
Low-Switching Policy Gradient with Exploration
via Online Sensitivity Sampling

Yunfan Li 1 Yiran Wang 1 Yu Cheng 2 Lin Yang 1

Abstract
Policy optimization methods are powerful al-
gorithms in Reinforcement Learning (RL) for
their flexibility to deal with policy parameteri-
zation and ability to handle model misspecifi-
cation. However, these methods usually suffer
from slow convergence rates and poor sample
complexity. Hence it is important to design prov-
ably sample efficient algorithms for policy opti-
mization. Yet, recent advances for this problems
have only been successful in tabular and linear
setting, whose benign structures cannot be gener-
alized to non-linearly parameterized policies. In
this paper, we address this problem by leveraging
recent advances in value-based algorithms, includ-
ing bounded eluder-dimension and online sensi-
tivity sampling, to design a low-switching sample-
efficient policy optimization algorithm, LPO, with
general non-linear function approximation. We
show that, our algorithm obtains an "-optimal pol-
icy with only eO(poly(d)

"3) samples, where " is the
suboptimality gap and d is a complexity measure
of the function class approximating the policy.
This drastically improves previously best-known
sample bound for policy optimization algorithms,
eO(poly(d)

"8). Moreover, we empirically test our the-
ory with deep neural nets to show the benefits of
the theoretical inspiration.

1. Introduction
Reinforcement learning (RL) has achieved great success in
many practical areas by adopting policy gradient methods
with deep neural networks (Schulman et al., 2015a; 2017;
Haarnoja et al., 2018). These policy optimization methods

1Department of Electical and Computer Engineering, University
of California, Los Angeles, Los Angeles, CA, USA 2Microsoft
Research, Redmond, WA, USA. Correspondence to: Yunfan Li
<yunfanli@g.ucla.edu>, Lin Yang <linyang@ee.ucla.edu>.

Proceedings of the 40 th
International Conference on Machine

Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

are some of the most classic (Williams, 1992; Konda &
Tsitsiklis, 1999) approaches for RL. Although their theoreti-
cal convergence properties have been established in (Geist
et al., 2019; Abbasi-Yadkori et al.; Agarwal et al., 2020b;
Bhandari & Russo, 2019) with assumptions that the state
space is already well-explored, it is usually not the case
in practice. To resolve this issue, policy-based approaches
with active exploration in the environment have been pro-
posed in simple tabular (Shani et al., 2020), linear function
approximation (Cai et al., 2020; Agarwal et al., 2020a) and
general function approximation (Feng et al., 2021) models.

Among these exploration-based approaches, Agarwal et al.
(2020a) and Feng et al. (2021) are specially designed to
handle model-misspecification more robustly than exist-
ing value-based approaches (Jin et al., 2020; Wang et al.,
2020b) by performing policy gradient methods to solve a
sequence of optimistic MDPs. However, the robustness of
both (Agarwal et al., 2020a) and (Feng et al., 2021) pays
a huge price: to obtain an "-suboptimal policy, Agarwal
et al. (2020a) requires ⇠ eO(1/"11), and Feng et al. (2021)
requires ⇠ eO(1/"8) number of samples to obtain an "-
optimal policy. Recently, Zanette et al. (2021) has designed
a low switching (i.e. reducing the number of policy changes)
policy-based algorithm with linear function approximation,
which largely reduces the sample complexity of Agarwal
et al. (2020a). However, it is still unknown how to improve
sample complexity of policy-based algorithms with good
robustness in the non-linear setting.

As for the value-based methods, low-switching techniques
(Bai et al., 2019; Gao et al., 2021; Kong et al., 2021) are uti-
lized to reduce the policy changes of the algorithm. Among
them, Kong et al. (2021) proposed a novel notion of online
sensitivity score, which measures the importance of a data
point relative to a given dataset over some general function
class. By using this sensitivity score, Kong et al. (2021)
established an online sub-sampling technique which greatly
reduced the average computing time of previous work (Wang
et al., 2020b). Nevertheless, it is unknown whether such
low-switching techniques can be applied to save samples in
policy-based approaches.

In this paper, we present a low-switching policy-based al-
gorithm LPO (Low-Switching Policy Gradient and Explo-

1

Low-Switching Policy Gradient with Exploration

ration via Online Sensitivity Sampling), which leverages
techniques in policy-based approaches, such as (Feng et al.,
2021; Zanette et al., 2021) and value-based approach, such
as (Kong et al., 2021) to establish efficient policy gradient on
non-linear function class while preserving the low-switching
property to save samples and running time. Our algorithm
follows an actor-critic framework, where the critic guides
the exploration of the policy via exploration bonuses derived
from the non-linear function class, and policy-gradient (PG)
updates the policy to guarantee robustness and stability. The
low-switching technique is applied primarily to derive a
slowly updating critic, while preserving the quality of learn-
ing. Since one of the major terms in sample complexity
originates from the PG policy update, slowly updating critic
can drastically save the sample complexity as it requires
only a few policy updates. Concretely, our approach only
update the policy for ⇠ log T times for running T rounds
of the algorithm, whereas existing approaches, e.g., (Feng
et al., 2021), which also targets on the policy-based explo-
ration with non-linear function approximation, takes at least
⇠ T policy updates. We also derive new PG approaches
aware of the structure of non-linear function class to further
save samples in updating the policy.

Our Contribution

• We design a new policy-based exploration algorithm,
LPO, with non-linear function approximation. The
algorithm enjoys the same stability guarantee in terms
of model-misspecification as presented in existing ap-
proaches (Feng et al., 2021). This algorithm lever-
ages efficient value-based techniques (online sensitivity
sampling) to slowly update its policy and thus enjoys
a sample complexity of eO(poly(d)/"3), whereas ex-
isting approach takes at least eO(poly(d)/"8) samples
to obtain an "-optimal policy, where d is related to
the eluder-dimension, measuring the complexity of the
function class.

• While enjoying a theoretical guarantee at special cases
where the function class has a bounded complexity,
the algorithm itself can be implemented using neural
networks. We further empirically tested the theoretical
inspiration of online sensitivity sampling with exist-
ing deep RL frameworks. The experimental results
demonstrated the efficacy of our approaches.

Related Work With regards to exploration methods in RL,
there are many provable results in the tabular case (Kearns &
Singh, 2002; Brafman & Tennenholtz, 2002; Kearns, 1989;
Jin et al., 2018) and linear (Yang & Wang, 2019; 2020; Jin
et al., 2020) settings with value or model-based methods.
Recent papers (Shani et al., 2020; Cai et al., 2020; Agarwal
et al., 2020a) have developed policy-based methods also in

tabular and linear settings and Zanette et al. (2021) greatly
reduces the sample complexity of Agarwal et al. (2020a)
mainly by using the doubling trick for determinant of empir-
cial cumulative covariance. However, relative few provable
results are achieved in non-linear setting.

For general function approximation, complexity measures
are essential for non-linear function class, and Russo &
Van Roy (2013) proposed the concept of eluder dimension.
Recent papers have extended it to more general framework
(e.g. Bellman Eluder dimension (Jin et al., 2021), Decision-
Estimation Coefficient (Foster et al., 2021), Admissible
Bellman Characterization (Chen et al., 2022)). However,
the use of eluder dimension allows computational tractable
optimization methods. Based on the eluder dimension, the
value-based technique of Wang et al. (2020b) describes
a UCB-VI style algorithm that can explore the environ-
ment driven by a well-designed width function and Kong
et al. (2021) devises an online sub-sampling method which
largely reduces the average computation time of Wang et al.
(2020b).

For policy-based method in the general setting, Feng et al.
(2021) proposes a model-free algorithm with abundant ex-
ploration to environment using the indicator of width func-
tion. Moreover, it has better robustness to model misspecifi-
cation compared to (misspecified) Linear MDP (Jin et al.,
2020). However, Feng et al. (2021) suffers from huge sam-
ple complexity. In this paper, instead of directly finding a
similar notion in the non-linear setting just like determinant
in linear setting (Zanette et al., 2021), we adopt an online
sensitivity-sampling method to quantify the sensitivity of
new-coming data obtained from the environment. Moreover,
the importance of designing a sophisticated and efficient
reward bonus is mentioned in (Zanette et al., 2021) and
we significantly generalize this approach to the non-linear
setting by combining the width function and its indicator
and our reward bonuses save samples and computing time
compared to (Feng et al., 2021).

Notations. We use [n] to represent index set {1, · · ·n}.
For x 2 R, bxc represents the largest integer not exceed-
ing x and dxe represents the smallest integer exceeding x.
Given a, b 2 Rd, we denote by a

>
b the inner product be-

tween a and b and ||a||2 the Euclidean norm of a. Given
a matrix A, we use ||A||2 for the spectral norm of A, and
for a positive definite matrix ⌃ and a vector x, we define
||x||⌃ =

p
x>⌃x. We abbreviate Kullback-Leibler diver-

gence to KL and use O to lead orders in asymptotic upper
bounds and eO to hide the polylog factors. For a finite set A,
we denote the cardinality of A by |A|, all distributions over
A by �(A), and especially the uniform distribution over A
by Unif(A).

For a function f : S ⇥A! R, define

2

Low-Switching Policy Gradient with Exploration

kfk1 = max
(s,a)2S⇥A

|f(s, a)|.

Similarly, for a function v : S ! R, define

kvk1 = max
s2S

|v(s)|.

For a set of state-action pairs Z ✓ S ⇥ A, for a function
f : S ⇥A! R, we define the Z-norm of f as

kfkZ =

0

@
X

(s,a)2Z

(f(s, a))2

1

A
1/2

.

2. Preliminaries
Markov Decision Process In this paper, we consider
discounted Markov decision process (MDP) environment,
which can be specified by a tuple, M = (S,A, P, r, �),
where S is a possibly infinite state space, A is a finite ac-
tion space and we denote A = |A|, P : S ⇥ A ! �(S)
specifies a transition kernel and is unknown to the learner,
r : S ⇥A! [0, 1] is a reward function, and � 2 (0, 1) is a
discount factor that discounts the reward received in a future
time step.

Suppose an RL agent chooses an action a 2 A at the current
state s, the environment brings the agent to a new state s

0

with the unknown probability P (s0 | s, a) and the agent
receives an instant reward r(s, a). The goal for a leaner is
to find a policy1

⇡ : S ! �(A) such that the expected
long-term rewards are maximized. In particular, the quality
of a policy can be measured by the the Q-value function
Q

⇡ : S ⇥A! R is defined as:

Q
⇡(s, a) := E⇡

" 1X

t=0

�
t
r (st, at) | s0 = s, a0 = a

#
,

where the expectation is taken over the trajectory following
⇡ – this measures the expected discounted total returns of
playing action a at state s and then playing policy ⇡ (for
an indefinite amount of time). And after taking expectation
over the action space, we get the value function: V ⇡(s) :=
Ea⇠⇡(·|s) [Q

⇡(s, a)], which measures the total expected dis-
counted returns of playing policy ⇡ starting from state s.
From V

⇡ and Q
⇡ , we can further define the advantage func-

tion of ⇡ as A⇡(s, a) = Q
⇡(s, a)� V

⇡(s), which measures
whether the action a can be further improved. Moreover,

1We here only consider stationary policies as one can always
find a stationary optimal-policy in a discounted MDP (Puterman,
2014).

if a policy ⇡
⇤ is optimal, then the Bellman equation (Put-

erman, 2014) states that A⇡⇤
(s, a)  0 for all s, a and

Ea⇠⇡⇤(·|s)[A
⇡⇤
(s, a)] = 0. In practice, we may also re-

strict the policy space being considered as ⇧ (which may be
parameterized by a function class).

We also define the discounted state-action distribution
d
⇡
˜̃s
(s, a) induced by ⇡ as:

d
⇡
s̃ (s, a) = (1� �)

1X

t=0

�
t Pr⇡ (st = s, at = a | s0 = s̃) ,

where Pr⇡ (st = s, at = a | s0 = s̃) is the probability of
reaching (s, a) at the tth step starting from s̃ following ⇡.
Similarly, the definition of d⇡s̃,ã(s, a) can be easily derived
as the distribution of state-actions if the agent starts from
state s̃ and selects an action ã. For any initial state-actions
distribution ⌫ 2 �(S ⇥ A), we denote by d

⇡
⌫ (s, a) :=

E(s̃,ã)⇠⌫

h
d
⇡
(s̃,ã)(s, a)

i
and d

⇡
⌫ (s) :=

P
a d

⇡
⌫ (s, a). Given

an initial state distribution ⇢ 2 �(S), we define V
⇡
⇢ :=

Es0⇠⇢ [V ⇡ (s0)]. With these notations, the reinforcement
learning (RL) problem with respect to the policy class ⇧ is
reduced to solving the following optimization problem.

maximize
⇡2⇧

V
⇡
⇢0
,

for some initial distribution ⇢0. We further, without loss of
generality 2, assume ⇢0 is a singleton on some state s0.

Policy Space and Width Function We now formally de-
fine the policy parameterization class, which is compatible
with a neural network implementation. For a set of func-
tions F ✓ {f : S ⇥A ! R}, we consider a policy space
as ⇧F := {⇡f , f 2 F} by applying the softmax transform
to functions in F , i.e., for any f 2 F ,

⇡f (a|s) :=
exp(f(s, a))P

a02A exp(f(s, a0))

Given F , we define its function difference class �F :=
{�f |�f = f � f

0
, f, f

0 2 F} and width function on �F
for a state-action pair (s, a) as

w(�F , s, a) = sup
�f2�F

|�f(s, a)|.

As we will show shortly, this width function will be used to
design exploration bonuses for our algorithm.

3. Algorithms
2Otherwise, we can modify the MDP and add a dummy state

s0 with ⇢0 as its state transition for all actions played at s0.

3

Low-Switching Policy Gradient with Exploration

Algorithm 1 LPO
1: Input: Function class F
2: Hyperparameters: N, �,�

3: For all s 2 S, initialize ⇡
0(·|s) = Unif(A), bZ1 = ;

4: for n = 1, 2, · · · , N do
5: Update policy cover ⇡n

cov = ⇡
0:n�1

6: bZn S-Sampling
�
F , bZn�1

, (sn�1, an�1), �
�

7: if bZn 6= bZn or n = 1 then
8: Update the known set and bonus function
9: Kn = {(s, a) | !(bFn

, s, a) < �}
10: b

n(s, a) = 3
1�� · 1{!(bFn

, s, a) � �} + 2
� ·

!(bFn
, s, a) · 1{!(bFn

, s, a) < �}
11: Set n n

12: ⇡
n Policy Update(⇡n

cov, b
n
,Kn)

13: else
14: ⇡

n ⇡
n
,Kn Kn

, b
n b

n

15: end if
16: (sn, an) d-sampler(⇡n

, ⌫)
17: end for
18: Output: Unif(⇡0

,⇡
1
, · · · ,⇡N�1)

In this section, we present our algorithm Low-Switching

Policy Gradient and Exploration via Online Sensitivity Sam-

pling (LPO). The algorithm takes a function class F as an
input and interacts with the environment to produce a near-
optimal policy. The complete pseudocode is in Algorithm 1.
We first give an overview of our algorithm before describing
the details of our improvements.

3.1. Overview of our Algorithm

Our algorithm LPO (Algorithm 1) has two loops. The
outer loop produces a series of well-designed optimistic
MDPs by adding a reward bonus and choosing an initial
state distribution which are then solved with regression in
the inner loop. These optimistic MDPs will encourage the
agent to explore unseen part of the environment. In our
LPO, we construct the initial state distribution by using
the uniform mixture of previous well-trained policies (also
called policy cover).

