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ABSTRACT

We theoretically study lifelong reinforcement learning (RL) with linear representa-
tion in a regret minimization setting. The goal of the agent is to learn a multi-task
policy based on a linear representation while solving a sequence of tasks that may
be adaptively chosen based on the agent’s past behaviors. We frame the problem as
a linearly parameterized contextual Markov decision process (MDP), where each
task is specified by a context and the transition dynamics is context-independent,
and we introduce a new completeness-style assumption on the representation which
is sufficient to ensure the optimal multi-task policy is realizable under the linear
representation. Under this assumption, we propose an algorithm, called UCB Life-
long Value Distillation (UCBIvd), that provably achieves sublinear regret for any
sequence of tasks while using only sublinear planning calls. Specifically, for K task
episodes of horizon H, our algorithm has a regret bound O(+/(d3 + d'd)H*K)
based on O(dH log(K)) number of planning calls, where d and d’ are the feature
dimensions of the dynamics and rewards, respectively. This theoretical guarantee
implies that our algorithm can enable a lifelong learning agent to learn to internalize
experiences into a multi-task policy and rapidly solve new tasks.

1 INTRODUCTION

Recently, there has been a surging interest in designing lifelong learning agents that can continuously
learn to solve multiple sequential decision making problems in their lifetimes (I'hrun & Mitchell|
1995; [Khetarpal et al.| [2020; |Silver et al., 2013} |Xie & Finn| [2021). This scenario is in particular
motivated by building multi-purpose embodied intelligence, such as robots working in a weakly
structured environment (Roy et al.,2021). Typically, curating all tasks beforehand for such problems
is nearly infeasible, and the problems the agent is tasked with may be adaptively selected based on the
agent’s past behaviors. Consider a household robot as an example. Since each household is unique, it
is difficult to anticipate upfront all scenarios the robot would encounter. Moreover, the tasks the robot
faces are not independent and identically distributed (i.i.d.). Instead, what the robot has done before
can affect the next task and its starting state; e.g., if the robot fails to bring a glass of water and breaks
it, then the user is likely to command the robot to clean up the mess. Thus, it is critical that the agent
continuously improves and generalizes learned abilities to different tasks, regardless of their order.

In this work, we theoretically study lifelong reinforcement learning (RL) in a regret minimization
setting (Thrun & Mitchell, [1995; |Ammar et al.,2015), where the agent needs to solve a sequence
of tasks using rewards in an unknown environment while balancing exploration and exploitation.
Motivated by the embodied intelligence scenario, we suppose that tasks differ in rewards, but share
the same state and action spaces and transition dynamics (Xie & Finn|[2021)).To be realistic, we make
no assumptions on how the tasks and initial states are selectecﬂ; generally we allow them to be chosen
from a continuous set by an adversary based on the agent’s past behaviors. Once a task is specified

"We adopt a stricter definition of lifelong RL here to distinguish it from multi-task RL, while there are
existing works on lifelong RL (e.g. Brunskill & Li|(2014); [Lecarpentier et al.|(2021)) assuming i.i.d. tasks.
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and revealed, the agent has one chance (i.e., executing one rollout from its current state) to complete
the task and then it moves to the next task.

The agent’s goal is to perform near optimally for the tasks it faces, despite the online nature of the
problem. This means that the accumulated regret of the learner compared with the best policy for
each task should be sublinear in its lifetime. We assume that there is no memory constraint; this
is usually the case for robotics applications where real-world interactions are the main bottleneck
(Xie & Finn, 2021). Nonetheless, we require that the agent eventually learns to make decisions
without frequent deliberate planning, because planning is time consuming and creates undesirable
wait time for user-interactive scenarios. In other words, the agent needs to learn a multi-task policy,
generalizing from not only past samples but also past computation, to solve new tasks.

