
Actuator Trajectory Planning for UAVs with
Overhead Manipulator using Reinforcement

Learning
Hazim Alzorgan∗, Abolfazl Razi∗, Ata Jahangir Moshayedi†

∗School of Computer Science, Clemson University, Clemson, SC Emails: {halzorg,arazi}@clemson.edu
†School of Information Engineering, Jiangxi University of Sci. & Tech., Jiangxi, China Email: ajm@jxust.edu.cn

Abstract—In this paper, we investigate the operation of an
aerial manipulator system, namely an Unmanned Aerial Vehicle
(UAV) equipped with a controllable arm with two degrees of
freedom to carry out actuation tasks on the fly. Our solution is
based on employing a Q-learning method to control the trajectory
of the tip of the arm, also called end-effector. More specifically,
we develop a motion planning model based on Time To Collision
(TTC), which enables a quadrotor UAV to navigate around obsta-
cles while ensuring the manipulator’s reachability. Additionally,
we utilize a model-based Q-learning model to independently
track and control the desired trajectory of the manipulator’s
end-effector, given an arbitrary baseline trajectory for the UAV
platform. Such a combination enables a variety of actuation tasks
such as high-altitude welding, structural monitoring and repair,
battery replacement, gutter cleaning, sky scrapper cleaning, and
power line maintenance in hard-to-reach and risky environments
while retaining compatibility with flight control firmware. Our
RL-based control mechanism results in a robust control strategy
that can handle uncertainties in the motion of the UAV, offering
promising performance. Specifically, our method achieves 92%
accuracy in terms of average displacement error (i.e. the mean
distance between the target and obtained trajectory points) using
Q-learning with 15,000 episodes 1.

Index Terms—Aerial Manipulators, Q-learning, Unmanned
Aerial Vehicles, Trajectory Optimization

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are being heavily uti-
lized in numerous applications for their high levels of agility
and flexible maneuverability compared to Unmanned Ground
Vehicles (UGV) and legged robotics. They are involved in a
wide range of perception-based applications, including surveil-
lance, landscaping, smart agriculture, structural monitoring,
search and rescue, and border control to name only a few [1]–
[3]. Perhaps among the most popular forms of such vehicles
are the quad-rotor drones, equipped with four propellers, that
offer high maneuverability, stable flight, and large payload
capacity with respect to their size.

In recent years, there has been a gradual paradigm shift
in the use of drones. Alongside their traditional role in
monitoring tasks, aerial manipulators have been receiving
increasing attention. The core idea is to use hybrid systems
taking advantage of the agility of quad-rotors for flexible
mobility as well as the manipulators’ capability to carry out

1This material is based upon the work supported by the National Science
Foundation under Grant Numbers 2204721 and 2204445.

complicated tasks on the fly using AI-based control. Such
integration opens the door to a wider range of applications
beyond the conventional passive perception applications of
UAVs, moving towards active functionalities, particularly in
complex, hazardous, and hard-to-reach environments.

Recently, several works have emerged showcasing such
active controllers for aerial manipulators. For instance, in [4],
a three-armed manipulator was used to perform landing and
docking tasks in uneven terrain and high-altitude situations.
Similarly, [5] proposed an image-based impedance force con-
troller for accurate force tracking of an aerial manipulator.

A recent review by [6] shows that the majority of control
strategies have primarily relied on physics-based approaches
with offline data processing, lacking the robustness to operate
in highly dynamic environments with moving obstacles [7]. In
this paper, we aim to explore the potential of dynamic path
planning by developing a simulation environment that emu-
lates the behavior of a hybrid system, where the trajectory of
the arm-tip (also called end-effector in this paper) depends on
the main platform trajectory as well as the arm manipulators’
control signal. We train a Q-learning-based controller using
a dataset of state-action pairs collected from the simulation
environment while implementing a Time to Collision (TTC)-
based motion planning method to design an obstacle-avoiding
trajectory for the UAV, demonstrated by drawing an arbitrary
end-effector target trajectory.

