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Abstract

We study a new connection between a technical

measure called 𝜇-conductance that arises in the

study of Markov chains for sampling convex bod-

ies and the network community profile that char-

acterizes size-resolved properties of clusters and

communities in social and information networks.

The idea of 𝜇-conductance is similar to the tradi-

tional graph conductance, but disregards sets with

small volume. We derive a sequence of optimiza-

tion problems including a low-rank semi-definite

program from which we can derive a lower bound

on the optimal 𝜇-conductance value. These ideas

give the first theoretically sound bound on the

behavior of the network community profile for a

wide range of cluster sizes. The algorithm scales

up to graphs with hundreds of thousands of nodes

and we demonstrate how our framework validates

the predicted structures of real-world graphs.

1. Introduction

One of the central themes of network science is the discov-

ery of peculiar properties that are not exhibited by random

or geometric graphs. Over the past decade, network science

has built a rich repository of data sets derived from social

network, communication networks, biological data, internet

trace data, and more. Early measurements on these networks

demonstrated skewed degree distributions, high clustering

coefficients, and community structure (BarabÂasi & Albert,

1999; Watts & Strogatz, 1998; Newman, 2003; 2006). These

measurements led to fundamentally new mechanisms that

explain the networks (Leskovec et al., 2007; Seshadhri et al.,

2012; Bonato et al., 2014). Accurately capturing and un-
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derstanding these properties is critical to understanding the

limits of what is possible with rich empirical data in graph-

based learning (Seshadhri et al., 2020).

But many important network quantities are computationally

intractable in the worst case and are only computed by

heuristics. It is of critical importance to have rigorous theory

that can guarantee the accuracy of these measurements.

We focus on one of the most significant network character-

istics: the cluster structure (Flake et al., 2000; Newman,

2006; von Luxburg et al., 2012). Finding tightly connected

sets of vertices with few connections outside is a central

task in network analysis. This is often measured by the

conductance. The conductance of a set 𝑆 of vertices is the

normalized fraction of edges that leave the set (the normal-

ization is more involved; we give a formal definition later).

An important development in the cluster structure of real-

world networks was the discovery of set size versus con-

ductance relationships (Leskovec et al., 2008; 2009; 2010;

Gleich & Seshadhri, 2012; Jeub et al., 2015). The key find-

ing in these studies is counter-intuitive: in most real-world

datasets, we cannot find large sets of small conductance. An

example of this structure is shown in Figure 1. This finding

directly contradicts the behavior of conductance in graphs

that are derived from nearest neighbors in a geometry or

graphs commonly used in partitioning computational do-

mains, where the smallest conductance values occur in large

sets. Moreover, the definition of minimum conductance is

typically biased towards large sets (see equation (1)), but

real-world networks exhibit the opposite behavior.

The key finding is the behavior of the network community

profile (NCP). The NCP plots, for each 𝑠, the minimum con-

ductance among sets of size (technically volume) 𝑠. (Refer

to Figure 1.) Observe how the plot (the blue line) slopes

upward after an initial dip. This trend is consistent across

many real-world networks. The NCP of a typical geometric

graph slopes downwards. Currently, the NCPs are generated

entirely through principled heuristic computations. Hence,

it is difficult to guarantee the characteristic real-world behav-

ior of the NCP curve without appropriate theoretical bounds.

Our proposed algorithm is the first that can actually give a

lower bound on the minimum conductance at a fixed size 𝑠.
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𝑆 from the rest of the graph: 𝜕𝑆 =
∑

(𝑖, 𝑗 ) ∈𝐸,𝑖∈𝑆, 𝑗∈𝑆̄ 𝐴𝑖, 𝑗 .

The notation Vol(𝑆) is the sum of edges involving vertices

in 𝑆: Vol(𝑆) =
∑

(𝑖, 𝑗 ) ∈𝐸,𝑖∈𝑆 𝐴𝑖, 𝑗 . By convention, we set

Vol(𝐺) = Vol(𝑉). We write 1 for the vector all ones, so

Vol(𝐺) = 1T𝑨1 and Tr(·) denotes the trace.

The conductance of a set of vertices is

𝜙(𝑆) = 𝜕𝑆

min{Vol(𝑆),Vol(𝑆)}
. (1)

In principle, minimizing conductance finds sets where

Vol(𝑆) is large and 𝜕𝑆 is small. Thus, it is interesting that

empirical NCPs suggest that the best conductance sets are

not the largest. The 𝜇-conductance of a graph is

𝜙𝜇 (𝐺) = minimize
𝑆⊂𝑉

𝜙(𝑆)
subject to 𝜇Vol(𝐺) ≤Vol(𝑆) ≤Vol(𝐺)/2.

