is no longer simply “mocking’
productionClass. To our best knowledge, no existing
mocking framework supports adding new methods to the
mocked object. So this pre-condition applies regardless
of the choice of the mocking framework.
4) The testSubclass does not have self reference.

s

Zhttps://github.com/mockito/mockito/wiki/FAQ#
what-are-the-limitations-of-mockito

https://javadoc.io/static/org.mockito/mockito-core/3.1.0/org/mockito/MockSettings.html##extraInterfaces-java.lang.Class...-
https://javadoc.io/static/org.mockito/mockito-core/3.1.0/org/mockito/MockSettings.html##extraInterfaces-java.lang.Class...-
https://github.com/mockito/mockito/wiki/FAQ##what-are-the-limitations-of-mockito
https://github.com/mockito/mockito/wiki/FAQ##what-are-the-limitations-of-mockito

5)

6)

7)

noSel f Re ference(testSubClass) =
Belement € testSubClass |
instance_of (element, testSublass)

Rationale: If testSubClass contains self-reference, such
as containing an attribute in its own type, or using a
parameter or variable in its own type in methods, etc.,
it means that the mock object’s behavior depends on
itself. When creating a mock object and defining method
stubbing using Mockito (or even with another mocking
framework), we cannot properly translate the logic of
self-reference to its equivalent form, since self-reference
is not supported. To our best knowledge, no existing
mocking framework supports mock objects with self-
reference. Thus, this principle should apply regardless
of the choice of mocking framework.

The testSubclass is instantiated through its constructor.

isInstantiated ByConstructor =
X, | X calls testSubclass.constructor()

Rationale: If test SubClass is never instantiated anywhere,
in X, which is a testClass or testCase through its
constructor, it implies that either it is not used anywhere
or is instantiated through dynamic binding. In the former
case, it means that the mock object is not used anywhere,
and thus there is no need for a refactoring. If it is the latter,
we cannot use Mockito, or another mocking framework,
to work with dynamic binding. This precondition should
apply regardless of the choice of the mocking framework.
The testSubClass does not contain special code annota-
tion.

noSpecial Annotation =

element € testSubClass |

element.annotation == null

V element.annotation €

{“SuppressWarning” , “Override” }

Rationale: Some testSubClass contains highly cus-
tomized and project specific annotations or annotations
from a special library [25]. These special annotations
are not supported by Mockito, or any other existing
mocking framework. Thus, this precondition applies
not only to Mockito. Our approach only accepts two
common annotations, including SuppressWarning and
Override, based on our empirical study observations. We
acknowledge that only including these two annotations
observed from our empirical study may post limitation to
our approach for its general applicability. We will discuss
this more in Section VIII.

The testSubclass does not access to a protected attribute
or method in the productionClass.

noAccess2Protected =
Fprotected element € productionClass |

reference(testSubclass, element)

8)

9)

Rationale: Mockito does not support the access to pro-
tected elements. This is a limitation with Mockito. One
could use a more powerful mocking framework, such as
PowerMock [7] to overcome this limitation. PowerMock
supports accessing to protected fields and methods through
reflection [26].

If a testSubclass contains a new attribute—i.e. the
attribute is not defined in its parent productionClass, no
such a testSubclass instance is declared in one method,
namely method;, and passed to another method, namely
method;, which uses its new attribute.

noPassingWithNewFElement =

Jattribute € testSubclass

A attribute ¢ productionClass |

BX | instance_of (X, testSubclass)

A X declared in method; € testClass

A X.attribute used in method; € testClass

Rationale: The refactoring requires a case by case un-
derstanding of how X.attribute is used in method; €
testClass, as well as whether and how method; €
testClass is used by other methods in testClass for
a clean design. If without a thorough understanding of
how the attribute is used across methods, one may just
refactor the case by passing among methods the new mock
object together with the related variable (the variable is for
replacing the attribute in the sub-class). Although this may
provide equivalent logic, the design looks messier due to
passing multiple parameters. Thus, it requires manual
effort to create a good test design based on case by
case understanding of the new attribute. This principle is
independent from the choice of mocking framework, as
refactoring such cases prudently tends to compromise the
test design due to the complexity.

If the testSubclass contains a new attribute—i.e. the
attribute is not defined in its parent productionClass, no
such a testSubclass is created and used as a collection
of its instances in testClass.

notBatchU se =

dattribute € testClass

A attribute ¢ productionClass |
Adeclaration = new Class; < testSubclass >

A Class; implements Iterable

Rationale: If testSubclass contains a new attribute and
is created as a collection of instances, i.e. as [terable, we
cannot properly preserve the logic of the new attribute of
testSubClass in the refactoring. More specifically, we
could create a collection of variables, which track the
new attribute, together with a collection of mock objects,
to replace the testSubClass instance collection. But the
logic for binding each variable and each mock object
from the two collections could go far more complicated

compared to the one single collection of testSubClass.
Thus the refactoring would not merit good design and easy
comprehension of test cases. This pre-condition should
apply regardless of the choice of mocking framework due
to the same rationale as the previous pre-condition.

The testSubclass does not contain the definition of an
inner class.

10)

nolnnerClass =

Bclass | class.de finition € testSubclass

Rationale: The inner class is defined such that it is only
used inside of the testSubclass to assist the logic of
mocking behavior. To enable the refactoring of such cases,
the developer should first use an existing refactoring tool
with IDEs, which focus on moving inner class to its
containing class (e.g. Move Inner to Upper Level Dialog >
in IntelliJ, and Convert Member Type to Top Level * in
Eclipse); then use our tool (also as an IDE Plugin) as the
follow-up step to automatically refactor the testSubclass.
Again, this principle is independent from the choice of
mocking framework, and should apply generally.

Of a particular note, our discussion of the rationale behind
each pre-condition is detailed based on refactoring using
Mockito. As mentioned earlier, we choose Mockito due to
its wide adoption. We would like to point out that the pre-
condition #7 could be potentially loosen up if using a more
powerful framework, i.e. PowerMock. However, the feasibility
should be rigorously tested, which is out of the scope of this
study, and we leave it for the future.

The remaining nine pre-conditions should generally apply
regardless of the choice of the mocking framework. This
happens in two scenarios. First, to our best knowledge, existing
mocking frameworks suffer from the same constraints as
Mockito, and thus the same pre-conditions should apply.
These include #2 (“only mock types you own”), #3 (cannot
support new methods with mock objects), #4 (cannot support
mock objects with self-reference), #5 (cannot support dynamic
binding for creating mock objects), and #6 (cannot support
special annotations). The second scenario is that some pre-
conditions identify certain design features that should not
favor the refactoring, even though refactoring using Mockito
or another framework is possible. These include #1, #8, #9,
and #10.

D. Findings and Implications

Table I shows the detailed findings of the empirical dataset.
The first column lists the project names. The second column
lists the total number of test sub-classes, which is the initial
refactoring candidate pool we identify before checking the ten
pre-conditions. As we can see, we start from a total of 832
test sub-classes for the investigation.

3https://www.jetbrains.com/help/idea/move-inner-to-upper-level-dialog-for-java.

html
4See the first response for https://stackoverflow.com/questions/2117962/
how-to-refactor-a-static-inner-class-to-a-top-level-class-in-eclipse

The following columns, “P1” to “P10”, list the number of
test sub-classes that are excluded because they do not meet the
respective refactoring precondition. As shown in Table I, the
top three commonly violated pre-conditions are “P5”, “P6”,
and “P3”, which exclude 16%, 12%, and 8% cases, which
add up to 36% of the excluded cases. More specifically, as
introduced earlier, “P5” requires that the test sub-class must
be instantiated somewhere through its constructor. There are
two possibilities if this pre-condition is not met. First, the
test subclass becomes deprecated and never used, thus no
need to create a mock object using Mockito to replace it.
Or, second, the test subclass is instantiated through dynamic
binding—for this, we cannot use Mockito to create a mock
object through dynamic binding. “P6” requires that the test
sub-classes do not contain special annotations since Mockito
does not support them. It is an interesting future direction
to advance the capability of mocking frameworks to support
special code annotations. Finally, “P3” requires that the test
sub-class does not include new public method that used outside
of itself. This indicates that the test subclass contains new, extra
behavior that is not in the object being mocked. Thus the test
subclass is no longer simply “mocking” its parent, and we
should not replace it by a mock object using Mockito. This
could be a scenario where a test sub-class is a better design
than using Mockito due to the complexity of the behavior.

The second last column shows the number of test sub-
classes that meet all pre-conditions but failed refactoring due
to execution issues. In these cases, we either have issues
configuring the projects and executing related test cases; or the
test behavior changes after refactoring for reasons that require
case-by-case investigation. A total of 97 (12%) cases failed
the refactoring due to execution issues.

The last column shows the ultimate number of test sub-
classes that we are able to refactor successfully. A total of 222
(27%) cases can be refactored successfully, and the refactoring
can be potentially automated. This non-trivial portion of cases
motivate the design of our automated refactoring framework.
Later, we use our implemented refactoring framework (Sec-
tion IV) on the empirical dataset, and confirmed that these
222 cases can be refactored by our tool automatically and
successfully.

IV. REFACTORING FRAMEWORK

The auto-refactoring framework, implemented as an Eclipse-
plugin >, addresses the above formalization with two parts. The
first part is identifying refactoring candidates. After loading a
project in Eclipse, a user first selects the scope, e.g. the entire
project, a package, or a group of files, from which refactoring
candidates should be identified. The identification relies on the
AST Parser of Eclipse JDT [27] to detect feasible candidates
that meets refactoring pre-conditions defined in Section III-C .
The second part is refactoring each candidate. The tool will
notify users the list of identified refactoring candidates (i.e.
sub-classes). The user needs to select a candidate to proceed

Shttps://github.com/wx930910/JMocker

https://www.jetbrains.com/help/idea/move-inner-to-upper-level-dialog-for-java.html
https://www.jetbrains.com/help/idea/move-inner-to-upper-level-dialog-for-java.html
https://stackoverflow.com/questions/2117962/how-to-refactor-a-static-inner-class-to-a-top-level-class-in-eclipse
https://stackoverflow.com/questions/2117962/how-to-refactor-a-static-inner-class-to-a-top-level-class-in-eclipse
https://github.com/wx930910/JMocker

TABLE I: Manual Refactoring Pre-Conditions details

Cases Excluded By Pre-Conditions

Proj. | #Subcl. P 1) B3 o 5 P6 77 B3 PO PO Exec. Iss. Succ.
Dubbo 148 9 (6%) | 1(1%) 0 (0%) | 12 (8%) 39 (26%) 5@B%) | 10 (1%) 11 (7%) | 0(0%) | 1 (1%) 14 (9%) 46 (31%)
Druid 291 72%) | 5Q2%) | 40 (14%) | 23 (8%) 6 (2%) 54 (19%) | 11 (4%) 10 3%) | 2(1%) | 0(0%) | 60 (21%) 73 (25%)
Accumulo 161 1 (1%) | 1 (1%) 15 (9%) | 10 (6%) 42 (26%) 7 (4%) 6 (4%) | 20 (12%) | 1 (1%) | 0 (0%) 11 (7%) 47 (29%)
Cayenne 151 2(1%) | 1 (%) 10 7%) | 14 9%) 47 (31%) 12 8%) | 11 (7%) 10 (7%) | 0 (0%) | 0 (0%) 2 (1%) 42 (28%)
CloudStack 81 | 26 32%) | 0 (0%) 0 (0%) 1 (1%) 3 (4%) 22 (27%) 2 (2%) 3(4%) | 0(0%) | 0(0%) | 10 (12%) 14 (17%)
Sum 832 45 (5%) | 8 (1%) 65 8%) | 60 (7%) | 137 (16%) | 100 (12%) | 40 (5%) 54 (6%) | 3(0%) | 1(0%) | 97 (12%) | 222 (27%)

with the refactoring. The implementation of refactoring relies
on the ASTRewrite mechanism of the Eclipse JDT [27].

The identification of feasible refactoring candidates simplify
matches the ten pre-conditions defined in III-C. This section
focuses on the introduction of the details refactoring procedure
once a candidate is selected for refactoring.

A. Auto-Refactoring Procedure

Figure 3 shows the refactoring procedure to convert
codeinheritance t0 codel ... g for each refactoring candidate
identified from the previous step. Our approach involves five
logical parts:

1) Create mock object: This step constructs a mock object
using Mockito to replace the testSubclass instance, and
ensures that they have equivalent initial status.

2) Preserve mocking behavior: This step extracts the over-
ridden methods and moves the private methods in
testSubClass to ensure that the mock object has equiva-
lent behavior as the testSubClass instance.

3) Preserve references to the mock object: This step ensures
that the execution/verification of the mock object is
equivalent to that of the testSubClass instance.

4) Infrastructure Procedure-translateToMocking: This proce-
dure cross-cuts the three previous parts to ensure that the
refactoring follows the mocking syntax.

5) Create MockMethod for code reusability: This applies
when multiple test cases could reuse the mock object
creation.

In the following subsections, we will explain each part in
detail.

1) Stepl-Create Mock Object: This step creates a mock
object using Mockito to replace the testSubClass instance.
To ensure that the initial status of the testSubClass instance
and the mock object are equivalent, the following three sub-
steps are performed:

Step-1.1: Replace testSubClass instance creation by mock
object creation. There are two ways to do so—through spy or
mock, as illustrated in Figure 4a and Figure 4b, respectively.
Spy creates a real object; while mock creates a complete
mock or fake object. Based on the empirical study, if the
productionClass is an interface without any method definition,
we should use mock, since an interface cannot be instantiated
as a real object. In comparison, if the productionClass has
method implementation, we should use spy to ensure that the
mock object has the same behavior as the real object, except for
the purposely stubbed methods. There are other minor syntax
variations for spy and mock, summarized here °.