Specifically, at the beginning of n-th iteration, we have al-
ready collected sample (sn, an) using the last policy ⇡

n.
Then at iteration n, we use S-Sampling (i.e. Sensitivity-
Sampling) (Algorithm 3) to measure the change that the
new sample brings to the dataset. If the current sample can
provide sufficiently new information relative to the formal
dataset, then with great probability, we choose to store this
data and invoke the inner loop to update the policy. Oth-
erwise, we just abandon this data and continue to collect
data under ⇡n. Through this process, a policy cover ⇡n

cov =
Unif(⇡0

,⇡
1
, · · · ,⇡n�1) is constructed to provide an initial

distribution for the inner routine. To this end, we define

the known state-actions Kn, which can be visited with high
probability under ⇡n

cov. Using Kn and a reward bonus bn,
we create an optimistic MDP to encourage the agent to ex-
plore outside Kn as well as to refine its estimates inside
Kn.

In the inner routine, the algorithm Policy Update (Algo-
rithm 4) completes the task to find an approximately optimal
policy ⇡

n in the optimistic MDP through general function
approximation. This policy ⇡

n would produce new samples
which will be measured in the next iteration. Under the
procedure of our algorithm, the policy cover will gain suffi-
cient coverage over the state-action space and the bonus will
shrink. Therefore, the near-optimal policies in the optimistic
MDPs eventually behave well in the original MDP. Next,
we will describe the details of each part of our algorithm.

3.2. Outer Loop

Now we describe the details of three important parts in the
outer loop.

Lazy Updates of Optimistic MDPs via Online Sensitivity-
Sampling The lazy or infrequent updates of the optimistic
MDPs in LPO play a crucial role of improving sample
complexity, which reduce the number of Policy Update
invocations from O(N) to O(poly(logN)). For the linear
case, (Zanette et al., 2021) achieves this result by monitor-
ing the determinant of the empirical cumulative covariance
matrix. However, in our general setting, we can not count on
the linear features anymore. Instead, we introduce our on-
line sensitivity sampling technique, which is also mentioned
in (Wang et al., 2020b; Kong et al., 2021).

Now we describe the procedure for constructing the sen-
sitivity dataset bZn. At the beginning of iteration n, the
algorithm receives the current sensitivity dataset bZn�1 and
the new data (sn�1, an�1) from the last iteration. We first
calculate the online sensitivity score in (1) to measure the
importance of (sn�1, an�1) relative to bZn�1.

sensitivityZn,F (z)

= sup
f1,f22F

(f1(z)� f2(z))
2

min{||f1 � f2||2Zn , 4NW 2}+ 1

(1)

Then the algorithm adds (sn�1, an�1) to bZn�1 with proba-
bility decided by its online sensitivity score. Intuitively, the
more important the new sample is, the more likely it is to be
added. At the same time, the algorithm set the number of
copies added to the dataset according to the sampling prob-
ability, if added. In addition, due to the technical obstacle
in theoretical proof, we need to replace the original data z

with the data bz 2 C(S ⇥A, 1/16
p
64N3/�) in the "-cover

set (defined in Assumption 4.3), which satisfies:

4

Low-Switching Policy Gradient with Exploration

sup
f2F

|f(z)� f(bz)|  1/16
p
64N3/� (2)

Furthermore, the chance that the new sample is sensitive
gets smaller when the dataset gets enough samples, which
means that the policy will not change frequently in the later
period of training. As will be demonstrated later, the number
of switches (i.e. the number of policy changes in the running
of the outer loop) achieve the logarithmic result. To this
end, the size of sensitivity dataset is bounded and provides
good approximation to the original dataset, which serves as
a benign property for theoretical proof.

Known and Unknown state-actions According to the
value of width function (defined in Section 2) under the
sensitivity dataset, the state-action space S ⇥A is divided
into two sets, namely the known set Kn in (3) and its com-
plement the unknown set.

Kn ={(s, a) 2 S ⇥A| !(bFn
, s, a) < �} (3)

where
bFn = {�f 2 �F| ||�f ||2bZn  ✏}

In fact, the width function !(bFn
, s, a) serves as a prediction

error for a new state-action pair (s, a) where the training
data is bZn, which is the general form of ||�(s, a)||(b⌃n)�1

in the linear case. Therefore, the known set Kn represents
the state-action pairs easily visited under the policy cover
⇡
n
cov. If all the actions for one state are in the Kn, we say

this state is known.

Kn = {s 2 S| 8a 2 A,!(bFn
, s, a) < �} (4)

Bonus Function In a more refined form, LPO devises
bonus function in both the known and unknown sets.

b
n(s, a) = 2bnw(s, a) + b

n
1 (s, a), where

b
n
w(s, a) =

1

�
!(bFn

, s, a)1{s 2 Kn}, and

b
n
1 (s, a) =

3

1� �
1{s /2 Kn}

(5)

On the unknown state-actions, the bonus is a constant 3
1�� ,

which is the largest value of the original reward over a
trajectory. This will force the agent out of the known set and
explore the unknown parts of the MDP. On the known state-
actions, the uncertainty is measured by the width function.

Notice that our algorithm explore the environment in a much
more sophisticated and efficient way than (Feng et al., 2021)
does. Our algorithm LPO not only explores the unknown

part using the indicator bn1 (s, a), but also takes the uncer-
tainty information b

n
w(s, a) in the known set into account.

Consequently, LPO still explores the state-action pair in the
known set until it is sufficiently understood. Moreover, since
the size of sensitivity dataset is bounded by O(d logN),
where d is the eluder dimension, the average computing
time of our bonus function is largely reduced.

3.3. Inner Loop

In the inner routine, the Policy Update initializes the pol-
icy to be a uniform distribution and encourages the policy
to explore the unknown state-actions. Next, we adopt the
online learning algorithm to update the policy, which is an
actor-critic pattern. This update rule is equivalent to Natu-
ral Policy Gradient (NPG) algorithm for log-linear policies
(Kakade, 2001; Agarwal et al., 2020b), where we fit the
critic with Monte Carlo samples and update the actor us-
ing exponential weights. As mentioned in (Agarwal et al.,
2020b), Monte Carlo sampling has an advantage of assuring
better robustness to model misspecification, but produces
huge source of sample complexity.

Sample efficient policy evaluation oracle via importance
sampling. In the Policy Update routine, the policy ob-
tained in each iteration needs to be evaluated. In a most
direct way, the agent needs to interact with the environment
by Monte Carlo sampling and estimate the Q-function for
each policy, and this leads to the waste of samples. In order
to improve the sample complexity of Policy Update while
keeping the robustness property, we design a sample effi-
cient policy evaluation oracle by applying trajectory-level
importance sampling on past Monte Carlo return estimates
(Precup, 2000). To be specific, at iteration k in the inner
loop, the agent will collect data by routine Behaviour Pol-
icy Sampling (Algorithm 5), and the dataset obtained in
this iteration will be reused for the next  turns. At iteration
k (k  k+), the Policy Evaluation Oracle (Algorithm 6)
can estimate the Monte Carlo return for the current policy
⇡k by reweighting the samples with importance sampling.
With the reweighted random return, the oracle fits the critic
via least square regression and outputs an estimated bQk for
policy ⇡k. To this end, we update the policy by following
the NPG rule. Although the technique above can largely
reduce the number of interactions with environment (from
K to dK e), the selection of  greatly influences the vari-
ance of importance sampling estimator, which ultimately
challenges the robustness property. In fact, We need to
set  = eO(

p
K) in order to keep a stable variance of the

estimator (see Lemma E.4 and Remark E.5 for details).
Remark 3.1. If we have obtained a full coverage dataset over
state-action space (e.g. using bonus-driven reward to collect
data in (Jin et al., 2020; Wang et al., 2020a)), the policy
evaluation oracle can evaluate all the policies by using the
above mentioned dataset and only needs eO(1

"2) samples.

5

Low-Switching Policy Gradient with Exploration

However, this oracle depends on the (⇣-approximate) linear
MDP, which is a stronger assumption than that in our setting.

Pessimistic critic to produce one-sided errors From the
line 9 in Algorithm 6, we find that the critic fitting is actu-
ally the Monte Carlo return minus the initial bonus. There-
fore, an intuitive form for the critic estimate is bQk

bn(s, a) =
fk(s, a) + b

n(s, a). However, in line 10 of Algorithm 6,
we only partially make up for the subtracted term and de-
fine the critic estimate as bQk

bn(s, a) = fk(s, a) +
1
2b

n(s, a).
This introduces a negative bias in the estimate. However, in
the later proof we can see that bQk

bn(s, a) is still optimistic
relative to Q

k(s, a). This one-sided error property plays
an essential role of bounding the gap between Q

k,⇤
bn and

bQk
bn(s, a), which ultimately improves the sample complex-

ity.

4. Theoretical Guarantee
In this section, we will provide our main result of LPO
under some assumptions. The main theorem (Theorem 4.8)
is presented in this section and the complete proof is in the
appendix.

First of all, the sample complexity of algorithms with func-
tion approximation depends on the complexity of the func-
tion class. To measure this complexity, we adopt the notion
of eluder dimension which is first mentioned in (Russo &
Van Roy, 2013).

Definition 4.1. (Eluder dimension). " � 0 and Z =
{(si, ai)}ni=1 ✓ S ⇥A be a sequence of state-action pairs.

• A state-action pair (s, a) 2 S ⇥ A is "-dependent
on Z with respect to F if any f, f

0 2 F satisfying
kf � f

0kZ  " also satisfies |f(s, a)� f
0(s, a)|  ".

• An (s, a) is "-independent of Z with respect to F if
(s, a) is not "-dependent on Z .

• The eluder dimension dimE(F , ") of a function class
F is the length of the longest sequence of elements in
S ⇥ A such that, for some "

0 � ", every element is
"
0-independent of its predecessors.

Remark 4.2. In fact, (Russo & Van Roy, 2013) has shown
several bounds for eluder dimension in some special cases.
For example, when F is the class of linear functions, i.e.
f✓(s, a) = ✓

>
�(s, a) with a given feature � : S⇥A! Rd,

or the class of generalized linear functions of the form
f✓(s, a) = g(✓>�(s, a)) where g is a differentiable and
strictly increasing function, dimE(F , ") = O(d log(1/")).
Recently, more general complexity measures for non-linear
function class have been proposed in (Jin et al., 2021; Fos-
ter et al., 2021; Chen et al., 2022). However, the adoption
of eluder dimension allows us to use computation-friendly

optimization methods (e.g. dynamic programming, policy
gradient) whereas theirs do not directly imply computation-
ally tractable and implementable approaches. If only statis-
tical complexities are considered, we believe our techniques
could be extended to their complexity measures.

Next, we assume that the function class F and the state-
actions S ⇥A have bounded covering numbers.

Assumption 4.3. ("-cover). For any " > 0, the following
holds:

1. there exists an "-cover C(F , ") ✓ F with size
|C(F , ")|  N (F , "), such that for any f 2 F , there exists
f
0 2 C(F , ") with kf � f

0k1  ";

2. there exists an "-cover C(S ⇥ A, ") with size |C(S ⇥
A, ")|  N (S ⇥ A, "), such that for any (s, a) 2
S ⇥ A, there exists (s0, a0) 2 C(S ⇥ A, ") with
maxf2F |f(s, a)� f (s0, a0)|  ".

Remark 4.4. Assumption 4.3 is rather standard. Since
our algorithm complexity depends only logarithmically on
N (F , ·) and N (S ⇥ A, ·), it is even acceptable to have
exponential size of these covering numbers.

Next, we enforce a bound on the values of the functions
class:

Assumption 4.5. (Regularity). We assume that
supf2F kfk1 W .

Assumption 4.5 is mild as nearly all the function classes
used in practice have bounded magnitude in the input do-
main of interests. In general, one shall not expect an arbi-
trary function class could provide good guarantees in ap-
proximating a policy. In this section, we apply the following
completeness condition to characterize whether the function
class F fits to solve RL problems.

Assumption 4.6. (F -closedness).

T ⇡
f(s, a) := E⇡ [r(s, a) + �f (s0, a0) | s, a] .

We assume that for all ⇡ 2 {S ! �(A)} and g : S ⇥A!
[0,W], we have T ⇡

g 2 F .

Remark 4.7. Assumption 4.6 is a closedness assumption on
F , which enhances its representability to deal with critic
fitting. For some special cases, like linear f in the linear
MDP (Yang & Wang, 2019; Jin et al., 2020), this assump-
tion always holds. If this assumption does not hold, which
means Q-function may not realizable in our function class
F , then there exists a ✏bias when we approximate the true Q-
function. This model misspecified setting will be discussed
in Assumption B.5.

With the above assumptions, we have the following sample
complexity result for LPO.

6

Low-Switching Policy Gradient with Exploration

Theorem 4.8. (Main Results: Sample Complexity

of LPO). Under Assumption 4.3, 4.5, and 4.6, for

any comparator e⇡, a fixed failure probability �,

eluder dimension d = dim(F , 1/N), a subopti-

mality gap " and appropriate input hyperparameters:

N � eO
⇣

d2

(1��)4"2

⌘
,K = eO

⇣
ln |A|W 2

(1��)2"2

⌘
,M �

eO
⇣

d2

(1��)4"2

⌘
, ⌘ = eO

✓p
ln |A|p
KW

◆
, = eO

⇣
1��
⌘W

⌘
, our al-

gorithm returns a policy ⇡
LPO

, satisfying

⇣
V

e⇡ � V
⇡LPO

⌘
(s0)  ".

with probability at least 1 � � after taking at most

eO
⇣

d3

(1��)8"3

⌘
samples.

Remark 4.9. The complete proof of our main theorem is
presented in Theorem B.12. For the model misspecified
case, which means Assumption 4.6 does not hold, there
exists a ✏bias in our regret bound (see details in Lemma B.11)

5. Practical Implementation and Experiments
In this section, we introduce a practical approach to imple-
menting our proposed theoretical algorithm and show our
experiment results.

5.1. Practical Implementation of LPO

The width function in our theoretical framework enables
our policy gradient algorithm to explore efficiently. The
value of the width function should be large over novel
state-action pairs and shrink over not novel. Intuitively,
the width function over all state-action pairs should be
its maximum at the beginning of learning and decrease
along the way. To this end, we leverage the random net-
work distillation technique proposed by (Burda et al., 2018).
We randomly initialize two neural networks f and f

0 that
maps from A ⇥ S to Rd with the same architecture (but
different parameters). And our bonus b(s, a) is defined as
b(s, a) = kf(s, a)� f

0(s, a)k2. During training, we fix f
0

and train f to minimize kf(s, a) � f
0(s, a)k2 with gradi-

ent descent over state-action pairs that the agent has seen
during the sampling procedure, i.e. distilling the randomly
initialized network f

0 into a trained one f . Over time, this
residual-dependent bonus will decrease over state-action
pairs that agents commonly visit.