(2)

Here we adopt a slightly different definition from Lovasz

and Simonovits’s original paper. The definitions are similar

in spirit as they both neglect sets with volume smaller than

a specific volume but the original one involves a perturbed

conductance. Note that if the set of smallest conductance in

the graph 𝐺 is large with Vol(𝑆) ≈ Vol(𝐺)/2, then there is

no difference between the 𝜇-conductance and conductance

values. It is only for graphs with hypothetical real-world

NCP structure that we expect to see interesting behavior

from 𝜇-conductance.

2.1. Cheeger Inequalities and Spectral Cuts

The Cheeger inequality gives a two-sided bound to the set

of best conductance in a graph via an eigenvector com-

putation (Chung, 2007; Cheeger, 1969). Our manuscript

focuses on lower bounding the conductance of sets, rather

than upper-bounding them, so we are only concerned with

one side of the Cheeger inequality. The eigenvector com-

putation uses the Laplacian matrix 𝑳 = 𝑫 − 𝑨, where 𝑫 is

a diagonal matrix of row-sums of 𝑨, that is, 𝑫 = Diag(d)
where d = 𝑨1. Formally, let

𝜆2 = minimize
x∈R𝑉

xT𝑳x

subject to xT𝑫x = 1, xTd = 0.

(Spectral Cut)

The value 𝜆2 is the second smallest generalized eigenvector

of 𝑳x = 𝜆𝑫x. This eigenvector problem is called a spectral

cut because x𝑇𝑳x computes a cut in the graph that we have

relaxed over the space of eigenvectors. It is well-known that

𝜆2/2 ≤ min
𝑆⊂𝑉

𝜙(𝑆).

2.2. Network Community Profiles

Network community profiles are typically computed by

running either seeded PageRank (Andersen et al., 2006),

Algorithm 1 MuConductanceLowRankSDPLowerBound

Require: A graph 𝐺, a scalar 𝜇, and rank parameter 𝑘

Ensure: A lower bound on 𝜙𝜇 (𝐺)
1: Compute a KKT point of (5) (e.g. using an Augmented

Lagrangian and LBFGSB as in Section 4).

2: Let 𝒀∗ be the solution of (5) at KKT

3: Let 𝜃 be the value from Lemma 3.5, found via an eigen-

value computation.

4: Return 1
2
(Tr(𝒀∗𝑳𝒀∗) − 𝜃 · min{1, (1−𝜇)𝑛

𝜇Vol(𝐺) }).

a flow improvement algorithm (Lang & Rao, 2004; An-

dersen & Lang, 2008), or a customized procedure (Gleich

& Seshadhri, 2012) over a large number of random seeds

with parameters designed to explore a variety of set sizes as

in (Leskovec et al., 2009; Jeub et al., 2015). Formally, the

NCP is the lower envelop of the size-vs-conductance over all

sets in the graph (see the lower bound in Figure 1). We find

it useful to display a heatmap over all sets sampled in addi-

tion to the lower envelop. Further related concepts are the

spectral profile and balanced cuts, see Appendix B.1,B.2.

3. Main Theorem

The main theorem of our paper is a computable and infor-

mative lower bound on the 𝜇-conductance of a graph.

Theorem 3.1. Let 𝐺 be a connected, undirected graph. Fix

0 ≤ 𝜇 ≤ 1/2. Let 𝒀∗ and 𝜃 be from Algorithm 1. Then

1
2
(Tr(𝒀∗𝑳𝒀∗) − 𝜃 · min{1, (1 − 𝜇)𝑛

𝜇Vol(𝐺) }) ≤ 𝜙𝜇 (𝐺).

This theorem yields an a posteriori bound as we have no a

priori guarantee on the value of 𝜃. In practice, 𝜃 is small,

around 10−3 or 10−4 in most cases.

To prove the main theorem, we work through successive

transformations of optimization problems that produce

lower bounds on 𝜇-conductance. The first is a spectral

program akin to (Spectral Cut). This is relaxed into a com-

putable SDP. That does not scale to larger problems, and

so we translate it into a (non-convex) low-rank SDP. The

low-rank SDP can only be locally optimized. Consequently,

we derive an a posteriori bound by showing that any lo-

cal minimizer of the low-rank SDP problem is related to a

perturbed SDP.