Shttps://sites.google.com/view/mockrefactoring

Step-1.2: Extract the attributes of testSubClass to
testClass’. This ensures that the status of the testSubClass
instance is preserved for the mock object. We observed two
types of testSubClass attributes from the empirical study,
which are treated differently.

The first type of attribute is the “counter/checker” as shown
in the motivating example in Figure 1. These attributes are
for tracking the execution of the mock object. We recognize
the type using three heuristics. First, it is a boolean or an int.
Second, it is only read/written in a certain methods of the
mock object. Third, it is asserted for checking the execution of
the associated methods. Mockito has a designated mechanism—
Mockito.verify—for verifying its execution. Thus, there is no
need to preserve this type of attributes. Instead, we just keep a
record of the tracked methods and verify their execution later
using Mockito.verify to replace the assertions.

The other type of attributes, which may also serve for
tracking related execution information, are in diverse types, and
could be referenced anywhere in testClass. The way that we
extract such an attribute from the testSubClass to testClass’
depends on how testSubClass is originally used in testClass.
More specifically, if the testSubClass instance is an attribute
of the testClass, the attribute of testSubClass will become
an attribute for testClass’, to ensure the same access scope.
Otherwise, if the testSubClass instance is created as a local
variable inside a testCase, the attribute of testSubClass will
become a local variable in testCase’.

Step-1.3: Extract the constructor logic from testSubClass
to [construction’]. This ensures that the mock object has
equivalent initial status as the testSubClass instance. If the
testSubClass instance is created using a default constructor,
this step can be skipped. If testSubClass instance is created
using a non-default constructor (which comes with additional
settings for the created instance), the constructor logic needs
to be extracted to [construction’]. Each statement in the
constructor needs to be translated to follow the syntax after
the refactoring. Here, an infrastructure procedure named
translateToMocking takes the code body of the constructor
as input, and translates each statement following the mocking
syntax. Since translateToMocking cross-cuts all three logic
steps of the refactoring procedure, we will introduce its details
in Section I'V-A4.

2) Step2-Preserve Mocking Behavior: This preserves the
mocking behaviors by treating the overriddenMethods and
private-Methods in the testSubClass:

Step-2.1: Extract the overriddenM ethod in testSubClass
to the stubM ethod which directly associates with the mock
object created/used in testCase’. There are two common ways
to stub a method: doAnswer and thenAnswer. The thenAnswer

https://sites.google.com/view/mockrefactoring

Step 1: Create Mock Object

1.2-Extract
testSubClass
attributes

1.1-Replace
subclass instance
by mock object

Applicable when: I
1. Mock object resued in
multiple test cases;

*\ constructor

Step 2: Preserve Mocking Behavior

Step 3: Preserve reference

2.2-Move
private method

2.1-Extract
overriden method

2. No external reference to encapsulate

testSubclass attributes

Use

(translateTo Mocking)

(' Create MockMethod)

Refactoring for Code Reusability

N

Infrastructure Procedure

Fig. 3: Automated Refactoring Procedure

Before Refactoring

[T class TestSubclassA extends ProductionClass {

2 @Override

public int mockBehavior (List<String> inputStr) {

4 inputStr.add("Override mockBehavior");
5 return inputStr.size();}
6 '}
'/ .class TestClass {
@Test

9 public void testMethod() {
[LO TestSubclassA instanceA = new TestSubclassA();}
i)
After Refactorin

class TestClass {

@Test
public void testMethod() {
ProductionClass mockA = spy(ProductionClass.class) ;|
20 Mockito.doAnswer (invo -> {
21 List<String> inputStr = invo.getArgument (0) ;
22 inputStr.add("Override mockBehavior™);
23 return inputStr.size();
24 1) .when (mockA) .mockBehavior (Mockito.any()) ;}

Tz-dais
T tidas |

(a) “Spy” and “doAnswer”
Before Refactoring
[T Class TestSubclassB implements Productionlnterface {
2 @Override
public int mockBehavior (List<String> inputStr) {
4 inputStr.add("Implen 3 "y

return inputStr.size();}
}
class TestClass {
@Test
9 public void testMethod() {
TestSubclassB instanceB = new TestSubclassB();}

Tz-das

1}

% After Refactoring
E 6 :class TestClass {
- @Test
public void testMethod() {
ProductionInterface mockB = mock(ProductionInterface.class);
Mockito.when (mockB.mockBehavior (Mockito.any()) .thenAnswer (invo -> {
List<String> inputStr = invo.getArgument (0) ;

inputStr.add (");
return inputStr.size();});}

(b) “Mock” and “thenAnswer”
Fig. 4: Mock Object Creation and Stub Method

adds additional actions to the stubbed method [28]. It ensures
type safety thus should be preferred whenever possible. While,
doAnswer entirely replaces the original method behavior [29],
working similar to method overridden in inheritance. Based on
empirical experience, thenAnswer works with objects created
using mock; while the spy object should work with doAnswer
to preserve the “overridden” behavior. Figure 4 illustrates
doAnswer in Figure 4a (line 20 to line 24) and thenAsnwer
in Figure 4b (line 20 to line 23) respectively. They are used
to replace the overridden methods between line 2 to line 7 in
Figure 4a and in Figure 4b.

Note that the internal logic of the overridden methods in
Figure 4 is straightforward —i.e. without referencing attributes
or methods in the testSubclass. Thus we can directly move
them to the stub method blocks. If the internal logic has a

Before Refactoring
[class TestSubClassA implements ProductionInterface {
2 @Override
public int mockThrow() {
throw new UnsupportedOperationException("No mplemented.") ;

» -
@ >
e U0, !
I
N
3 sclass TestClass {
@Test
Lo public void testMethod() {
% L1 TestSubClassA instanceA = new TestSubClassA();
e)
g 0]
After Refactoring
L5 iclass TestClass {
L6 @Test
L7 public void testMethod() {
L8 ProductionInterface mockA = mock(ProductionInterface.class);
LS Mockito.when (mockA.mockThrow()) .thenThrow (new
_’{;4 UnsupportedOperationException("Not Implemented."));
il

R2 '}

(a) thenThrow Method Stub

Before Refactoring
class TestSubClassB extends ProductionClass {
2 @Override
public int mockThrow() {
throw new UnsupportedOperationException ("N plemented.") ;

}
}

T'z-dais

class TestClass {
@Test
) public void testMethod() {
TestSubClassB instanceB = new TestSubClassB() ;

1
1
12 }
13)
After Refactoring
> .class TestClass {

@Test

public void testMethod() {
18 ProductionClass mockB = spy(ProductionClass.class);

) Mockito.doThrow (new UnsupportedOperationException ("N

L =

T'T-dars

1.")) .when (mockB) .mockThrow () ;
P }
1 '}

(b) doThrow Method Stub
Fig. 5: Throw Method Stub

reference to the testSubClass attributes/methods, we also
need to use translateToMocking procedure to convert the syntax
before moving.

In addition, there are other method-stubbing syntax for
different kinds of behaviors, including thenThrow vs. doThrow
(Figure 5) for throwing exceptions, thenReturn vs. doReturn
(Figure 6) for returning values, and doNothing (Figure 7) for
void behavior.

More specifically, thenThrow and doThrow are used when
the overridden method throws an exception (line 4 in Figure Sa
and in Figure 5b). The exception-throwing in ZestSubClassB
becomes method stub in testCase’ (line 19 in Figure 5a and in
Figure 5b). The difference is that thenThrow goes through the
original method’s behavior first and then throws the exception;
it cannot be used when the overridden method return void. In

Before Refactoring
class TestSubClassA implements ProductionInterface {
@Override
public int mockReturn() {
return ;
g }
@
K }
N
(.
class TestClass {
@Test
< public void testMethod() {
a".’ TestSubClassA instanceA = new TestSubClassA();
® }
N }
After Refactoring
class TestClass {
@Test
public void testMethod() {
L] ProducticnInterface mockA = mock(ProductionInterface.class)
— Mockito.when (mockA.mockReturn()).thenReturn(10);
}
}
(a) thenReturn Method Stub
Before Refactoring
class TestSubClassB extends ProductionClass {
@Override
public int mockReturn() {
return
g }
N }
©
S
class TestClass {
@Test
L public void testMethod() {
%’ TestSubClassB instanceB = new TestSubClassB();
b }
o }
After Refactoring
class TestClass {
@Test
public void testMethod() {
L ProductionClass mockB = spy(ProductionClass.class);
—{ Mockito.doReturn(!0) .when (mockB) .mockReturn() ;
}
}
(b) doReturn Method Stub
Fig. 6: Return Method Stub
Before Refactoring
class TestSubClassA extends ProductionClass {
Q@Override

public void mockDonothing() {};
}

6 class TestClass {

@Test

public void testMethod() {
TestSubClassA instanceA = new TestSubClassA();

) }

}

After Refactoring

[3 class TestClass {

@Test

public void testMethod() {
ProductionClass mockA = spy(ProductionClass.class);
Mockito.doNothing () .when (ProductionClass) .mockDonothing () ;|

1z-daig
1'T-dais

Fig. 7: doNothing Method Stub

comparison, doThrow completely ignores the original method
behavior, and throws the exception. We use thenThrow for
mocking object and use doThrow for spying object.

Similarly, thenReturn and doReturn are used when the
overridden method returns certain objects (line 4 in Figure 6a
and in Figure 6b). The return behavior in TestSubClassB is
handled by method stub in testCase’ (line 19 in Figure 6a
and in Figure 6b). We use thenReturn for mocking object and
doReturn for spying object.

Finally, doNothing is used when no action is needed. The
overridden method mockDonothing() (line 3 in Figure 7) is
replaced by doNothing (line 17 in Figure 7). doNothing is only
used for spying object to completely skip the original behavior.
Mocking object will do nothing by default and thus there is
no need to define the respective stub method.

Step-2.2: Move each private method from testSubClass to
testClass’. These method movements cannot be directly copy-
and-pasted due to the overall syntax change. Similarly, we use
the translateToMocking procedure to convert the method syntax
when moving it. In addition, the method signature may need
to be updated accordingly, to take additional input parameters,
for accessing the local variables in testCase’ which were the
attributes in testSubClass.

3) Step3-Preserve Reference to the Mock Object: In a
testCase, there could be references to the attributes and/or
methods of the testSubClass instance—as such the instance
is created for facilitating testing. To ensure that the behavior
of testCase and testCase’ remains consistent, we need to
preserve these references on the mock object. Again, we use
the translateToMocking procedure to preserve [referencel* in
testCase to be the respective [reference’]* in testCase’.

4) Infrastructure Procedure—translateToMocking: As men-
tioned earlier, each previous step relies on the translate-
ToMocking procedure which takes a certain code body
in the testSubClass—e.g. methods, constructors, reference
statements—as input, and convert them to follow the syntax
after refactoring. Figure 8 shows the pseudo-code of this
procedure.

Algorithm 1 translateToMocking (codeBody)
Require: TSC = testSubclass
Require: TCL = testClass
Require: TCA = testCase
Require: MO = mockingObject
1: while codeBody has stm do
2: if stm.contains(TSC.attr) then

3 if TSC.attr is “checker/counter” then

4: if stm is “assertion” then
stm.replace(assertion, MockVerify)

5: else
error!

6: end if

T else

8: if TSC.attr becomes TCA.variable then
stm.replace(TSC.attr, TCA.var)

9: end if

10: if TSC.attr becomes TCL.attr then
stm.replace(TSC.attr, TCL.attr)

11: end if

12: end if

13: end if

14: if stm.contains(TSC.privateMethod) then
stm.replace(TSC.privateMethod, TCL.privateMethod)

15: end if

16: if stm.contains(TSC.overriddenMethod) then
stm.replace(TSC.overriddenMethod, MO.stubMethod)

17: end if

18: if stm.contains(TSC.setter/getterMethod) then
stm.inline(translateToMock(TSC setter/getterMethod.codeBody))

19: end if

20: end while

Fig. 8: translateToMocking pseudo-code

For each statement, stm, in the input code body, this
procedure makes the following conversions: If stm has a
reference to an attribute in testSubclass (line 2-13), it is
treated in two different ways depending on the attribute type.
First, if the attribute is a “checker/counter”, we just remove
stm, since there is no need to keep track of this attribute
anymore. The respective assertion statements, where the

10

attribute is checked, are replaced by the MockVerify statements
of the associated methods (line 4). Second, if the attribute is
a general type (i.e. other than a “checker/counter”), we just
replace the attribute in stm by the respective local variable
in testCase’ (line 8-9)—or the attribute in the testClasss’
(line 10-11)—depending on where the attribute is extracted
in step 1.2. If stm contains reference to a privateMethod
in the testSubClass, we replace the reference to be the
privateMethod' in testClass’ (line 14). Similarly, if stm
contains reference to an overriddenM ethod in testSubClass,
we replace this reference by the stub method (created in
step 2.1) associated with the mock object in testCase’ (line 16).
If stm contains reference to setter Method or getter Method,
we just make the method inline with where it is used, since a
setter/getter method is usually one line of code.