Our proposed approach shown in Fig. 1 consists of three
main stages. The first stage is to scan the environment and
define the target trajectory of the end-effector, the second
stage defines the feasible range of motion of the UAV using
inverse kinematics and then designs the UAV’s motion plan
based on TTC. Lastly, Q-learning is used to modify the joint
torques of the manipulator according to the tracked end-
effector trajectory providing a robust controller capable of
performing in different environments. This method separates
the arm controller functionality from the flight controller to
maintain the convenience of using arbitrary remote-controlled
or autonomous flight controllers with common firmware such
as ArduPilot, PX4, etc.

Our proposed method paves the road to utilizing arm-
equipped drones for executing complicated tasks in remote,
inaccessible, and hazardous environments. We envision that
the proposed approach has great potential to impact various

ar
X

iv
:2

30
8.

12
84

3v
2

 [c
s.R

O
]

25
 A

ug
 2

02
3

fields such as agriculture, industrial, and medical domains.
This project also emphasizes the importance of developing
a robust control strategy that can plan an optimal trajectory
for both the quadrotor and the equipped manipulator while
considering their kinematics and dynamics constraints.

Fig. 1. Left: Drone equipped with a manipulator, Right: Demonstration of
the base trajectory (solid-blue line) and end-effector trajectory (dashed-red
line). The approximate feasible region for the base trajectory is shown by the
shaded-blue region.

Fig. 2. Model Dynamics. (A) represents the two-dimensional body diagram
of the manipulator, (B) represents the two-dimensional body diagram of the
quadrotor.

II. SYSTEM MODEL

A. Model Kinematics

Fig. 2 illustrates the schematics used for calculating and
utilizing the model’s kinematics to determine the approximate
feasible region, which hosts allowable UAV paths that can be
used to achieve the end-effector target trajectory. The main
idea is to provide the motion planner with the kinematic
constraints dictated by the manipulator’s joint limits ensuring
that the target end-effector trajectory is always reachable from
any point on the resultant feasible region [8], [9].

Model inverse kinematics are obtained using Cartesian
coordinates [10] as follows:

q2 = cos−1 x2
t + y2t − l21 − l22

2l1l2
, (1)

q1 = tan−1 xt

yt
+ tan−1 l1 sin q2

,
l1 + l2 cos q2 (2)

where (xee, yee) the end-effector coordinates and li are the
arm lengths. These kinematic equations are essential at differ-
ent stages of this experiment as they are utilized to determine
the kinematic reachability of the aerial manipulation system.

Also, they are used to enforce kinematic constraints during the
RL training stage, ensuring reasonable joint torques are being
fed to the controller at all times.

B. Model Dynamics

A hybrid system consists of two main dynamic parts that can
be modeled independently from each other [11]; therefore, we
can consider our platform, the UAV along with the equipped
manipulator, as a hybrid system. This decision is driven by the
assumption that the UAV propellers provide adequate thrust
such that the motion of the manipulator does not affect the
overall stability of the hybrid system. This assumption is com-
mon in robotic motion planning and trajectory optimization
[12] and helps simplify the model to serve as a proof of
concept. However, it becomes invalid and poses approximation
errors when the mass of the manipulator is significant enough
to disturb the UAV’s motion plan, making it beneficial to adopt
a more complex hybrid dynamic model to accommodate such
disturbances. We start the kinematics formulation with this
assumption for convenience but our model is general and can
handle baseline disturbance during the training phase. Indeed,
we include some stability analysis in section II-C showing
the effects of the manipulator dynamics of the drone, and the
effect of the path deviation on the learned control.