3.1. A Spectral Program for 𝜇-conductance

The problem (Spectral Cut) is equivalently stated

min xT𝑳x

xT𝑫x
s.t. x𝑇d = 0. This form makes a more direct

relationship with conductance since if x𝑆 is an indicator

vector for a set 𝑆, xT

𝑆
𝑳x𝑆 = 𝜕𝑆, and xT

𝑆
𝑫x𝑆 is Vol(𝑆). To

satisfy xT

𝑆
d = 0 and xT

𝑆
𝑫x𝑆 = 1, as in (Spectral Cut) we
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bounding box constraints. After these transformations, we

arrive at the low-rank program

𝜆
lrsdp
𝜇 =minimize

𝒀 ∈R𝑛×𝑘
Tr(𝒀T𝑳𝒀)

subject to Tr(𝒀T𝑫𝒀) = 1, ∥𝒀Td∥2
𝐹
= 0 (𝑒, 𝑓 )

Diag(𝒀𝒀T) + s =
1−𝜇

𝜇Vol(𝐺) 1 (𝑔)
s ≥ 0 (ℎ)
s ≤ 1−2𝜇

𝜇 (1−𝜇)
1

Vol(𝐺) . (𝑖)

(5)

Here 𝑘 is the rank parameter we can tune and we know if

𝑘 = Ω(
√
𝑛), then 𝜆

lrsdp
𝜇 = 𝜆

sdp
𝜇 .

3.4. Establishing an Overall Bound

However, the drawback of (5) is non-convexity, which

makes it hard to be solved globally. Instead we consider

the KKT points of (5). Since (5) is not convex, satisfy-

ing KKT conditions of it is no longer sufficient for global

optimality. But if we compare the KKT conditions of (4)

and (5) closely, we observe that the KKT points of (5) di-

rectly satisfy all KKT conditions of (4) except one dual

feasibility condition. And the violation of this condition

characterizes how far the KKT points of the low-rank pro-

gram is away from the optimum of the SDP. Formally, let

𝜆 ∈ R, 𝛽 ∈ R, 𝜸 ∈ R𝑛, g ∈ R𝑛, ℓ ∈ R𝑛 be Lagrangian mul-

tipliers corresponding to constraints (𝑒), ( 𝑓 ), (𝑔), (ℎ), (𝑖),
then we have the following important observation.

Lemma 3.5. For a primal-dual pair 𝒀∗, s∗, 𝜆∗, 𝛽∗, 𝜸∗, g∗, ℓ∗

satisfying the KKT conditions of (5), denote

𝜃 = −min{0, 𝜆min (𝑳 − 𝜆∗𝑫 − 𝛽∗ddT − Diag(𝜸∗))},

then we have

Tr(𝒀∗T
𝑳𝒀∗) − 𝜃 · min{1, (1 − 𝜇)𝑛

𝜇Vol(𝐺) } ≤ 𝜆
sdp
𝜇 .

Basically this Lemma states that if the dual variable 𝒁 =

𝑳 − 𝜆𝑫 − 𝛽ddT − Diag(𝜸) is not positive semi-definite,

then we can still lower bound the optimum of the SDP (4)

by subtracting a quantity related to this violation from the

objective of (5). The full proof of this is in Appendix A.4.

Summing up all the Lemmas we get, we now have

1

2
(Tr(𝒀∗T

𝑳𝒀∗) − 𝜃 · min{1, (1 − 𝜇)𝑛
𝜇Vol(𝐺) })

≤ 1

2
𝜆

sdp
𝜇 ≤ 1

2
𝜆𝜇 ≤ 𝜙𝜇 (𝐺).

This concludes the proof of Theorem 3.1.

4. Methods

In order to solve the non-convex low-rank SDP (5), we use

an augmented Lagrangian approach. The augmented La-

grangian method is an iterative algorithm where in each

iteration we minimize a function including the original

objective, the estimated Lagrangian multipliers, and the

penalty term which drives the solution into feasible region.

It has been shown in practice that the augmented Lagrangian

method achieves good performance in solving low-rank SDP

problems (Burer & Monteiro, 2003).

Let 𝜎 be the coefficient for the penalty term and 𝜆, 𝛽, 𝜸

be the Lagrangian multipliers defined in Section 3.4. The

augmented Lagrangian for (5) without the bounding box

constraint (ℎ) and (𝑖) is

L𝐴(𝒀 , s;𝜆, 𝛽, 𝜸, 𝜎)
= Tr(𝒀T𝑳𝒀) − 𝜆(Tr(𝒀T𝑫𝒀) − 1) − 𝛽(dT𝒀𝒀Td)
− 𝜸T (Diag(𝒀𝒀T) + s − (1−𝜇)

𝜇
1

Vol(𝐺) )

+ 𝜎

2

(
(Tr(𝒀T𝑫𝒀) − 1)2 + (dT𝒀𝒀Td)2

+ ∥ Diag(𝒀𝒀𝑇 ) + s − (1−𝜇)
𝜇

1
Vol(𝐺) ∥2

2

)
.