5) Create MockMethod for Code Reusability: A testSub-
Class could be created and used in multiple testCases.
For each constructor in testSubClass, the respective
[construction’] block after refactoring—generated by Step 1.1,
1.2, and 1.3, as well as all the [stubM ethod] blocks—generated
by Step 2.1—can be reused whenever this constructor is called.
To prevent code-clone in such cases, we encapsulate these
blocks within a separate MockMethod in the testClass for
reuse. However, the MockMethod is not appropriate when there
exists external reference to the testSubClass’s attributes in
the testCases. The external reference to the testSubClass
attributes cannot be preserved, since the attributes become
the local variables in the MockMethod. Thus, the condition
to apply MockMethod includes: 1) the mock object is reused
in multiple testCases’; and 2) there was no reference to the
testSubClass’s attributes before refactoring.

V. RESEARCH QUESTIONS AND EVALUATION DESIGN
A. Research Questions

We aim to evaluate our approach by six RQs. RQI1 to
RQ4 are answered by quantitative evaluation. RQ5 and RQ6
are answered by qualitative evaluation from real software
developers and open source projects.

e RQI: How common are test sub-classes for mocking in
Apache projects? And what percentage of them qualify
as refactoring candidates for our approach? On the one
hand, if there are only a few test sub-classes found on
Apache projects, it indicates that our approach does not
have many practical use cases. On the other hand, if only
a small portion of the test sub-classes meet the refactoring
pre-conditions, it indicates that our approach does not
find sufficient refactoring candidates to provide practical
value.

RQ?2: What percentage of the refactoring candidates can
actually be successfully refactored using our approach?
Following RQ1, the goal is to investigate whether the
refactoring framework can be successfully applied to
new projects, and what is the percentage of refactoring
candidates that can be actually successfully refactored by
our approach.

11

e RQ3: Do the test behaviors remain consistent before and
after the refactoring with injected mutations? Mutation
testing is a proxy for evaluating the behaviour preservation
of the refactored test cases in terms of detecting potential
defects. We use mutation testing to inject potential
defects, as mutants, into the production code. Behavior
preservation means that the same mutants should be
executed consistently by the test cases before and after
the refactoring. Furthermore, they should be killed (i.e.
failing the test cases) or survive (i.e. passing the test cases)
consistently by the test cases that execute them before
and after the refactoring.
RQ4: How does the refactoring affect the size of and
coupling within the code base? Increased code base size
and coupling are associated with higher maintenance cost.
If the code base size or code coupling increase after
the refactoring, our approach does not provide practical
value. We argue that one of the main benefits of our
refactoring is to decrease the decoupling between the
test code and production code. Of a particular note, this
RQ does not consider a classic code complexity metric,
called cyclomatic complexity, since this metric counts the
number of decisions, e.g. if-else branches, based on the
flow graph of the source code. Our refactoring does not
change the decision flow of the code, thus the cyclomatic
complexity is not be impacted.
RQS5: What is the performance of our refactoring frame-
work? If the refactoring framework takes a long time to
execute, it is not affordable in practice.
RQ6: How is the quality of our auto-refactoring solutions
in real-developers’ opinion? And how does it compare to
the manual refactoring solution implemented by develop-
ers? We aim to understand the value, benefits, and quality
of our refactoring solutions by taking real developers
opinion, especially when compared to manual refactoring
solutions by developers. For this purpose, we conduct a
user study involving full-time real developers to let them
both manually implement the refactoring and review the
refactoring solutions generated by our framework. We will
explain the detailed user study design in Section V-C
e RQ7: How well do the open source projects receive the
refactoring solutions generated by our framework? We
aim to understand whether the auto-generated refactoring
solutions are acceptable in practice by the open source
projects. If not, what are the gaps? This helps us identify
future research opportunities. For this aim, we submit at
least one pull request with the auto-generated refactoring
solution to each project. We will explain the detailed study
design of RQ7 in Section V-C

In the following, we explain the detailed evaluation methods
and rationale.

B. Evaluation Dataset

There are a total of 241 Java projects on the Apache Software
Foundation. Among these, only 182 projects contain test files.
These 182 projects form the scope of RQI. If a project does

not contain any test code in the first place, it is meaningless to
investigate it in terms of whether it uses inheritance for mocking.
Table II shows the basic information of these 182 projects—
including the average (column Avg.), median (column Med.),
maximal (column Max.), and minimal (column Min.) numbers
of Java files (1st row), test files (2nd row), and LOC (3rd row).
These projects contain on average 1,290 Java files, and 408 test
files, with 143K LOC. In RQI, we focus on investigating the
number and percentage of feasible refactoring candidates we
can identify in these 182 projects. This helps us to understand
the general applicability of our approach.
TABLE II: Basic Information of Apache Java Projects

Basic Information Avg. Med. Max. | Min.
#Java Files 1,290 734 7,982 14

#Test Files 408 191 3,604 1

LOC | 143,059 | 73,923 | 1,351,942 554

Starting from RQ2, we rely on nine projects that are
independent from the projects used in the empirical study. Note
that we cannot afford to investigate RQ2 to RQ7 on the 182
Apache projects, since it requires manual configuration of each
project, manual execution and comparison of each test case
before and after the refactor to make sure that the refactoring
is actually successful (RQ2) and the behavior preserves (RQ3).

The nine projects, with a total of 774 test subclasses, are:
JackRabbit—an open source content repository for the Java
platform [30], Log4J2—a Java-based logging utility [31],
Qpid-Proton-J—a high-performance, lightweight messaging
library [32], Apache Commons—which focuses on all aspects
of reusable Java Components, with 40 subprojects, including
Commons-Collections, Commons-Lang, Commons-Logging,
etc, Sakai—an open-source learning management system [33],
Curator, a Java/JVM client library for Zookeeper [34], Avro—a
data serialization system [35], PDFBox—an open-source library
for working with PDF documents [36], OpenNLP—a machine
learning based toolkit for the processing of natural language
text. To avoid bias, we intentionally select these projects since
their domains differ from the training dataset. The rationale of
other selection criteria is similar to that of the training dataset
in Section IIL

Table III lists the detailed information of the evaluation
dataset. Column 2 shows the number of production files in
each project, ranging from 358 (Qpid-Proton-J) to 5,673 (Sakai).
Column 3 shows the number of test files, ranging from 105
(Qpid-Proton-J) to 2,820 (Commons). Of a particular note,
Column 4 shows the number of test files that use inheritance
for mocking purposes; while column 5 shows the number of
test files that uses a mocking framework. On average, 7% of
the test files use inheritance for mocking; in comparison, 5%
of test files use a mocking framework. This suggests that the
use of inheritance is common for mocking—comparable to
the use of a mocking framework. Therefore, our approach can
benefit these projects.

C. Evaluation Design and Rationale

1) RQI: For the first part of RQI, we collect the total
number of test classes in the 182 Apache projects, and count

12

TABLE III: Evaluation Dataset

Project #P. Files | #T. Files | #Files Use IM (%) | #Files Use MF (%)
JackRabbit 2,107 1,021 27 (3%) 18 (2%)
Log4J2 2,031 864 158 (18%) 43 (5%)
Qpid-Proton-J 358 105 3 (3%) 20 (19%)
Commons 4,888 2,820 216 (8%) 111 (4%)
Sakai 5,673 494 18 (4%) 128 (26%)
Curator 518 172 10 (6%) 14 (8%)
Avro 421 830 9 (1%) 0 (0%)
PDFBox 1,089 196 1 (1%) 0 (0%)
OpenNLP 734 234 61 (26%) 15 (6%)
Total 17,819 6,736 503 (7%) 355 (5%)

the number of test sub-classes for mocking—i.e. test classes
that inherit a production class or implements an interface in
the production code. If there is only a small number of test
sub-classes for mocking in Apache projects, it implies that our
approach lacks practical use cases.

For the second part of RQ1, we check all the test sub-classes
against the refactoring pre-conditions defined in Section III-COc.
Cases that satisfy the pre-conditions qualify as refactoring
candidates. We report the total number and percentage of cases
that qualify as refactoring candidates. If only a small number
and portion of refactoring candidates exist, it also implies that
our approach is of limited practical value. In particular, in the
empirical study, about 25% of test sub-classes are meet the
pre-conditions. We aim to show that this percentage in new
projects is comparable, if not higher. Otherwise, it indicates
that the refactoring opportunities are specific to the empirical
study dataset, but not general in new projects.

2) RQ2: Following RQ1, we actually apply the refactoring
on the identified candidates from nine representative projects.
It is not practical for us to perform the actual refactoring
on all Apache projects due to the manual effort for project
configuration and test case execution. Here, we report the per-
centage of refactoring candidates that are actually successfully
refactored by our approach. Our automatic refactoring process is
constructed based on the features and syntaxes learned from the
empirical dataset. Just like any learning process, the empirical
dataset can not capture all possible features of an unknown,
new dataset. However, we argue that the approach built based
on the empirical dataset capture the most general features, and
thus should be able to successfully refactor the majority of
feasible cases from a new dataset. Otherwise, we cannot claim
that our refactoring process can be generally and successfully
applied to a new dataset.

3) RQ3: Mutation testing changes specific parts of the
source code to ensure a test case will be able to detect
the changes, i.e. potential defects. If a test case, before the
refactoring, is able to kill a mutant (i.e. detect the change), it
should also be able to do so after the refactoring. Otherwise, the
test case is not preserving its behavior in terms of identifying
potential changes and defects, as represented by mutants in
our experiment. Therefore, mutation testing is necessary to
evaluate behavior preservation in refactoring. We evaluate test
behavior preservation in terms of capturing potential defects
(i.e. injected as mutants) in three metrics. First, whether the
mutants that are executed by test cases before the refactoring
are still executed by test cases after the refactoring. Second,
whether the killed mutants before the refactoring are still killed

after the refactoring. Third, whether the survived mutants before
the refactoring still survive after the refactoring.

We use PIT [37], a state-of-the-art mutation testing system,
to generate mutators. Table IV summarizes all the generated
default mutators [38] and their percentage in our dataset.

TABLE IV: Applicable Default Mutators by PIT

Mutator

To

34%
23%
18%
9%
6%
5%
4%
1%

Description

Negate Conditions
Void Method Calls
Empty/Null Returns
True/False Returns
Math

Conditionals Boundary
Primitive Returns
Increments

mutate all conditions by its logical negation

remove method calls to void methods

replace return values with an ‘empty’ or ‘null’

mutates a frue return value to be false and vice versa

replaces binary arithmetic operations with another operation
replaces the relational operators with their boundary counterpart
replace int, short, long, char, float and double return values with 0
replaces increments with decrements and vice versa

Table V shows the mutations in each project. Column 2
shows the number of refactored test cases executing the mutants,
ranging from 3 (PDFBox) to 2,510 (Commons). Column 3
shows the number production classes with successfully injected
mutants, accounting for 14% to 92% of all production classes
called by the test cases in Column 2. The reason why some
production classes are not mutated is because they are abstract
class or interfaces with little real method implementation and
PIT cannot apply mutation operators to them. For example, if
there is no method that returns a boolean type, the operator
True/False Returns (see Table IV) cannot be applied. Column 4
shows that a total of 66,677 mutants—from 468 (Curator) to
35,902 (Commons) in each project—are generated.

TABLE V: Mutation Status Change

Proj. #Test Cases | #Production Classes(%M) | #Mutations
JackRabbit 431 107 (47%) 9,730
Log4J2 424 152 (35%) 5,023
Qpid-Proton-J 126 43(51%) 1,156
Commons 2,510 700(56%) 35,902
Sakai 45 8 (15%) 501
Curator 44 16 (14%) 468
Avro 27 11 (26%) 2,731
PDFBox 3 12 (92%) 1,358
OpenNLP 173 308 (60%) 9,808
Total 3,783 1,367 (49%) 60,677

4) RQ4: This RQ aims to show how the code base changes
quantitatively after the refactoring.

Based on our refactoring rationale, one of the main benefit
of the refactoring is to isolate test cases from its dependencies
from the production code, as well as eliminating the depen-
dencies within the test code. Thus, we measure four metrics
for the decoupling effect of our refactoring solution. First, the
amount of inheritance between the test and production code,
and how does this increase or decrease after the refactoring.
Second, the amount of regular dependencies (i.e. other than
inheritance) between the test and production code, and how
does this increase or decrease after the refactoring. Third, the
amount of inheritance among the test code, and how does this
increase or decrease after the refactoring. Fourth, the amount
of regular dependencies (i.e. other than inheritance) among
the test code, and how does this increase or decrease after the
refactoring.

In addition, we expect that the refactoring will impact the
size of individual test class, measured by the LOC, #methods,
and #fields. Thus, we also measure how these metrics of each
test class change comparing before and after refactoring. The
goal is to show that our refactoring does not significantly

13

increase the size of the code base, instead it actually reduces
the number of unnecessary methods and fields in test classes.

5) RO5: We report the execution times in identifying
refactoring candidates and in performing the refactoring,
respectively. Note that the time for identifying refactoring
candidates is measured for the entire project; while the time
for performing the refactoring is measured for each refactoring
candidate.

6) RQ6: User Study Design: Here, we describe the design
of the user study involving real-life developers to evaluate the
quality and benefits of our refactoring solutions.

Participants: We invite six full-time developers from a
software company, who remain anonymous in the study.
According to the entrance survey, the participants are well
qualified in this study. Four participants have 1 to 4 years
working experience as a software engineer/developer. And
the other two have 5-9 years and 10+ years of experience.
All participants have experience with unit testing. Plus, they
all have prior experience with JUnit and Mockito—four
participants with 1 to 4 years, one with 5-9 years, and one
with 10+ years.

Study Cases: We select a total of six test cases that use
test subclasses from our study dataset. These cases are in two
distinctive sets, S; and Ss, each with three cases. Each set is
selected to ensure that the three cases are comprehensive to
cover all features illustrated in the problem formalization in
Section III-C and all possible refactoring steps introduced in
Section IV-A. In addition, the logic of the selected cases are
easy to understand such that developers can finish the study in
a few hours.