With bonus calculated in the way described above, at each
Monte Carlo session, we can calculate an intrinsic advan-
tage estimation Â

(int), which will affect our policy gradient
along with the extrinsic advantage estimation Â

(ext). The
gradient of policy parametrized by � is given by:

Â
(total)
t = ↵Â

(ext)
t + �Â

(int)
t (6)

Algorithm 2 LPO (Practical Implementation)
1: Input: Width function (f, f 0), Policy ⇡�0 , Value net-

works (V (ext), V (int))
2: Hyperparameters: N,K, �,�,↵,�

3: For all s 2 S, initialize ⇡
0(·|s) = Unif(A)

4: for k = 0, 1, 2, 3, ...,K do
5: T d(1 + 1

K)kNe
6: Run policy ⇡� for T steps! Dk

7: Calculate A
(ext), A(int) using 7 using �

8: Calculate A
(total) using 6 using ↵, �

9: Optimize ⇡�, (V (ext), V
(int)) using PPO with

A
(total) as advantage estimation

10: Optimize f to fit f 0 w.r.t. Dk

11: end for
12: Output: Unif(⇡0

,⇡
1
, · · · ,⇡N�1)

where ↵ and � are hyperparameters that control how much
we want to emphasize the importance of exploration, in
our experiment, we use ↵ = 2 and � = 1. And the Âext,
Âint are calculated with generalized advantage estimation
(Schulman et al., 2015b), and the estimation of advantages
over a time period of T is given by:

Â
(ext)
t =

TX

i=t

(�(ext)
�)i�t[ri + �

(ext)
V (si+1)� V (si)]

Â
(int)
t =

TX

i=t

(�(int)
�)i�t[bi + �

(int)
V

(int)(si+1)

� V
(int)(si)]

(7)

where V and V
(int) are two value estimator parametrized

that predicts extrinsic and intrinsic value separately. We
train value functions to fit the Monte Carlo estimation of
values of the current policy.

In our theoretical framework, the sensitivity is computed
using (1) and only designed to achieve boundness on the
final theoretical guarantee, but not for practical implementa-
tion. We overcome this issue by introducing a coarse, yet
effective approximation of sensitivity sampling: gradually
increasing the samples we collect for Monte Carlo estima-
tion. For each sampling procedure at time t, we collect
max{N, (1+ 1

T)
t
N} samples (N is the number of samples

we collect at the first sampling procedure). This simple
mechanism makes the agent collect more and more samples
for each training loop, which allow the agent to explore
more freely at the early stage of learning, and forces the
agent to explore more carefully at the late stage, as using
more data for each training loop will shrink the value of
width function in a more stable way. The algorithm is shown
in Algorithm 2.

7

Low-Switching Policy Gradient with Exploration

Figure 1. Performance of PPO-Based algorithms on sparse-reward MuJoCo localmotion environments. Lines are evaluation results
averaged over 5 random seeds every 10k steps, the shaded area represents the standard deviation.

5.2. Experiments

To further illustrate the effectiveness of our width function
and our proposed sensitivity sampling, we compare (Schul-
man et al., 2017; Feng et al., 2021) with our proposed LPO
in sparse reward MuJoCo environments (Todorov et al.,
2012). We re-implement (Feng et al., 2021) with the ran-
dom network distillation method, as we find the original
implementation of width function was not numerically sta-
ble. More details are in the discussion section.

The sparse MuJoCo environment is different from the usual
localmotion task, where rewards are dense and given ac-
cording to the speed of the robots, in sparse environments,
reward (+1) is only given whenever the robot exceeds a cer-
tain speed, and no reward is given otherwise. Such environ-
ments are more difficult than their dense reward counterpart
in the sense that the agent needs to actively explore the envi-
ronment strategically and find a good policy. PPO manages
to find rewards in SparseHopper and SparseWalker2d, but
fails in SparseHalfCheetah. Although ENIAC (Feng et al.,
2021) also uses intrinsic rewards for strategic exploration, it
still fails in the SparseWalker2d environment. This might
be due to the intrinsic reward of ENIAC switching too fast,
thus the exploration is not persistent enough for the agent
to find the reward. In contrast, our method succeeds in all
three environments, the result is shown Figure 1.

5.3. Limitation of Previous Implementations

Note that we do not compare our method directly with im-
plementations in (Agarwal et al., 2020a; Feng et al., 2021),
as we discovered some limitations presented in their imple-
mentations. We will discuss this in more details in Section F
about their limitations in terms of batch normalization and
mis-implementations of core components in existing ap-
proaches. We illustrate the issue by directly running their

published code. As shown in Figure 2, our approaches
and the other baseline approaches (Raffin et al., 2021) suc-
cessfully solve the problem in a few epochs, while their
implementations fail to achieve similar performance.

Figure 2. Performance comparison between the original implemen-
tations of ENIAC, PC-PG and our implementation of ENIAC,
LPO. Lines are evaluation results averaged over 5 random seeds
every 10k steps, the shaded area represents the standard deviation.

6. Conclusion
In this paper, we establish a low-switching sample-efficient
policy optimization algorithm with general function approx-
imation using online sensitivity sampling and data reuse
techniques. Our algorithm largely improves the sample com-
plexity in (Feng et al., 2021), while still keeping its robust-
ness to model misspecification. Our numerical experiments
also empirically prove the efficiency of the low-switching
technique in policy gradient algorithms.

8

Low-Switching Policy Gradient with Exploration

7. Acknowledgements
This work was supported in part by DARPA under agree-
ment HR00112190130, NSF grant 2221871, and an Ama-
zon Research Grant. The authors would also like to thank
Dingwen Kong for useful discussions.

References
Abbasi-Yadkori, Y., Bartle, P. L., Bhatia, K., Lazić, N.,

Szepesvári, C., and Weisz, G. P: Regret bounds for policy
iteration using expert prediction.

Agarwal, A., Henaff, M., Kakade, S., and Sun, W. Pc-
pg: Policy cover directed exploration for provable policy
gradient learning. Advances in neural information pro-

cessing systems, 33:13399–13412, 2020a.

Agarwal, A., Kakade, S. M., Lee, J. D., and Mahajan, G. Op-
timality and approximation with policy gradient methods
in markov decision processes. In Conference on Learning

Theory, pp. 64–66. PMLR, 2020b.

Bai, Y., Xie, T., Jiang, N., and Wang, Y.-X. Provably ef-
ficient q-learning with low switching cost. Advances in

Neural Information Processing Systems, 32, 2019.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.
The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence

Research, 47:253–279, jun 2013.

Beygelzimer, A., Langford, J., Li, L., Reyzin, L., and
Schapire, R. Contextual bandit algorithms with super-
vised learning guarantees. In Proceedings of the Four-

teenth International Conference on Artificial Intelligence

and Statistics, pp. 19–26. JMLR Workshop and Confer-
ence Proceedings, 2011.

Bhandari, J. and Russo, D. Global optimality guar-
antees for policy gradient methods. arXiv preprint

arXiv:1906.01786, 2019.

Brafman, R. I. and Tennenholtz, M. R-max-a general poly-
nomial time algorithm for near-optimal reinforcement
learning. Journal of Machine Learning Research, 3(Oct):
213–231, 2002.

Burda, Y., Edwards, H., Storkey, A., and Klimov, O. Ex-
ploration by random network distillation. arXiv preprint

arXiv:1810.12894, 2018.

Cai, Q., Yang, Z., Jin, C., and Wang, Z. Provably efficient
exploration in policy optimization. In International Con-

ference on Machine Learning, pp. 1283–1294. PMLR,
2020.

Chen, Z., Li, C. J., Yuan, A., Gu, Q., and Jordan, M. I.
A general framework for sample-efficient function ap-
proximation in reinforcement learning. arXiv preprint

arXiv:2209.15634, 2022.

Feng, F., Yin, W., Agarwal, A., and Yang, L. Provably cor-
rect optimization and exploration with non-linear policies.
In International Conference on Machine Learning, pp.
3263–3273. PMLR, 2021.

Foster, D. J., Kakade, S. M., Qian, J., and Rakhlin, A.
The statistical complexity of interactive decision mak-
ing. arXiv preprint arXiv:2112.13487, 2021.

Freedman, D. A. On tail probabilities for martingales. the

Annals of Probability, pp. 100–118, 1975.

Gao, M., Xie, T., Du, S. S., and Yang, L. F. A provably effi-
cient algorithm for linear markov decision process with
low switching cost. arXiv preprint arXiv:2101.00494,
2021.

Geist, M., Scherrer, B., and Pietquin, O. A theory of regu-
larized markov decision processes. In International Con-

ference on Machine Learning, pp. 2160–2169. PMLR,
2019.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. In International

conference on machine learning, pp. 1861–1870. PMLR,
2018.

Jin, C., Allen-Zhu, Z., Bubeck, S., and Jordan, M. I. Is
q-learning provably efficient? Advances in neural infor-

mation processing systems, 31, 2018.

Jin, C., Yang, Z., Wang, Z., and Jordan, M. I. Provably
efficient reinforcement learning with linear function ap-
proximation. In Conference on Learning Theory, pp.
2137–2143. PMLR, 2020.

Jin, C., Liu, Q., and Miryoosefi, S. Bellman eluder di-
mension: New rich classes of rl problems, and sample-
efficient algorithms. Advances in neural information

processing systems, 34:13406–13418, 2021.

Kakade, S. M. A natural policy gradient. Advances in neural

information processing systems, 14, 2001.

Kearns, M. and Singh, S. Near-optimal reinforcement learn-
ing in polynomial time. Machine learning, 49(2):209–
232, 2002.

Kearns, M. J. Computational Complexity of Machine Learn-

ing. PhD thesis, Department of Computer Science, Har-
vard University, 1989.

9

Low-Switching Policy Gradient with Exploration

Konda, V. and Tsitsiklis, J. Actor-critic algorithms. Ad-

vances in neural information processing systems, 12,
1999.

Kong, D., Salakhutdinov, R., Wang, R., and Yang,
L. F. Online sub-sampling for reinforcement learning
with general function approximation. arXiv preprint

arXiv:2106.07203, 2021.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference

on Machine Learning (ICML 2000), pp. 1207–1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Li, Q., Zhai, Y., Ma, Y., and Levine, S. Understanding
the complexity gains of single-task rl with a curriculum.
arXiv preprint arXiv:2212.12809, 2022.

Precup, D. Eligibility traces for off-policy policy evalua-
tion. Computer Science Department Faculty Publication

Series, pp. 80, 2000.

Puterman, M. L. Markov decision processes: discrete

stochastic dynamic programming. John Wiley & Sons,
2014.

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus,
M., and Dormann, N. Stable-baselines3: Reliable rein-
forcement learning implementations. Journal of Machine

Learning Research, 22(268):1–8, 2021. URL http:
//jmlr.org/papers/v22/20-1364.html.

Russo, D. and Van Roy, B. Eluder dimension and the sample
complexity of optimistic exploration. Advances in Neural

Information Processing Systems, 26, 2013.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz,
P. Trust region policy optimization. In International

conference on machine learning, pp. 1889–1897. PMLR,
2015a.

Schulman, J., Moritz, P., Levine, S., Jordan, M., and Abbeel,
P. High-dimensional continuous control using generalized
advantage estimation. arXiv preprint arXiv:1506.02438,
2015b.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Shani, L., Efroni, Y., Rosenberg, A., and Mannor, S. Op-
timistic policy optimization with bandit feedback. In
International Conference on Machine Learning, pp. 8604–
8613. PMLR, 2020.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems,
pp. 5026–5033, 2012. doi: 10.1109/IROS.2012.6386109.

Wang, R., Du, S. S., Yang, L., and Salakhutdinov, R. R. On
reward-free reinforcement learning with linear function
approximation. Advances in neural information process-

ing systems, 33:17816–17826, 2020a.

Wang, R., Salakhutdinov, R. R., and Yang, L. Reinforce-
ment learning with general value function approximation:
Provably efficient approach via bounded eluder dimen-
sion. Advances in Neural Information Processing Sys-

tems, 33:6123–6135, 2020b.

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine

learning, 8(3):229–256, 1992.

Yang, L. and Wang, M. Sample-optimal parametric q-
learning using linearly additive features. In Interna-

tional Conference on Machine Learning, pp. 6995–7004.
PMLR, 2019.

Yang, L. and Wang, M. Reinforcement learning in feature
space: Matrix bandit, kernels, and regret bound. In In-

ternational Conference on Machine Learning, pp. 10746–
10756. PMLR, 2020.

Zanette, A., Cheng, C.-A., and Agarwal, A. Cautiously
optimistic policy optimization and exploration with lin-
ear function approximation. In Conference on Learning

Theory, pp. 4473–4525. PMLR, 2021.

10

http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html

Low-Switching Policy Gradient with Exploration

Algorithm 3 S-Sampling (Sensitivity-Sampling)
1: Input: Function class F , current sensitivity dataset bZ , a new state-action pair z, failure probability �.
2: Compute the sensitivity factor of z relative to the dataset Z:

sz = C · sensitivity bZ,F (z) · log(NN (F ,

p
�/64N3)/�)

3: Let bz be the neighbor of z satisfying the condition (2)
4: if sz � 1 then
5: Add 1 copy of bz into Z
6: else
7: Let nz = b 1

sz
c and add nz copies of bz into bZ with probability 1

nz

8: end if
9: return bZ .

Algorithm 4 Policy Update
1: Input: ⇡cov, b,K
2: Initialize: ⇡0(·|s) = Unif(A) if s 2 K and

3: ⇡0(·|s) = Unif({a|(s, a) /2 K}) if s /2 K
4: for k = 1, 2, · · · ,K � 1 do
5: if k � k >  or k = 0 then
6: k k

7: D Behaviour Policy Sampling(⇡k,⇡cov)
8: end if
9: bQk Policy Evaluation Oracle(⇡k, D,⇡k, b)

10: Update policy: 8s 2 K
11: ⇡k+1(·|s) / ⇡k(·|s)e⌘

bQk(·|s)

12: end for
13: return: ⇡0:K�1 = Unif{⇡0, · · · ,⇡K�1}

Algorithm 5 Behaviour Policy Sampling
1: Input: Behaviour Policy ⇡, Policy Cover ⇡1:n

2: D = ;
3: for i = 1, · · · ,M do
4: Sample j uniformly at random in 1 : n
5: (s, a) d-sampler(⇡j , ⌫)
6: Sample h � 1 with probability �

h�1(1� �)
7: Continue the rollout from (s, a) by executing ⇡ for h� 1 steps
8: Storing the rollout D[i] {(s1, a1, · · · , sh, ah)} where (s1, a1) = (s, a)
9: end for

10: return: D

11

Low-Switching Policy Gradient with Exploration

Algorithm 6 Policy Evaluation Oracle
1: Input: Evaluate policy ⇡, Dataset D, Behaviour policy ⇡, Bonus function b

2: for i = 1, 2, · · · ,M do

3: �i
|D[i]|Q
⌧=2

⇡(a⌧ |s⌧)
⇡(a⌧ |s⌧)

4: (sFi , a
F
i) D[i] ’s first sample

5: (sLi , a
L
i) D[i] ’s last sample

6: Gi 1
1�� [r(s

L
i , a

L
i) + b(sLi , a

L
i)]

7: end for
8: end for
9: bf argmin

f2F

PM
i=1

�
f(sFi , a

F
i)� (�iGi � b(sFi , a

F
i))

�2

10: return: bQ(s, a) = bf(s, a) + 1
2b(s, a), 8s 2 Kn

and bQ(s, a) = bf(s, a) + b(s, a), otherwise

Algorithm 7 d-sampler
1: Input: ⌫ 2 �(S ⇥A),⇡.
2: Sample s0, a0 ⇠ ⌫.
3: Sample ⌧ � 1 with probability �

⌧�1(1� �).
4: Execute ⇡ for ⌧ � 1 steps, giving state s.
5: Sample action a ⇠ ⇡(·|s).
6: return (s, a).