In each iteration, we solve the following subproblem

minimize
𝒀 ,s

L𝐴(𝒀 , s;𝜆, 𝛽, 𝜸, 𝜎)

subject to 0 ≤ s ≤ 1−2𝜇

𝜇 (1−𝜇)
1

Vol(𝐺)
(6)

using a Limited-Memory BFGS method with bound con-

straints on variables (Byrd et al., 1995). Since L-BFGS-B is

a quasi-Newton Method, it requires the gradient of L𝐴 with

regard to variables 𝒀 and s. Let

u = Diag(𝒀𝒀T) + s − 𝜇

(1 − 𝜇)Vol(𝐺) 1,

we have

∇𝒀L𝐴 = 2𝑳𝒀 − 2(𝜆 − 𝜎(Tr(𝒀T𝑫𝒀) − 1))𝑫𝒀
− 2(𝛽 − 𝜎dT𝒀𝒀Td)ddT𝒀

− 2
(
(𝜸 − 𝜎u)1T

)
◦ 𝒀 ,

∇sL𝐴 = −𝜸 + 𝜎u

where ◦ is the element-wise or Hadamard product.

After each solve, we update the multipliers and penalty

parameters following Alg 17.4 of Nocedal & Wright (1999).

Initialization and the rank parameter 𝑘 . As L-BFGS-B

is a quasi-Newton method, convergence is faster when the

starting point is close to the optimal solution. We initialize

𝒀 by the 𝑘 eigenvectors corresponding to the 𝑘 smallest non-

zero eigenvalues of normalized Laplacian 𝑫−1/2𝑳𝑫−1/2.

This is based on the observation that when 𝑘 = 1, program

(5) degenerates to program (3) and the Fiedler vector re-

mains the optimal solution for small 𝜇.

Comparison against SDP solvers. For small enough prob-

lems, we can solve both the SDP (4) as well as the low-rank
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Table 1. To validate that the LRSDP (5) and SDP (4) are similar on problems where we can compute both, we examine their objective

values on two small synthetic graphs (e.g. Figure 3). We choose two established SDP solvers, SCS (O’Donoghue et al., 2016) and Mosek

(ApS, 2022). This shows that LRSDP gives nearly identical results and is much faster. Here LB stands for the lower bound provided by

our low-rank program, which theoretically should be a lower bound for objective value of all SDP solutions. Empirically some objective

values are lower than this bound because numerically they do not strictly satisfy all primal feasibility conditions.

NODES EDGES 𝜇 OBJECTIVE VALUE BOUND TIME

LRSDP SCS MOSEK LB LRSDP SCS MOSEK

85 193
0.01 0.004407 0.004407 0.004406 0.004398 0.7 S 16.7 S 5.3 S

0.05 0.004510 0.004511 0.004508 0.004499 2.1 S 18.4 S 4.9 S

0.25 0.007318 0.007223 0.007314 0.007292 1.8 S 18.2 S 6.0 S

537 1327

0.01 0.001092 0.001089 0.001081 0.001083 17.8 S 1.6 HRS 16.9 HRS

0.03 0.001115 0.001113 0.001092 0.001056 17.3 S 12.2 HRS 15.6 HRS

0.1 0.001444 0.001440 0.001428 0.001390 21.0 S 56.7 MIN 13.4 HRS

0.3 0.002733 0.002732 0.002731 0.002720 11.8 S 1.8 HRS 18.8 HRS

Table 2. Network Datasets. We report the number of vertices and

edges of the largest connected component with self-loops removed.

