An IFS for the Stretched Level-n Sierpinski Gasket
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Abstract - Broadly, fractals are sets that exhibit a repeating pattern at multiple scales. One
important fractal set is the Sierpinski Gasket (SG) which is made up of nested equilateral
triangles. A variation of the classic Sierpinski gasket is to create n-levels with the equilateral
triangles. Another variation is to stretch the points of intersection for the triangles in SG
into line segments of length 0 < o < 1/3. When one combines these variations, one arrives
at the stretched level-n Sierpinski gaskets (SSG™) which are the focus of this work. We give
an introduction to iterated function systems (IFS) and determine an IFS which generates
SSG3. We then describe how one can acquire the IFS for SSG™ in general, and conclude
with a theorem which determines the Hausdorff dimension for SSG™.
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1 Introduction

Fractals are sets that exhibit a repeating pattern at multiple scales. A fractal can be
perfectly self-similar (in the sense defined in Section 1) or can simply be a set which
repeats a pattern at various scales, like the Weierstrass curve. The best way to understand
fractal sets is to analyze various examples. In this work, we will focus on fractal sets which
are self-similar or self-affine. Figure 1 shows three fractal sets, each of which exhibits self-
similarity at finer and finer scales. Should we have a way to zoom further and further
into these sets, we would find the same overall structure repeating infinitely.

Notice the remarkable relationship between the Barnsley fern and the fractal tree in
Figure 1, and the patterns we observe in nature. Nature produces many fractal patterns.
The reader is encouraged to find examples of fractal sets from within their own garden.
Understanding fractal sets can help develop tools to study the complex patterns created
by nature. This is one of the motivations behind the study of fractal geometry; see [3],
[4], [5].

Fractals like the Sierpinski gasket, SG, shown in Figure 1 have a robust structure and
serve as useful toy models to develop the theory of fractal geometry. This theory can then
be extended to the fractals that arise in nature. In this work we explore fractal sets that
arise from combining two variations on the classical Sierpinski gasket. The first variation
is the addition of levels to form the level-n Sierpinski gasket, SG™, seen in Figure 3.
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Figure 1: The Barnsley fern (left) [1], a fractal tree (center) [2] and the Sierpinski gasket
(right).

The second variation is a stretching of the points of intersection for the triangles in SG.
From a fractal geometric point of view, the Sierpinski gasket and the stretched Sierpinski
gasket are distinct. At the core of that distinction is the fact that the Sierpinski gasket
can be generated with contraction similarities (maps which shrink a space by the same
ratio in all directions) and the stretched Sierpinski gasket is generated with contraction
affine maps. Self-affine fractal sets are notoriously more difficult to work with, and the
stretched Sierpinski gasket has been the subject of multiple papers in recent years; see for
example [6], [7], [8].

By stretching the level-n Sierpinski gasket we get what is known as the stretched level-
n Sierpinski gasket, SSG™. The spaces SSG™ have not been thoroughly studied by fractal
geometers. This work describes the way in which SSG™ is built via an iterated function
system (IFS). In the process, we review important results about fractals arising from an
IFS. We finish with a theorem describing the fractal (Hausdorff) dimension of SSG™.

The remainder of this article is organized as follows:

e Section 2 introduces the concept of an iterated function system and the idea of
fractal dimension. This section contains many important theorems from fractal
geometry found in [9].

e Section 3 reviews the IF'S that generates the stretched Sierpinski gasket.

e Section 4 builds upon the construction in section 3. This section explicitly constructs
the IF'S for the level-3 stretched Sierpinski gasket and describes how the construction
extends for the level-n stretched Sierpinski gasket.

e In Section 5 we calculate the Hausdorff dimension of the stretched level-n Sierpinski
1

gasket. For n € N with n > 2 and a € (0, .=7) we have the following:

In (n(n+1) )

: n __ 2
dim 556 = N T T — (n = Da)’
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Figure 2: Above we have a square and triangle (left) and apply a similarity (center) and a
generic contraction which is not a similarity (right). The “shadow” of the original square
and triangle are included as a reference for both the similarity and generic contraction.

2 A brief introduction to iterated function systems (IFS)

In this section we review some fundamental definitions and results about fractals generated
by iterated function systems.

Definition 2.1 A function f : D C RY — RY is a contraction if there exists a real
number ¢ € [0,1) such that

[f(x) = F(y)] < clz =y
for allx,y € D. A contraction f: D C RN — RY which satisfies | f(x) — f(y)| = c|z —y]
for all x,y € D, is called a similarity.

Let D C RY be a closed set. A finite collection of contractions f; : D — D where
i=1,2,...,k is called an iterated function system (IFS).