Formally, we consider an episodic setup based on the framework of contextual Markov decision
process (CMDP) (Abbasi-Yadkori & Neu, [2014; Hallak et al., | 2015). It repeats the following steps:
1) At the beginning of an episode, the agent is set to an initial state and receives a context specifying
the task reward, both of which can be arbitrarily chosen. 2) When needed, the agent uses its past
experiences to plan for the current task. 3) The agent runs a policy in the environment for a fixed
horizon in an attempt to solve the assigned task and gains experience from its policy execution. The
agent’s performance is measured as the regret with respect to the optimal policy of the corresponding
task. We require that, for any task sequence, both the agent’s overall regret and number of planning
calls to be sublinear in the number of episodes.

While lifelong RL is not new, the realistic need of simultaneously achieving /) sublinear regret and
2) sublinear number of planning calls for 3) a potentially adversarial sequence of tasks and initial
states makes the setup considered here particularly challenging. To our knowledge, existing works
only address a strict subset of these requirements; especially, the computation aspect is often ignored.
Most provable works in lifelong RL make the assumption that the tasks are finitely many (Ammar
et al., 2015;Zhan et al.,|2017; Brunskill & Li,2015), or are i.i.d. (Ammar et al.,2014; Brunskill &
Li1,[2014; Abel et al., [2018azb; |Lecarpentier et al., 2021), while others considering similar setups to
ours do not provide regret guarantees (Isele et al., 2016;|Xie & Finn}2021). On the technical side, the
closest lines of work are Modi & Tewari (2020); |Abbasi-Yadkori & Neu (2014); [Hallak et al.|(2015);
Modi et al.|(2018); Kakade et al. (2020) for contextual MDP and |Wu et al. (2021); |Abels et al. (2019)
for the dynamic setting of multi-objective RL, which study the sample complexity for arbitrary task
sequences; however, they either assume the problem is tabular or require a model-based planning
oracle with unknown complexity. Importantly, none of the existing works properly addresses the need
of sublinear planning calls, which creates a large gap between the abstract setup and practice need.

In this paper, we aim to establish a foundation for designing agents meeting these three practically
important requirements, a problem which has been overlooked in the literature. As the first step, here
we study lifelong RL with linear representation. We suppose that the contextual MDP is linearly
parameterized (Yang & Wang, [2019; Jin et al., 2020) and the agent needs to learn a multi-task
policy based on this linear representation. To make this possible, we introduce a new completeness-
style assumption on the representation which is sufficient to ensure the optimal multi-task policy is
realizable under the linear representation. Under these assumptions, we propose the first provably
efficient lifelong RL algorithm, Upper Confidence Bound Lifelong Value Distillation (UCBIvd,
pronounced as “UC Boulevard”), that possesses all three desired qualities. Specifically, for K episodes
of horizon H, we prove a regret bound O(+/(d?® + d'd)H*K) using O(dH log(K)) planning calls,
where d and d’ are the feature dimensions of the dynamics and rewards, respectively.

From a high-level viewpoint, UCBIlvd uses a linear structure to identify what to transfer and operates
by interleaving /) independent planning for a set of representative tasks and 2) distilling the planned
results into a multi-task value-based policy. UCBIlvd also constantly monitors whether the new
experiences it gained are sufficiently significant, based on a doubling schedule, to avoid unnecessary
planning. On the technical side, UCBIvd’s design is inspired by single-task LSVI-UCB (Jin et al.,
2020), however, we introduce a novel distillation step based on QCQP, along with a new completeness
assumption, to enable computation sharing across tasks; we also extend the low-switching cost
technique (Abbasi-Yadkori et al.| [2011;|Gao et al.,|2021; Wang et al.,|2021) for single-task RL to the
lifelong setup to achieve sublinear number of planning calls.

Notation. Throughout the paper, we use lower-case letters for scalars, lower-case bold letters for
vectors, and upper-case bold letters for matrices. The Euclidean-norm of x is denoted by ||x||,. We

denote the transpose of a vector x by x '. For any vectors x and y, we use (x,y) to denote their
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inner product. We denote the Kronecker product by A ® B. Let A € R%*? be a positive definite

and v € R%. The weighted 2-norm of v with respect to A is defined by |||, := Vv T Av. Fora
positive integer n, [n] denotes the {1, 2, ...,n}. For areal number «, we denote {a} T = max{«, 0}.