12

Low-Switching Policy Gradient with Exploration

A. Remaining Algorithm Pseudocodes
We provide the remaining algorithms including Sensitivity-Sampling (Algorithm 3), Policy Update (Algorithm 4), Behaviour
Policy Sampling (Algorithm 5), Policy Evaluation Oracle (Algorithm 6), and the visitation distribution sampler (Algorithm 7).

B. Main Analysis
In this section, we provide the main guarantees for LPO.

B.1. Proof Setup

Bonus and auxiliary MDP To begin with, we introduce the concept of optimisic (bonus-added) and auxiliary MDP,
which is also mentioned in (Agarwal et al., 2020a; Feng et al., 2021). However, we design these MDPs with very different
bonus functions.

For each epoch n 2 [N], we consider an arbitrary fixed comparator policy e⇡ (e.g., an optimal policy) and three MDPs:
the original MDP M := (S,A, P, r, �), the bonus-added MDP Mbn := (S,A, P, r + b

n
, �), and an auxiliary MDP

Mn := (S,A [{a†}, Pn
, r

n
, �), where a

† is an extra action which is only available for s /2 Kn. For all (s, a) 2 S ⇥A,

P
n(·|s, a) = P (·|s, a), rn(s, a) = r(s, a) + b

n(s, a).

For s /2 Kn

P
n(s|s, a†) = 1, rn(s, a†) = 3

The above equation actually exhibits its property to absorb and provide maximum rewards for agent outside the known
states. For readers’ convenience, we present the definition of bonus function and known states.

The bonus function b
n : S ⇥A! R defined as

b
n
w(s, a) =

1

�
!(bFn

, s, a)1{s 2 Kn}

b
n
1 (s, a) =

3

1� �
1{s /2 Kn}

b
n(s, a) = 2bnw(s, a) + b

n
1 (s, a)

(8)

Known states
Kn ={s 2 S| 8a 2 A,!(bFn

, s, a) < �}

Kn ={(s, a) 2 S ⇥A| !(bFn
, s, a) < �}

(9)

Given the auxiliary MDP Mn, we define e⇡n(·|s) = e⇡(·|s) for s 2 Kn and e⇡n(a†|s) = 1 for s /2 Kn. We denote by edMn

the state-action distribution induced by e⇡n on Mn and d
e⇡ the state-action distribution induced by e⇡ on M.

Given a policy ⇡, we denote by V
⇡
bn , Q

⇡
bn , and A

⇡
bn the state-value, Q-value, and the advantage function of ⇡ on Mbn , and

V
⇡
Mn , Q

⇡
Mn ,and A

⇡
Mn for the counterparts on Mn, and we define Q

⇡(s, e⇡) := Ea⇠e⇡(·|s)[Q
⇡(s, a)].

Based on the above definitions and notations, we have the following lemmas.

Lemma B.1. (Distribution Dominance) (Feng et al., 2021). Consider any state s 2 Kn
, we have:

d̃Mn(s, a)  d
⇡̃(s, a), 8a 2 A.

Proof. We prove by induction over the time steps along the horizon h. We denote the state-action distribution at the hth step
following ⇡̃

n on Mn as d̃Mn,h.

Starting at h = 0, if s0 2 Kn, then ⇡̃
n (· | s0) = ⇡̃ (· | s0) and

13

Low-Switching Policy Gradient with Exploration

d̃Mn,0 (s0, a) = d
⇡̃
0 (s0, a) , 8a 2 A.

Now we assume that at step h, for all s 2 Kn, it holds that

d̃Mn,h(s, a)  d
ñ
h(s, a), 8a 2 A

Then, for step h+ 1, by definition we have that for s 2 Kn

d̃Mn,h+1(s) =
X

s0,a0

d̃Mn,h (s
0
, a

0)PMn (s | s0, a0)

=
X

s0,a0

1 {s0 2 Kn} d̃Mn,h (s
0
, a

0)PMn (s | s0, a0)

=
X

s0,a0

1 {s0 2 Kn} d̃Mn,h (s
0
, a

0)P (s | s0, a0)

where the second line is due to that if s0 /2 Kn
, ⇡̃ will deterministically pick a

† and PMn

�
s | s0, a†

�
= 0. On the other

hand, for d⇡̃h+1(s, a), it holds that for s 2 Kn,

d
⇡̃
h+1(s) =

X

s0,a0

d
⇡̃
h (s

0
, a

0)P (s | s0, a0)

=
X

s0,a0

1 {s0 2 Kn} d⇡̃h (s0, a0)P (s | s0, a0) +
X

s0,a0

1 {s0 /2 Kn} d⇡̃h (s0, a0)P (s | s0, a0)

�
X

s0,a0

1 {s0 2 Kn} d⇡̃h (s0, a0)P (s | s0, a0)

�
X

s0,a0

1 {s0 2 Kn} d̃Mn,h (s
0
, a

0)P (s | s0, a0)

= d̃Mn,h+1(s).

Using the fact that ⇡̃n(· | s) = ⇡̃(· | s) for s 2 Kn, we conclude that the inductive hypothesis holds at h+ 1 as well. Using
the definition of the average state-action distribution, we conclude the proof.

Lemma B.2. (Partial optimism) (Zanette et al., 2021). Fix a policy e⇡ that never takes a
†
. In any episode n it holds that

V
e⇡n

Mn(es)� V
e⇡(es) � 1

1� �
Es⇠de⇡

es
2bn!(s, e⇡)

Proof. Notice that if s /2 Kn, then V
e⇡n

Mn(s) = 3
1�� as the policy self-loops in s by taking a

† there. Otherwise,

V
e⇡n

Mn(s) = Ea⇠e⇡n(·|s)Q
e⇡n

Mn(s, a)

=
1

1� �
Ea⇠⇡̃n(·|s)E(s0,a0)⇠edMn |(s,a)r

n(s0, a0)

 3

1� �

(10)

14

Low-Switching Policy Gradient with Exploration

Therefore, V e⇡n

Mn(s)  3
1�� . Using the performance difference lemma in (Kakade, 2001), we get:

(1� �)(V e⇡n

Mn(es)� V
e⇡
Mn(es)) = E(s,a)⇠de⇡

es
[�Ae⇡n

Mn(s, a)]

= E(s,a)⇠de⇡
es
[V e⇡n

Mn(s)�Q
e⇡n

Mn(s, a)]

= Es⇠de⇡
es
[Qe⇡n

Mn(s, e⇡n)�Q
e⇡n

Mn(s, e⇡)]

= Es⇠de⇡
es
[
⇣
Q

e⇡n

Mn(s, e⇡n)�Q
e⇡n

Mn(s, e⇡)
⌘

1{s /2 Kn}]

= Es⇠de⇡
es
[

✓
3

1� �
� r(s, e⇡)� 2bn!(s, e⇡)� b

n
1 (s, e⇡)� �Es0⇠P (s,e⇡)V

e⇡n

Mn(s0)

◆
1{s /2 Kn}]

(11)

Since r(s, e⇡) + 2bn!(s, e⇡) + �Es0⇠P (s,e⇡)V
e⇡n

Mn(s0)  1 + 2 + 3�
1�� 

3
1��

Thus,
V

e⇡n

Mn(es) � V
e⇡
Mn(es)�

1

1� �
Es⇠de⇡

es
b
n
1 (s, e⇡)

= V
e⇡(es) + 1

1� �
Es⇠de⇡

es
b
n(s, e⇡)� 1

1� �
Es⇠de⇡

es
b
n
1 (s, e⇡)

= V
e⇡(es) + 1

1� �
Es⇠de⇡

es
2bn!(s, e⇡)

(12)

Lemma B.3. (Negative Advantage) (Zanette et al., 2021).

A
⇡n

Mn(s, e⇡n)1{s /2 Kn}  0

Proof. Assume s /2 Kn, then Q
⇡n

Mn(s, e⇡n) = 3 + �V
⇡n

Mn(s). Note that if s /2 Kn, ⇡n takes an action a 6= a
† such that

b
n
1 (s, a) =

3
1�� . Therefore, V ⇡n

Mn(s) � 3
1�� .

Combining the two expressions we obtain that, in any state s /2 Kn,

A
⇡n

Mn(s, e⇡n) = Q
⇡n

Mn(s, e⇡n)� V
⇡n

Mn(s) = 3 + �V
⇡n

Mn(s)� V
⇡n

Mn(s)  0

B.2. Proof Sketch

In order to bound the gap of values between the output policy ⇡
LPO =Unif(⇡0

,⇡
1
, · · · ,⇡N�1) and the comparator e⇡, we

need to analyze the gap between V
e⇡ and V

⇡n

for each n 2 [N]. With the above three lemmas based on the structure of
the well-designed MDPs, we are able to obtain the following regret decomposition (see details in Lemma B.11 (Regret
decomposition)):

⇣
V

e⇡ � V
⇡n
⌘
(s0) 

1

1� �

2

6664
sup
s2Kn

bA⇡n

Mn(s, e⇡)1{s 2 Kn}
| {z }

term 1

+Es⇠edMn
[A⇡n

Mn(s, e⇡)�A
⇤
Mn(s, e⇡)]1{s 2 Kn}

| {z }
term 2

+ Es⇠edMn
[A⇤

Mn(s, e⇡)� bA⇡n

Mn(s, e⇡)]1{s 2 Kn}
| {z }

term 3

�Es⇠de⇡|s02b
n
!(s, e⇡)| {z }

term 4

+Es⇠dn|s0b
n(s,⇡n)

| {z }
term 5

3

75

(13)

Now we discuss the details of each term.

• term 1 represents the Solver Error, which measures the performance of policy ⇡
n in terms of empirical advantage

function on known states. This term can be bounded by Lemma B.10 (NPG Analysis).

15

Low-Switching Policy Gradient with Exploration

• term 2 represents the Approximation Error, which exists when our function class F do not have enough representability
to deal with critic fitting, and this term can be controlled with Assumption B.5 (Bounded Transfer Error) and Lemma B.9

• term 3 represents the Statistical Error, which is the average error between the empirical and optimal advantage function
under known states. This term can be bounded by term 4 (the expectation of width function) according to Lemma B.1
and Lemma E.8.

• term 5 is the expectation of bonus function under policy ⇡
n, and the bound of bonuses is achieved in Lemma D.3

B.3. Analysis of LPO

In this part, we follow the above steps of proof to establish the result of our main theorem.

First, we introduce some notions and assumptions to handle the model misspecification. These notions have been discussed
in (Agarwal et al., 2020a; Feng et al., 2021).

Definition B.4. (Transfer error). Given a target function g : S ⇥A! R, we define the critic loss function L(f ; d; g) with
d 2 �(S ⇥A) as:

L(f ; d; g) := E(s,a)⇠d

⇥
(f(s, a)� g(s, a))2

⇤

We let Q⇡n

bn , Q⇡k
bn to be the Q-function in the bonus-added MDP for a given outer iteration n and an inner iteration k. Then

the transfer error for a fixed comparator e⇡ is defined as

✏
n
k := inf

f2Fn
k

L

⇣
f ; d̃, Q⇡k

bn � b
n
⌘
,

where Fn
k := argminf2F L (f ; ⇢ncov, Q

⇡k
bn � b

n) and d̃(s, a) := d
⇡̃
s0(s) �Unif(A).

Assumption B.5. (Bounded Transfer Error). For the fixed comparator policy ⇡̃ , for every epoch n 2 [N] and every iteration
k inside epoch n, we assume that there exists a constant ✏bias such that

✏
n
k  ✏bias ,

Notice that ✏bias measures both approximation error and distribution shift error. By the definition of transfer error, we can
select a function f̃

n
k 2 Fn

k , such that

L

⇣
f̃
n
k ; d̃;Q

⇡k
bn � b

n
⌘
 2✏bias

Assumption B.6. For the same loss L in the Definition B.4 and the fitter f̃n
k in Assumption B.5, we assume that there exists

some C � 1 and ✏0 � 0 such that for any f 2 F ,

E(s,a)⇠⇢n
cov

⇣
f(s, a)� f̃

n
k (s, a)

⌘2
�
 C ·

⇣
L (f ; ⇢ncov, Q

⇡k
bn � b

n)� L

⇣
f̃
n
k ; ⇢

n
cov, Q

⇡k
bn � b

n
⌘⌘

+ ✏0

for n 2 [N] and 0  k  K � 1.

Remark B.7. Under Assumption 4.6, for every n 2 [N] and k 2 [K], Q
⇡k
bn (s, a) � b

n(s, a) =

E⇡n
k [r(s, a) + �Q

⇡k
bn (s0, a0) |s, a] 2 F . Thus, ✏bias can take value 0 and f̃

n
k = Q

⇡k
bn � b

n. Further in Assumption B.6, we
have

E(s,a)⇠⇢n
cov

⇣
f(s, a)� f̃

n
k (s, a)

⌘2
�
= L (f ; ⇢ncov, Q

⇡k
bn � b

n) .

Hence, C can take value 1 and ✏0 = 0. If Q⇡k
bn � b

n is not realizable in F , ✏bias and ✏0 could be strictly positive. Hence, the
above two assumptions are generalized version of the closedness condition considering model misspecification. Next, we
define the optimal regression fit considering the loss function and its corresponding advantage functions.

16

Low-Switching Policy Gradient with Exploration

Definition B.8.
f
n,⇤ 2 argmin

f2F
L(f ; ⇢n, Q⇡n

bn � b
n), f⇤

k 2 argmin
f2F

L(f ; ⇢n, Q⇡k
bn � b

n)

A
⇤
bn(s, a) = f

n,⇤(s, a) + b
n(s, a)� Ea0⇠⇡n(·|s) [f

n,⇤(s, a0) + b
n(s, a0)]

A
k,⇤
bn (s, a) = f

⇤
k (s, a) + b

n(s, a)� Ea0⇠⇡k(·|s) [f
⇤
k (s, a

0) + b
n(s, a0)]

(14)

In the later proof, we select fn,⇤, f⇤
k not only to be the optimal solution with respect to the above loss function, but also

satisfy the inequality in Assumption B.6, just like f̃
n
k .

Lemma B.9. (Advantage Transfer Error decomposition). We have that

E(s,a)⇠d̃Mn

⇣
A

k
bn �A

k,⇤
bn

⌘
1 {s 2 Kn} < 4

p
|A|✏bias .

Proof. We have

E(s,a)⇠d̃Mn

⇣
A

k
bn �A

k,⇤
bn

⌘
1 {s 2 Kn}

= E(s,a)⇠d̃Mn

�
Q

k
bn � f

⇤
k � b

n
�
1 {s 2 Kn}� Es⇠d̃Mn ,a⇠⇡k(·|s)

�
Q

k
bn � f

⇤
k � b

n
�
1 {s 2 Kn}


q
E(s,a)⇠d̃Mn

�
Qk

bn � f⇤
k � bn

�2
1 {s 2 Kn}+

r
Es⇠d̃Mn,a⇠⇡k(|s)

�
Qk

bn � f⇤
k � bn

�2
1 {s 2 Kn}


q
E(s,a)⇠d⇡̄

�
Qk

bn � f⇤
k � bn

�2
1 {s 2 Kn}+

q
Es⇠d⇡̄,a⇠⇡k(·|s)

�
Qk

bn � f⇤
k � bn

�2
1 {s 2 Kn}

=
q
E(s,a)⇠d̃|A|⇡̃(a | s) ·

�
Qk

bn � f⇤
k � bn

�2
1 {s 2 Kn}+

q
E(s,a)⇠d̃|A|⇡k(a | s) ·

�
Qk

bn � f⇤
k � bn

�2
1 {s 2 Kn}

< 4
p
|A|✏bias,

where the first inequality is by Cauchy-Schwarz, the second inequality is by distribution dominance, and the last two lines
follow the bounded transfer error assumption and the definition of f⇤

k .