Fig. 2 illustrates the schematics used for calculating the
UAV/quadrotor dynamics (A) and the manipulator dynamics
(B). For the quadrotor dynamics, the main constraint concerns
the angle of attack (α), which must be maintained within
a certain limit depending on the overall UAV design and
its center of mass specifications. The equations of motion
governing this behavior can be derived from single rigid body
dynamics [10], as follows.

moẍo = −(u1 + u2) sinα, (3)
moÿo = (u1 + u2) cosα−mg, (4)
Ioα̈ = r(u1 − u2), (5)

Here, u1, u2 are the propeller thrust forces, mo is the mass,
ẍo, ÿo are the horizontal and vertical accelerations respectively,
and I is the moment of inertia, α is the angle of attack, and
r represents the distance between the center of mass to the
propeller.

The dynamic constraints for the manipulator follow a sim-
ilar rule and are also bound by the kinematic constraints of
the system since joint torques are decided by the required
joint angles. This is turned into an inverse expression during
the training process where the training model uses joint
limits to verify the validity of the learned joint torque. The
motion equations of the manipulator can be represented in the
Lagrangian form, as described in [13].

This system has two active joints, which means there exist
two torque values acting on the two joints. The joint angles
(q1, q2) are used as input for the derived model. Cartesian
coordinates are used to define the position vector of each joint,
which is then used to calculate the joint velocity. Joint velocity
and joint coordinates are then used to calculate the kinetic

and potential energies of the system, respectively. The position
vectors are defined as

r1 =

l1 cos q1l1 sin q1
0

 , r2 =

l1 cos q1 + l2 cos q2
l1 sin q1 + l2 sin q2

0

 . (6)

Position vectors are plugged into the velocity calculations,
combining longitudinal and angular velocities that are then
used to calculate the kinetic energies of the system, while
potential energies are calculated using the position vectors and
mechanical properties of the system:

v1 = ω1 × r1, (7)
v2 = ω2 × r2 + ω1 × r2, (8)

T1 =
1

2
m1v

2
1 +

1

2
ωT

1 I1ω1, (9)

T2 =
1

2
m2v

2
2, (10)

V1 = m1gl1 cos q1, (11)
V2 = m2gl2 cos q2, (12)

where ω1, ω2 are the angular velocities of the manipulator
joints,I1, I2 represent the moment of inertia at each manip-
ulator arm, and T1, T2, V1, V2 are the kinetic and potential
energies of the system respectively. The Lagrangian is calcu-
lated as the difference between the kinetic and potential energy
as L = T − V , which is then plugged into the Lagrangian
derivation formula to produce the generalized equation of
motion:

d

dt

(
∂L
∂q̇

)
− ∂L

∂q
= τ , (13)

M(q)q̈ + C(q, q̇)q̇ = τ . (14)

Following are the derived equations for the motion of the
two-arm manipulator mounted on the UAV:

M(q) =

[
I1 + I2 +m2l

2
1 + 2m2l1lc2c2 I2 +m2l1lc2c2

I2 +m2l1lc2c2 I2

]
,

(15)

C(q, q̇) =

[
2m2l1lc2s2q̇2 m2l1lc2s2q̇2
m2l1lc2s2q̇1 0

]
, (16)

τ(q) =

[
m1glc1s1 +m2g(l1s1 + lc2s1+2)

m2glc2s1+2

]
, (17)

where M(q) is the mass matrix, C(q, q̇) is the Coriolis and
gravity matrix, and τ(q) is the control torque matrix. Those
equations are used in the action constraint enforcement phases
in the training model, assuring a physically sound model
behavior.

C. Hybrid System Instability

Unlike Manipulator-equipped Ground Vehicles [14] where
the system is supported by its ground contacts, Aerial Manip-
ulators have the disadvantage of being susceptible to unstable

behavior caused by external conditions as well as the system’s
own components. In our prototype, the motion of the overhead
manipulator creates a challenge in managing the UAV’s flight
stability due to the shift in the center of mass caused by the
manipulator’s movement. The shift in the center of mass can
lead to changes at the moment and thrust acting on the aerial
manipulator, impacting its flight stability.