Study Process: Both sets, S; and So, are given to all six
participants. Each participant implements manual refactoring
on one set—namely, the implementation set, and reviews the
auto-refactoring solutions to the other set—namely the review
set. Of a particular note, the participants are not told that the
provided solutions are auto-generated by our tool. S; and S
serve different roles for different participants. For example,
for participant #1, Sy serves as the implementation set and So
serves as the review set; then for participant #2, S; and S,
switch the roles—S; for review and Sy implement. We ask
each participant to first implement manual refactoring on the
implementation set and then review the provided solutions for
the review set. As such, each case is manually refactored by
three participants, and the respective auto-refactoring solution
is reviewed by another three participants.

The study is held remotely on the AWS servers [39]. The
implementation cases are loaded and configured in Eclipse.
The review cases are provided with the GitHub links to the
original case, as well as the links to the commit id and a diff
view of the provided auto-refactoring solution. This is the same
environment as the participants normally perform code review
in their daily work.

Manual Refactoring Status: As shown in Table VI, for
each case, at least one in three participants successfully
performs manual refactoring. We obtain a total of 13 successful
manual refactoring versions out of the 18 manual refactoring

attempts on the six cases. Among these, five manual refactoring

versions each takes 5-10 minutes, one takes 10-15 minutes, and

seven takes more than 15 minutes to finish. In summary, 72%

of the manual refactoring cases are successful, and most

cases require more than 15 minutes to refactor manually.
TABLE VI: Successful Manual Refactoring

Casel
2/3

Case2
1/3

Case3
2/3

Case4
2/3

Case5
3/3

Case6
3/3

Succ. Participants

Timel (#Min) 5-10 >15 >15 >15 5-10 5-10
Time2 (#Min) >15 - >15 5-10 10-15 5-10
Time3 (#Min) - - - >15 >15

Survey Questions: We ask the participants to take a survey
after manual refactoring or reviewing each case. The survey
questions are listed below. Note that “(I&R)” indicates the
question applies to both the implementation and review cases;
“(R)” indicates that the question only applies to the review
cases.

e SQOI (R): Rate the quality of the provided refactoring
solution.(1-6 Scale). And please provide any suggestions
(Open Ended).

e SQ2 (I&R): Rate your agreement with this statement:
Using mocks instead of sub-classing improved the code
quality of this example. (1-4 Scale). Explain your rating
(Open Ended).

e SO3 (I&R): Rate your agreement with these statements
regarding the benefits of mocks: The refactored code—

— makes the test design more cohesive/concise (Scale 1-6).
— makes the test conditions more explicit (Scale 1-6).
— is less coupled from the production code (Scale 1-6).

e SQ4 (I&R): Do you see any other benefits or drawbacks
from this refactoring?

SQ1 aims to assess the quality of the auto-refactoring
solutions. SQ2, SQ3, and SQ4 evaluate the value and benefits
(or drawbacks) of a refactoring solution, regardless of whether it
is manual or auto. After reviewing an auto-refactoring solution,
the participant is asked to answer all four SQs. While after
manual refactoring a case, the participant is asked to answer
only SQ2, SQ3, and SQ4, since it is subjective for the developer
to rate the quality of his/her own manual refactoring. Thus,
each case receives six survey results—three as the manual
refactoring and three as the provided auto-refactoring solution—
from all six participants. This minimizes individual biases of
participants on each case. For SQ2 to SQ4, we investigate the
discrepancies between implement and review cases to quantify
the difference between the auto-refactoring solution and the
manual refactoring solution on each case.

Finally, we also make a detailed comparison of the manual
refactoring solutions and the auto-refactoring solutions to
observe what might be the advantages of the manual refactoring
solutions. These observations could guide us in potential
improvements in the auto-refactoring process.

7) RQ7: Pull Request Study Design: We explain the detailed
design of the pull request study.

Study Cases: We select at least one refactoring case from
each project in the evaluation dataset. These cases are selected
such that they together cover all refactoring features illustrated

14

in the problem formalization in Section III-C, as well as all
refactoring steps described in Section IV-A. For the nine open
source projects, we select a total of 23 test cases refactored
by our approach.

Pull Request Template: For each selected refactoring case,
we create a pull request following a consistent template,
composed of three parts. First, the overall description of this
pull request. Second, the motivation of this pull request, tailored
based on the concrete benefits associate with this pull request.
Third, the detailed description of the changes made in this pull
request. Following is an example from Druid:

Pull Request Example from Druid

Description:
Fixes #11528 (Issue Link). Refactor test class Han-
dlingInputRowlIteratorTest.java (Test Sub-class).
Motivation:
1) Decoupling test class from production class.
2) Making test condition more clear by directly verify
invocation status of function handle(InputRow).
3) Making test logic more clear by using method
stub instead of method overriding.

Key Changes:

1) Created mocking object to replace test subclass

2) Use Mockito.verify to verify the invocation status
of handle(InputRow), improved test conditions by
making it more clear.

Evaluation Metrics: We collect the following metrics in
the pull request study to answer RQ6:

1) The response rate of the 23 pull requests and how it
compares to the other most recent pull requests in each
project. If the response rate of our pull requests is much
lower than the average response rate of an open source
project, it indicates that our refactoring solutions are not
of practical interest to the projects.

The turn around time of each pull request, compared with
the average turn around time of the other pull requests in a
project. If the turn around time of our pull requests is much
longer than the average turn around time, it indicates that
our refactoring proposal is of low importance in practice.
The acceptance rate of the 23 pull requests. If most of
our pull requests are rejected after the developers review
them, it indicates that our refactoring solutions are not
acceptable or are not valuable in practice.

The percentage of involved developers who accept our
pull requests. For example, to one extreme, if the accepted
pull requests are decided by just one single developer, it
is not sufficient to prove that the pull requests are well
received by a wide range of open source developers.
Finally, the detailed comments we receive from the pull
requests detailing why the developers accept or reject a
pull request. If accept, whether any improvements are
required before the pull requests are merged into the open

2)

3)

4)

5)

https://github.com/apache/druid/pull/11529
https://github.com/apache/druid/issues/11528
https://github.com/apache/druid/blob/0de1837ff7e8bffbd74524be824b1dc08b2f661d/core/src/test/java/org/apache/druid/data/input/HandlingInputRowIteratorTest.java
https://github.com/apache/druid/blob/0de1837ff7e8bffbd74524be824b1dc08b2f661d/core/src/test/java/org/apache/druid/data/input/HandlingInputRowIteratorTest.java

source projects. If reject, what is the problem with our
refactoring solution that leads to its rejection.

VI. QUANTITATIVE EVALUATION RESULTS (RQ1-RQ4)
A. RQI: Generality and Applicability

Among the 182 Apache projects that contain test files, 159
(87%) projects contain test sub-classes that inherit from a
production class or implements a production interface. This
indicates that our approach can be potentially applicable to
87% of Java projects on Apache.

Table VII shows the detailed statistics based on the 159
projects, especially the application of the ten pre-conditions.
More specifically, we show the “Total” (row 1), “Min” (row 2),
“Max” (row 3), and “Average” (row 4), and “Percentage” (row
5) of the total test classes (column 2), test subclasses (column
3), identified feasible refactoring candidates (column 4), as
well as the number of cases excluded by the ten pre-conditions
(column 5 to column 14), for the 159 Apache projects.

In these projects, there are a total 86,595 test classes.
Among them, 9,932 are test sub-classes that use inheritance for
mocking—accounting for 11.5% of test classes. This indicates
that inheritance for mocking is not a rare problem; instead,
it generally exists in 87% projects, and happens in a non-
trivial, 11.5%, population of test classes. More specifically,
each project contains, on average 54.6, and up to 1,126, such
cases that are potential use cases of our tool.

After checking against the pre-conditions, 2,609 (26%) out
of the 9,932 test subclasses qualify as refactoring candidates.
In comparison, the percentage of feasible cases that pass the
pre-conditions in the empirical dataset is 27%. This indicates
that our approach can be generally and consistently applicable
to new datasets. More specifically, there are on average 14,
and up to 155, refactoring candidates that meet the refactoring
pre-conditions in a project. This indicates that our approach
has general use cases in real-life projects on Apache.

Summary: In 159 (87% out of the total 182) projects,
there exist a total of 9,932 test sub-classes for mocking.
This indicates that inheritance for mocking is a general phe-
nomenon observed in Apache projects. In addition, 2,609
(26%) out of the 9,932 test sub-classes are identified as
refactoring candidates by our approach. This is consistent
with the percentage, 27%, observed based on the empirical
dataset. The implication is twofold. Frist, Our refactoring
candidate detection built based on the empirical study
extends well to new projects, with consistent percentage
of feasibility. Second, our approach can be potentially
applied to a large number of candidates, a total of 2,609
test subclasses from Apache projects, which indicate its
potential practical value.

B. RQ2: Refactoring Successful Rate

Table VIII shows the application of our refactoring frame-
work on the nine projects. As shown on column “#Subcl.”,
there are totally 774 test sub-classes from these projects.
Among these, as shown in columns “#”° and “%” under

“Candidates”, our approach identifies 334 (43%) feasible
refactoring candidates that meet all the ten pre-conditions.
Out of the 334 feasible refactoring candidates, 276 (83%) are
refactored automatically and successfully using our approach,
as shown on columns “#,%Succ.”.

Columns “#,%Comp.” and “#,%Discre.” under “Successful
Refactoring” show the number and percentage of cases that fail
the refactoring due to compile errors and due to inconsistent
test case behaviors, respectively. More specifically, 34 (10%)
cases failed the refactoring because of syntax issues that were
not captured in the empirical dataset, and lead to compile errors.
In addition, 24 (7%) test sub-classes, after the refactoring, lead
to test behavior discrepancies (column “#,%Discre.”) due to
special cases. For example, some test cases use the metadata of
the test subclass at run-time, and they fail after the refactoring.
The reason behind the compile errors and behavior discrepancy
is that our approach is built upon the knowledge we gained in
the empirical study. Just like any learning process, we cannot
guarantee that knowledge extracted based on the learning
dataset can 100% cover all situations in an unknown, new
dataset. Admittedly, we can keep refining our approach by
incorporating the new syntax issues we encounter in the testing
dataset, but we leave this to our future work.

Summary: Our approach successfully refactored 83%
(276/334) candidates. Note that one can keep refining our
approach by incorporating these special cases. However,
like any learning process, it is impossible to guarantee
100% generalizability under unknown, new data.

C. RQ3: Test Behavior Preservation with Mutants

Table XII shows the change in the executed, killed, and
survived mutants before and after the refactoring.

Column 2 and 3 report the statistics of the mutants being
executed before and after the refactoring. Among all 66,677
mutants, 29,019 (44%) are executed before applying our
refactoring approach. Note that not all mutants are executed
since we use the test cases supplied by the projects, which
do not achieve 100% code coverage by test cases. In addition,
we only execute test cases affected by the refactoring. The
executions of the mutants remains highly consistent after the
refactoring, except for 7 (out of totally 66,677) mutants. The
discrepancy on these 7 mutants needs further investigation.

Among the executed mutants, we observe (Column 4 —
column 7) that, in four projects, including Log4J2, Qpid-Proton-
J, Sakai, and Curator, the mutation status (Killed or Survived)
remains 100% consistent before and after refactoring. In the
other five projects, 0.03% (=3/9,751 in JackRabbit) to 0.7%
(=244/35,666 in Commons) mutants changed their status. More
specifically, column 4 and 6 show the number of mutants
that are killed and survived before the refactoring. Columns 5
and 7 show the number of mutants that change the execution
status (killed/survived) after the refactoring. For example, the
Commons project, in column 5, +7/27 indicates that, after
the refactoring, an additional 121 mutants are killed; and -
120 indicates that 120 mutants no longer got killed after the