Finally, we use the notation O for big-O notation that ignores logarithmic factors.
2 PRELIMINARIES

We formulate lifelong RL as a regret minimization problem in contextual MDP (Abbasi-Yadkor1 &
Neu, |2014; Hallak et al.,[2015) with adversarial context and initial state sequences. We suppose that
a context determines the task reward but does not affect the dynamics. Such a context dependency is
common for the lifelong learning scenario where an embodied agent consecutively solves multiple
tasks. Below we give the formal problem definition.

Finite-horizon contextual MDP. We consider a finite-horizon contextual MDP denoted by M =
(S, A, W, H,P,r), where S is the state space, A is the action space, W is the task context space, H is
the horizon (length of each episode), P = {P, }}._, are the transition probabilities, and 7 = {r, }/L
are the reward functions. We allow S and W to be continuous or infinitely large, while we assume
A is finite such that max,e 4 can be performed easily. For h € [H], ry (s, a, w) denotes the reward
function whose range is assumed to be in [0, 1], and Py, (s'|s, a) denotes the probability of transitioning
to state s’ upon playing action « at state s. In short, a contextual MDP can be viewed as an MDP
with state space S x W and action space .A where the context part of the state remains constant in an
episode To simplify the notation, for any function f, we write P [f](s, a) == Eyup, (|s,0)[f(5')]-

Policy and value functions. In a finite-horizon contextual MDP, a policy © = {ﬂ'h}thl is a sequence
where 7, : SXW — A determines the agent’s action at time-step h. Given 7, we define its state value
function as V;™ (s, w) = E[Zf’:h rh (Snr, T (7, w), w)|s, = s| and its action-value function
as QF (s,a,w) = rp(s,a,w) + Pp[V;7 1 (., w)](s,a), where QF,, = 0. We denote the optimal
policy as 77 (s, w) = sup, V;7(s,w), and let V;* := V;™ and Q} := QF denote the optimal value
functions. Lastly, we recall the Bellman equation of the optimal policy:

Qh(s,a,w) = rp(s,a,w) + Pp[Viy 1 (L w)](s,a), Vi(s,w) = r;leaj(Q,*L(s, a,w). (D

Interaction protocol of lifelong RL. The agent interacts with a contextual MDP M in episodes.
For presentation simplicity, we assume that the reward functions r are known, while the transition
probabilities P are unknown and must be learned online; we will discuss how reward learning can be
naturally incorporated in Section4.3. At the beginning of episode k, the agent receives a task context
wk € W and is set to an initial state s¥, both of which can be adversarially chosen. The agent can
use past experiences to plan for the current task, if needed. Then the agent executes its policy 7*: at

each time-step i € [H], it observes the state s¥, plays an action a¥ = 7% (s, w*), observes a reward

i = rp(sf, af, w"), and goes to the next state sy, | according to Pj,(.|s}, af). Let K be the total

number of episodes. The agent’s goal is to achieve sublinear regret, where the regret is defined as
Ric = Y20 Vi (st wh) = Vi7" (sh, wh). 2)

As the comparator policy above (namely 7* that defines V") also knows the task context, achieving
sublinear regret implies that the agent would attain near task-specific optimal performance on average.

Linear Model Representation. We focus on MDPs with linear transition kernels and reward
functions (Jin et al.||2020; |Yang & Wang, 2019) that are encapsulated in the following assumption.
Assumption 1 (Linear MDPs). M = (S, A, H,P,r,W) is a linear MDP with feature maps ¢ :
SxA - Rlandp : S x AxW — RY. That is, for any h € [H], there exist a vector
0y, and d measures p;, = [V, ..., 1y DT over S such that Pp(.|s,a) = {(p,(.), d(s,a))
and ry,(s,a,w) = <nh,1,b(s,a,w)>, Sor all (s,a,w) € § x A x W. Without loss of generality,
oG, 0], < L [[#(s.a,w), < L[], < V. and|myll, < V& for all (s,a,w,h)
Sx AxW x [H].