Let’s unpack the definitions above. Contraction maps and similarities are shrinking
maps! The inequality in the definition of a contraction tells us that contractions shrink
shapes and it is possible that the shrinking is greater in one direction than another.
Similarities on the other hand shrink by the same amount in all directions; see Figure 2.

Now how exactly does an IFS generate a fractal set? This is a key theorem from
fractal geometry which can be found in [9].

Theorem 2.2 Let g1, s, ..., g, be contractions on a closed set D C RN . There exists a
unique non-empty compact set X that satisfies

Ugi(X) = X.

The set X is called the attractor of the IFS, {g; :i=1,2,...,k}.

' THE PUMP JOURNAL OF UNDERGRADUATE RESEARCH 5 (2022), 105121 107



SG? 6

Figure 3: The Sierpinski gasket (SG) along with its level-3 (SG?), stretched (SSG), and
stretched level-3 (SSG?) variations.

k
Moreover, define F(A) = U gi(A) and write F/(A) = F(F(F(--- F(A)))) for the j-th
i=1
application of F'. Then we have

X = ﬁ FI(E)

for any compact set E such that g;(E) C E for eachi=1,2,... k.

The first part of the theorem above tells us that if we have an IFS, then there is exactly
one non-empty compact set X which is left fixed when we apply and union the images of
the contractions in the IF'S. This is how we formalize the idea that X exhibits the same
pattern at multiple scales. Given that we have

X =gi1(X)Uga(X) U Ugy(X),

we see that X is made up of contracted (shrunken) copies of itself.
The second part of the theorem tells us how to visualize the construction of the set
X. For example, in the case of the Sierpinski gasket we have

SG=FE)NF(E)NnF}E)N---
where we choose the set E be the filled in equilateral triangle formed by the points
1 V3
p1=(0,0) D2 = (57 7) ps = (1,0).

In this case, the set F'(F) is the first stage in the construction of SG, the set F?(E) is the
second stage, and so on. We get SG by intersecting all of these stages in the construction
process. For more on iterated function systems and fractal geometry in general see [9]
and [10]. One quality that makes fractals arising from an IFS particularly special to work
with is the understanding we have of the dimension of these fractals.

2.1 Hausdorff dimension

We may be accustom to thinking only of sets in dimensions 0, 1, 2, 3, etc., but there
are interesting fractal sets living in the dimensions in between! Fractal sets often have
non-integer dimensions.
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There are various ways to extend our usual ideas of dimension to ones that may yield
non-integer dimensions. Some notions such as the box-counting dimension or the set of
complex dimensions for a fractal are discussed in [9] and [11], for example.

We will focus on what is known as the Hausdorff dimension. To understand the
definition of the Hausdorff dimension of a set, we will first define the notion of Hausdorff
measure. Further details can be found in [9)].

Definition 2.3 Let X C R". The diameter of a set X is defined by
diam(X) = sup{|z —y| : z,y € X}.

Let s >0, and § > 0. Define

H3(X) = inf {i diam(U;)° = X C G U; and diam(U;) < (5} : (1)

i=1
As & decreases, the infimum is taken over a smaller number of permissible covers of X so
H3(X) will increases. This means the limit
H(X) = lim H;(X)
6—0

is well defined. We call H*(X) the s-dimensional Hausdorff measure of X. The
Hausdorff dimension of X is defined to be

dimy X = inf{s > 0: H*(X) = 0}.

To calculate the Hausdorff dimension, we will make use of a theorem from [9] that
applies to sets arising from an IFS and which satisfy a certain separation property called
the open set condition. An IFS, {g; : 1 = 1,2,...,k}, satisfies the open set condition if
there exists a non-empty bounded open set V' such that

UMWCV

where this union is disjoint. The Sierpinski gasket and all of the variations on the Sier-
pinski gasket discussed in this work satisfy the open set condition with V' taken to be
the interior of the triangle formed by the points pi, ps, and p3. We will therefore use the
following theorem when calculating the Hausdorff dimension of sets arising from an IFS
which satisfies the open set condition.