Next, we provide the NPG Analysis.

Lemma B.10. (NPG Analysis) (Agarwal et al., 2020a).

Take stepsize ⌘ =
q

log(|A|)
16W 2K in the algorithm, then for any n 2 [N] we have

K�1X

k=0

E(s,a)⇠d̃Mn

h
bAk
bn(s, a)1 {s 2 Kn}

i
 8W

p
log(|A|)K

Proof. Here we omit the index n for simplicity. From the NPG update rule

⇡k+1(· | s) / ⇡k(· | s)e⌘
bQk(s,·)

/ ⇡k(· | s)e⌘
bQk(s,·)e�⌘bVk(s)

= ⇡k(· | s)e⌘
bAk(s,·)

if we define the normalizer

zk(s) =
X

a0

⇡k (a
0 | s) e⌘ bAk(s,a0)

then the update can be written as

17

Low-Switching Policy Gradient with Exploration

⇡k+1(· | s) =
⇡k(· | s)e⌘

bAk(s,·)

zk(s)

Then for any s 2 Kn,

KL (⇡̃(· | s),⇡k+1(· | s))�KL (e⇡(· | s),⇡k(· | s))

=
X

a

⇡̃(a | s) log ⇡̃(a | s)
⇡k+1(a | s) �

X

a

⇡̃(a | s) log ⇡̃(a | s)
⇡k(a | s)

=
X

a

⇡̃(a | s) log ⇡k(a | s)
⇡k+1(a | s)

=
X

a

⇡̃(a | s) log
⇣
zke

�⌘ bAk(s,a)
⌘

= �⌘
X

a

e⇡(a | s) bAk(s, a) + log zk(s)

Since
��� bAk(s, a)

���  4W and when T > log(|A|), ⌘ < 1/(4W), we have ⌘ bAk(s, a)  1. By the inequality that exp(x) 
1 + x+ x

2 for x  1 and log(1 + x)  x for x > �1

log (zk(s))  ⌘

X

a

⇡k(a | s) bAk(s, a) + 16⌘2W 2 = 16⌘2W 2

Thus for s 2 Kn we have

KL (⇡̃(· | s),⇡k+1(· | s))�KL (⇡̃(· | s),⇡k(· | s))  �⌘Ea⇠⇡̃n(·|s)

h
bAk(s, a)

i
+ 16⌘2W 2

By taking sum over k, we get

K�1X

k=0

E(s,a)⇠d̃Mn

h
bAk(s, a)1 {s 2 Kn}

i

=
K�1X

k=0

1

⌘
Es⇠d̃Mn

[(KL (⇡̃(· | s),⇡0(· | s))�KL (⇡̃(· | s),⇡K(· | s)))1 {s 2 Kn}] + 16⌘KW
2

 log(|A|)/⌘ + 16⌘KW
2

8W
p
log(|A|)K.

Now we are ready to analyze the regret decomposition.

Lemma B.11. (Regret decomposition). With probability at least 1� � it holds that

1

N

NX

n=1

⇣
V

e⇡ � V
⇡n
⌘
(s0) 

R(K)

(1� �)K
+

2
p
2A✏bias

1� �
+

1p
N

eO
 p

d2✏

(1� �)2�

!
(15)

18

Low-Switching Policy Gradient with Exploration

Proof. Fix a policy e⇡ on M. Consider the following decomposition for an outer episode n,

⇣
V

e⇡ � V
⇡n
⌘
(s0) = V

e⇡(s0) +
1

1� �
Es⇠de⇡|s02b

n
!(s, e⇡)

| {z }
V ⇡̃n

Mn (s0) by Lemma B.2

�V
⇡n

(s0)�
1

1� �
Es⇠dn|s0b

n(s,⇡n)
| {z }

=�V ⇡n
bn

+
1

1� �

⇥
�Es⇠de⇡|s02b

n
!(s, e⇡) + Es⇠dn|s0b

n(s,⇡n)
⇤

| {z }
def
= Bn

(16)

We put the term B
n aside for a moment and use performance difference lemma to obtain

V
⇡̃n

Mn(s0)� V
⇡n

bn (s0) = V
⇡̃n

Mn(s0)� V
⇡n

Mn(s0)

=
1

1� �
Es⇠edMn

h
A

⇡n

Mn(s, e⇡n)
i

=
1

1� �
Es⇠edMn

2

64A⇡n

Mn(s, e⇡n)1{s 2 Kn}+A
⇡n

Mn(s, e⇡n)1{s /2 Kn}| {z }
0 by Lemma B.3

3

75

 1

1� �
Es⇠edMn

h
A

⇡n

Mn(s, e⇡)1{s 2 Kn}
i

(17)

where the last step is because on states s 2 Kn we have e⇡n(·|s) = e⇡(·|s).
Define

bAk
bn(s, a) = bQk

bn(s, a)� bV k
bn(s)

= fk(s, a) + b
n
!(s, a)� Ea0⇠⇡k(·|s) [fk(s, a

0) + b
n
!(s, a

0)]
(18)

and

bA⇡n

bn (s, a) =
1

K

K�1X

k=0

bAk
bn(s, a) (19)

Then we get

=
1

1� �

h
Es⇠edMn

bA⇡n

Mn(s, e⇡)1{s 2 Kn}+ Es⇠edMn

h
A

⇡n

Mn(s, e⇡)� bA⇡n

Mn(s, e⇡)
i

1{s 2 Kn}
i

 1

1� �

2

6664
sup
s2Kn

bA⇡n

Mn(s, e⇡)1{s 2 Kn}
| {z }

term 1

+Es⇠edMn
[A⇡n

Mn(s, e⇡)�A
⇤
Mn(s, e⇡)]1{s 2 Kn}

| {z }
term 2

+ Es⇠edMn
[A⇤

Mn(s, e⇡)� bA⇡n

Mn(s, e⇡)]1{s 2 Kn}
| {z }

term 3

3

75

(20)

The first term can be bounded by Lemma B.10 (NPG lemma):

sup
s2Kn

bA⇡n

Mn(s, e⇡)1{s 2 Kn} = sup
s2Kn

1

K

K�1X

k=0

Ea⇠⇡̃(·|s) bAk
bn(s, a)1{s 2 Kn}  R(K)

K
(21)

The second term can be bounded by Lemma B.1, Lemma B.9

Es⇠edMn
[A⇡n

Mn(s, e⇡)�A
⇤
Mn(s, e⇡)]1{s 2 Kn}

 Es⇠d⇡̃ [A⇡n

Mn(s, e⇡)�A
⇤
Mn(s, e⇡)]1{s 2 Kn}

 2
p
2A✏bias

(22)

19

Low-Switching Policy Gradient with Exploration

The third term can be bounded by Lemma E.8, which ensures that with probability at least 1� �
2 it holds that

8n 2 [N], 8k 2 {0, · · · ,K � 1}, 8(s, a) 2 Kn : 0  Q
k,⇤
bn (s, a)� bQk

bn(s, a)  2bn!(s, a) (23)

Then we have: 8n 2 [N], 8(s, a) 2 Kn:

A
⇤
Mn(s, a)� bA⇡n

Mn(s, a) =
1

K

K�1X

k=0

2

664
⇣
Q

k,⇤
bn (s, a)� bQk

bn(s, a)
⌘
�
⇣
Q

k,⇤
bn (s,⇡n

k)� bQk
bn(s,⇡

n
k)
⌘

| {z }
�0

3

775

 Q
⇤
Mn(s, a)� bQ⇡n

Mn(s, a)

(24)

Apply the Lemma B.1, we have

Es⇠edMn
[A⇤

Mn(s, e⇡)� bA⇡n

Mn(s, e⇡)]1{s 2 Kn}  Es⇠edMn
[Q⇤

Mn(s, e⇡)� bQ⇡n

Mn(s, e⇡)]1{s 2 Kn}

 Es⇠de⇡ [Q⇤
Mn(s, e⇡)� bQ⇡n

Mn(s, e⇡)]1{s 2 Kn}
(25)

As a result, ⇣
V

e⇡ � V
⇡n
⌘
(s0) 

1

1� �


R(K)

K
+ 2

p
2A✏bias + Es⇠de⇡2bn!(s, e⇡)1{s 2 Kn}+B

n

�

=
1

1� �


R(K)

K
+ 2

p
2A✏bias + Es⇠dnb

n(s,⇡n)

� (26)

And finally using the concentration of bonuses (Lemma D.3) we get

1

N

NX

n=1

⇣
V

e⇡ � V
⇡n
⌘
(s0) 

R(K)

(1� �)K
+

2
p
2A✏bias

1� �
+

1

N(1� �)

NX

n=1

Es⇠dnb
n(s,⇡n)

 R(K)

(1� �)K
+

2
p
2A✏bias

1� �
+

1p
N

eO
 p

d2✏

(1� �)2�

! (27)

Combining all previous lemmas, we have the following theorem about the sample complexity of our LPO.

Theorem B.12. (Main Results: Sample Complexity of LPO). Under Assumption 4.3, 4.5, and 4.6, for any comparator e⇡, a

fixed failure probability �, eluder dimension d = dim(F , 1/N), a suboptimality gap " and appropriate input hyperparam-

eters: N � eO
⇣

d2

(1��)4"2

⌘
,K = eO

⇣
ln |A|W 2

(1��)2"2

⌘
,M � eO

⇣
d2

(1��)4"2

⌘
, ⌘ = eO

✓p
ln |A|p
KW

◆
, = eO

⇣
1��
⌘W

⌘
, our algorithm

returns a policy ⇡
LPO

, satisfying ⇣
V

e⇡ � V
⇡LPO

⌘
(s0)  ".

with probability at least 1� � after taking at most eO
⇣

d3

(1��)8"3

⌘
samples.

Proof. First, let’s consider Lemma B.11 (Regret decomposition). We need ensure

R(K)

(1� �)K
=

8W

(1� �)

r
ln |A|
K

 "

2
�! K = eO

✓
ln |A|W 2

(1� �)2"2

◆

This gives the inner iteration complexity. Next, � can be any constant between 0 and 1, and recall that ✏ is the parameter that
controls the width function (3). We set ✏ in the following form (see Lemma E.6 for justification)

✏ = 100

✓
3

2
C1N · ✏stat + 20NW ✏1 +

1

2
C2 · ln

✓
NN (�F , 2✏1)

�0

◆◆

20

Low-Switching Policy Gradient with Exploration

and

✏stat =
500C ·W 4 · log

⇣
N (F,✏2)

�3

⌘

M
+ 13W 2 · ✏2

where ✏1, ✏2 represents the function cover radius. Since our algorithm complexity depends only logarithmically on the
covering numbers, we can set the cover radius with any polynomial degree of ". In fact, ✏1 = O("3), ✏2 = O("3),
✏ = O(logN),

1p
N

eO
 p

d2✏

(1� �)2�

!
 "

2
�!M = N � eO

✓
d
2

(1� �)4"2

◆

gives the outer iteration complexity and the number of samples collected by a single Monte Carlo trajectory.

Under Assumption 4.6, which means Q-function is realizable in our function class F , ✏bias = 0 (see Remark B.7 for
justification). After setting the hyperparameters above, with probability at least 1� �, we have

1

N

NX

n=1

⇣
V

e⇡ � V
⇡n
⌘
(s0)  "

Remember that our algorithm outputs a uniform mixture of policy cover ⇡LPO =Unif(⇡0
,⇡

1
, · · · ,⇡N�1), so we have

⇣
V

e⇡ � V
⇡LPO

⌘
(s0)  ".

Next, we consider the total samples we need to collect through steps of the algorithm.

Every time the bonus switches, Algorithm 4 is invoked, and runs for K iterations. From Lemma E.4 we know that once
data are collected, they can be reused for the next  policies. Therefore, we actually run Algorithm 5 for

⌃
K


⌥
times, and

whenever invoking Algorithm 5, we need M samples by Monte Carlo sampling. We denote S to be the number of bonus
switches given in Proposition C.7 (Number of Switches).

In total, the sample complexity of our algorithm is

S|{z}
number of inner loops invoked

⇥
⇠
K



⇡

| {z }
the inner iteration

⇥ M|{z}
Monte Carlo trajectories

= eO

0

BB@d⇥
2 ln(1/�)

✓p
ln |A|p
KW

◆
(B +W)

(1� �) ln 2
⇥K ⇥M

1

CCA

= eO

d

✓
B

W
+ 1

◆ p
K

1� �
M

!

= eO
✓

d

1� �
⇥ W

(1� �)"
⇥ d

2

(1� �)4"2

◆

= O

✓
d
3

(1� �)8"3

◆

We complete the proof of our main theorem.

C. The Number of Switches
In this section, we will give the bound of the number of switching policies in the outer loop.

Recall that the width function is

!(bFn
, s, a) = sup

f1,f22F,||f1�f2||2bZn✏

|f1(s, a)� f2(s, a)|

21

Low-Switching Policy Gradient with Exploration

The parameter ✏ will be defined later in (35). In fact, we will show that ✏ = O(logN) in Lemma E.6 and Lemma E.7. First,
we need to show that for every n 2 [N], the sensitivity dataset bZn approximates the original dataset Zn. Our approach is
inspired by (Kong et al., 2021).

For all n 2 [N] and ↵ 2 [✏,+1), we define the following quantities

Bn(↵) :=
n
(f1, f2) 2 F ⇥ F | kf1 � f2k2Zn  ↵/100

o

Bn(↵) :=
n
(f1, f2) 2 F ⇥ F | min

n
kf1 � f2k2bZn , 4NW

2
o
 ↵

o

Bn
(↵) :=

n
(f1, f2) 2 F ⇥ F | kf1 � f2k2Zn  100↵

o

For each n 2 [N], we use En(↵) to denote the event that

Bn(↵) ✓ Bn(↵) ✓ Bn
(↵)

Furthermore, we denote that

En :=
1\

j=0

En
�
100j✏

�
,

Our goal is to show that the event En holds with great probability, which means bZn is a good approximation to Zn.

Before presenting the proof, we need the following concentration inequality proved in (Freedman, 1975).

Lemma C.1. Consider a real-valued martingale {Yk : k = 0, 1, 2, · · · } with difference sequence {Xk : k = 0, 1, 2, · · · }.

Assume that the difference sequence is uniformly bounded:

|Xk|  R almost surely for k = 1, 2, 3, · · ·

For a fixed n 2 N, assume that

nX

k=1

Ek�1

�
X

2
k

�
 �

2

almost surely. Then for all t � 0,

P {|Yn � Y0| � t}  2 exp

⇢
� t

2
/2

�2 +Rt/3

�

Furthermore, we need a bound on the number of elements in the sensitivity dataset. This is established in (Kong et al., 2021).

Lemma C.2. With probability at least 1� �/64N ,

��� bZn
���  64N3

/� 8n 2 [N].

The following lemma shows that if En happens, bZn is a good approximation to Zn. And this is proved in (Kong et al.,
2021).