To analyze the effect of the manipulator on the UAV’s
stability, we consider both static and dynamic moments. Re-
ferring back to Fig.2, the static moment Mstatic represents the
moment caused by the manipulator arms’ weight given by:

Mstatic = −
L1

2
m1g sin(q1 − α) +

L2

2
m2g sin(q1 + q2 − α),

(18)

where L1, L2 are the manipulator arm lengths, α is the angle
of attack, and m1,m2 are the manipulator arm masses.

In addition to the static moment, the dynamic moment
Mdynamic accounts for the effects of the angular acceleration
and torques applied by the manipulator’s joints:

Mdynamic = −I1q̈1 + I2(q̈1 + q̈2), (19)

where I1, I2 are the moments of inertia of the manipulator’s
arms. Considering both the static and dynamic moments, the
overall moment acting on the aerial manipulator hybrid system
is given by:

M = Mstatic +Mdynamic. (20)

To maintain a stable flight, it is crucial to carefully control
and compensate for the effects of these moments. A proper
control strategy must be designed to adjust the UAV’s attitude
and compensate for the moment disturbances caused by the
manipulator’s motion. Thanks to the flexibility of RL meth-
ods (e.g., QL, DQN) in modeling intricate relations between
actions and outcomes as a black box, our model automatically
captures and handles such turbulence if given sufficient real-
world data or precise modeling in simulation environments.
In this paper, we investigate the impact of the manipulator
movement in our simulation, under different learning rates.

III. CONTROL MODELS

Fig. 3 depicts the overall experimental setup for our project,
consisting of three main stages. In the first stage, the en-
vironment is mapped into the simulation environment by
obtaining the mission-oriented target end-effector trajectory.
This trajectory is then processed using the system kinematics
discussed in Section II-A to determine the feasible flight
region for the UAV. In the second stage, a TTC-based motion
planning algorithm is utilized to generate a motion plan within
the feasible region. This motion plan is subsequently integrated
into the RL algorithm along with the target end-effector
trajectory, forming the final stage. In this final stage, Q-
learning is employed to learn the optimal joint torque sequence
for the simulation, enabling the tracking of the end effector
trajectory.

Fig. 3. Experimental setup.

A. TTC-Based Motion Planning

Time to Collision (TTC) [15], [16] refers to the time it
takes for a moving object (UAV in our case) to collide with
an obstacle (considering that all moving objects continue with
their current speed) or come to a complete stop without
utilizing any braking control system upon completely releasing
the throttle. By considering various parameters, this model
estimates the time that remains until the UAV collides with
an obstacle along its trajectory. In this section, a TTC based
motion plan is utilized to provide a motion plan for the UAV
within the designated feasible region. TTC-based planning is
known to be highly beneficial in unknown environments with
dynamic obstacles.

The fundamental concept behind TTC-based obstacle avoid-
ance revolves around calculating the time it would require for
the vehicle to reach the obstacle based on its present velocity
and the distance to the obstacle [18], [19]. Continuously
monitoring and updating these values allows the system to
make real-time decisions on steering, braking, or altering the
vehicle’s speed to prevent a collision.

Implementing TTC-based obstacle avoidance typically in-
volves utilizing sensors such as cameras, LiDAR, or radar to
detect and track obstacles in the vehicle’s surroundings. These
sensors provide information regarding the position, velocity,
and size of the obstacles. By combining this data with the
vehicle’s own speed and trajectory, the system can estimate
the TTC.

Once the TTC is determined, the system compares it to
predefined safety thresholds or criteria. If the TTC falls
below a specific threshold, indicating an imminent collision,
the system triggers appropriate evasive actions to avoid the
obstacle.

Once the TTC-based motion planning is completed for the
UAV platform, this base trajectory is used as an input for the

subsequent RL-based arm controller module that exerts joint
torque on the arm joints as discussed in Eq. (14) - Eq.(17), to
yield the desired end-effector trajectory.