Theorem 2.4 Let g; be similarities on RY with contracting ratios r; (1 < i < k) and
which satisfy the open set condition. If X is the set satisfying

X:U%M)
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then the Hausdorff dimension of X is dimy(X) = s where s is the real number satisfying

The Hausdorff dimension of the Sierpinski gasket for example is dimy(SG) = s =
log,(3) which solves the equation

3

> (/2r =1

=1

3 An IFS that generates SSG

We first acquaint ourselves with the IF'S given in [7] that generates the stretched Sierpinski
gasket, SSG. Fix the following points in R?:

p1=(0,0) p2 = (1 \/§> ps = (1,0)

272
:p2+p3 » :P1+p3 » :p1+p2
2 o 2 6 2

Next fix v € (0, %) and for i = 1,2,...,6 define G,; : R? = R* by

y 2

Goi(z) = Ai(x —pi) + ps

where

2 2 01

S S RO I}

The matrices A;, Ag, A3 are shrinking a shape by a factor of I_Ta in all directions. This
means Go,1, Ga 2, Go 3 are similarities, and in fact these functions correspond to (i.e. map
to) the triangles in SSG. The matrices Ay, A5, and Ag will correspond to contractions
that map onto the stretched line segments in SSG. These matrices will not be similarities,
since they will collapse inputs onto a line segment. We now recall how one can project
onto a fixed vector.

A1:A2:A3:1—a1 _ 1—a<1 0)

and
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Figure 4: Stages 1, 2, and 3 in the construction of SSG?.

3.1 Vector projections

Definition 3.1 Letv € RY be a fized vector and s € RYN. The vector projection of s onto
a line parallel to v is given by

i SV
proj,(s) = W”

where s - v is the dot product of s and v, and ||v| = \/v? + v+ - + v} is the usual
magnitude of the vector v = (vy,vg,...,VN).

Vector projections are how we arrive at the matrices Ay, A5, and Ag. These matrices

need to shrink a shape and project onto the stretched line segments in SSG. The matrix

Ay corresponds to projection onto the vector <—%, ‘/7§>, the matrix As corresponds to

projection onto (1,0); and Ag corresponds to projection onto <%, ‘/7§> We show below
the calculation of Ag and leave the others as an exercise for the reader.

27 2

Let s = (z,y) € R? and v = (l L§> Note that [[v|| = 1. Then,

. S-vU
proj,(s) = WU

(1 VB 1 V3
BRI ATE)

zl(a:+\/§y,\/§x+3y>

4

HED0)

V3
3

line parallel to v = (%, \/7§> We then scale this by a to get Ag.

1
This gives us the matrix i ( /3 ) which will project the vector s = (z,y) onto a
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3.2 Fixed points and contractions

Next let’s examine the significance of the points p1, ps,...ps. These are the fixed points
of the maps G, ;, meaning that for each i = 1,2,...,6 we have

Ga,i(pi> = Pi-
In fact, there is an important connection between contraction maps and fixed points.

Theorem 3.2 Contraction Mapping Principal (Fized Point Theorem)
Let D C RY be a closed set. If f : D — D is a contraction map, then f has a unique
fixed point. In other words, there is exactly one xqg € D which satisfies

f(~750) = Zo-

The fixed points for the maps in an IFS help us shift the scaled and possibly pro-
jected vectors resulting from applying A; into the correct positions. For example, in the
contraction

Goz2(x) = As(x — po) +

the matrix A, will scale the outer triangle formed by p, ps and p3 into a smaller triangle.
The point py will this scaled triangle into the correct position.

We can now recognize how each of the functions GG, ; corresponds to some component
of the stretched Sierpinski gasket. Namely, a triangle for Gy 1,Ga2, and G, 3 and line
segments for G, 4,G, 5, and G, 6. Reviewing the IF'S for the stretched Sierpinski gasket
gives us an idea of where to begin to build the IFS for SSG”. Each triangle and each
line segment in SSG™ will correspond to a map in the IFS and hence a fixed point and
projection/scaling matrix.

4 An IFS for SSG?

Our next step is to construct the contractions that will generate SSG™. For simplicity,
we initially focus on n = 3. For each contraction we must determine a fixed point and a
projection/scaling matrix. We will need 6 maps for the triangles in SSG® and 9 maps for
the line segments in SSG?; see Figures 4 and 5.

4.1 Fixed points for SSG?

We determine that the following points are fixed points for the maps in the IFS generating
the 6 triangles in the construction of SSG?:

51:]91:(0»0) 52:292:(1 \/§> 53:]93:(1»0)

2" 9
D1+ P2 D2 + D3 P1+ D3
S4 = S5 = Sg — .
2 2 2
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Figure 5: Stage 1 in the construction of SSG? with the fixed points s;.