TABLE VII: Applicability on 159 Apache Projects with Test Subclasses

e # Cases Excluded By Pre-Conditions
#Test Classes | #Test Subclasses | #Candidates P 1573 53 Pa 5 P6 7 PR PO P10
Total 86,583 9,932 2,609 638 63 210 612 1,781 1,393 1,474 1,076 12 64
Min 1 0 0 0 0 0 0 0 0 0 0 0 0
Max 10,827 1,126 155 131 15 16 287 178 361 467 86 4 8
Avg 475.7 54.6 14.3 35 0.3 1.2 34 9.8 7.7 8.1 59 0.1 0.4
Percentage - 11.5% 262% | 87% | 09% | 29% | 8.4% | 243% | 190% | 20.1% | 14.7% | 02% | 0.9%
TABLE VIII: Auto-Refactoring Success Rate in Nine Projects We have the following observations: First, the number of
; Candidates Successful Refactoring test-to-production inheritance non-trivially decreased by 2%
e P TR % | Frcomp [#%Disere | #suee (Avro) to 65% (OpenNLP). Second, the number of test-to-
JackRabbit 67 | 43 | 64% | 1| 2% | 1| 2% | 41| 9% X p - ’
Log4J2 100 | 33[33% | 5|15% | 3| 9% | 25| 76% | production regular dependencies decreased by up to 53%
Qpid-Proton-J 34| 9|26% | 0| 0% | 0| 0% | 9 | 100% L .)
Commons 405 | 181 | 45% | 19 | 10% | 14 | s% | 148 | w24 (OpenNLP). Similarly, in columns 6-9, we examine the
Sakai SL| 21 | 41% | 4| 19% | 1| 5% | 16 | 76% number of dependencies among the test classes, and the
Curator 20| 16| 76% | 3| 19% | 2| 13% | 11| 69% . . «
Avro 40 8 120% | 2125% | ol 0% 6| 75% percentage of increase after the refactoring (column “#(%In.)
PDFBox 6| 1|17% | of 0% | 0| 0% | 1| 100% 3 » ; : : ;
OpeaNLP ol 2 laal ol onl 3l e ! 191 g% of T-T Dps.”). We se?parate the inheritance relationship and
Total 774 | 334 | 43% | 34 | 10% | 24 | 7% | 276 | 83% any other dependencies. We observe that, first, the number
TABLE IX: Mutation Status Change of inheritance relationship among test classes decreased in
i i JackRabbit, Commons and Curator, by 8%, 1% and 1%,
Proi Executed Killed Survived
). Before | After | Before Afier | Before afer | respectively, and remained stable in the other six projects.
JackRabbit 3,803 (39%) /| 2981 +1, 2 822 +2, -1 :
Logdl2 1548 (31%) Y 992 21 S | Second, the .regular dependencies among test classes decreasqd
Qpid-Proton-J 332 (29%) v 298 4 34 v | by 2% (Sakai) to 17% (OpenNLP) in projects except JackRabbit
Commons 17,120 (48%) | +3 | 12709 | +121,-120 | 4411 | +123,-121
Sakai 208 @2%) | /| 156 v 52 v | and Avro.
Curator 213 (46%) v 115 v 98 v
Avro 777 (28%) v 432 +4, -1 345 +1, -4 . .
PDFBox 688 (51%) | +4 | 627 +6, -3 6l +4, -3 TABLE X: Code Coupling Change
OpenNLP 4330 (44%) v | 29% +60, -6 | 1404 +6, -60
Total 29,019 (44%) +7 | 21,236 | +192, -132 | 7,183 | +136, -189 Project # (%In.) of T-P Dps. # (%In.) of T-T. Dps.
) #,%]Inherit. #,%Regular #,%Inherit. #,%Regular
refactoring. The numbers in columns 5 and 7 should sum to the JackRabbit 37 | 38% | 225 | -12% | 329 | 8% | 956 | 0%

. . Logd)2 100 | 24% | 445 | -10% | 16 | 0% 75| %
number in column 3—mutants that change their coverage. We Qpid-Protond | 34 | 26% | 264 | 9% | 22 | 0% 5T 7%
sample 30 mutants to investigate the reasons for the change. We Commons 399 | -35% | 4010 | -5% | 168 | -1% | 737 | -9%

. . Sakai 76 | 8% | 1,018 | -1% | 70 | 0% | 165 | 2%

find that, in all 30 cases, the behaviors of the tests become non- Curator o T a5% 131 T % T In T O% T aa T 3%
deterministic after injecting the mutants—the status changes Avro 267 | 2% | 3668 | 0% | 518 | 0% | 1.674 [0%
ithout refactoring. Thus. th determinism i d PDFBox 23 | 4% | 616 | 0% | 12 | 0% 2| 3%

even without refactoring. Thus, the non-determinism is cause OpenNTP T 5% 6 T 3% 0% T T%

by the mutations instead of the refactoring.

Summary: The execution of the mutants before and after
applying our approach is highly consistent (< 0.01%
of the generated mutants changed their coverage, i.e. if
they are executed by the test cases). The test cases, after
refactoring, consistently execute, kill, or survive with 99%
of the 66,677 mutants injected into the production code.
This indicates that our approach generally preserves test
behaviors in term of detecting potential defects.

D. RQ4: Code Metrics Change

Overall Code Coupling: In Table X, in column 2 and
4, we show the number of inheritance (column 2) and the
number of regular dependencies (column 4) between the test
and production code before the refactoring. The percentage
numbers in column 3 and column 5 indicate how each type
of dependency changes after the refactoring. A negative value
indicates the percentage of decreased dependencies. Similarly,
the last four columns show the similar information, i.e. the
number of inheritance and regular dependencies among the
test code before the refactoring (column 6 and column 8), and
the changed percentage after the refactoring (column 7 and
column 9).

16

Individual Test Class Size Change: In Table XI, Columns
2-13 report the average LOC, #Methods, and #Fields before the
refactoring, and the average, minimal and maximal percentage
of increase after the refactoring over all refactoring cases. A
negative percentage indicates that the measure decreases. We
observe that after the refactoring, first the LOC averagely
increases 1% (PDFBox) to 10% (Avro), except that the LOC
of test cases in Sakai averages decreases 4%. This is due to
cases where the reusable mock method (Section IV-AS5) is not
applicable. And second, both the #Methods and the #Fields
decreases, in average by up to 29% and up to 36% respectively.
The decrease is due to Step 1.2 and Step 2.1 (Section IV-A).

Summary: The refactoring overall decreases code com-
plexity. In particular, it non-trivially decouples the test
from the production code, by removing up to 65% of the
inheritance and up to 53% of the regular dependencies. It
also decouples the test code itself—removing the internal
inheritance by up to 8% and regular dependencies by up
to 17%. Meanwhile, it slightly increases the LOC of the
refactored test classes, but more obviously decreases the
number of methods and fields.

TABLE XI: Change of Individual Test Class Size Measured by LOC, #Methods, and #Fields

Proj LOC Method Field
J: #Avg. | Avg. %In. | Min. %In. | Max %In. | #Avg. | Avg. %In. | Min. %In. | Max %In. | #Avg. | Avg. %In. | Min. %In. | Max %In.
JackRabbit 353 4% “45% 61% 64 5% 88% 1% 6 9% -100% 0%
Log4l2 108 8% 24% -50% 17 -11% -78% 0% 4 -20% -100% 0%
Qpid-Proton-J 178 6% 1% 33% 28 -14% -80% 0% 6 22% -100% 0%
Commons 261 4% 9% 126% 29 5% -67% 12% 7 -11% -100% 0%
Sakai 128 -4% -35% 33% 27 29% -78% 0% 3 6% -50% 0%
Curator 152 8% 1% 24% 13 1% 75% 2% 3 -36% -100% 0%
Avro 145 10% 2% 39% 24 20% -61% -4% 7 1% -100% 0%
PDFBox 309 1% 1% 1% 17 6% 6% 6% 4 0% 0% 0%
OpenNLP 161 3% -6% 57% 18 -13% -60% 0% 3 29% -100% 0%
E. RQ5 Execution Time Score by Case
Table XII shows the running time (in seconds) of the g Excellent ®
« . L 4 @ L J
framework. Column “#TestCl.” shows the total number of o 4 ® @ ® P9 P9 :
test classes in each project—131 (Qpid) to 3,599 (Commons). |[g 3 @ @
This is the initial input size to the candidate identification. 2 ©® ®
. . 1 |p e o
Among these, we identify 6 (PDFBox) to 405 (Commons) test i el
subclasses, which are processed by the three filtering layers 0 1 2 3 4 5 6
(Section III-COc). The detection time ranges from 4 to 250 Cose D

seconds per project. The average execution time of refactoring
each case ranges from 0.7 to 1.5 seconds, with the standard
deviation of 0 (PDFBox) to 2.2 (Log4J2).

TABLE XII: Auto-refactoring Performance

Proj Detection Time (s) Refactoring Time (s)

. #TestCL. | #SubCl. | Total-T | #Case | Avg-T | Max-T | Min-T | Std
JackRabbit 1,060 67 42 26 0.7 22 03 | 0.6
Log4J2 1,069 100 203 26 1.5 10.6 03 | 22
Qpid-Proton-J 131 34 30 9 0.9 1.7 04 | 04
Commons 3,599 405 250 139 1.0 11.4 02| 13
Sakai 364 51 44 9 0.5 0.7 03 | 0.1
Curator 201 21 13 9 1.3 43 04 | 12
Avro 676 40 25 6 1.3 3.8 03| 12
PDFBox 142 6 4 1 0.7 0.7 0.7 0
OpenNLP 277 50 22 18 0.7 4.7 0.2 1
Total 7,519 774 632 243 1.0 11.4 02] 13

Summary: The run-time performance of the framework
is a few minutes for detecting all refactoring candidates
in a project, and a few seconds for refactoring each case.
This suggests that our approach is efficient.

VII. QUALITATIVE EVALUATION RESULTS (RQ6 AND RQ7)

1) RQ6: User Study Results: SQ1 (R): Figure 9 shows the
participants’ rating on the quality of auto-refactoring solutions.
The x-axis is the case ID. The y-axis is the score in the scale of 1
(poor) to 6 (excellent)}—overall, a score of 4 or above indicates
a positive opinion. The size of (and the number in) each circle
shows the three scores given to each case. We observe that,
for each case, at least one participant rates positively—score
at least 4. In particular, case 4 and case 5 receive unanimous
positive scores. And case 3 and case 6 receive 2 (out of 3)
positive scores.

We investigate the comments from the participants. We
find that the the negative scores fall into three types. First,
the criticism is about the original test design, which is
irrelevant to the Mockito-based refactoring (Case 1, case 3,
and case 6). Second, participants have misunderstandings on
the reviewed cases (case 2). There are two sub-classes involved
in case 2—one of them cannot be refactored due to F-1.7
(Section III-COc). However, the participant thinks that we
should also refactor it. The other misunderstanding is that the

Fig. 9: SQ1: Quality of Auto-Refactoring Solution

participant suggests using mock method (Section IV-AS5) when
it is not appropriate. Third, there exists subjective preferences—
one participant favors the separated test subclass and test case
before the refactoring in case 1, rather than merging the logic
of the subclass with the test case. Overall, participants rate
positively on the refactoring solutions generated by our
tool.

SQ2 (I&R): As shown in Figure 10, in 17 out of the
total 18 implementation cases, participants agree or strongly
agree that using mocks instead of inheritance improves the
code quality. The response on the review cases is highly
consistent—in 13 out of 18 cases, participants agree or strongly
agree that the code quality improves. The disagreement on the
review cases is due to two reasons. First, participants expect
to see improvements on the test design/logic itself. Second,
participants prefer to separate the mock behaviors in a subclass.
Overall, participants agree that using mocks to replace
inheritance improves the code quality.

$Q2: Using Mocks instead of Sub-classing Improved
Code Quality
10 # Implement wgm
8) a
") Review b
g6 i 5
© o i
R4 2 ’ .
2 0 1 :
) Ll B :
1-Strongly Disagree 2- Disagree 3-Agree 4-Strongly Agree

Fig. 10: SQ2: Improved Code Quality (Impl. vs. Review)

SQ3 (I&R): Table XIII summarizes ratings on the refactor-
ing benefits in cohesion/conciseness, explicit, and decoupling.
We report the mean rating (column “Mean”) of each benefit
on the implementation (on row 1) and review (on row 2) cases
separately. In addition, a rating of 4 (“Somewhat Agree”)
or above indicates positive opinion—thus we also report the
percentage of rating of 4 and above (Column “Agree%”) on

17

each benefit. The discrepancies of the ratings between the
implementation and review cases are summarized in row 3.

TABLE XIII: Refactoring Benefits (Implementation vs. Review)

Benefits Cohesion/Concise Explicit Decoupled

) Mean Agree% | Mean | Agree% | Mean | Agree%
Implementation 53 100% 52 85% 45 77%
Review 3.8 61% 3.8 67% 4.1 72%
[Discrepancy [15] 39% | 15] 18% | 04] 5% |

We observe that for the majority cases—at least 77% and
61% of the implementation and review sets respectively—
participants agree with these benefits. However, the agreement
is weaker on the review cases compared to the implementation
cases. The review cases receive 0.4 to 1.5 lower mean rating,
and 5% to 39% less positive rating. This indicates that the
manual refactoring by developers boosts these benefits on
more cases and to a higher degree. In conclusion, our
auto-refactoring framework alone helps developers reap
the three benefits to some extent. For further benefits,
developers may manually improve the test itself.

SQ4 (I&R): The participants report additional benefits for
the implementation cases, including improved readability and
understandability (four cases), maintainability (one case), and
test power (two cases). Similarly, in two, one, and one review
cases, participants report these three benefits as well. The
readability/understandability and maintainability are associated
with the three benefit aspects surveyed in SQ4. The improved
test power is because Mockito allows additional verification
of the mock object execution/status. A notable drawback
on the review cases is that the original code comments,
which explain the test logic, are not preserved after the
refactoring. In summary, our approach can improve the
readability/understandability and maintainability the test
code, and can make the test more powerful. However, the
drawback is that the original code comments cannot be
retained.

Comparison of manual refactoring solutions and auto-
refactoring solutions: We find that the manual refactoring
solutions often contain improvements to the test logic and
design, such as simplifying the test logic and removing redun-
dancy. These improvements are not related to how mocking
frameworks are used. In addition, the manual refactoring
solutions also contain more sophisticated usage of certain
mocking APIs, such as verifying the execution order of mock
objects, using argument captor, and checking input argument
value and type, which are absent from our auto-refactoring
solutions. However, such usage requires in-depth understanding
of the test cases and their dynamic execution status. These
observations help us to understand the rating discrepancy
observed for SQ2 and SQ3.

Potential Improvements: The comparison leads to a sum-
mary of (potential) improvements. First, we should import
Mockito static methods in refactoring to simplify the code. At
the time of writing, this issue is fixed. Second, we can further
enhance the usage of Mockito, such as verifying execution
order of mock objects, using argument captor, checking input
argument value and type. However, this potentially relies on

18

dynamic analysis. Finally, more future work should focus on
improving the general test design, such as removing redundant
code and simplifying the test logic. We plan to address the last
two directions in our future work.