DATASET |𝑉 | |𝐸 |
HEPPH 11,204 117,619
ASTROPH 17,903 196,972
FACEBOOK-PAGE 22,470 170,823
DEEZER-EUR 28,281 92,752
EMAIL-ENRON 33,696 180,811
DBLP 226,413 716,460

5.5. Investigation with 𝑘-cores

In order to show the potential of applying our method to

broader network analysis tasks, we apply our low-rank pro-

gram to analyze the NCP of 𝑘-cores of a graph (Seidman,

1983). The inspiration for this study is a discussion over

whether the NCP represents a signal or noise mode of a

graph (Zhang & Rohe, 2018). The core number of a vertex

in a graph is the largest integer 𝑘 such that the process of

repeatedly removing vertices with degree less than 𝑘 will

not delete this vertex from the graph. So the 1-core is the

entire graph. The 2-core is there result of sequentially delet-

ing all degree 1 nodes. By analyzing the NCP of 𝑘-cores

with various 𝑘 , we can have a deeper understanding of the

structure of a network. The results are summarized in Fig-

ure 5. These show that the NCP structure is preserved for

Email-Enron up through the 5-core and is largely preserved

at the 7-core. While this single experiment does not to re-

solve the question of signal vs. noise for the NCP, it does

show how our tools could be used to study it.

5.6. Comparison with Other Lower Bounds

Besides our 𝜇-conductance lower bound, there are two previ-

ously known lower bounds for network community profiles

mentioned in (Leskovec et al., 2009), one spectral bound

induced by Cheeger inequality and the Fiedler vector that is

independent of volume and the other is given by the mini-

Table 3. This table summarizes the running time on two graphs

with a few different 𝜇 and 𝑘 choices. We report the running time

of the augmented Lagrangian method (ALM) for solving low-rank

SDP and eigenvalue computation (EIGVAL) for calculating the

dual feasibility violation separately.

GRAPH 𝜇 𝑘 TIME

ALM EIGVAL

HEPPH

|𝑉 | = 11204

|𝐸 | = 117619

0.001
3 1.7 MIN 30.8 S

5 3.4 MIN 48.1 S

10 6.2 MIN 36.6 S

0.1
3 1.8 HRS 21.4 MIN

5 3.1 HRS 12.9 MIN

10 6.9 HRS 23.0 MIN

DBLP
|𝑉 | = 226413

|𝐸 | = 716460

0.001
3 21.8 HRS 3.1 HRS

5 1.8 DAYS 3.5 HRS

10 2.6 DAYS 8.7 HRS

0.1
3 1.6 DAYS 1.9 HRS

5 3.4 DAYS 33.6 MIN

10 3.1 DAYS 5.6 HRS

mum bisection SDP. To get a comprehensive understanding

of how our lower bound behaves compared with existing

lower bounds we compare on two graphs. As is shown in

Lemma 3.4, the minimum bisection SDP lower bound is

actually equivalent to ours at 𝜇 =
1
2
, here we directly solve

our low-rank SDP at 𝜇 =
1
2

instead of solving the minimum

bisection SDP. The results on AstroPh and HepPh graphs are

shown in Figure 6. These show that we smoothly interpolate

between the bounds as expected.

5.7. Impact of Rank on the Lower Bound

The rank parameter 𝑘 plays a key role in our solution. As is

shown in Section 5.3, a higher 𝑘 will slow down the compu-

tation. It also impacts the a posterori bound we achieve. We

study this tradeoff here. The results on AstroPh and HepPh

graphs are shown in Figure 7. We do not observe a strong

pattern. Consequently, we recommend setting 𝑘 = 5 as a

pragmatic middle ground.
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A. Proofs

A.1. Proof of Lemma 3.2

The first lemma gives a lower bound of 𝜙𝜇 with respect to 𝜆𝜇, the optimum of program (3).

Lemma A.1. Given 𝐺 = (𝑉, 𝐸) and 𝜇 ∈ [0, 1
2
], we have

1

2
𝜆𝜇 ≤ 𝜙𝜇 (𝐺).

Proof. The basic idea is to find a test vector y in the feasible region of program (3) satisfying yT𝑳y ≤ 2𝜙𝜇 (𝐺). Notice that

if 𝜙𝜇 is achieved by the set 𝑇 , then vector

𝝍𝑇 =

√︃
Vol(𝐺)

Vol(𝑇 )Vol(𝑇̄ )
(
✶𝑇 − Vol(𝑇 )

Vol(𝐺) 1
)

is naturally in the feasible region of (3), where ✶𝑇 is the indicator vector for set 𝑇 . As

𝝍T

𝑇𝑳𝝍𝑇 =
|𝜕𝑇 |Vol(𝐺)

Vol(𝑇)Vol(𝑇)

≤ 2|𝜕𝑇 |
min(Vol(𝑇),Vol(𝑇))

= 2Φ𝜇,

we have 𝜆𝜇 ≤ 𝝍T

𝑇
𝑳𝝍𝑇 ≤ 2Φ𝜇. □

Lemma A.1 implies that the optimal value of program (3) can function as a lower bound for the 𝜇-conductance. Furthermore,

if we solve program (3) for different 𝜇s, then the curve of 𝜆𝜇s with respect to corresponding 𝜇 can be a lower bound for the

network community profile.