The reader should note the renaming and shuffling of the points py4, ps, ps to the points
S4, S5, 8¢. This is done for convenience moving forward. Calculating the fixed points for
the maps in the IFS which would correspond to the line segments in SSG? is our next

task.
To generate the points s; and sg as seen in Figure 5, we scale the point sy = (%, \/7§>

We arrived at

1—-2a « 2—4a 3a
Sy = 5 +§ So and sg = 5 +7 So

where « is again a real number that represents the length by which the level-3 Sierpinski
gasket is stretched. The scaling factors above will be denoted by

1—2a+a d 2—4a+30¢
Q) = — an Qg = —
! 3 2 2 3 2

In a similar manner and using the symmetry of SSG? we generate the following for
the points sg, s19, 11, and s1a:

—ay 0
39252< 3‘2 )+(1,0)

(%)
—a; 0
510 = S2 < 01 041) + (170)
511 = (253
S12 = (153

We now calculate the fixed points on the “inside” of SSG?, namely si3, 514, and s5.
Again we will make use of the symmetry of SSG? as well as our knowledge of the points

So and s7.
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3 V3(1+a) 3
6

Figure 6: Components of the calculation to find s14 (left), s13 and s15 (right).

Calculation of sy,

Note that the z-coordinate of si4 is the same as that of ss. It remains to calculate the
y-coordinate of s14. For this we note the right triangle in Figure 6 (left). Since the initial
outer triangle is an equilateral triangle, we know the angles within the outer triangle are
60°. A trigonometry calculation yields

V3(1 + a)
6

for the y-coordinate of s14. This gives us

S14 = S2 (1 0 )
0 ke
Calculation of si3 and s;5
The y-coordinate for both s13 and s;5 is the same as that of s;. We now calculate the
z-coordinate for both si3 and s;5. Again a trigonometric calculation shows that the
x-coordinate for sy3 is given by

2—a 1—-2a « 2—«

12 3 2 4

2—a
513—52((2) ;)
6

For the z-coordinate of s;5 we add an additional length of § to the z-coordinate of

s13. This gives
24«
_ 2 0
S15 = S2 0 2—a
6
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4.2 Projection/scaling matrices for SSG?
Next we need a matrix that simply scales the outer triangle to the size of one of the small
triangles shown in Figure 5. We define matrices X; where i = 1,2,...,6 by
1 -2«
3

Next we need matrices that scale and project onto the stretched line segments in SSG3.
First define

af 1 =3 10 a1 3
B=— = D=— .
4<—¢§ 3) ¢ O‘(o o) 4<¢§ 3)
The reader will recognize these as the projection and scaling matrices Ay, A5, Ag from the
definition of SSG. Define matrices X; for i = 7,8, ...15 as follows:

Xr=Xs=Xi5=D
Xg=Xio=Xi3=15
X =Xpp=Xuu=0C.

Note that these are grouped according to which line segments are parallel in SSG3. We
are now able to state the IFS that generates SSG?.

Definition 4.1 An IFS which generates SSG? is given by
Haﬂ'(l') = XZ(.CE - Si) + S;

where s; and X; fori=1,2,...,15 are as defined previously.

4.3 An IFS for SSG™

We can extend the construction above to SSG™ for n > 4. First note that there are

N— n(n+1)
2
upright triangles in SSG". Of these there are
(n—2)(n—23)
2

upright triangles in the interior of the set. First, we categorize the fixed points and scaling
matrices of SSG" into the following four groups:

Group 1 Boundary and a-independent. These are the fixed points associated to the triangles
along the edges of the set. There are

nin+1) (n—2)(n—23)
2 2

of these triangles so our first 3n — 3 fixed points will be associated to these.

=3n—3
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Group 2 Interior and a-independent. These are the fixed points associated to the interior
upright triangles in SSG™. The next
(n—2)(n—3)
2

fixed points will be associated to these interior triangles.

Group 3 Boundary and a-dependent. These will correspond to the stretched line segments
along the edges of SSG". There are

3(n—1)
of these fixed points.

Group 4 Interior and a-dependent. These correspond to the stretched line segments that
appear in the interior of SSG™. We have

Jn—1)(n—2)

such fixed point. All together SSG™ contains n(2n — 1) fixed points.

Note that the fixed points from Groups 1 and 2 above are indeed the fixed points from
SG™. These are left unchanged by the stretching of the Sierpinski gasket. Each fixed
point in the first two groups corresponds to scaling matrix A where,

:1—(n—1)a

A I.

The fixed points in Group 3—Boundary and a-Dependent—can be acquired in the following
manner. For each n > 4, we define the following set of constants {O‘k};:i where,

o = k (M) k1S

n

The reader may recognize that within SSG™, the upright triangles have side lengths
of 1_("7_1)0‘ and 7 is half the length of the boundary line segments between the triangles.