B. Q-Learning

In Q-learning algorithms [20], [21], an agent learns to take
action in an environment by interacting with it and receiving
rewards or punishments for its actions. The goal of the agent
is to obtain a policy that maximizes the total reward it receives
over time. This can be mathematically represented by the
following optimization problem:

argmax
π

E
T∑

t=0

γtRt|π, (21)

where Rt|π = Rt(st, at = π(st), st+1) is the reward received
at time t starting from an initial state s0 and following policy
π : S 7→ A that maps states state st ∈ S at time point t
to action at ∈ A. The expectation is taken over all possible
states noting that st

at−→ st+1 transitions are probabilistic in
general for Markov Decision Processes (MDPs). The horizon
T can be finite or infinite. The discount factor 0 < γ ≤ 1
is used to promote collecting awards faster and also to have
a bounded total reward for an infinite horizon. In our case,
states are the discretized values of the current position of the
drone and its orientation (base position) as well as the current
joint angles, and actions are the applied torque to the arm
manipulator motors to adjust angles q1, q2, as detailed in the
sequel.

To solve this optimization problem, the agent maintains a
value function Q(s, a), which represents the expected total
reward the agent will receive if it takes action a in state s and
follows the optimal policy thereafter. The value function can
be updated using the following Bellman equation:

Q(s, a)← Q(s, a) + α[R+ γmax
a′

Q(s′, a′)−Q(s, a)],

where s′ is the next state of the system, a′ is the action taken
in that state, α is the learning rate.

To solve the tracking problem for the manipulator tip using
Q-learning, we would need to define the state space, action
space, reward function, and transition model.

The state space in this experiment can be defined as the UAV
pose data and current joint states [q1, q2, to], and the action
space for the training model, in this case, is the joint torque
commands [τ1, τ2]. The reward function is calculated based on
the distance between the obtained end-effector trajectory and
the desired target trajectory. The transition model describes
how the state of the system changes based on the current state
and the action taken by the agent.

To define the transition model for our system, the equations
of motion of the manipulator are taken into consideration.
Specifically, if the current state of the system is represented by
the vector s =

[
q1 q2 poseUAV

]T
, and the action taken by

the agent is represented by the vector a =
[
τ1 τ2

]T
, then the

Fig. 4. Top: Target end-effector trajectory, middle: Generated feasible region
with obstacles, bottom: TTC-based UAV trajectory plan(dashed-green)..

transition model can be expressed as a function s′ = f(s, a)
that takes the current state and action as inputs and returns the
next state of the system.s′ = f(s, a) is described in the model
dynamic in section II-B.

IV. SIMULATION RESULTS

The overall experimental setup designed for this project is
shown in Fig.3, including three stages of environment scan,
TTC-based motion planning, and Q-learning training for end-
effector trajectory. The first step is to acquire the target end-
effector trajectory in the simulation environment as shown
in Fig.4, which is then plugged into the system kinematic
calculations to produce the feasible region for the UAV flight
path; next, a TTC-model is used to plot the best motion plan
for the UAV within that region such that the end-effector
trajectory is reachable at all times.

The last phase involved executing a reinforcement learning
algorithm over 15,000 episodes, utilizing a learning rate of
0.1. The outcome exhibited an average reward of 7.96 (the
maximum reward is 10) and a Root mean Squared Error
(RMSE) value of 0.08. As shown if Fig.5, the algorithm effec-
tively regulates the joint coordinates by employing joint torque
commands to follow the desired end-effector trajectory. The
performance of the algorithm in facilitating appropriate state
transitions during the simulation process was commendable.
However, it should be noted that the learned trajectory appears
discontinuous due to the discretization of the model’s state
space and action space.

An analysis of the effect of learning parameters and dis-
cretization samples on the overall performance of the learning
agent is presented in Table. I. It can be seen that reducing the
learning rate from α = 0.1 to α = 0.001 negatively affects
the performance of the RL agent. Also, a discount factor of

Fig. 5. Q-learning results. The manipulator is able to track its end-effector
target trajectory with an overall accuracy of %92.