In real-world problems, we can use the context to model the task specification of a problem. For
example, if we want to design household robots to assist humans with a series of tasks like cooking,
cleaning, washing dishes, lawn mowing, vacuuming, we can treat the the context as a natural language

’In general, a context-dependent dynamics would take the form Py, (s'|s, a, w).
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instruction that the human user would give to the robot, and we can view the representations ) and ¢
as the embedding of a deep neural network model that has been pre-trained.

Example 1 (Weighted Rewards). An interesting and common special case is P (s, a,w) = ¢(s,a) ®
p(w), for some mapping p : W — R™. In this case, it holds that ' = md and ry(s,a,w) =
(p(w), (s, a)), where ry(s,a) = App(s,a) € R™, for some Aj, € R™*4, is the vector reward
functions at time-step h. We can view rp(s,a,w) as a weighted reward with weights p(w) that
depend on task w. This setting is closely related to Multi-Objective RL studied for tabular case in|Wu
et al.|(2021), which studies the case where p(w) = w € R™ along with tabular S and A.

3 A WARM-UP ALGORITHM FOR LIFELONG RL

We first present a warm-up algorithm based on linear representation, termed Lifelong Least-Squares
Value Iteration (Lifelong-LSVI), in Algorithm [I} which is a straightforward extension of the single-
task LSVI-UCB algorithm proposed by Jin et al.[(2020) to the lifelong learning setting. The motivation
of this warm-up algorithm is to give intuitions on how the problem structure in Assumption I]can be
used to achieve small regret and discuss the computational difficulty in lifelong learning.

We will show that Lifelong-LSVI has a sublinear regret bound, which matches the minimax optimal
rate in the special case studied by |[Wu et al. (2021) in terms of number of objectives, m (see Example
[[). However, we will also show that Lifelong-LSVI is not computationally efficient, in the sense
that the number of planning calls it requires grows linearly with the number of episodes, which
would mean the overall computational complexity grows quadratically. This high computation cost is
because the agent never learns to internalize the task solving skills but requires going though all past
experiences for planning every time a new task arrives. Importantly, we will discuss why it cannot be
made computationally efficient in an easy manner without further assumptions on the representation.
This drawback motivates our new completeness assumption and our main algorithm, UCBIlvd, which
is provably efficient in terms of both regret and number of planning calls, in Section ]

We remark that Lifelong-LSVI is only a warm-up algorithm that guides the reader to understand the
mechanisms used for addressing the problem, motivates the need for UCBIvd, and shows what regret
bound is possible when computational complexity is not a concern (though being impractical).

3.1 ALGORITHMIC NOTATIONS

To begin, we introduce the template and the notations that will be used commonly in presenting the
warm-up algorithm, Lifelong-LSVI, and later our main algorithm, UCBIlvd. For each algorithm, first
we will define an algorithm-specific action-value function QZ : S x A x W — R, which determines
the agent’s policy at time-step h in episode k; then we present the full algorithm and its analysis
using the quantities below, which are defined with respect to each algorithm’s definition of Q¥ .

Given { Qﬁ} nelH]» We define state value functions and their backups as

Vi) = i { Qw050 = [ VLG (), O
@ S
Thanks to the linear MDP structure in Assumption [T} it holds that
Po [V ()| (s,0) = (65 (w), é(s,a) ) @)
Let A > 0 be a constant. We define the A\-regularized least squares estimator of BZ(w) as
k—1 k—1
Kk -t T T / T 4T
0 (w) = (AF) D" @7V (70, w), where Af == ALu+ > o767 )
T=1 T=1

~k _
and 0, (w) is the solution to mingcpa Zf;((@, @(sh.ap)) — VE L (s],1,w))% + A0
¢(s7,a7), and I; € R4 is the identity matrix.

2
2 (b; =

3.2 DETAILS OF LIFELONG-LSVI AND ITS THEORETICAL GUARANTEES

We define the upper confidence bound (UCB) style action-value function of Lifelong-LSVT as follows:

Qh(s.0,0) = (o) + (B 0), 0060 ) + 810060 g+ ©
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Algorithm 1: Lifelong-LSVI
Set: Q% ,(.,.,.) =0, Vk € [K]
for episodes k =1,..., K do
Observe the initial state s} and the task context w*.
for time-steps h = H,...,1do
~k
L Compute 8, (w") as in (3) using Q}, ; defined in (6).

for time-steps h = 1,..., H do

Compute Q¥ (55, a, w) for all a € A as in (6).