A.2. Proof of Lemma 3.3

We verify all steps of the relaxation from (3) to (4) as the proof of Lemma.

From (3), let x be the variable and let 𝑿 be the rank-1 symmetric positive definite matrix 𝑿 = xxT. Then xT𝑫x = 1 is

equivalent to Tr(xT𝑫x) = Tr(𝑫xxT) = Tr(𝑫𝑿) = 1. Likewise, xTd = 0 is equivalent to (xTd)2
= Tr(xxTddT) = 0. Finally,

for the inequality constraints, ∥x∥∞ ≤ 𝛼 is equivalent to 𝑥2
𝑖 ≤ 𝛼2 for all 𝑖, and a similar statement holds for the lower bound

on |𝑥𝑖 | too. Thus we arrive at

𝜆𝜇 = minimize
𝑿=xxT

Tr(𝑳𝑿)
subject to Tr(𝑫𝑿) = 1

Tr(ddT𝑿) = 0

Diag(𝑿) ≤ 1−𝜇
𝜇

1
Vol(𝐺)

Diag(𝑿) ≥ 𝜇

1−𝜇
1

Vol(𝐺) .

(7)

Note that this problem is directly equivalent to (3) because of the rank-1 condition 𝑿 = xxT. Thus we get (4) and Lemma 3.3

by relaxing the variable 𝑿 = xxT to be a symmetric positive definite matrix.

A.3. Proof of Lemma 3.4

The minimum bisection SDP is

C𝐺 = minimize
𝒀 ⪰0

1
4

Tr(𝑳𝒀)
subject to Tr(ddT𝒀) = 0

Diag(𝒀) = 1.

Proof of Lemma 3.4. When 𝜇 =
1
2
, we notice that the two inequality constraints

𝜇

1 − 𝜇

1

Vol(𝐺) ≤ Diag(𝑿) ≤ 1 − 𝜇

𝜇

1

Vol(𝐺)
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become the equality constraint Diag(𝑿) =
1

Vol(𝐺) . Further, we can verify that Tr(𝑫𝑿) = 1 is naturally satisfied when

Diag(𝑿) = 1
Vol(𝐺) . Therefore the only difference is scaling. If we let 𝑿 = Vol(𝐺)𝒀 and scale C𝐺 by 4

Vol(𝐺) , we can see the

two programs are exactly the same. Then we get 𝜆
sdp

1/2 =
4

Vol(𝐺) C𝐺 . □

A.4. Proof of Lemma 3.5

To prove Lemma 3.5, we need to first make a few important observations. Here, for convenience, we relabel some programs

with informative tags.

Remember we have the following SDP relaxation for program (3)

𝜆
sdp
𝜇 = minimize Tr(𝑳𝑿)

subject to Tr(𝑫𝑿) = 1

Tr(ddT𝑿) = 0

Diag(𝑿) + s =
1−𝜇
𝜇

1
Vol(𝐺)

0 ≤ s ≤ 1−2𝜇

𝜇 (1−𝜇)
1

Vol(𝐺)
𝑿 ⪰ 0.

(𝜇-conductance SDP)

The Lagrangian dual is

𝜆sdd
𝜇 = maximize

𝜆,𝛽,𝜸,g,ℓ,𝒁
𝜆 + 1−𝜇

𝜇Vol(𝐺) 𝜸
T1 − 1−2𝜇

𝜇 (1−𝜇)Vol(𝐺) ℓ
T1

subject to 𝑳 − 𝜆𝑫 − 𝛽ddT − Diag(𝜸) − 𝒁 = 0

ℓ − g − 𝜸 = 0

ℓ ≥ 0

g ≥ 0

𝒁 ⪰ 0.

(𝜇-conductance SDD)

They have the following relation.

Lemma A.2. Strong duality holds between (𝜇-conductance SDP) and (𝜇-conductance SDD), in other words, 𝜆
sdp
𝜇 = 𝜆sdd

𝜇 ,

and the optimum of (𝜇-conductance SDP) is achieved.

Proof. This is a standard SDP duality claim (for example see Vandenberghe & Boyd (1996)) implied by the fact that

(𝜇-conductance SDD) has a strictly feasible solution 𝜆 = −1, 𝛽 = −1, 𝜸 = 1, ℓ = 21, g = 1. □

Observe that the objective and all constraints of (𝜇-conductance SDP) are affine with regard to variables 𝑿 and s, so the

KKT conditions are sufficient for optimality (see Section 5.5.3 of Boyd et al. (2004) for example).