Summary: 1) Participants generally rate positively on
the refactoring solutions generated by our framework. 2)
Participants agree that the refactoring solutions generated
by the framework improve the cohesion/conciseness of test
code, make test condition more explicit, and decouple test
code from production code. They also point out additional
benefits, including readability/understandability and more
powerful test. However, to further enhance these benefits,
developers need to improve the test logic itself with manual
effort. Thus, our tool can serve as an efficient first step in
refactoring. 3) An obvious drawback of our framework is
that the original code comments cannot be retained after
refactoring.

2) RQ7: Pull Request Results: Table XIV shows the overall
status of the 23 pull requests in five categorizes:

1) “accepted”—the pull request was accepted by the project;

2) “rejected”—the pull request was rejected;

3) ‘undecided”—there exists conflicting opinions among the
reviewers, such that whether to accept the pull request is
undecided;

4) “exception”—the pull request was closed unexpectedly;

5) “pending”—the pull request did not receive any response

as the time of this writing.

For “exception”, the developers decide to completely remove
the test-subclasses being refactored, since the test-subclasses
are found to be unnecessary after reviewing our pull requests.
And this decision is irrelevant to our refactoring solution.
Next, we analyze the results in Table XIV using the five
metrics described in Section V-C.
TABLE XIV: Pull Requests Status

. #Comments
Result Project Pull Request Accept Reject
Accumulo Accumulo-2254 3 -
Cloudstack Cloudstack-5480 3 -
Curator Curator-397 1 -
Accepted Dru%d Druid-l 1529 I -
9 (39%) Druid Druid-11561 1 -
Dubbo Dubbo-8446 2 -
Log4] Log4J2-584 1 -
OpenNLP OpenNLP-396 1 -
Sakai Sakai-9832 1 -
CMs-Codec Codec-94 - 1
CMs-JXPath JXPath-22 - I
Rejected CMs-Pool Pool-98 - 2
6 (26%) CMs-VES VES-213 - 1
PDFBox PDFBox-130 - 1
Proton-J ProtonJ-41 - 1
[Undecided 1 (4%) | CMs-BeanUtils [BeanUtils-96 [1] 1]
Exception [Avro [Avro-1341 [-] -]
2 (10%) | CMs-RNG | RNG-102 | -] -]
Cayenne Cayenne-462
Pending CMs-Collections Collections-249
5 (22%) CMs-Configuration | Configuration-142
CMs-Lang Lang-801
JackRabbit JackRabbit-95

\ Total [[1565%) | 8 (35%) |

Response Rate: Among all 23 pull requests, 5 have not
received any responses yet—thus the response rate of our pull

https://github.com/apache/accumulo/pull/2254
https://github.com/apache/cloudstack/pull/5480
https://github.com/apache/curator/pull/397
https://github.com/apache/druid/pull/11529
https://github.com/apache/druid/pull/11561
https://github.com/apache/dubbo/pull/8446
https://github.com/apache/logging-log4j2/pull/584
https://github.com/apache/opennlp/pull/396
https://github.com/sakaiproject/sakai/pull/9832
https://github.com/apache/commons-codec/pull/94
https://github.com/apache/commons-jxpath/pull/22
https://github.com/apache/commons-pool/pull/98
https://github.com/apache/commons-vfs/pull/213
https://github.com/apache/pdfbox/pull/130
https://github.com/apache/qpid-proton-j/pull/41
https://github.com/apache/commons-beanutils/pull/96/files
https://github.com/apache/avro/pull/1341
https://github.com/apache/commons-rng/pull/102
https://github.com/apache/cayenne/pull/462
https://github.com/apache/commons-collections/pull/249
https://github.com/apache/commons-configuration/pull/142
https://github.com/apache/commons-lang/pull/801
https://github.com/apache/jackrabbit/pull/95

TABLE XV: Pull Requests Response Turn Around Time

Project Rec. PRs’ TA Time | MR PRs’ TA Time | Diff TA Time
Sakai 1.3 0.5 -0.8
Curator 5.1 0.5 -4.6
Avro 9.5 0.1 -9.4
PDFBox 2.1 0.5 -1.6
OpenNLP 11.8 0.0 -11.8
Dubbo 0.1 0.1 0
Druid 1.8 32 30.2
Accumulo 3.6 0.4 -3.2
Cloudstack 0.2 0.2 0
Log4J2 9.5 0.5 -9.0
ProtonJ 34 0.4 -3.0
Commons 1.9 0.2 -1.7

TABLE XVI: Received Feedback and Suggestions in Pull
Requests

Feedback Type Feedback

Looks good to me

Using Mockito is big improvement
Refactoring is a good clean up
Using Mockito allows backward-
compatible evolution

Using Mockito make test logic clear

#Developers
4

2
Positive Feedback }

Mockito raises the bar of contribu-
tion

Use Mockito makes code hard to
understand

Negative Feedback

Side Benefits Improve test performance/flaky test

Translate Mocking frameworks
Add Javadoc

Empower test by leveraging Mock-
ito

Future Improvement
Opportunities

—| = pof| —

requests is 78%. In comparison, we collected the most recent
59 pull requests (we only collect 59 requests due to the GitAPI
limit) from each project—resulting a total of 786 recent pull
requests in total. We found that only 448 of these pull requests
have responses—indicating a response rate of 57% for all pull
requests. The results suggest that our pull requests receive a
higher response rate (21%) than the average.

Turn Around Time: For the pull requests with responses,
we report the average turn around time between creating the
request and getting the first response in Table XV. Column 2
reports the average turn around time (in days) of the recent pull
requests. Column 3 shows the average turn around time of our
pull requests. Column 4 shows the difference between column
3 and column 2—a negative value indicates how much sooner
our request receive response compared the other requests. We
observe that our pull requests get faster response in all projects,
except for Druid. We made two pull requests to Druid, one got

response within a day and the other was delayed for 64 days.

The delay of 64 days is due to extraneous reasons that, we
believe, are irrelevant to our pull request itself. This indicates
that our mocking refactoring pull requests draw maintainers’
more immediate attention comparing to most of the other
common pull requests.

Acceptance Rate of Pull Requests: As shown in the first
column of Table XIV, 9 (50%) requests were accepted and
merged into the open source projects, 6 (33%) were rejected,
1 (6%) were undecided, and 2 (11%) had exceptions.

Acceptance Rate by Developers: The last two columns of
Table XIV shows the number of comments left by the project

19

developers on accepting or rejecting each pull request. For
example, for pull request Accumulo-2254, we received three
different comments on accepting it. Overall, for the 17 pull
requests with responses, we received 23 comments in total, and
15 (65%) comments were accepting and 8 (35%) comments
were rejecting the pull requests. Of a particular note, these
comments are from 21 different developers. The 8 rejecting
comments are from only 4 (21%) developers; while the 15
accepting comments are from the other 15 (79%) developers.

Analysis of Comments: Table XVI summarizes the different
types of comments we received from the developers who
reviewed our pull requests. We categorize them into four types:

1) Positive comments: Overall, 4 developers think that our
refactoring solutions “LGTM” (looks good to me). Two devel-
opers think that using mocks instead of real classes in test is “a
big improvement”. One developer underscores that mocking is
a better approach since it allows backward-compatible evolution
without breaking tests. The same developer also points out that
mocking by a framework makes test intent clearer.

2) Negative comments: There are two concerns. First,
Using inheritance is convenient and easy to understand—in
comparison, Mockito makes code hard to understand. Second,
Using a mocking framework raises the bar of contribution
and thus makes code harder to maintain. However, these
comments target at the concerns of using mocking and Mockito
in general, but do not point to any specific problems of our
refactoring solution. Note that, 4 of the 6 rejected pull requests
in Table XIV are handled by the same developer.

3) Side Benefits: One developer, after reviewing our refactor-
ing proposal, identified an additional improvement on the test
logic itself to test the performance and address test flakiness.
We believe that this is a side benefit of using Mockito to make
the test logic more clear and understandable.

4) Future Improvement Opportunities: We received some
suggestions in merging the pull requests. These suggestions
point to some future improvement opportunities in our auto
refactoring framework, including:

o Translating the refactoring solutions to different mocking
frameworks, such as from Mockito to EasyMock depend-
ing on individual projects’ preferences. (Druid-11529,
Accumulo-2254)

Adding comments and Javadoc for better documenting
the refactored test cases. Of a particular note, we got a
similar comment in our user study in RQ5—one developer
pointed out that a drawback of our framework is that the
original code comments are removed after refactoring.
(OpenNLP-396)

Empowering test cases by leveraging advanced Mockito
functions, such as verifyNoMorelnteractions for checking
whether all executed methods of the mocking object have
been verified. However, such use cases highly depend on
the detail of each test case. Therefore, it is not practical
to make the usage of advanced Mockito functions fully
automated. We envision that developers could benefit
from an interactive refactoring tool to provide related

https://github.com/apache/druid/pull/11529
https://github.com/apache/accumulo/pull/2254
https://github.com/apache/opennlp/pull/396

suggestions for developers and allow them to make
interactive refactoring decisions. (Log4J2-584)

Summary: The response rate of our pull requests is 70%,
which is 13% higher than the other common pull requests.
The average turn around time for our pull requests is
shorter than the common pull requests except Druid,
which indicates that the mock refactoring pull requests
are very attractive. Within the responded pull requests, 9
(60%) were merged and 6 (40%) were rejected, with
15 (65%) approval and 8 (35%) rejection votes. The
positive feedback from the approval comments conclude
that our refactoring solutions are in good quality, make
test logic clear, and allow backward-compatible evolution.
The negative feedback from the rejection comments is
concerned that using mocking or mockito makes the code
hard to understand and raises the bar of contribution as
it requires the knowledge of mocking frameworks. The
comments of pull requests also point out the potential
improvement opportunities, including supporting refactor-
ing for multiple mocking frameworks, adding Javadoc
for better documentation, and making the refactoring
interactive to empower the tests by leveraging functions
of mocking frameworks.

VIII. LIMITATIONS, THREATS TO VALIDITY, AND
FUTURE DIRECTIONS

We acknowledge that our framework has several limitations.
First, it only focuses on replacing inheritance by using Mockito
for mocking. It does not improve the test case logic/design
itself. In addition, compared to manual refactoring created by
developers, our framework is limited in leveraging the advanced
features of Mockito, such as verifying execution order of mock
objects. In manual refactoring, the usage of advanced features is
based on manual understanding of the test intention. This could
potentially be automated by dynamically analyzing the test case
execution. However, our framework currently is purely based
on static code analysis. Third, our framework won’t preserve
the code comments after the refactoring. Fourth, although
we generated a total of 66,677 mutants to evaluate the test
behaviour preservation of test cases, we cannot guarantee that
the test behaviour preserves under all possible defects. Since
it is impossible to exhaustively evaluate the test behaviors
under all possible defects through generating mutants. Lastly,
our framework is limited to Java and Mockito. However, the
overall design principle of mocking and refactoring rationale
in this work should still hold for other languages and mocking

frameworks. We plan to address these limitations in the future.

Only very limited empirical evidence is available to show that
inheritance-based mocking leads to code that is more difficult
to maintain than using a mocking framework [10]. In this work,
we investigate this problem in a qualitative study involving real
developers (RQ6) and the results indicate that using a mocking
framework can improve test code quality and achieve the three
aspects of benefits that relate to maintainability (SQ2 and SQ3
in Section 6.4.1) compared to using inheritance. However, we

20

acknowledge that the conclusion may vary depending on the
group of participants. Another external threat to validity is that
the benefits of using a mocking framework over inheritance
requires that the user has preliminary understanding of the
mocking framework. If a user has zero prior knowledge, he/she
may find inheritance easier to use and understand. Particularly,
the participants in the qualitative evaluation all have prior
experience with Mockito. This poses an internal threat to
validity towards the findings reported in Section VIL.

We also would like to acknowledge that the pre-conditions
and the refactoring syntax in our approach are derived based on
the 208 cases from the empirical study. We cannot guarantee
that the empirical study captures all possible detailed syntax
variations for the pre-condition and refactoring process. For
example, we initially have 10% of the feasible refactoring
candidates failed the refactoring due to syntax that were
not observed in the empirical study dataset. Some typical
syntax errors are missing imports when test subclass and the
test case that uses it are defined in different packages, or
naming duplication after refactoring when there are multiple
test subclass instances created as fields in a test class. However,
the key point, as elaborated in RQI1, is that our approach based
on the initial empirical study is generally applicable to new
datasets. Just like in any learning process, we can make the
pre-condition details and refactoring process more inclusive
in capturing more possible variations by continuing learning
based on more new datasets. We fixed 5 (13%) out of the 39
syntax errors related to import syntax and leave the rest to the
future work.

Our approach only identifies 26% of total test sub-classes as
feasible refactoring candidates, which is not a high percentage,
after applying the ten refactoring pre-conditions on the 159
Apache projects. The relatively low feasible rate could be
constrained by our knowledge in building the approach and
also by the limitations of Mockito. It is possible that some of
the infeasible cases could be addressed with future research
that either advances the refactoring methodologies or addresses
limitations of existing mocking frameworks. Thus, we would
like to point to two future research directions:

« Refactoring test subclasses with advanced design features.
For example, our pre-conditions “P3”, “P8”, “P9”, and
“P10” point to test subclasses that with additional behavior
(i.e. new methods or new attributes) than the mocked
objects, batch instantiation, and inner class definition.
These features imply complicated mocking behaviors that
pose challenges to the refactoring procedure proposed
in this work. However, they may still be feasible for
refactoring with more advanced analysis of the test cases
and design of the refactoring solutions. For example, a
refactoring solution with good design may require beyond
dynamic analysis of the test behavior and the usage
of advance mocking framework APIs, such as variable
capture. We leave this to future research.