Play ) = argmax,c 4 Q} (s, a,w") and observe sy, , and r}.

~k
where Q%,,, = 0 and 6, (w) and A}’ are defined in (5). Here, § is an exploration factor that will be
appropriately chosen in Theorem At episode k, given w*, Lifelong-LSVI first performs plannirll_f

backward in time based on past data to compute éﬁ(wk) in (3) using Q¥ 1 defined in (6) (Lines 4-

. N ~k
. Then, in execution, it uses @), (w*) to compute Q¥ (s¥, a,w") for the current state and all a € A
(Line[7) and executes the action with the highest value (Line [g).

We show that Lifelong-LSVI achieves sublinear regret for our lifelong RL setup. The complete proof
is reported in Appx. [A; which follows the ideas of LSVI-UCB (Jin et al.|[2020).

Theorem 1. Let T = K H. Under Assumption[l, there exists an absolute constant ¢ > 0 such that

Sor any fixed § € (0,0.5), if we set A\ = 1 and 8 = cH <d + \/J) V/log(dd'T/d) in Algorithm|z,
then with probability at least 1 — 26, it holds that Rz < O ( (d® + dd’)H3T>.

Before introducing our main algorithm in Section[d} we make a few remarks on the regret and number
of planning calls of Lifelong-LSVI. First, Theorem [T|implies that for the special case studied by Wu
et al.| (2021) (Example E), the regret bound of Lifelong-LSVI becomes O(v'md3 H3T). This rate
is optimal in terms of its dependency on m, as shown in|Wu et al. (2021). Furthermore, this rate
matches the LSVI-UCB’s regret dependencies on d and H for the single-task setting (Jin et al.} [2020).

~k
While Lifelong-LSVI has a decent regret guarantee, it requires computing 8, (w*) for all h € [H],
whenever a distinct new task w” arrives. Since the number of unique tasks may be as large as K, the
total number of planning calls required in Lifelong-LSVI is K in the worst case.

Unfortunately, the number of planning calls of Lifelong-LSVI cannot be easily improved, because
under Assumption alone, the optimal Q-function Q7 (s, a, w) of the CMDP can be nonlinear in the
representation ). As a result, for any algorithm that represents its policy linearly based on both )
and ¢, in general it is necessary to recompute the coefficients for every new w to be optimal. For

~k
Lifelong-LSVI specifically, this nonlinear dependency shows up in 6, (w) of Q¥ (s, a, w) in (6).

In the next section, we discuss how placing a completeness-style assumption, which ensures
Q;(s,a,w) can be linearly parameterized by 1, would circumvent the issue of non-linear de-
pendency of the action-value functions on w, and consequently would enable computation sharing to
decrease the number of planning calls to O(dH log(K)).

4 UCB LIFELONG VALUE DISTILLATION (UCBLVD)

In this section, we present our main algorithm, UCB Lifelong Value Distillation (UCBIvd), in
Algorithm [2. Under new completeness-style assumption that we will introduce in Section [4.1]
we show that UCBIlvd shares the same regret bound as Lifelong-LSVI but significantly reduces
the number of planning calls to be logarithmic in K. In contrast to Lifelong-LSVI which learns
individual action-value function for each w®, UCBIvd learns a single action-value function for all
w € Y based on 9(s, a, w) to enable computation sharing across tasks, which is made possible by
the extra completeness-style assumption. In general, in order to directly extend Lifelong-LSVI to only
use feature (s, a, w) € RY with d’ > d, we need a context-dependent dynamics structure, which
would eventually increase the regret. UCBlvd maintains the same order of regret as Lifelong-LSVI
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by separating the planning into a novel two-step process: /) independent planning with ¢ for a set
of representative task contexts and 2) distilling the planned results into a multi-task value function
parameterized by %). In addition, UCBIlvd runs a doubling schedule to decide whether replanning is
necessary, which makes the total number of planning calls logarithmic in K.