Note that the index for the first point in group 3 will be © = N + 1. For fixed points
along the left edge of the outer triangle in SSG", we use

8 = Q(;—N)S2

with scaling matrix D. The points along the right edge of the outer triangle for SSG™
will begin with index ¢ = N 4 (n — 1) + 1. These can be acquired by

S; = (—1, 1)Si7(n71) + s3.
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with scaling matrix B. Finally, for the points along the bottom edge of the outer triangle
we use,
Si = O (N+2(n—1))53

where the first index is ¢ = N + 2(n — 1) + 1, the last fixed point at i = N + 3(n — 1),
and associated scaling matrix C'. For simple notation, We set N’ = N + 3(n — 1).

Lastly for the three point clusters, notice they lie along the midpoints of the downward
triangles of side length a. Moreover, the centers of the « triangles are the vertices that
appear in the interior of the regular level-n Sierpinski gasket. For SSG™ we will have

_— (n—1)(n—2)
2
centers. Call these c¢y,co,...,¢,. Each center will give a cluster of 3 fixed points for

SSG™. So the first center ¢; corresponds to the fixed points with indices,
i=N+1, N +2, N +3
and center ¢, corresponds to indices,
i=N+3p-1)+1, N+3(p—1)+2, N+3(p—1)+3
The fixed points can be obtained by the following formula:

a3

i = —Ri_ / — T.
5 Cp+6||cp|| (i—(N'"+3(p—1)))Cp

_ (cosf —sinb, ano Yep B o B
where R, = sinf,  cosfy ) for 6; = 90° — arctan <$CP>, 0y = 120° + 04, 03 =

240° + 0. For the fixed points corresponding to 61, 65, 03, the respective scaling matrices
are C, B, and D. At last we construct an IFS for SSG".

Definition 4.2 An IFS which generates SSG™ is given by
Ha,n,i(-r) = Xz(x - 31') + s;
where s; and X; fori=1,2,...,n(2n — 1) are defined above.

Figure 7 illustrates the usefulness of the IFS given above. Starting with the fixed
points in the IFS, one can successively apply the maps in the IFS to generate additional
points on SSG™. This gives us a method to approximate sets like SSG* and SSG® seen
in Figure 7.

5 The Hausdorff dimension of SSG"

We now need one additional theorem regarding the Hausdorff dimension. This theorem
and its proof can be found in [9].
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Figure 7: The fixed points for SSG* and SSG® (left) are shown above along with a first
(center) and second (right) application of the IF'S maps to the set of fixed points.

Theorem 5.1 The Hausdorff dimension is countably stable:

dimpy (U Ui> = sup dimgy (U;).

iEN i€N

To make use of this theorem, we observe the following useful decomposition of SSG™.
Let F™ be the unique compact set generated by the IFS which consists of only the sim-
ilarity maps in the IFS for SSG™. More specifically, F™ is the union of all triangles in
SSG™. Next, let J" be the union of all open (excluding end points) line segments which
form the stretched portion of SSG™. One can immediately extend a result in [7] (Lemma
2.1.1) to get that for any n > 2, we have

Ssgr=rF" | ) J"
where the union is disjoint. We now arrive at the Hausdorff dimension of SSG™.

Theorem 5.2 Forn > 2 and a € (O 1 ), the Hausdorff dimension of SSG" is

’ n+1

In (n(n2+1))
dimy S5G" = In(n) —In(1—(n—1a)

Proof. By the countable stability of the Hausdorff dimension, we know

dimy SSG" = sup { dimy F", dimpy J"}.
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n(n+1)
2

. Then by Theorem 2.4, there exists a unique s > 0 such that,

Notice that F™ is the unique attractor associated to an IFS with N =
1-(n—1)a
n

similarities,
each of ratio r =
N s
Z Z 1—(n—1)a
s p— . p— 1
i=1 ' i=1 ( n )

and s = dimy F™. Solving for s gives

n(n+1) (1—(71—1)04)3:1 (2)

2 n

- (w) () "
i (5)
I (n_Da (4)
e ( ) )
In n(";‘l)
Szln(n)—ln(l—(n—l)a)' 5)

Note that any line segment has Hausdorff dimension 1. So for J", a countable union of
line segments, we have

This now gives us

1 <n(n2+1)>
dimy SSG" = max In () —In (1 = (n = l)a)’l

Notice that n > 2 and a € (0 imply that

o (252)
In(n)—In(1—(n—1)a)

where n > 2, the Hausdorff dimension of SSG"™ is given by

’n—l—l)

> 1.

Thus, for a fixed o € (0, 27)

In (n(n2+l))

dimy; S5G" = In(n)—In(1—(n—1)a)
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