Addressing the constraints of existing mocking frame-
works that limit the feasible refactoring. For example,
“P1” (mock multiple objects), “P4” (mock with self-

https://github.com/apache/logging-log4j2/pull/584

reference), “P5” (mock object creation with dynamic
binding), “P6” (mock with special annotations), and “P7”
(mock with access to protected fields) identify cases that
cannot or should not be refactored due to the limitations
of existing mocking frameworks. For example, how to
allow Mockito to support special annotation could be
an interesting research direction. It calls for more future
research, and more thorough investigation of the feasibility
and challenges to over come the limitations with existing
mocking frameworks to enable related refactoring.

IX. RELATED WORK

Software Refactoring: Significant software development
cost is devoted to software maintenance [40]-[43], as software
becomes more complex and drifts away from its original
design [44]-[47]. Refactoring is an important maintenance
activity that restructures a system and improves code quality
[46], [48], [48]-[54]. Kim showed that refactoring is chal-
lenging and there generally lacks tool support [55]. In past
years, researchers proposed methods and tools to automate the
refactoring process [56]-[67]. Most refactoring tools focus on
detecting and refactoring God Classes [51], [61], [68]-[70],
and eliminating Code Clone [57]-[59], [71]-[73]. Tsantalis et.
al proposed a refactoring approach to replace state checking
(i.e. if/else) with polymorphism to reduce code complexity [62].
Despite numerous prior works, we are the first to focusing
on refactoring the usage of inheritance by using mocking
framework, to improve unit testing design.

Test Code Smells: Code smell is a surface indication that
usually corresponds to a deeper problem in the system [51].
Test smells are the sub-optimal design choices in test code [74],
[75]. They can make test cases less effective and more difficult
to understand [74], [76]-[81]. There are various techniques and
tools to support automated test smell analysis [74], [82]-[88].
Van Deursen et. al defined a catalog of 11 test smells [74].
Based on this catalog, Van Rompaey et. al introduced a metric-
based technique to identify two smells, General Fixture and
Eager Test [84]. Greiler et. al developed a Maven plugin
to detect test fixture related smells and provide guidance
for refactoring them [85]. Santana et. al implemented an
Eclipse plugin to refactor Assertion Roulette and Duplicate
Assert [87]. Other works focus on analyzing the impact of test
smells [76], [89]-[91]. To our best knowledge, no prior work
investigated sub-optimal practice in unit test mocking.

X. CONCLUSION

We proposed a refactoring framework and implemented it
as an Eclipse-Plugin [92] to automatically search for the usage
of inheritance and replace it by Mockito for mocking. The
framework is built upon the empirical experience drawn from
five open-source projects. We evaluated our framework on
nine open-source projects, both quantitatively and qualitatively.
The quantitative evaluation proved that our framework was
generally applicable to new dataset that was independent
from the empirical study. The refactoring solution generally
preserves test behaviors in term of detecting defects (in terms

21

of mutants). The refactoring reduced the code complexity—
particularly decoupled test code from production code. Lastly,
the framework provided efficient run-time performance on
real-life projects.

The qualitative evaluation, involving experienced developers,
suggested that auto-refactoring solutions by our framework
were of good quality. Furthermore, the refactoring solutions
improved the quality of the unit test cases in various aspects,
such as improving the cohesion/conciseness, readability/under-
standability and maintainability of the test code, made test
condition more explicit and the test cases more powerful.

The study based on 23 pull requests to the fourteen open
source projects (including the five projects for the empirical
study and the nine projects for evaluation) showed that the
refactoring solutions generated by our approach are quite well
received in the open source projects and by their developers.
Among the 23 requests, 9 requests were accepted/merged, 6
requests were rejected, the remaining requests were pending
(5 requests), with unexpected exceptions (2 requests), or still
undecided (1 request). In particular, among the 21 open source
developers that were involved in the reviewing process, 81%
gave positive votes. The detailed comments from the developers
underscores the strength of our refactoring solutions, such as
enforcing back-ward compatibility when the test/production
code changes. We also identified potential future improvement
directions, including enabling the translation between different
mocking frameworks; adding comments and Javadoc for the
refactored test cases, and empowering the refactored test cases
with advanced mocking functions.

DATA AVAILABILITY

Our plugin is open sourced under the MIT license 7. The code
base of the plugin is hosted on GitHub at https://github.com/
wx930910/JMocker. In addition, the version of our plugin used
in this study, and all the related data for this study is available
in Zenodo at https://doi.org/10.5281/zenodo.7349416.

ACKNOWLEDGMENTS

This work was supported in part by the U.S. National
Science Foundation (NSF) under grants CCF-1909085 and
CCF-1909763.

REFERENCES

[1] Per Runeson. A survey of unit testing practices. IEEE software, 23(4):22—
29, 2006.

Antonia Bertolino. Software testing research: Achievements, challenges,
dreams. In Future of Software Engineering (FOSE’07), pages 85-103.
IEEE, 2007.

Davide Spadini, Mauricio Aniche, Magiel Bruntink, and Alberto Bac-
chelli. To mock or not to mock? an empirical study on mocking practices.
In 2017 IEEE/ACM 14th International Conference on Mining Software
Repositories (MSR), pages 402—412. IEEE, 2017.

Davide Spadini, Mauricio Aniche, Magiel Bruntink, and Alberto Bac-
chelli. Mock objects for testing java systems. Empirical Software
Engineering, 24(3):1461-1498, 2019.

https://easymock.org/.

https://site.mockito.org/.

https://powermock.github.io/.

[2]

[3]

[4]

[5]
[6]
[7]

7 https://en.wikipedia.org/wiki/MIT_License

https://github.com/wx930910/JMocker
https://github.com/wx930910/JMocker
https://doi.org/10.5281/zenodo.7349416
https://easymock.org/
https://site.mockito.org/
https://powermock.github.io/
https://en.wikipedia.org/wiki/MIT_License

[8]
[9]
[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]
[18]
[19]
[20]
[21]
[22]
[23]

[24]
[25]

[26]

[27]
(28]

[29]

(30]
[31]
[32]
(33]
[34]
[35]
[36]
(37]
[38]
[39]
[40]

[41]

[42]

[43]

https://junit.org/junit5/.

https://wiki.python.org/moin/PyUnit.

Gustavo Pereira and Andre Hora. Assessing mock classes: An empirical
study. In 2020 IEEE International Conference on Software Maintenance
and Evolution (ICSME), pages 453-463. IEEE, 2020.

Jagadeesh Nandigam, Venkat N Gudivada, Abdelwahab Hamou-Lhadj,
and Yonglei Tao. Interface-based object-oriented design with mock
objects. In 2009 Sixth International Conference on Information
Technology: New Generations, pages 713-718. IEEE, 2009.

Steve Freeman, Tim Mackinnon, Nat Pryce, and Joe Walnes. Mock
roles, not objects. In Companion to the 19th annual ACM SIGPLAN
conference on Object-oriented programming systems, languages, and
applications, pages 236-246, 2004.

Madhuri R Marri, Tao Xie, Nikolai Tillmann, Jonathan De Halleux, and
Wolfram Schulte. An empirical study of testing file-system-dependent
software with mock objects. In 2009 ICSE Workshop on Automation of
Software Test, pages 149-153. IEEE, 2009.

Shaikh Mostafa and Xiaoyin Wang. An empirical study on the usage
of mocking frameworks in software testing. In 2014 14th international
conference on quality software, pages 127-132. IEEE, 2014.

Xiao Wang, Lu Xiao, Tingting Yu, Anne Woepse, and Sunny Wong. An
automatic refactoring framework for replacing test-production inheritance
by mocking mechanism. In Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 540-552, 2021.

Ermira Daka and Gordon Fraser. A survey on unit testing practices and
problems. In 2014 IEEE 25th International Symposium on Software
Reliability Engineering, pages 201-211. IEEE, 2014.

Jeff Grigg. http://wiki.c2.com/?ArrangeActAssert/, 2012.
https://dubbo.apache.org/.

https://druid.apache.org/.

https://accumulo.apache.org/.

https://cayenne.apache.org/.

https://cloudstack.apache.org/.
https://javadoc.io/static/org.mockito/mockito-core/3.1.0/org/mockito/
MockSettings.html#extralnterfaces-java.lang.Class...-.
https://github.com/mockito/mockito/wiki/FAQ#
what-are-the-limitations-of-mockito.
https://github.com/FasterXML/jackson-annotations/wiki/

Jackson- Annotations.
https://www.javadoc.io/doc/org.powermock/powermock-reflect/1.6.
S/org/powermock/reflect/ Whitebox.html#getInternalState-java.lang.
Object-java.lang.Class-.

https://projects.eclipse.org/projects/eclipse.jdt.
https://javadoc.io/doc/org.mockito/mockito-core/latest/org/mockito/
stubbing/OngoingStubbing.html#then Answer-org.mockito.stubbing.
Answer-.

Java Code Geeks. Mockito programming cookbook.
https://www.javacodegeeks.com/wp-content/uploads/2016/09/
Mockito-Programming-Cookbook.pdf.
https://jackrabbit.apache.org/jcr/index.html.
https://logging.apache.org/log4j/.

https://qpid.apache.org/.

https://www.sakailms.org/.

http://curator.apache.org/.

https://avro.apache.org/.

https://pdfbox.apache.org/.

https://pitest.org/.

https://pitest.org/quickstart/mutators/.

https://aws.amazon.com/lightsail/.

Clemente Izurieta and James M Bieman. How software designs decay:
A pilot study of pattern evolution. In First International Symposium on
Empirical Software Engineering and Measurement (ESEM 2007), pages
449-451. 1EEE, 2007.

Chris F. Kemerer and Sandra Slaughter. An empirical approach to
studying software evolution. IEEE transactions on software engineering,
25(4):493-509, 1999.

Qiang Tu et al. Evolution in open source software: A case study. In
Proceedings 2000 International Conference on Software Maintenance,
pages 131-142. IEEE, 2000.

Tom Mens, Michel Wermelinger, Stéphane Ducasse, Serge Demeyer,
Robert Hirschfeld, and Mehdi Jazayeri. Challenges in software evolution.
In Eighth International Workshop on Principles of Software Evolution
(IWPSE’05), pages 13-22. IEEE, 2005.

22

[44]

[45]
[46]

[47]

[48]
[49]
[50]
[51]

[52]

[53]

(54

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

Don Coleman, Dan Ash, Bruce Lowther, and Paul Oman. Using metrics
to evaluate software system maintainability. Computer, 27(8):44-49,
1994.

Tor Guimaraes. Managing application program maintenance expenditures.
Communications of the ACM, 26(10):739-746, 1983.

Tom Mens and Tom Tourwé. A survey of software refactoring. /IEEE
Transactions on software engineering, 30(2):126—139, 2004.

Gébor Szoke, Csaba Nagy, Rudolf Ferenc, and Tibor Gyiméthy. Design-
ing and developing automated refactoring transformations: An experience
report. In 2016 IEEE 23rd International Conference on Software Analysis,
Evolution, and Reengineering (SANER), volume 1, pages 693—697. IEEE,
2016.

Abdulrahman Ahmed Bobakr Baqais and Mohammad Alshayeb. Au-
tomatic software refactoring: a systematic literature review. Software
Quality Journal, 28(2):459-502, 2020.

William F Opdyke. Refactoring object-oriented frameworks. 1992.
William C Wake. Refactoring workbook. Addison-Wesley Professional,
2004.

Martin Fowler. Refactoring: improving the design of existing code.
Addison-Wesley Professional, 2018.

Karim O Elish and Mohammad Alshayeb. Investigating the effect of
refactoring on software testing effort. In 2009 16th Asia-Pacific Software
Engineering Conference, pages 29-34. IEEE, 2009.

Frens Vonken and Andy Zaidman. Refactoring with unit testing: A
match made in heaven? In 2012 19th Working Conference on Reverse
Engineering, pages 29-38. IEEE, 2012.

Mesfin Abebe and Cheol-Jung Yoo. Trends, opportunities and challenges
of software refactoring: A systematic literature review. international
Journal of software engineering and its Applications, 8(6):299-318, 2014.
Miryung Kim, Thomas Zimmermann, and Nachiappan Nagappan. A
field study of refactoring challenges and benefits. In Proceedings of the
ACM SIGSOFT 20th International Symposium on the Foundations of
Software Engineering, pages 1-11, 2012.

Yoshio Kataoka, Michael D Ernst, William G Griswold, and David
Notkin. Automated support for program refactoring using invariants. In
Proceedings IEEE International Conference on Software Maintenance.
ICSM 2001, pages 736-743. IEEE, 2001.

Magdalena Balazinska, Ettore Merlo, Michel Dagenais, Bruno Lague,
and Kostas Kontogiannis. Advanced clone-analysis to support object-
oriented system refactoring. In Proceedings Seventh Working Conference
on Reverse Engineering, pages 98—107. IEEE, 2000.

Robert Tairas and Jeff Gray. Get to know your clones with cedar.
In Proceedings of the 24th ACM SIGPLAN conference companion on
Object oriented programming systems languages and applications, pages
817-818, 2009.

Robert Tairas and Jeff Gray. Increasing clone maintenance support by
unifying clone detection and refactoring activities. Information and
Software Technology, 54(12):1297-1307, 2012.

George Ganea, loana Verebi, and Radu Marinescu. Continuous quality
assessment with incode. Science of Computer Programming, 134:19-36,
2017.

Marios Fokaefs, Nikolaos Tsantalis, Eleni Stroulia, and Alexander
Chatzigeorgiou. Identification and application of extract class refactorings
in object-oriented systems. Journal of Systems and Software, 85(10):2241—
2260, 2012.