Lemma C.3. If En
occurs, then

1

10000
kf1 � f2k2Zn  min

n
kf1 � f2k2bZn , 4NW

2
o
 10000 kf1 � f2k2Zn , 8 kf1 � f2k2Zn > 100✏

22

Low-Switching Policy Gradient with Exploration

and

min
n
kf1 � f2k2bZn , 4NW

2
o
 10000✏, 8 kf1 � f2k2Zn  100✏

To establish our result, we need the following lemma. The proof follows the approach of (Kong et al., 2021). We present it
here for completeness.
Lemma C.4. For ↵ 2

⇥
✏, 4NW

2
⇤

Pr
�
E1E2

. . . En�1 (En(↵))c
�
 �/

�
32N2

�

Proof. We use Zn
to denote the dataset without rounding, i.e., we replace every element ẑ with z. Denote C1 =

C · log
⇣
N · N

⇣
F ,

p
�/64N3

⌘
/�

⌘
, where C will be chosen appropriately later. We consider any fixed pair (f1, f2) 2

C
⇣
F ,

p
�/ (64N3)

⌘
⇥ C

⇣
F ,

p
�/ (64N3)

⌘
.

For each i � 2, define

Zi = max
n
kf1 � f2k2Zi ,min

n
kf1 � f2k2bZi�1 , 4NW

2
oo

and

Yi =

8
>><

>>:

1
pzi�1

(f1 (zi�1)� f2 (zi�1))
2

zi�1 is added into Zi
and Zi  2000000↵

0 zi�1 is not added into Zi
and Zi  2000000↵

(f1 (zi�1)� f2 (zi�1))
2

Zi > 2000000↵

Note that Zi is constant under Fi�1 and Yi is adapted to the filtration Fi, thus

Ei�1 [Yi] = (f1 (zi�1)� f2 (zi�1))
2

now we bound Yi and its variance in order to use Freedman’s inequality.

If pzi�1 = 1 or Zi > 2000000↵, then Yi � Ei�1 [Yi] = Vari�1 [Yi � Ei�1 [Yi]] = 0 . Otherwise by the definition of pz we
have

|Yi � Ei�1 [Yi]| 
⇣
min

n
kf1 � f2k2bZi�1 , 4NW

2
o
+ 1

⌘
/C1

 3000000↵/C1

and

Vari�1 [Yi � Ei�1 [Yi]] 
1

pzi�1

(f1 (zi�1)� f2 (zi�1))
4

 (f1 (zi�1)� f2 (zi�1))
2 · 3000000↵/C1

Taking sum with respect to i yields

nX

i=2

Vari�1 [Yi � Ei�1 [Yi]]  (3000000↵)2/C1

By Freedman’s inequality, we have

23

Low-Switching Policy Gradient with Exploration

P
(�����

nX

i=2

(Yi � Ei�1 [Yi])

����� � ↵/100

)

 2 exp

⇢
� (↵/100)2/2

(3000000↵)2/C1 + ↵ · 3000000↵/3C1

�


�
�/64N2

�
/

⇣
N
⇣
F ,

p
�/ (64N3)

⌘⌘2

where the last inequality is guaranteed by taking C appropriately large.

Taking a union bound over all (f1, f2) 2 C
⇣
F ,

p
�/ (64N3)

⌘
⇥ C

⇣
F ,

p
�/ (64N3)

⌘
, with probability at least 1 �

�/
�
64T 2

�
, we have

�����

nX

i=2

(Yi � Ei�1 [Yi])

�����  ↵/100.

In the rest of the proof, we condition on the event above and the event defined in Lemma C.2.

Part 1 (Bn(↵) ✓ Bn(↵)) : Consider any pair f1, f2 2 F with kf1 � f2k2Zn  ↵/100. From the definition we know that
there exist

⇣
f̂1, f̂2

⌘
2 C

⇣
F ,

p
�/ (64N3)

⌘
⇥ C

⇣
F ,

p
�/ (64N3)

⌘
such that

���f̂1 � f1

���
1

,

���f̂2 � f2

���
1

p
�/ (64N3).

Then we have that

���f̂1 � f̂2

���
2

Zn

⇣
kf1 � f2kZn +

���f1 � f̂1

���
Zn

+
���f̂2 � f2

���
Zn

⌘2


⇣
kf1 � f2kZn + 2 ·

p
|Zn| ·

p
�/ (64N3)

⌘2

 ↵/50

We consider the Yi ’s which correspond to f̂1 and f̂2. Because
���f̂1 � f̂2

���
2

Zn
 ↵/50, we also have that

���f̂1 � f̂2

���
2

Zn�1


↵/50. From En�1 we know that min

⇢���f̂1 � f̂2

���
2

bZn�1
, 4NW

2

�
 10000↵. Then from the definition of Yi we have

���f̂1 � f̂2

���
2

Zn
=

nX

i=2

Yi

Then
���f̂1 � f̂2

���
2

Zn
can be bounded in the following manner:

���f̂1 � f̂2

���
2

Zn
=

nX

i=2

Yi


nX

i=2

Ei�1 [Yi] + ↵/100

=
���f̂1 � f̂2

���
2

Zn
+ ↵/100

 3↵/100

As a result,
���f̂1 � f̂2

���
2

Zn
can also be bounded:

24

Low-Switching Policy Gradient with Exploration

kf1 � f2k2Zn 
⇣���f̂1 � f̂2

���
Zn

+
���f1 � f̂1

���
Zn

+
���f2 � f̂2

���
Zn

⌘2


 ���f̂1 � f̂2

���
Zn

+ 2 ·
r���Zn

��� ·
p
�/ (64N3)

!2

 ↵/25

Finally we could bound kf1 � f2k2bZn :

kf1 � f2k2bZn 
⇣
kf1 � f2kZn +

p
64N3/�/

⇣
8
p
64N3/�

⌘⌘2

 ↵

We conclude that for any pair f1, f2 2 F with kf1 � f2k2Zn  ↵/100, it holds that kf1 � f2k2bZn  ↵. Thus we must have
Bn(↵) ✓ Bn(↵).

Part 2
⇣
Bn(↵) ✓ Bn

(↵)
⌘

: Consider any pair f1, f2 2 F with kf1 � f2k2Zn > 100↵. From the definition we know that

there exist
⇣
f̂1, f̂2

⌘
2 C

⇣
F ,

p
�/ (64N3)

⌘
⇥ C

⇣
F ,

p
�/ (64N3)

⌘
such that

���f̂1 � f1

���
1

,

���f̂2 � f2

���
1

p
�/ (64N3).

Then we have that

���f̂1 � f̂2

���
2

Zn
�
⇣
kf1 � f2kZn �

���f1 � f̂1

���
Zn
�
���f̂2 � f2

���
Zn

⌘2

�
⇣
kf1 � f2kZn � 2 ·

p
|Zn| ·

p
�/ (64N3))

⌘2

> 50↵

Thus we have
���f̂1 � f̂2

���
2

Zn
> 50↵. We consider the Yi ’s which correspond to f̂1 and f̂2. Here we want to prove that

���f̂1 � f̂2

���
2

bZn
> 40↵. For the sake of contradicition we assume that

���f̂1 � f̂2

���
2

bZn
 40↵.

Case 1 :
���f̂1 � f̂2

���
2

Zn
 2000000↵. From the definition of Yi we have

���f̂1 � f̂2

���
2

Zn
=

nX

i=2

Yi

Combined with the former result, we conclude that

���f̂1 � f̂2

���
2

Zn
=

nX

i=2

Yi �
nX

i=2

Ei�1 [Yi]� ↵/100 =
���f̂1 � f̂2

���
2

Zn
� ↵/100 > 50↵� ↵/100 > 49↵

Then we have ���f̂1 � f̂2

���
2

bZn
�
⇣���f̂1 � f̂2

���
Zn
�
p
64N3/�/

⇣
8
p
64N3/�

⌘⌘2

> 40↵

which leads to a contradiction.

Case 2 :
���f̂1 � f̂2

���
2

Zn�1
> 1000000↵. From En�1 we deduce that

���f̂1 � f̂2

���
2

bZn�1
> 100↵ which directly leads to a

contradiction.

25

Low-Switching Policy Gradient with Exploration

Case 3 :
���f̂1 � f̂2

���
2

Zn
> 2000000↵ and

���f̂1 � f̂2

���
2

Zn�1
 1000000↵. It is clear that

⇣
f̂1 (zn�1)� f̂2 (zn�1)

⌘2
>

1000000↵. From the definition of sensitivity we know that zn�1 will be added into Zn
almost surely, which leads to a

contradiction.

We conclude that
���f̂1 � f̂2

���
2

bZn
> 40↵. Finally we could bound kf1 � f2k2bZn :

kf1 � f2k2bZn �
⇣���f̂1 � f̂2

��� bZn
�
���f1 � f̂1

��� bZn
�
���f̂2 � f2

��� bZn

⌘2

�
 ���f̂1 � f̂2

��� bZn
� 2 ·

r��� bZn
��� ·
p
�/ (64N3)

!2

> ↵

We conclude that for any pair f1, f2 2 F with kf1 � f2k2Zn > 10000↵, it holds that kf1 � f2k2bZn > 100↵. This implies
that Bn(↵) ✓ Bn

(↵).

Next, we give a bound of the summation of online sensitivity scores.

Lemma C.5. (Bound of sensitivity scores). We have

N�1X

n=1

sensitivityZn,F (zn)  C · dimE(F , 1/4N) log2
�
4NW

2
�
logN

for some absolute constant C > 0.

Proof. Note that Zn = {(si, ai)}i2[n�1], so |Zn|  N .

Notice that

sensitivityZn,F (zn) = sup
f1,f22F

(f1(z)� f2(z))
2

min{||f1 � f2||2Zn , 4NW 2}+ 1

= sup
f1,f22F

(f1 (zn)� f2 (zn))
2

kf1 � f2k2Zn + 1

For each n 2 [N � 1], let f1, f2 2 F be an arbitrary pair of functions, such that

(f1 (zn)� f2 (zn))
2

kf1 � f2k2Zn + 1

is maximized, and we define L (zn) = (f1 (zn)� f2 (zn))
2 for such f1, f2.

Note that 0  L (zn)  4W 2. Let ZN = [blog2(4W 2N)c
↵=0 Z↵ [Z1 be a dyadic decomposition with respect to L(·), where

for each 0  ↵ 
⌅
log2

�
4W 2

N
�⇧

, we define

Z↵ =
n
zn 2 ZN | L (zn) 2

⇣
4W 2 · 2�(↵+1)

, 4W 2 · 2�↵
io

and

Z1 =
n
zn 2 ZN | L (zn)  4W 2 · 2�blog2(4W 2N)c�1

o

Therefore, for any zn 2 Z1, sensitivityZn,F (zn)  4W 2 · 2�blog2(4W 2N)c�1
< 1/N , and thus

26

Low-Switching Policy Gradient with Exploration

X

zn2Z1

sensitivityZn,F (zn)  N · 1

N
= 1

For each ↵, let N↵ = |Z↵| / dimE

�
F , 4W 2 · 2�(↵+1)

�
, and we decompose Z↵ into (N↵ + 1) disjoint subsets, i.e.,

Z↵ = [N↵+1
j=1 Zj

↵, by using the following procedure:

Initialize Z
j
↵ = {} for all j and consider each zn 2 Z↵ sequentially.

For each zn 2 Z↵, find the smallest 1  j  N↵, such that zn is 4W 2 · 2�(↵+1)-independent of Zj
↵ with respect to F .

Set j = N↵ + 1 if such j does not exist, use j (zn) 2 [N↵ + 1] to denote the choice of j for zn, and add zn into Z
j
↵.

Now, for each zn 2 Z↵, zn is 4W 2 · 2�(↵+1)-dependent on each of Z1
↵,Z2

↵, · · · ,Z
j(zn)�1
↵ .

Next, we will show that: For each zn 2 Z↵,

sensitivityZn,F (zn) 
4

j (zn)

For any zn 2 Z↵, let f1, f2 2 F be an arbitrary pair of functions, such that

(f1 (zn)� f2 (zn))
2

kf1 � f2k2Zn + 1

is maximized. Since zn 2 Z↵, we must have (f1 (zn)� f2 (zn))
2
> 4W 2 · 2�(↵+1), since zn is 4W 2 · 2�(↵+1) de-

pendent on each of Z1
↵,Z2

↵, · · · ,Z
j(zn)�1
↵ , for each 1  t < j (zn), we have kf1 � f2k2Zt

↵
� 4W 2. 2�(↵+1), note that

Z1
↵,Z2

↵, · · · ,Z
j(zn)�1
↵ ⇢ Zn due to the design of the partition procedure. Thus,

sensitivityZn,F (zn) 
(f1 (zn)� f2 (zn))

2

kf1 � f2k2Zn + 1
 4W 2 · 2�↵

kf1 � f2k2Zn

 4W 2 · 2�↵

Pj(zn)�1
t=1 kf1 � f2k2Zt

↵

,

 4W 2 · 2�↵

(j (zn)� 1) · 4W 2 · 2�(↵+1)
 2

j (zn)� 1

Therefore,

sensitivityZn,F (zn)  min

⇢
2

j (zn)� 1
, 1

�
 4

j (zn)

In addition, by the definition of 4W 2 ·2�(↵+1)-independent, we have
��Zj

↵

��  dimE

�
F , 4W 2 · 2�(↵+1)

�
for all 1  j  N↵.

Therefore,

X

zn2Z↵

sensitivity Zn,F (zn) 
X

1jN↵

��Zj
↵

�� · 4
j
+

X

z2ZN↵+1
↵

4

N↵

 4 dimE

⇣
F , 4W 2 · 2�(↵+1)

⌘
· (ln (N↵) + 1) + |Z↵| ·

4W 2 · 2�(↵+1)

|Z↵|

= 4dimE

⇣
F , 4W 2 · 2�(↵+1)

⌘
· (ln (N↵) + 2)

 8 dimE

⇣
F , 4W 2 · 2�(↵+1)

⌘
· lnN

Now, by the monotonicity of eluder dimension, it follows that:

27

Low-Switching Policy Gradient with Exploration

N�1X

n=1

sensitivity Zn,F (zn) 
blog2(4W 2N)cX

↵=0

X

zn2Z↵

sensitivity Zn,F (zn) +
X

zn2Z1

sensitivity Zn,F (zn)

 8
�⌅
log2

�
4W 2

N
�⇧

+ 1
�
dimE(F , 1/4N) lnN + 1

 9
�⌅
log2

�
4W 2

N
�⇧

+ 1
�
dimE(F , 1/4N) lnN

The following proposition verifies that
T1

n=1 En happens with high probability.

Proposition C.6.

P
 1\

n=1

En

!
� 1� �/32

Proof. For all n 2 [N] it holds that

P
�
E1E2

. . . En�1
�
� P

�
E1E2

. . . En
�

=P
�
E1E2

. . . En�1 (En)c
�

=P

0

@E1E2
. . . En�1

0

@
1\

j=0

En
�
100j✏

�
1

A
c1

A

=P

0

@E1E2
. . . En�1

1[

j=0

�
En

�
100j✏

��c
1

A


1X

j=0

P
⇣
E1E2

. . . En�1
�
En

�
100j✏

��c⌘

=
X

j�0,100j✏4NW 2

P
⇣
E1E2

. . . En�1
�
En

�
100j✏

��c⌘

where the last equality holds because P (En(↵)) = 1 while ↵ > 4NW
2. Combining this with Lemma C.4 yields

P
�
E1E2

. . . En�1
�
� P

�
E1E2

. . . En
�
 �/

�
32N2

�
·
�
log

�
4NW

2
/✏
�
+ 2

�
 �/(32N)

thus

P

N\

n=1

En

!