TABLE I
IMPACT OF RL PARAMETERS ON THE SIMULATION, LEARNING

ALGORITHM RAN FOR 15,000 EPISODES

RMSE Avg Reward

Learning rate
0.1 0.08 7.93

0.01 0.093 5.54
0.001 0.11 -1.89

Discount factor
0.9 0.08 7.93
0.5 0.085 3.63
0.2 0.089 1.92

Number of samples
+%25 0.098 5.77
-%25 0.16 -2.67

0.9 shows the highest performance since using an extremely
low discount factor (like γ = 0.2) undermines the optimality
of the selected solution. As expected increasing the number
of samples improves the performance of the algorithm at the
cost of longer training time.

In order to examine how dynamic instability influences the
system’s behavior, we abandoned the simplifying assumption
that the manipulator arm motion has a negligible effect on
the UAV’s base trajectory explained in II-B. To this end,
we amplify the masses of the manipulator’s arm, leading
to the activation of Eq.(20). By altering the moment at the
center, we intentionally destabilized the UAV, resulting in an
immediate deviation from its intended trajectory. Moreover,
this destabilization affected the angle of attack, increasing the
risk of surpassing its limitations.

Fig. 6 illustrates the influence of the manipulator’s move-
ment on the trajectory and angle of attack of the UAV. In order
to mitigate these effects, a basic reactive model was utilized
to regulate the thrust forces, as described by Eq.(5), with
the objective of maintaining the intended trajectory. However,
due to response delays, the UAV faces difficulty in fully
restoring its planned motion. This challenge arises from the
active motion of the manipulator, which generates a non-
constant moment. Furthermore, the deviation in the UAV’s
motion disrupts the acquired joint torques, further deteriorating

Fig. 6. Effects of the manipulator motion

the overall system performance. Although the RL model was
successful in managing disruptions caused by deviations in the
planned motion, it encountered more difficulty in overcoming
disturbances at points where there were significant changes in
the angle of attack. This difficulty stems from the relationship
between joint angles and the angle of attack in Cartesian space.

V. CONCLUSION

A three-stage RL-based solution is developed to carry out
complicated tasks on the fly using drones with overhead ma-
nipulators. Our solution includes three stages, i) the acquisition
and mapping of the target end-effector trajectory to generate
a feasible UAV flight path using kinematic calculations, ii)
employing a TTC-based path planning for the drone center of
mass within the feasible region, ensuring continuous reacha-
bility of the end-effector trajectory, and iii) using Q-learning
algorithm to control the torque acting on the manipulator’s
joint coordinates to track the target trajectory. We showed
that the proposed approach in the simulation environment
achieves a promising performance of 90% plus accuracy in
following the mission-oriented trajectory. This is achieved by
the separation of drone path planning and mounted actuator
control to keep compatibility with arbitrary path planners and
flight control firmware, such as ArduPilot, PX4, and more.

Additionally, we investigated the instability of the drone
flight path caused by the motion of the overhead manipulator
which can alter the center of mass and the angle of attack.
We showed that RL-based algorithms are capable of handling
mild instabilities without a significant deviation from the
desired target trajectory given that the simulation environment
incorporates such static and dynamic instabilities or sufficient
training data points are provided for such situations. This
work underscores the need for developing more robust RL
algorithms and employing techniques such as model-predictive

control, closed-loop control, and adaptive control to improve
the overall performance and reliability of the actuator drone
operation under more severe disturbances.

REFERENCES

[1] Chen, Xiwen, et al. ”Wildland Fire Detection and Monitoring Using
a Drone-Collected RGB/IR Image Dataset.” IEEE Access 10 (2022):
121301-121317.

[2] Shamsoshoara, Alireza, et al. ”Aerial imagery pile burn detection using
deep learning: The FLAME dataset.” Computer Networks 193 (2021):
108001.

[3] Fule, Peter Fule, et al. ”FLAME 2: Fire detection and modeLing: Aerial
Multi-spectral imagE dataset.” (2022).

[4] Paul, Hannibal, et al. ”Lightweight Multipurpose Three-Arm Aerial
Manipulator Systems for UAV Adaptive Leveling after Landing and
Overhead Docking.” Drones 6.12 (2022): 380.

