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Abstract—Cooperative Perception (CP) is a newly emerged
technique that can be used to enhance the safety of Autonomous
Vehicles (AVs) when relying merely on the AV’s own camera
may not yield accurate results. Examples of such conditions are
delayed or low object detection accuracy under foggy weather,
winding roads, and blocked camera vision by the front vehicle.
A few CP methods have been recently proposed to enhance the
quality of AV perception through cooperative perception. Despite
their success, these methods have a few limitations, such as
adopting unrealistic assumptions about perfect communication
and unconstrained resources as well as having access to large
training datasets. In this paper, we use the LTE Release 14 Mode
4 side-link communication to implement CP by selective V2V
communication for situational awareness. Our method is based
on a demand-response mechanism and solving an optimization
problem to employ helper vehicles, considering networking per-
formance metrics (such as packet drop rate), available resources
(radio blocks in LTE-V), extended visual range (the total road
segment covered), and more importantly the ultimate perception
quality of the selected vehicles. Our preliminary results demon-
strate a significant gain for the proposed method compared to a
conventional single-camera vision.

Index Terms—Cooperative perception, autonomous vehicles,
vehicular networks, V2V communication.

I. INTRODUCTION

Connected Autonomous Vehicles (CAVs) are a type of
vehicle that utilize two complementary technologies: Artificial
Intelligence (AI) for autonomous driving (e.g. SAE Levels
4 and 5) and wireless connectivity for exchanging messages
between vehicles and roadside infrastructure. This technology
enables a new feature, called Cooperative Perception (CP) with
the main idea of fusing camera outputs from multiple AVs
with potentially different imaging conditions or viewpoints to
enhance AVs’ perception or extended their visual range for
safer and more informed autonomous driving [1].

Recent studies have explored the benefits of leveraging
multiple visual feeds in enhancing perception quality and
situational awareness through Vehicle to Vehicle (V2V) collab-
oration as well as Vehicle to Infrastructure (V2I) networking
when Road Side Units (RSUs) join the cooperation. This
approach involves sharing visual information (such as raw
sensory data and input image), intermediate deep learning
features, and detection outputs among nearby AVs [2]–[4].

Although these methods improve the accuracy of object
detection for AVs by fusing visual information from the same
scene, they may not suffice for adverse weather conditions.
Recently, a domain adaptation technique is proposed in [5]
to enhance the quality of CP-based object detection for AVs
by addressing discrepancies in image style and object appear-
ance. Their method achieves a much higher object detection
accuracy in foggy weather conditions. However, this method
requires a large training set of images taken from the same
scenes under different conditions (e.g., clear, rainy, foggy).
One general drawback of these methods is their unrealistic

assumption of perfect communication and unconstrained avail-
ability of helper video feeds. Further, most of these methods
do not cover situations like sharp curves in winding roads that
require a more scrutinized camera selection based on their
position and viewpoints.

This paper offers a cooperative perception approach for
CAVs to enhance their situational awareness and safety for
cases where the CAV’s own perception is not reliable due
to weather conditions (fog, low vision), road curvature, or
limited vision range (masked by front vehicle). Our approach
is communication protocol-agnostic and applicable to V2V
networking in any protocol, including DSRC [6], LTE C-
V2X (Cellular Vehicle-to-Everything) [7], and 5G-NR [8].
However, we consider C-V2X (Release 14, Mode 4: Sidelink
communication for infrastructure-less V2V) for its practicality
and proven performance [9], [10].

Specifically, We use an on-demand request-response mech-
anism with three steps: (i) the AV with low vision (due to
foggy weather, masked vision, or curvy roads) broadcasts its
request to the front vehicles; (ii) nearby vehicles respond
by notifying their intention to cooperate along with their
estimated channel conditions, transmission budget, and sample
images through a contention-based feedback mechanism, (ii)
the AV solves an optimization problem to select optimal
cameras considering both networking conditions and the added
gain to the quality of cooperative perception. Our method is
different than prior work from multiple perspectives. First, our
method relies on fusing various scenes from different view-
points with partial overlap. Secondly, our method considers
imperfect communication and takes into account the quality of
communication channels (e.g., packet drop rate, average delay,
energy budget) and resource availability (the number of radio
blocks in LTE-V2X, Mode 4) in the employed optimization.
Thirdly, the added quality to the CP is included in the helper
camera selection process, as opposed to prior CP methods
that consider a pre-selected set of images. Finally, our method
integrates the results of object detection of multiple cameras at
later stages instead of fusing intermediate features, therefore
does not require custom-trained DL networks. We use CARLA
simulator to generate test cases. Our preliminary results show
a significant gain in the perception quality using the proposed
method.