4.1 ENABLING COMPUTATION SHARING

As lifelong RL with Assumption [T alone would require replanning in every episode in general (see
Section [3), here we introduce new structural assumptions on ¢ to enable computation sharing across
tasks. First, we define the following class of functions

+ ’
f—{f : f(s,w) :min{max{(u,w(s,a,w» +,3H¢(S,a)||A71} ,H} veRY AeSi, g> O}

acA

where Si . denotes the set of symmetric positive definite matrices. We now state our main
completeness-style assumption.

Assumption 2 (Completeness). For any [ € F and h € [H|, there exists a vector Ei e R with

H{ﬁH < HVd' such that Py, [f(.,w)] (s,a) = <££,1,b(s,a,w)>.

This assumption says that the backups of functions in F are captured by the feature ¢y with bounded
parameters. The definition of F closely models the structure of action-value function used by

Lifelong-LSVI in (6), except (éZ(w), ¢ (s, a)) there is replaced by functions linear in ¥ (s, a, w). We
will see that the action-value function used by UCBIlvd defined in the next section is contained in
F. In addition, by setting 8 = 0 in F and (I, we see Q;,(s, a, w) is linearly realizable by 1) under
Assumption [2. We note that a similar notion of this assumption is mentioned in previous work for
single-task settings under the name of “optimistic closure” (Wang et al., 2020).

Inspired by Example 1] we now introduce the next assumption on the structure of 1.

Assumption 3 (Mappings). We assume ¥ (s, a,w) = ¢(s,a) ® p(w), for some mapping p : W —
R™, i.e., d = md. We assume that there is a known set {w") w® ... w™} of n < m task
contexts such that p(w) € Span({p(w'9))};c(n)) for allw € W. That is, for any w € W, there exist
coefficients {c;j(w)} je[n) such that p(w) = 31, cj(w)p(w)). We assume 2 e |cj(w)] < L
forall w € W and some L < 0.

Note that, for finite-dimensional representations, such set { p(w®))} je[n) always exists. We assume
that this set {w™,w® ... w(™} is known to the algorithm

4.2 DETAILS OF UCBLVD

We define the UCB style action-value function of UCBIvd as follows:

+
Q’,?L(s,a,w) = {rh(&a,w) + <éi,'¢(s7a7w)> + 2L5H¢(S7CL)H(A;§)1} . @)

K
The parameter &, is computed by solving the convex quadratically constrained quadratic program
(QCQP) in (), which is defined on a set of representative task contexts {w,w® ... w(™} in
Assumption 3|and state-action pairs D := {(s, a) : ¢(s, a) are d linearly independent vectors. }.

~ ~k(d . . 2
& 10, Ve = argmin 303 (09, 6(5,0)) — (€ %5, au?)) ®)

€{09}, () j€ln] (s.0)eD

s.t. <p,Vjen| and |[&|, <HVmd,

k
Ah

’9@) g )

~k . . . ..
where 0, (w) and AZ are defined in (3)). In Appx. we will show that the action-value function in
(7) is an optimistic estimate of the optimal action-value function.

UCBIvd also uses the linear dependency of Q’,j on 1) to reduce calls of the planning step in (8). The
agent triggers replanning only when it has gathered enough new information compared to the last
update at episode k. This is measured by tracking the variations in Gram matrices {Aﬁ} nepm) (Line
|4 for Algorithm [2). Finaﬁ, when executing the policy at episode k, the agent chooses the action

according to QF in Line
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Algorithm 2: UCBIvd (UCB Lifelong Value Distillation)
Set: Q% (.,.,.)=0,Vk e [K], k=1

for episodes k =1,..., K do

Observe the initial state s¥ and the task context w*.

if 3h € [H] such that log det A}, —logdet Aj; > 1 then
k=k

for time-steps h = H,...,1do

“k .
Compute &}, as in (8).

for time-steps h = 1,..., H do
Compute Q¥ (s5, a, w”) forall a € A as in (7).