[5] Xu, Mengxin, An Hu, and Hesheng Wang. ”Image-based visual
impedance force control for contact aerial manipulation.” IEEE Trans-
actions on Automation Science and Engineering (2022).

[6] Xilun, D. I. N. G., et al. ”A review of aerial manipulation of small-scale
rotorcraft unmanned robotic systems.” Chinese Journal of Aeronautics
32.1 (2019): 200-214.

[7] Ollero, Anibal, et al. ”Past, present, and future of aerial robotic manip-
ulators.” IEEE Transactions on Robotics 38.1 (2021): 626-645.

[8] Singh, Randheer, Vikas Kukshal, and Vinod Singh Yadav. ”A review
on forward and inverse kinematics of classical serial manipulators.”
Advances in Engineering Design: Select Proceedings of ICOIED 2020
(2021): 417-428.

[9] Kumar, RV Neeraj, and R. Sreenivasulu. ”Inverse Kinematics (IK) Solu-
tion of a Robotic Manipulator using PYTHON.” Journal of Mechatronics
and Robotics 3.1 (2019): 542-551.

[10] Tedrake, Russ. ”Underactuated robotics: Learning, planning, and control
for efficient and agile machines course notes for MIT 6.832.” Working
draft edition 3 (2009): 4.

[11] Nikou, Alexandros, Georgios C. Gavridis, and Kostas J. Kyriakopoulos.
”Mechanical design, modelling and control of a novel aerial manipula-
tor.” 2015 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2015.

[12] Winkler, Alexander W., et al. ”Gait and trajectory optimization for
legged systems through phase-based end-effector parameterization.”
IEEE Robotics and Automation Letters 3.3 (2018): 1560-1567.

[13] Raibert, Marc H. Legged robots that balance. MIT press, 1986.
[14] Moubarak, Paul M., and Pinhas Ben-Tzvi. ”Adaptive manipulation of a

hybrid mechanism mobile robot.” 2011 IEEE International Symposium
on Robotic and Sensors Environments (ROSE). IEEE, 2011.

[15] Sabikan, Sulaiman, Sophan Wahyudi Nawawi, and Nor Azlina Ab Aziz.
”UAV Control System with Time to Collision (TTC) Prediction Capa-
bility.” Proceedings of the 11th International Conference on Robotics,
Vision, Signal Processing and Power Applications: Enhancing Research
and Innovation through the Fourth Industrial Revolution. Singapore:
Springer Singapore, 2022.

[16] Sabikan, Sulaiman Bin, Sophan Wahyudi Nawawi, and N. A. A. Aziz.
”Modelling of time-to collision for unmanned aerial vehicle using
particles swarm optimization.” IAES International Journal of Artificial
Intelligence 9.3 (2020): 488.

[17] Boroujeni, Sayed Pedram Haeri, and Elnaz Pashaei. ”Data clustering
using chimp optimization algorithm.” 2021 11th international conference
on computer engineering and knowledge (ICCKE). IEEE, 2021.

[18] Davis, Bobby, Ioannis Karamouzas, and Stephen J. Guy. ”NH-TTC: A
gradient-based framework for generalized anticipatory collision avoid-
ance.” arXiv preprint arXiv:1907.05945 (2019).

[19] Forootaninia, Zahra, Ioannis Karamouzas, and Rahul Narain. ”Uncer-
tainty Models for TTC-Based Collision-Avoidance.” Robotics: Science
and Systems. Vol. 7. 2017.

[20] Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An
introduction. MIT press, 2018.

[21] Li, Yuxi. ”Deep reinforcement learning: An overview.” arXiv preprint
arXiv:1701.07274 (2017).

http://arxiv.org/abs/1907.05945
http://arxiv.org/abs/1701.07274

	Introduction
	System Model
	Model Kinematics
	Model Dynamics
	Hybrid System Instability

	Control Models
	TTC-Based Motion Planning
	Q-Learning

	Simulation Results
	Conclusion
	References