II. PROPOSED METHOD
In our method, the ego vehicle broadcasts a request for

selecting a subset of M out of N vehicles, denoted by
V1, V2, . . . , VN . The vehicles notify their intention through
Ack messages with profile info that includes their position
(xi, yi), speed vi, channel conditions), and sample images.
Further information (e.g., the distance to the ego vehicle, ap-
proximate vision range, motion blur, field of view, the required
transmission energy budget E, and the packet drop rate β) can



Fig. 1. Cooperative perception helps increase the vision range in masked
vision. The ego (V0) vehicle’s vision is marked by the front car (V2, and
employing the green (V1) vehicle’s camera extends its visual range and
situational awareness.

be estimated from the gathered information (position, channel
conditions) to be further refined by inspecting the sample im-
ages. Another key factor is maximizing contextual information
diversity since prior work and our own investigation show a
higher gain when the information diversity (e.g., FoV, distance
range) is maximized [11].

Fig. 2. Total image accumulation rate (with N = 10, M = 5) using different
selection policies versus packet error rate.

Our optimization is based on a set of transmission Key
Performance Indicators (KPIs) calculated for the set of
selected vehicles. Specifically if the binary vector α⃗ =
(α1, α2, · · · , αN ) represents the selected vehicles, we calcu-
late the following metrics: (1) Effective throughput: ζi =
Rch/E[Ri] = Rch(1− βi), where Rch is the rate of channel,
E[Ri] = 1/(1 − βi) is the average transmission per packet
under drop rate βi. The overall throughput which is simply
the sum of the individual throughputs f1(α⃗) =

∑N
i=1 αiζi =∑N

i=1 αiRch(1 − βi). (2) Transmission energy: f2(α⃗) =∑N
i=1 αi

Pidi

Rch(1−βi)
, where Pi denotes the average transmission

power in the process of transmitting, di is the distance between
the ego and selected vehicle Vi. (3) Motion Blur: drop in
the captured image quality due to the instantaneous relative
speed v′i between the vehicle Vi and the target object. We use
Li =

v′
iT [f cos(φ)−QG sin(φ)]

v′
iTQ sin(φ)+zp following [12], with parameters

defined therein. f3(α⃗) quantifies this loss for selected vehicles.
(4) Visual Range: We also estimate the visual range of front

cameras based on their locations (xi, yi) and velocities vi
Particularly, if Vi1 , Vi2 , · · · , ViM are the M selected vehicles
in order, with individual visual range Fij and relative distances
to front vehicle d̂ij =

√
(xij − xij+1

)2 + (xij − xij+1
)2, then

the effective visual range is F̂ij = min(Fij , d̂ij ), and the total
visual range is f4(α⃗) =

∑M
j=1 F̂ij . (5) Perception Quality:

This is perhaps the most important factor that aims to quantify
the added perception quality (e.g., object detection accuracy
in IoU sense) by adding each camera to the pool. In this work,
we use a heuristic method by inspecting the added CP quality
using the sample images included in Ack Messages. The goal
is to maximize f5(α⃗). As opposed to previous factors, this
factor is not simply the summation of individual gains, and
all potential N !/M !(N − M)! sets should be investigated.
To lower complexity, we use coalition game theory where
the Shapely value quantifies the marginal gain of each helper
camera when joining all potential coalitions.

Once the ego vehicle received help proposals through Ack
messages, solve the following optimization problem

argmax
α⃗

f(t) =
5∑

i=1

wifi(α⃗, t) (1)

s.t.
N∑
j=1

αj ≤ M, forαj ∈ {0, 1}

in an interval-by-interval manner, where fi(α⃗) are the the
aforementioned quality terms under selection α⃗ at interval t.

III. SIMULATION

Sample results for sample scenarios with N = 10 total
vehicles with random relative positions and velocities, M = 5
selected vehicles are shown in Figures 2 and 3. These results
reflect the accuracy of traffic light detection under foggy
weather condition as an exemplary application using traffic
light dataset [13] and scenarios produced by CARLA simula-
tor.

Fig. 3. Online learning accuracy of the system using different scheduling
policies for different portions of transmitted samples.

Fig. 2 shows that our proposed method using optimization
(1) archives a higher image collection rate than both uniform
and random selection with a significant gain between 15% to
30%. This resulted in a considerable gain about 10% to 15%
in terms of overall traffic light interpretation accuracy for the
proposed method, provided in Fig. 3.



IV. CONCLUSION

We exploit the side-link feature of LTE-V to implement
Cooperative Perception (CP) for AVs to enhance their situa-
tional awareness and perception quality under harsh weather
conditions (e.g., foggy, rainy, stormy), curved roads, and par-
tially obscured vision by front vehicles. Our method considers
communication performance metrics and available resources
while selecting vehicles that collectively provide the longest
vision range and higher cooperative perception quality. Our
method does not require a large multi-view training dataset
(that is non-existent) and is compatible with any DL-based im-
age processing since we fuse the end results. Our preliminary
results show a significant gain (15% to 30%) gain in traffic
light interpretation as an exemplary application showing the
promising potential of CP to enhance driving safety.
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