Nikolaos Tsantalis and Alexander Chatzigeorgiou. Identification of
refactoring opportunities introducing polymorphism. Journal of Systems
and Software, 83(3):391-404, 2010.

Mohamed Wiem Mkaouer, Marouane Kessentini, Slim Bechikh, Kalyan-
moy Deb, and Mel O Cinnéide. Recommendation system for software
refactoring using innovization and interactive dynamic optimization.
In Proceedings of the 29th ACM/IEEE international conference on
Automated software engineering, pages 331-336, 2014.

Gabriele Bavota, Malcom Gethers, Rocco Oliveto, Denys Poshyvanyk,
and Andrea de Lucia. Improving software modularization via automated
analysis of latent topics and dependencies. ACM Transactions on Software
Engineering and Methodology (TOSEM), 23(1):1-33, 2014.

Liming Zhao and Jane Huffman Hayes. Rank-based refactoring decision
support: two studies. Innovations in Systems and Software Engineering,
7(3):171-189, 2011.

Philip Mayer and Andreas Schroeder. Automated multi-language artifact
binding and rename refactoring between java and dsls used by java
frameworks. In European Conference on Object-Oriented Programming,
pages 437-462. Springer, 2014.

https://junit.org/junit5/
https://wiki.python.org/moin/PyUnit
http://wiki.c2.com/?ArrangeActAssert/
https://dubbo.apache.org/
https://druid.apache.org/
https://accumulo.apache.org/
https://cayenne.apache.org/
https://cloudstack.apache.org/
https://javadoc.io/static/org.mockito/mockito-core/3.1.0/org/mockito/MockSettings.html#extraInterfaces-java.lang.Class...-
https://javadoc.io/static/org.mockito/mockito-core/3.1.0/org/mockito/MockSettings.html#extraInterfaces-java.lang.Class...-
https://github.com/mockito/mockito/wiki/FAQ#what-are-the-limitations-of-mockito
https://github.com/mockito/mockito/wiki/FAQ#what-are-the-limitations-of-mockito
https://github.com/FasterXML/jackson-annotations/wiki/Jackson-Annotations
https://github.com/FasterXML/jackson-annotations/wiki/Jackson-Annotations
https://www.javadoc.io/doc/org.powermock/powermock-reflect/1.6.5/org/powermock/reflect/Whitebox.html#getInternalState-java.lang.Object-java.lang.Class-
https://www.javadoc.io/doc/org.powermock/powermock-reflect/1.6.5/org/powermock/reflect/Whitebox.html#getInternalState-java.lang.Object-java.lang.Class-
https://www.javadoc.io/doc/org.powermock/powermock-reflect/1.6.5/org/powermock/reflect/Whitebox.html#getInternalState-java.lang.Object-java.lang.Class-
https://projects.eclipse.org/projects/eclipse.jdt
https://javadoc.io/doc/org.mockito/mockito-core/latest/org/mockito/stubbing/OngoingStubbing.html#thenAnswer-org.mockito.stubbing.Answer-
https://javadoc.io/doc/org.mockito/mockito-core/latest/org/mockito/stubbing/OngoingStubbing.html#thenAnswer-org.mockito.stubbing.Answer-
https://javadoc.io/doc/org.mockito/mockito-core/latest/org/mockito/stubbing/OngoingStubbing.html#thenAnswer-org.mockito.stubbing.Answer-
https://www.javacodegeeks.com/wp-content/uploads/2016/09/Mockito-Programming-Cookbook.pdf
https://www.javacodegeeks.com/wp-content/uploads/2016/09/Mockito-Programming-Cookbook.pdf
https://jackrabbit.apache.org/jcr/index.html
https://logging.apache.org/log4j/
https://qpid.apache.org/
https://www.sakailms.org/
http://curator.apache.org/
https://avro.apache.org/
https://pdfbox.apache.org/
https://pitest.org/
https://pitest.org/quickstart/mutators/
https://aws.amazon.com/lightsail/

[67

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

(771

(78]

(791

[80]

[81]

[82]

[83]

[84]

[85]

[86]

Marcelo Serrano Zanetti, Claudio Juan Tessone, Ingo Scholtes, and
Frank Schweitzer. Automated software remodularization based on move
refactoring: a complex systems approach. In Proceedings of the 13th
international conference on Modularity, pages 73-84, 2014.

Alexander Chatzigeorgiou, Spiros Xanthos, and George Stephanides.
Evaluating object-oriented designs with link analysis. In Proceedings.
26th International Conference on Software Engineering, pages 656—665.
IEEE, 2004.

Gabriele Bavota, Andrea De Lucia, Andrian Marcus, and Rocco Oliveto.
A two-step technique for extract class refactoring. In Proceedings of the
IEEE/ACM international conference on Automated software engineering,
pages 151-154, 2010.

Gabriele Bavota, Rocco Oliveto, Andrea De Lucia, Giuliano Antoniol,
and Yann-Gaél Guéhéneuc. Playing with refactoring: Identifying extract
class opportunities through game theory. In 20/0 IEEE International
Conference on Software Maintenance, pages 1-5. IEEE, 2010.

Davood Mazinanian, Nikolaos Tsantalis, Raphael Stein, and Zackary
Valenta. Jdeodorant: clone refactoring. In Proceedings of the 38th
international conference on software engineering companion, pages 613—
616, 2016.

Keisuke Hotta, Yoshiki Higo, and Shinji Kusumoto. Identifying, tailoring,
and suggesting form template method refactoring opportunities with
program dependence graph. In 2012 16th European Conference on
Software Maintenance and Reengineering, pages 53—62. IEEE, 2012.
Sandro Schulze and Martin Kuhlemann. Advanced analysis for code clone
removal. In Proceedings des Workshops der GI-Fachgruppe Software
Reengineering (SRE), erschienen in den GI Softwaretechnik-Trends 29
(2), pages 10-12. Citeseer, 2009.

Arie Van Deursen, Leon Moonen, Alex Van Den Bergh, and Gerard
Kok. Refactoring test code. In Proceedings of the 2nd international
conference on extreme programming and flexible processes in software
engineering (XP2001), pages 92-95. Citeseer, 2001.

Gerard Meszaros. xUnit test patterns: Refactoring test code. Pearson
Education, 2007.

Davide Spadini, Fabio Palomba, Andy Zaidman, Magiel Bruntink, and
Alberto Bacchelli. On the relation of test smells to software code quality.
In 2018 IEEE International Conference on Software Maintenance and
Evolution (ICSME), pages 1-12. IEEE, 2018.

Stefan Berner, Roland Weber, and Rudolf K Keller. Observations and
lessons learned from automated testing. In Proceedings of the 27th
international conference on Software engineering, pages 571-579, 2005.
Gabriele Bavota, Abdallah Qusef, Rocco Oliveto, Andrea De Lucia, and
David Binkley. An empirical analysis of the distribution of unit test
smells and their impact on software maintenance. In 2012 28th IEEE
International Conference on Software Maintenance (ICSM), pages 56—65.
IEEE, 2012.

Moritz Beller, Georgios Gousios, Annibale Panichella, Sebastian Proksch,
Sven Amann, and Andy Zaidman. Developer testing in the ide: Patterns,
beliefs, and behavior. IEEE Transactions on Software Engineering,
45(3):261-284, 2017.

Moritz Beller, Georgios Gousios, Annibale Panichella, and Andy Zaidman.
When, how, and why developers (do not) test in their ides. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering,
pages 179-190, 2015.

Andy Zaidman, Bart Van Rompaey, Arie van Deursen, and Serge Demeyer.
Studying the co-evolution of production and test code in open source and
industrial developer test processes through repository mining. Empirical
Software Engineering, 16(3):325-364, 2011.

Vahid Garousi, Baris Kucuk, and Michael Felderer. What we know about
smells in software test code. IEEE Software, 36(3):61-73, 2018.

Kent Beck. Test-driven development: by example. Addison-Wesley
Professional, 2003.

B. Van Rompaey, B. Du Bois, S. Demeyer, and M. Rieger. On the
detection of test smells: A metrics-based approach for general fixture and
eager test. I[EEE Transactions on Software Engineering, 33(12):800-817,
2007.

Michaela Greiler, Arie Van Deursen, and Margaret-Anne Storey. Auto-
mated detection of test fixture strategies and smells. In 2013 IEEE Sixth
International Conference on Software Testing, Verification and Validation,
pages 322-331. IEEE, 2013.

Negar Koochakzadeh and Vahid Garousi. A tester-assisted methodology
for test redundancy detection. Advances in Software Engineering, 2010,
2010.

23

(871

(88]

[89]

[90]

[91]

[92]

Railana Santana, Luana Martins, Larissa Rocha, Téssio Virginio, Adriana
Cruz, Heitor Costa, and Ivan Machado. Raide: a tool for assertion roulette
and duplicate assert identification and refactoring. In Proceedings of
the 34th Brazilian Symposium on Software Engineering, pages 374-379,
2020.

Stefan Reichhart, Tudor Girba, and Stéphane Ducasse. Rule-based
assessment of test quality. J. Object Technol., 6(9):231-251, 2007.
Michele Tufano, Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta,
Rocco Oliveto, Andrea De Lucia, and Denys Poshyvanyk. An empirical
investigation into the nature of test smells. In Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering,
pages 4-15, 2016.

Gabriele Bavota, Abdallah Qusef, Rocco Oliveto, Andrea De Lucia,
and Dave Binkley. Are test smells really harmful? an empirical study.
Empirical Software Engineering, 20(4):1052-1094, 2015.

Fabio Palomba, Dario Di Nucci, Annibale Panichella, Rocco Oliveto,
and Andrea De Lucia. On the diffusion of test smells in automatically
generated test code: An empirical study. In 2016 IEEE/ACM 9th
International Workshop on Search-Based Software Testing (SBST), pages
5-14. IEEE, 2016.

https://github.com/wx930910/JMocker.

Xiao Wang is a Senior Software Development
Engineer at Amazon. He received his Ph.D. in System
Engineering with a concentration on Software Engi-
neering from Stevens Institute of Technology in 2022,
advised by Dr. Lu Xiao. His research interests lie in
software architecture, software refactoring, software
testing and cyber-physical systems. He published his
work in different journals and conferences, including
TSE, ICSE, FES and ICSA.

Lu Xiao is an Assistant Professor in the School
of Systems and Enterprises at Stevens Institute of
Technology. Her research interests lie in the broad
area of software engineering, particularly in software
architecture, software economics, cost estimation,
and software ecosystems. She is an awardee of NSF
CAREER project in 2021. She has published her
work in different conferences and journals, including
TSE, ICSE, FSE, and ICSA, etc.. She completed her
PhD in Computer Science at Drexel University in
2016, advised by Dr. Yuanfang Cai. She received

the first-place prize at the ACM Student Research Competition in 2015. She
earned her Bachelor’s degree in Computer Science from Beijing University of
Posts and Telecommunications in 2009.

Tingting Yu Tingting Yu (Member, IEEE) received
the Ph.D. degree in computer science from the
University of Nebraska-Lincoln. She is an associate
professor of computer science at University of Cincin-
nati. Her research focuses on software engineering,
with a focus on developing methods and tools for
improving the reliability and security of complex
software systems, testing for concurrent software,
regression testing, and performance testing.

https://github.com/wx930910/JMocker

Sunny Wong is a Senior Software Architect at
Envestnet, with over a decade of experience in the
aerospace/defense, healthcare, and finance industries.
He was named Young Engineer of the Year in
2019 by the IEEE Philadelphia Section. Sunny
received his Ph.D. in computer science from Drexel
University. His research interests include software
architecture and design modeling, tools support for
improving developer productivity, and applications
of Al techniques to software development.

Anne Woepse manages the Enterprise Products team
at AGI. She previously worked as a software engineer

for 7 years on enterprise software solutions at AGI.

She received her Bachelors in Mathematics and
Physics from Bryn Mawr College, and her Master’s
from the University of Pennsylvania in Computer and
Information Technology. She has performed prior
research on software development challenges with
air-gap isolation.

24

	INTRODUCTION
	BACKGROUND AND MOTIVATION
	Unit Testing
	A Motivating Example
	Mocking by Inheritance
	Mocking by Mockito
	Benefits of Mockito Over Inheritance

	EMPIRICAL STUDY
	Dataset
	Study Process
	Problem Formalization
	Findings and Implications

	REFACTORING FRAMEWORK
	Auto-Refactoring Procedure
	Step1-Create Mock Object
	Step2-Preserve Mocking Behavior
	Step3-Preserve Reference to the Mock Object
	Infrastructure Procedure—translateToMocking
	Create MockMethod for Code Reusability

	Research Questions and Evaluation Design
	Research Questions
	Evaluation Dataset
	Evaluation Design and Rationale
	RQ1
	RQ2
	RQ3
	RQ4
	RQ5
	RQ6: User Study Design
	RQ7: Pull Request Study Design

	Quantitative Evaluation Results (RQ1-RQ4)
	RQ1: Generality and Applicability
	RQ2: Refactoring Successful Rate
	RQ3: Test Behavior Preservation with Mutants
	RQ4: Code Metrics Change
	RQ5: Execution Time

	Qualitative Evaluation Results (RQ6 and RQ7)
	RQ6: User Study Results
	RQ7: Pull Request Results

	LIMITATIONS, THREATS TO VALIDITY, AND FUTURE DIRECTIONS
	RELATED WORK
	Conclusion
	References
	Biographies
	Xiao Wang
	Lu Xiao
	Tingting Yu
	Sunny Wong
	Anne Woepse