=1�
NX

n=1

�
P
�
E1E2

. . . En�1
�
� P

�
E1E2

. . . En
��

�1�N · (�/32N)

=1� �/32

With Lemma C.5, we are now ready to prove:

28

Low-Switching Policy Gradient with Exploration

Proposition C.7. With probability at least 1� �/8, the following statements hold:

(i) The subsampled dataset bZn
changes for at most

Smax = C · log
⇣
NN

⇣
F ,

p
�/64N3

⌘
/�

⌘
· dimE(F , 1/N) · log2 N

where C > 0 is some absolute constant.

(ii) For any n 2 [N],
��� bZn

���  64N3
/�.

Proof. Conditioning on En, we have

I {En} · sensitivity bZn,F (zn)  C · sensitivityZn,F (zn)

for some constant C > 0 according to Lemma C.3. By definition of pz we have

pz . sensitivity bZ,F (z) · log
⇣
NN

⇣
F ,

p
�/64N3

⌘
/�

⌘

thus by Lemma C.5 we have

N�1X

n=1

I {En} · pzn .
N�1X

n=1

I {En} · sensitivity bZn,F (zn) · log
⇣
NN

⇣
F ,

p
�/64N3

⌘
/�

⌘

.
N�1X

n=1

sensitivityZn,F (zn) · log
⇣
NN

⇣
F ,

p
�/64N3

⌘
/�

⌘

. log
⇣
NN

⇣
F ,

p
�/64N3

⌘
/�

⌘
dimE(F , 1/N) log2 N

and by choosing C in the proposition appropriately, we may assume that

N�1X

n=1

I {En} · pzn  Smax/3

For 2  n  N , define random variables {Xn} as

Xn =

(
I
�
En�1

ẑn�1 is added into bZn

0 otherwise

Then Xn is adapted to the filtration Fn. We have that En�1 [Xn] = pzn�1 · I
�
En�1

and En�1

h
(Xn � En�1 [Xn])

2
i
=

I
�
En�1

· pzn�1

�
1� pzn�1

�
. Note that Xn � En�1 [Xn] is a martingale difference sequence with respect to Fn and

NX

n=2

En�1

h
(Xn � En�1 [Xn])

2
i
=

NX

n=2

I {En} pzn�1

�
1� pzn�1

�


NX

n=2

I {En�1} · pzn�1  Smax/3

NX

n=2

En�1 [Xn] =
nX

n=2

pzn�1I {En�1}  Smax/3

thus by applying Freedman’s inequality (Lemma C.1), we deduce that

29

Low-Switching Policy Gradient with Exploration

P
(

NX

n=2

Xn � Smax

)

P
(�����

NX

n=2

(Xn � En�1 [Xn])

����� � 2Smax/3

)

2 exp
(
� (2Smax/3)

2
/2

Smax/3 + 2Smax/9

)

�/(32N)

With a union bound we know that with probability at least 1� �/32,

NX

n=2

Xn < Smax

We condition on the event above and
TN

n=1 En. In this case, we add elements into bZn for at most Smax times. Combining
the result above with Lemma C.2 completes the proof.

D. Concentration of Bonuses
Before bounding the bonuses, we need the following concentration inequality proved in (Beygelzimer et al., 2011).
Lemma D.1. (Bernstein for Martingales).

Consider a sequence of random variables X1, X2, · · · , XT . Assume that for all t, Xt  R, and Et[Xt]
def
=

E[Xt|X1, · · · , Xt�1] = 0. Then for any � > 0, there exists constant c1, c2, such that

P

0

@
TX

t=1

Xt  c1 ⇥

vuut
TX

t=1

Et[X2
t] ln

1

�
+ c2 ⇥ ln

1

�

1

A � 1� �

Lemma D.2. (Bound of Indicators). For any episode n during the execution of the algorithm, with probability 1� �/2,

NX

n=1

E(s,a)⇠dnb
n
1 (s, a)  eO

 p
Nd2✏

(1� �)�

!
(28)

where d = dimE(F , 1/N).

Proof.

NX

n=1

E(s,a)⇠dnb
n
1 (s, a) 

3

1� �

NX

n=1

E(s,a)⇠dn1{!(bFn
, s, a) � �}

=
3

1� �

NX

n=1

E(s,a)⇠dn1{ 1
�
!(bFn

, s, a) � 1}

 3

1� �
· 1
�

NX

n=1

E(s,a)⇠dn!(bFn
, s, a)

 eO
 p

Nd2✏

(1� �)�

!
(by Lemma D.3)

(29)

30

Low-Switching Policy Gradient with Exploration

Lemma D.3. (Bound of Bonuses). For any episode n during the execution of the algorithm, with probability 1� �/2

NX

n=1

E(s,a)⇠dn!(bFn
, s, a)  O

✓p
Nd2✏+ ln(

2

�
)

◆
= eO

⇣p
Nd2✏

⌘
(30)

where d = dimE(F , 1/N).

Proof. We define the random dataset D1:n to represent all the information at the beginning of iteration n of the algorithm.
Then we define

⇠n = E(s,a)⇠dn [!(bFn
, s, a)|D1:n]� !(bFn

, sn, an)

and let

A =
NX

n=1

E(s,a)⇠dn [!(bFn
, s, a)|D1:n] =

NX

n=1

!(bFn
, sn, an) +

NX

n=1

⇠n

Now we bound
PN

n=1 !(
bFn

, sn, an):
We condition on the event in the Proposition C.6, we have

!(bFn
, s, a)  sup

f1,f22F,||f1�f2||2Zn100✏

|f1(s, a)� f2(s, a)|
def
= b̄

n(s, a)

For any given ↵ > 0, let L = {(sn, an)|n 2 [N], b̄n(sn, an) > ↵}, let |L| = L.
Next we show that there exists zk := (sk, ak) 2 L, such that (sk, ak) is ↵-dependent on at least N = L/dimE(F ,↵)� 1
disjoint subsequences in Zk\L. We decompose the L = [N+1

j=1 Lj by the following procedure. We initialize Lj = {} for all
j and consider zk 2 L sequentially. For each zk 2 L, we find the smallest j (1  j  N), such that zk is ↵-independent on
Lj with respect to F . We set j = N + 1 if such j does not exist. We add zk into Lj afterwards. When the decomposition of
L is finished, LN+1 6= ;, as Lj contains at most dimE(F ,↵) elements for j 2 [N]. For any zk 2 LN+1, zk is ↵-dependent
on at least N = L/dimE(F ,↵)� 1 disjoint subsequences in Zk \ L.
On the other hand, there exists f1, f2 2 F with ||f1 � f2||2Zk  100✏, such that |f1(s, a)� f2(s, a)| > ↵. So we have:

(L/dimE(F ,↵)� 1) · ↵2  ||f1 � f2||2Zk  100✏

which implies

L  (
100✏

↵2
+ 1)dimE(F ,↵)

Now let b1 � b2 � · · · bN to be a permulation of {b̄n(sn, an)}Nn=1. For any bn � 1
N , we have

n  (
100✏

b2n

+ 1)dimE(F , bn)  (
100✏

b2n

+ 1)dimE(F ,
1

N
)

which implies that

bn 
✓

n

dimE(F ,
1
N)
� 1

◆� 1
2 p

100✏, when bn � 1/N

Moreover, we have bn  2W , so

NX

n=1

bn  N · 1

N
+ 2W · dimE(F , 1/N) +

X

dimE(F,1/N)<nN

✓
n

dimE(F ,
1
N)
� 1

◆� 1
2 p

100✏

 1 + 2W · dimE(F , 1/N) + C ·
p

dimE(F , 1/N) ·N · ✏

(31)

For simplicity, we denote d := dimE(F , 1/N), then
PN

n=1 !(
bFn

, sn, an)  O(
p
Nd2✏).

31

Low-Switching Policy Gradient with Exploration

Then we will bound the sum of noise terms:
NX

n=1

E(s,a)⇠dn [⇠2n|D1:n] =
NX

n=1

E(s,a)⇠dn [!2(bFn
, s, a)|D1:n]

 2W ·
NX

n=1

E(s,a)⇠dn [!(bFn
, s, a)|D1:n]

(32)

Now using the Lemma D.1 (Bernstein for Martingales) gives with probability at least 1� �
2 for some constant c

NX

n=1

⇠n  c⇥

0

@

vuut2
NX

n=1

E(s,a)⇠dn [⇠2n|D1:n] ln(2/�) +
ln(2/�)

3

1

A

= c⇥
✓p

4WA ln(2/�) +
ln(2/�)

3

◆ (33)

Solving for A finally gives with high probability

A = O

✓p
Nd2✏+ ln(

2

�
)

◆
(34)

E. Analysis of Policy Evaluation Oracle
In this section, we provide the theoretical guarantee of our policy evaluation oracle using importance sampling technique.
Definition E.1. (Importance Sampling Estimator). Let t be a positive discrete random variable with probability mass
function P(t = ⌧) = �

⌧�1(1� �), and let {(s⌧ , a⌧ , r⌧)}⌧=1,...,t be a random trajectory of length t obtained by following a
fixed ”behavioral” policy ⇡ from (s, a). The importance sampling estimator of the target policy ⇡ is:

✓
⇧t

⌧=2
⇡ (s⌧ , a⌧)

⇡ (s⌧ , a⌧)

◆
rt

1� �
.

Notice that our inner loop solves the bonus-added MDP problem, so rt is replaced by Gt in the following formula.

Gt =

8
>><

>>:

1

1� �
[rt + b(st, at)], if t � 2

1

1� �
[rt], if t = 1

Definition E.2. We define B = 3
1�� , Gmax = 2+B

(1��) , �1 = �
↵

Remark E.3. From the definition of bonus function, we know that 0  b(·, ·)  B. In addition, the random return from a
single Monte Carlo trajectory Gt

1�� has a deterministic upper bound Gmax. For a concise bound, we can assume 2Gmax W

in the following proof.
Lemma E.4. (Stability of Importance Sampling Estimator) When

k � k  
def

=
(1� �) ln 2

2 ln (1/�1) ⌘(B +W)
,

then with probability 1� �1, ✓
⇧t

⌧=2
⇡ (s⌧ , a⌧)

⇡ (s⌧ , a⌧)

◆
Gt

1� �
 2Gmax

Remark E.5. This lemma indicates that if we want to get a stable importance sampling estimator during policy evaluation
process,  should be O(

p
K) (since ⌘ has an order of O(1p

K
) by Lemma B.10).

32

Low-Switching Policy Gradient with Exploration

Proof. This lemma combines the results of Appendix G in (Zanette et al., 2021). First of all, we need to figure out the policy
form on the known set. In fact, we have the following conclusion.

8(s, a), ⇡k(a | s) = ⇡k(a | s)⇥ e
c(s,a)

P
a0 ⇡k (a0 | s) ec(s,a0)

where

c(s, a) = ⌘ ·
k�1X

i=k

[b(s, a) + fi(s, a)]

We assume k > k, then according to the algorithm,

⇡k(·|s) / ⇡k�1(·|s)e⌘[fk�1(s,·)+b(s,·)]

/ ⇡k(·|s)e⌘
Pk�1

i=k [fi(s,·)+b(s,·)]

We define

c(s, a) = ⌘ ·
k�1X

i=k

[b(s, a) + fi(s, a)]

So the desired result is obtained.
To simplify the notation, we use c to denote sup(s,a) |c(s, a)|. Then the following chain of inequalities is true.

e
�2c  e

�c

P
a0 ⇡ (a0 | s) ec 

⇡(a | s)
⇡(a | s) 

e
c(s,a)

P
a0 ⇡ (a0 | s) ec(s,a0)

 e
c

P
a0 ⇡ (a0 | s) e�c

= e
2c

So we can bound the policy ratio.

e
�2c  sup

(s,a)

⇡(a | s)
⇡(a | s)  e

2c

Notice that
⌘ ·  · (B +W) � sup

(s,a)
|c(s, a)|

Then we have
c = sup

(s,a)
|c(s, a)|  (1� �) ln 2

2 ln(1/�1)

Remember that t is small with high probability:

P(t > ↵) =
1X

t=↵+1

�
↵�1(1� �)

= �
↵

1X

t=0

�
↵(1� �)

= �
↵ def

= �1.

This implies

↵ =
ln �1
ln �

=
ln 1/�1
ln 1/�

 ln 1/�1
1� �

In the complement of the above event:

sup
(s,a)

⇡(a | s)
⇡(a | s)

!t�1

 e
2(↵�1)c  e

(↵�1)(1��) ln 2
ln(1/�1)  2.

33

Low-Switching Policy Gradient with Exploration

Then with probability at least 1� �1 if the importance sampling ratio is upper bounded

⇧t
⌧=2

⇡ (s⌧ , a⌧)

⇡ (s⌧ , a⌧)


sup
(s,a)

⇡(a | s)
⇡(a | s)

!t�1

 2

And Gt
1�� is bounded by Gmax in absolute value, which guarantees our result.

Lemma E.6. (Concentration of Width Function). If we set

1

100
✏ =

3

2
C1N · ✏stat + 20NW ✏1 +

1

2
C2 · ln

✓
NN (�F , 2✏1)

�

◆
(35)

where ✏1 denotes the function cover radius, C1, C2 is some constant defined in the following proof, ✏stat will be determined

in Lemma E.7.

Then with probalility at least 1� 1
2�, for all n 2 [N]

||�fk||2bZn  ✏ (36)

Proof. Conditioned on the Proposition C.6, we only need to prove

||�fk||2Zn  100✏ (37)

Let C (�F , 2✏1) be a cover set of �F . Then for every �f 2 �F , there exists a �g 2 C (�F , 2✏1) such that k�f �
�gk1  2✏1. Consider a fixed �g 2 C (�F , 2✏1), we define n random variables:

Xi =
1

8W 2

⇣
(�g (si, ai))

2 � E(s,a)⇠d⇡i

⇥
(�g(s, a))2

⇤⌘
, i 2 [n]

Notice that for all i 2 [n], Xi  1, Ei[Xi] = 0, and

Ei[X
2
i]  Ei[|Xi|]  Ei

"
(�g(si, ai))

2

4W 2

#
=

1

4W 2
E(s,a)⇠d⇡i (�g(s, a))2

Then by using Lemma D.1 (Bernstein for Martinglaes), we have the following inequality: With probalility at least 1� �2,

nX

i=1

Xi  c1 ⇥

vuut ln 1
�2

4W 2

nX

i=1

E(s,a)⇠d⇡i (�g(s, a))2 + c2 ⇥ ln
1

�2

which means

1

n

nX

i=1

h
(�g(si, ai))

2 � E(s,a)⇠d⇡i (�g(s, a))2
i
 c⇥

0

@

vuut ln 1
�2

n2

nX

i=1

E(s,a)⇠d⇡i (�g(s, a))2 +
1

n
ln

1

�2

1

A

We now proof that if � = C · ln
⇣

1
�2

⌘
, which C is a constant appropriate large, then

c⇥

0

@

vuut ln 1
�2

n2

nX

i=1

E(s,a)⇠d⇡i (�g(s, a))2 +
1

n
ln

1

�2

1

A  1

2

1

n

nX

i=1

E(s,a)⇠d⇡i (�g(s, a))2
!

+
�

n

!

To simplify the notation, we define A =
Pn

i=1 E(s,a)⇠d⇡i (�g(s, a))2.