Lemma A.3. The following KKT conditions are sufficient for a primal-dual pair 𝑿∗, s∗ and 𝜆∗, 𝛽∗, 𝜸∗, g∗, ℓ∗, 𝒁∗ to be an

optimal solution. The primal feasibility conditions are

Tr(𝑫𝑿∗) = 1

Tr(ddT𝑿∗) = 0

Diag(𝑿∗) + s∗ = 1−𝜇
𝜇Vol(𝐺) 1

0 ≤ s∗ ≤ 1−2𝜇

𝜇 (1−𝜇)Vol(𝐺) 1

𝑿∗ ⪰ 0,

(8)

and dual feasibility conditions are

𝑳 − 𝜆∗𝑫 − 𝛽∗ddT − Diag(𝜸∗) − 𝒁∗
= 0

ℓ∗ − g∗ − 𝜸∗
= 0

ℓ∗ ≥ 0

g∗ ≥ 0

𝒁∗ ⪰ 0,

(9)
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and the complementary slackness conditions are

g∗Ts∗ = 0

ℓ∗T ( 1−2𝜇

𝜇 (1−𝜇)Vol(𝐺) 1 − s∗) = 0

Tr(𝑿∗𝒁∗) = 0.

(10)

Note that the stationarity conditions of program (𝜇-conductance SDP) is a subset of the dual feasibility conditions, so we do

not list them out.

Recall the low-rank SDP we propose is as follows

𝜆
lrsdp
𝜇 = minimize

𝒀 ∈R𝑛×𝑘 ,s
Tr(𝒀T𝑳𝒀)

subject to Tr(𝒀T𝑫𝒀) = 1

Tr(ddT𝒀𝒀T) = 0

Diag(𝒀𝒀T) + s =
1−𝜇

𝜇Vol(𝐺) 1

0 ≤ s ≤ 1−2𝜇

𝜇 (1−𝜇)Vol(𝐺) 1.

(𝜇-conductance LRSDP)

Basically we just factorize 𝑿 into 𝒀𝒀T. So it is intuitive it has a strong connection with (𝜇-conductance SDP). In fact, it

turns out, for a primal-dual pair 𝒀∗, s∗ and 𝜆∗, 𝛽∗, 𝜸∗, g∗, ℓ∗ satisfying the KKT conditions of (𝜇-conductance LRSDP), let

𝑿∗
= 𝒀∗𝒀∗T

𝒁∗
= 𝑳 − 𝜆∗𝑫 − 𝛽∗ddT − Diag(𝜸∗)

then 𝑿∗, s∗ and 𝜆∗, 𝛽∗, 𝜸∗, g∗, ℓ∗, 𝒁∗ are a primal-dual pair which almost satisfies all KKT conditions of

(𝜇-conductance SDD), except

𝒁∗ ⪰ 0.

It’s easy to verify the claim above because we have the following fact.

Lemma A.4. For a primal-dual pair 𝒀∗, s∗ and 𝜆∗, 𝛽∗, 𝜸∗, g∗, ℓ∗ to satisfy all KKT conditions of (𝜇-conductance LRSDP),

they need to satisfy the stationarity conditions

(𝑳 − 𝜆∗𝑫 − 𝛽∗ddT − Diag(𝜸∗))𝒀∗
= 0

ℓ∗ − 𝜸∗ − g∗ = 0,

(11)

and primal feasibility conditions

Tr(𝒀∗T𝑫𝒀∗) = 1

Tr(ddT𝒀∗𝒀∗T) = 0

Diag(𝒀∗𝒀∗T) + s∗ = 1−𝜇
𝜇Vol(𝐺) 1

0 ≤ s∗ ≤ 1−2𝜇

𝜇 (1−𝜇)Vol(𝐺) 1,

(12)

and dual feasibility conditions

ℓ∗ ≥ 0

g∗ ≥ 0,

(13)

and the complementary slackness conditions

g∗Ts∗ = 0

ℓ∗T ( 1−2𝜇

𝜇 (1−𝜇)Vol(𝐺) 1 − s∗) = 0.

(14)

Therefore if 𝒁∗ ⪰ 0 is violated, the objective of (𝜇-conductance LRSDP) at KKT points may deviate from 𝜆
sdp
𝜇 .

However, we observe that we can bound this deviation by the violation extent of 𝒁∗ ⪰ 0.