34

Low-Switching Policy Gradient with Exploration

Case 1: A  � According to the selection of �, there exists constant c0, c00 appropriate small, such that

1

n
ln

✓
1

�2

◆
 c

0 ·
✓
�

n

◆

s
�

n2
ln

✓
1

�2

◆
 c

00 ·
✓
�

n

◆

Then

LHS  c⇥
 s

�

n2
ln

✓
1

�2

◆
+

1

n
ln

✓
1

�2

◆!
 c⇥ (c0 + c

00)

✓
�

n

◆
 1

2

✓
�

n
+

A

n

◆
= RHS

Case 2: A � � there also exists constant c0, c00 appropriate small, such that

1

n
ln

✓
1

�2

◆
 c

0
✓
A

n

◆

s
A

n2
ln

✓
1

�2

◆
 c

00 ·
✓
A

n

◆

Then

LHS  c⇥
 s

A

n2
ln

✓
1

�2

◆
+

1

n
ln

✓
1

�2

◆!
 c⇥ (c0 + c

00)

✓
A

n

◆
 1

2

✓
�

n
+

A

n

◆
= RHS

After taking the union bound on the function cover C(�F , 2✏1), we have the following result: With probalility at least
1�NN (�F , 2✏1)�2

def
= 1� 1

8�, by setting � = C · ln
⇣

NN (�F,2✏1)
�

⌘
, we have

8n, 8�g 2 C(�F , 2✏1),
nX

i=1

h
(�g(si, ai))

2 � E(s,a)⇠d⇡i (�g(s, a))2
i
 1

2

nX

i=1

E(s,a)⇠d⇡i (�g(s, a))2 + �

!

Next, we transform to an arbitrary function �f 2 �F . Since there exists a �g 2 C (�F , 2✏1) such that k�f ��gk1 
2✏1, we have that for all i 2 [n],

���(�f (si, ai))
2 � (�g (si, ai))

2
���

= |�f (si, ai)��g (si, ai)| · | �f (si, ai) +�g (si, ai)) | 8W ✏1

and

���E(s,a)⇠d⇡i

h
(�f(s, a))2

i
� E(s,a)⇠d⇡i

⇥
(�g(s, a))2

⇤���

 E(s,a)⇠d⇡i |�f(s, a)��g(s, a)| · |�f(s, a) +�g(s, a)|  8W ✏1

35

Low-Switching Policy Gradient with Exploration

Therefore,

nX

i=1

h
(�f(si, ai))

2 � E(s,a)⇠d⇡i (�f(s, a))2
i



�����

nX

i=1

h
(�f(si, ai))

2 � (�g(si, ai))
2
i�����+

�����

nX

i=1

h
(�g(si, ai))

2 � E(s,a)⇠d⇡i (�g(s, a))2
i�����

+

�����

nX

i=1

h
E(s,a)⇠d⇡i (�f(s, a))2 � E(s,a)⇠d⇡i (�g(s, a))2

i�����

1

2

nX

i=1

E(s,a)⇠d⇡i (�g(s, a))2 + �

!
+ 16nW ✏1

1

2

nX

i=1

E(s,a)⇠d⇡i (�f(s, a))2 + 8nW ✏1 + �

!
+ 16nW ✏1

Then,

8n 2 [N], 8�f 2 �F , ||�f ||2Zn 
3

2

nX

i=1

E(s,a)⇠d⇡i (�f(s, a))2 +
1

2
�+ 20nW ✏1

Then we have with probability at least 1� 1
8�,

k�fkk2Zn 
3

2
n · E⇢n

cov

h
(�fk)

2
i
+ 20nW ✏1 +

1

2
�, 8n 2 [N]

By Assumption 6,

E⇢n
cov

h
(�fk)

2
i
= E(s,a)⇠⇢n

cov

h
(f⇤

k (s, a)� fk(s, a))
2
i

 C ·
�
L
�
fk; ⇢

n
cov, Q

k
bn � b

n
�
� L

�
f
⇤
k ; ⇢

n
cov, Q

k
bn � b

n
��

 C · ✏stat (by Lemma E.7)

By the choice of ✏, k�ftk2Zn  100✏, 8n 2 [N] with probability at least 1 � 1
4�. Combining the above result with

Proposition C.7, we finish our proof of Lemma E.6.

Next, we give an explicit form of ✏stat as defined in the next lemma.

Lemma E.7. (Concentration of statistical error). Following the same notation as in Lemma E.6, it holds with probability at

least 1� 1
8� that

L
�
fk; ⇢

n
cov, Q

k
bn � b

n
�
� L

�
f
⇤
k ; ⇢

n
cov, Q

k
bn � b

n
�


500C ·W 4 · log
⇣

N (F,✏2)
�3

⌘

M
+ 13W 2 · ✏2,

where C, ✏0 are defined in Assumption B.6, and ✏2 > 0 denotes the function cover radius which will be determined later.

Proof. This proof builds on Feng et al. (2021)’s Lemma C.4, but deals with the concentration of importance sampling estima-
tor. First note that in the loss function, the expectation has a nested structure: the outer expectation is taken over (s, a) ⇠ ⇢

n
cov

and the inner conditional expectation is Qk
bn(s, a) = E⇡k

⇥P1
h=0 �

h (r (sh, ah) + b
n (sh, ah)) | (s0, a0) = (s, a)

⇤
given

a sample of (s, a) ⇠ ⇢
n
cov . To simplify the notation, we use x to denote (s, a), y | x for an unbiased sample of

Q
k
bn(s, a)� b

n(s, a) through importance sampling, and ⌫ for ⇢ncov , the marginal distribution over x, then the loss function
can be recast as

36

Low-Switching Policy Gradient with Exploration

Ex⇠⌫

h
(fk(x)� E[y | x])2

i
:= L

�
fk; ⇢

n
cov , Q

k
bn � b

n
�

Ex⇠⌫

h
(f⇤

k (x)� E[y | x])2
i
:= L

�
f
⇤
k ; ⇢

n
cov , Q

k
bn � b

n
�

In particular, fk can be rewritten as

fk 2 argmin
f2F

MX

i=1

(f (xi)� yi)
2
,

where (xi, yi) are drawn i.i.d.: xi is generated following the marginal distribution ⌫ and yi is generated conditioned on xi.

Note that yi is collected by importance sampling estimator, which does not necessarily come from Monte Carlo sampling.
However, in the latest time when the agent interacts with the environment, the samples are drawn i.i.d., which guaranteed
the same property for the importance sampling process.

For any function f , we have:

Ex,y

h
(fk(x)� y)2

i

=Ex,y

h
(fk(x)� E[y | x])2

i
+ Ex,y

⇥
(E[y | x]� y)2

⇤
+ 2Ex,y [(fk(x)� E[y | x]) (E[y | x]� y)]

=Ex,y

h
(fk(x)� E[y | x])2

i
+ Ex,y

⇥
(E[y | x]� y)2

⇤
,

where the last step follows from the cross term being zero. Thus we can rewrite the generalization error as

Ex

h
(fk(x)� E[y | x])2

i
� Ex

h
(f⇤

k (x)� E[y | x])2
i

=Ex,y (fk(x)� y)2 � Ex,y (f
⇤
k (x)� y)2 .

Next, we establish a concentration bound on fk. Since fk depends on the training set {(xi, yi)}Mi=1, as discussed in
Lemma B.9, we use a function cover on F for a uniform convergence argument. We denote by F

n
k the �-algebra

generated by randomness before epoch n iteration k. Recall that f⇤
k 2 argminf2F L

�
f ; ⇢ncov, Q

k
bn � b

n
�
. Conditioning on

F
n
k , ⇢

n
cov, Q

k
bn � b

n, and f
⇤
k are all deterministic. For any f 2 F , we define

Zi(f) := (f (xi)� yi)
2 � (f⇤

k (xi)� yi)
2
, i 2 [M]

Then Z1(f), . . . , ZM (f) are i.i.d. random variables and notice that yi is drawn from importance sampling estimator. From
Lemma E.4, we know that with probability at least 1�M�1, yi  2Gmax W, i 2 [M].

Conditioned on this event, we have

V [Zk(f) | Fn
k]  E

⇥
Zi(f)

2 | Fn
k

⇤

= E
⇣

(f (xi)� yi)
2 � (f⇤

k (xi)� yi)
2
⌘2

| Fn
k

�

= E
h
(f (xi)� f

⇤
k (xi))

2 · (f (xi) + f
⇤
k (xi)� 2yi)

2 | Fn
k

i

 36W 4 · E
h
(f (xi)� f

⇤
k (xi))

2 | Fn
k

i

 36W 4 · (C · E [Zi(f) | Fn
k])

37

Low-Switching Policy Gradient with Exploration

where the last inequality is by Assumption B.6. Next, we apply Bernstein’s inequality on the function cover C (F , ✏2) and
take the union bound. Specifically, with probability at least 1� �3, for all g 2 C (F , ✏2),

E [Zi(g) | Fn
k]�

1

M

MX

i=1

Zi(g)



s
2V [Zi(g) | Fn

k] · log
N (F,,✏2)

�3

M
+

12W 4 · log N (F,,✏2)
�3

M



s
72W 4 (C · E [Zi(g) | Fn

k]) · log
N (F,✏2)

�3

M
+

12W 4 · log N (F,✏2)
�3

M
.

For ft, there exists g 2 C (F , ✏2) such that kfk � gk1  ✏2 and

|Zi (fk)� Zi(g)| =
���(fk (xi)� yi)

2 � (g (xi)� yi)
2
���

= |fk (xi)� g (xi)| · |fk (xi) + g (xi)� 2yi|  6W 2
✏2.

Therefore, with probability at least 1� �3,

E [Zi (fk) | Fn
k]�

1

M

MX

i=1

Zi (fk)

 E [Zi(g) | Fn
k]�

1

M

MX

i=1

Zi(g) + 12W 2
✏2



s
72W 4 (C · E [Zi(g) | Fn

k]) log
N (F,✏2)

�3

M
+

12W 4 log N (F,✏2)
�3

M
+ 12W 2

✏2



s
72W 4 (C · E [Zi(fk) | Fn

k] + 6CW 2✏2) log
N (F,✏2)

�3

M
+

12W 4 log N (F,✏2)
�3

M
+ 12W 2

✏2.

Since fk is an empirical minimizer, we have 1
M

PM
i=1 Zi (fk)  0. Thus,

E [Zi (fk) | Fn
k] 

r
72W 4(C·E[Zi(fk)|Fn

k]+6CW 2✏2) log N(F,✏2)
�3

M +
12W 4 log

N(F,✏2)
�3

M + 12W 2
✏2.

Solving the above inequality with quadratic formula and using
p
a+ b 

p
a+
p
b,
p
ab  a/2+ b/2 for a > 0, b > 0, we

obtain

E [Zi (fk) | Fn
k] 

500C ·W 4 · log N (F,✏2)
�3

M
+ 13W 2 · ✏2

Since the right-hand side is a constant, through taking another expectation, we have

E [Zi (fk)] 
500C ·W 4 · log N (F,✏2)

�3

M
+ 13W 2 · ✏2.

Notice that E [Zi (fk)] = L
�
fk; ⇢ncov, Q

k
bn � b

n
�
� L

�
f
⇤
k ; ⇢

n
cov, Q

k
bn � b

n
�
.

Finally, we let (1�M�1)(1� �3) � 1� 1
8� , so the desired result is obtained.

Lemma E.8. (One-sided error). With probability at least 1� �
2 it holds that

8n 2 [N], 8k 2 {0, · · · ,K � 1}, 8(s, a) 2 Kn : 0  Q
k,⇤
bn (s, a)� bQk

bn(s, a)  2bn!(s, a) (38)

38

Low-Switching Policy Gradient with Exploration

Proof. When (s, a) 2 Kn,
bQk
bn(s, a) = fk(s, a) + b

n
!(s, a)

Q
k,⇤
bn (s, a) = f

⇤
k (s, a) + b

n(s, a) = f
⇤
k (s, a) + 2bn!(s, a)

Then,
|Qk,⇤

bn (s, a)� bQk
bn(s, a)� b

n
!(s, a)| = |f⇤

k (s, a)� fk(s, a)| = |�fk(s, a)|

According to Lemma E.6, with probability at least 1� 1
2� , ||�fk||2bZn

 ✏, 8n 2 [N]

Using the definition of bn!(s, a), we have

|�fk(s, a)|  !(bFn
, s, a)  b

n
!(s, a) (� < 1)

Finally, Lemma E.8 concludes.

F. Limitation of Previous Implementations
Note that we do not compare our method directly with implementations in (Agarwal et al., 2020a; Feng et al., 2021), as
we discovered some limitations presented in their implementations. We show our insights in this section and provide an
empirical evaluation of the quality of implementations of our algorithm and previous ones.

Observation normalization is also very crucial for on-policy algorithms, but it is missing in those implementations. For
the MountainCar environment, we find that the difficulty is not from the exploration problem, but from the ill-shaped
observation. In their experiments, PPO-based exploration algorithms take up to 10k episodes to learn a near-optimal
policy in MountainCar environment, however, with a running mean-std observation normalization, it only takes PPO-based
algorithms a few episodes to learn the task.

Furthermore, both of their implementations strictly follow the theoretical algorithms and use a “Roll-In” mechanism in
order to get the previous distribution ⇢. Although a recent study (Li et al., 2022) shows evidence of leveraging the “Roll-In”
mechanism in single-task RL problems for the off-policy algorithms, it still remains unknown whether such mechanism
benefits on-policy algorithms in single-task RL problems. In our experiment, we find that PC-PG or ENIAC with “Roll-In”
does not provide efficiency compared to its counterpart variant. We hypothesize that it is because the stochasticity of PPO
and the environment is enough for the policy itself to recover the state distribution, thus the additionally introduced “Roll-In”
is not needed.

Additionally, experiments from previous works (Agarwal et al., 2020a; Feng et al., 2021) compared exploration capability
with RND, the current state-of-the-art algorithm on Montezuma’s Revenge (Bellemare et al., 2013; Burda et al., 2018).
However, we find there is some discrepancy between their implementation and the original implementation of RND. Most
importantly, their implementation does not use next state s

0 to determine the intrinsic reward of state action pair (s, a). The
reason why this is crucial is that using s

0 to determine the intrinsic reward integrates the novelty of the (s, a) while using s

will lose the information of the action.

To demonstrate our point, we tested the original implementation of (Agarwal et al., 2020a; Feng et al., 2021) on Moun-
tainCarContinuous with running observation normalization (for all running algorithms). With observation normalization,
our implemented algorithms easily learn the task within 10000 steps, significantly better than results reported in (Agarwal
et al., 2020a; Feng et al., 2021). Moreover, we also test their implementations along with observation normalization. The
performance of their implementations does not improve much over the course of 10000 steps, which demonstrates our point
that their “Roll-In” mechanism may not provide efficiency.

Our implementations (Raffin et al., 2021), including RND and PPO, succeed to find rewards in the environments, while
implementations from previous works do not. The result is shown in Figure 2.

39

Low-Switching Policy Gradient with Exploration

G. Hyperparameters
We implemented our method based on the open source package (Raffin et al., 2021), and the performance of PPO is obtained
by running the built-in implemented PPO. Following (Burda et al., 2018), we use smaller batch size (compared to 64 in
standard MuJoCo environment (Schulman et al., 2017)), specifically 32 in SparseHopper and 16 in SparseWalker2d and
SparseHalfCheetah. The detailed hyperparameters are showed in the table G.

Hyperparameter Value (LPO, ENIAC) Value (PPO)

N 2048 2048
T 2e6 2e6
� 0.95 0.95

�
(int) 0.999 -

�
(ext) 0.99 0.99
↵ 2 -
� 1 -

Learning rate 1e-4 1e-4
Batch size 32, 16 32, 16

Number of epoch per iteration 10 10

40