Denote

𝜃 = −min{0, 𝜆min (𝑳 − 𝜆∗𝑫 − 𝛽∗ddT − Diag(𝜸∗))}.
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If 𝜃 = 0, then all KKT conditions of (𝜇-conductance SDP) are satisfied, which means 𝒀∗, s∗ achieves global optimality.

If 𝜃 > 0, we consider the following perturbed variant for (𝜇-conductance SDP).

𝜆
sdp
𝜇 = minimize Tr((𝑳 + 𝜃 𝑰)𝑿)

subject to Tr(𝑫𝑿) = 1

Tr(ddT𝑿) = 0

Diag(𝑿) + s =
1−𝜇
𝜇

1
Vol(𝐺)

0 ≤ s ≤ 1−2𝜇

𝜇 (1−𝜇)
1

Vol(𝐺)
𝑿 ⪰ 0.

(Perturbed 𝜇-conductance SDP)

Basically we add 𝜃 into objective and keep feasible region unchanged.

Denote its dual optimum by 𝜆sdd
𝜇 , we can similarly show that strong duality holds, in other words 𝜆

sdp
𝜇 = 𝜆sdd

𝜇 and 𝜆
sdp
𝜇 is

achieved.

Now for a primal-dual pair 𝒀∗, s∗ and 𝜆∗, 𝛽∗, 𝜸∗, g∗, ℓ∗ satisfying all KKT conditions of (𝜇-conductance LRSDP), let

𝑿∗
= 𝒀∗𝒀∗T

𝒁∗
= 𝑳 + 𝜃 𝑰 − 𝜆∗𝑫 − 𝛽∗ddT − Diag(𝜸∗),

then the variables 𝑿∗, s∗ and multipliers 𝜆∗, 𝛽∗, 𝜸∗, g∗, ℓ∗, 𝒁∗ satisfy all the KKT conditions of

(Perturbed 𝜇-conductance SDP) but the following complementary slackness condition is violated

Tr(𝒁∗𝑿∗) = 0,

instead we have

Tr(𝒁∗𝑿∗) = 𝜃 Tr(𝑿∗).

Since all other conditions are satisfied, we know the dual value at this point is

Tr
(
(𝑳 + 𝜃 𝑰)𝑿∗) − Tr(𝒁∗𝑿∗) = Tr(𝑳∗𝑿∗).

Thus we know

Tr(𝑳∗𝑿∗) ≤ 𝜆sdd
𝜇 = 𝜆

sdp
𝜇 ,

which means the objective value at a KKT point of (𝜇-conductance LRSDP) is actually upper bounded by the optimum of

the perturbed SDP (Perturbed 𝜇-conductance SDP).

Indeed, we are able to bound the gap between 𝜆
sdp
𝜇 and 𝜆

sdp
𝜇 . Assume 𝑿opt, sopt achieves the optimum of (𝜇-conductance SDP).

Because the feasible region of (Perturbed 𝜇-conductance SDP) is same with that of (𝜇-conductance SDP), we know that

𝜆
sdp
𝜇 ≤ Tr((𝑳 + 𝜃 𝑰)𝑿opt) = 𝜆

sdp
𝜇 + 𝜃 · Tr(𝑿opt) ≤ 𝜆

sdp
𝜇 + 𝜃 · min{1, (1 − 𝜇)𝑛

𝜇Vol(𝐺) },

where the last inequality is due to the fact that Tr(𝑫𝑿opt) = 1 and Diag(𝑿opt) ≤ 1−𝜇
𝜇Vol(𝐺) 1.

Therefore piecing all things together, we get

Tr(𝑳∗𝑿∗) ≤ 𝜆
sdp
𝜇 ≤ 𝜆

sdp
𝜇 + 𝜃 · min{1, (1 − 𝜇)𝑛

𝜇Vol(𝐺) }.

We remark that the gap 𝜃 ·min{1, (1−𝜇)𝑛
𝜇Vol(𝐺) } has the potential to be further tightened, which brings us a better posterior bound.

The intuition is that assuming 𝑿opt = 𝑿∗, then we can turn it into 𝜃 · Tr(𝑿∗) where 𝑿∗ is what we know because it is 𝒀∗𝒀∗T

and 𝒀∗ is the solution returned by our augmented Lagrangian method. In general, whenever there is some non-trivial relation

between trace of 𝑿∗ and 𝑿opt, we can get a non-trivial tighter bound. We also note that in a further literature review, we

found that Lemma 3.5 can be derived from Boumal et al. (2016, Theorem 4).
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