Play af = argmax,c 4 Q¥ (sF, a,w") and observe stH and 7.

4.3 THEORETICAL ANALYSIS OF UCBLVD

We present our main theoretical result which shows UCBIvd achieves sublinear regret in lifelong RL
using sublinear number of planning calls, for any sequence of tasks. The proof is given in Appx. B}

Theorem 2. Let T = K H. Under Assumptions|[I| 2| and[3] the number of planning calls in Algorithm

IZ is at most dH log(1 + %), and there exists an absolute constant ¢ > 0 such that for any fixed

d € (0,0.5), if we set \ = 1 and B = cH(d + vmd)+/log(mdT/d) in Algorithmlz then with
probability at least 1 — 26, it holds that R < O (L @+ md2)H3T).

Theorem [2 shows that UCBIvd has the same regret bound as Lifelong-LSVI in Theorem [T, but
reduces the number of planning calls from K to dH log(1 + K/d\). As we discussed before, this is
made possible by the unique QCQP-based distillation step of UCBIvd in (8). If we were to simply

~k ~ .
perform least-squares regression to fit (¢ (s, a, w), &) to {{&(s, a), HZ(w(J))}je[n] for distillation,

~k
we cannot guarantee the required optimism, because (¢(s,a), 8, (w)) computed based on finite
samples can be an irregular function that cannot be modelled by (s, a, w).

Remark 1. If the rewards are unknown, we can adopt a slightly different completeness assumption
with an extra bonus in terms of 1, and then combine tools from linear bandits (Abbasi-Yadkori et al.,
2011) and our proof of Theorem[2. Because reward learning affects the radius of the confidence
intervals for Hf;(w), the number of planning calls and regret would increase by factors of O(m) and
(’)(\/ﬁ) respectively, compared to those in Theorem |2} See Appx. |Clfor details.

Remark 2. It is possible to eliminate the assumption that ¥ (s, a, w) = ¢(s,a) @ p(w). In this case,
our analysis would instead require a set {w™ ,w® ... w™} of n tasks such that (s, a,w) €
Span({v (s, a,w9)} ;e for all (s,a,w) € S x Ax W. In Appx.’g we provide details of this
relaxation, and show that this version still enjoys the same planning calls and regret as in Theorem 2]
Remark 3. We can eliminate Assumptions [I and [3 and instead design a computation-sharing

version of Lifelong-LSVI under a sightly different completeness assumption with a class F, whose

exploration bonus is BHi/J(s, a,w) HA’I‘ This assumption naturally includes settings with linear MDP
in which dynamics also change with task context, i.e., for all h € [H], it holds that Py (.|s, a, w) =
(pr, (), (s, a,w)) for d' unknown measures [ug), . ,uéd )]T. Under this assumption, a slightly

modified version of Lifelong-LSVI would use Qf(s,a,w) = {rp(s,a,w) + (D (s, a,w)) +
~ Ry k=17 . - -
ﬁHlp(s,a,w)H(A:),l}*, where V’fL = (A,) "' Y02 p. min{max,e 4 Qﬁﬂ(shﬂ, a,w™), H},

~k _ ~
Ay =Ny + 5T abiaph |, b = (st af, w™), and 3 = O(d'). However; in Appx. E, we show
how these new algorithm and assumption result in O(mdH ) number of planning calls and a regret

3While for both settings in this remark and Remark the action-value functions contain exploration bonus
in terms of 1), the regret here is better by a factor of \/m and this is because the multiplicative factor 8 here
saves a factor v/m compared to that in Remark@
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scaling with O(N'm3d3) for settings with (s, a,w) = ¢(s,a) @ p(w). These are worse than the
number of planning calls and regret in Theoremof UCBIvd by a factor of O(m).

Remark 4. A natural follow-up relaxation of Assumption[2|is when the equality holds up to an error of
(. In Appx. E, we show that this relaxation results in a regret o (\/ mdT'¢ + \/ Ad® +md?)H BT)

and the same number of planning calls as that in Theorem [2. When ( is sufficiently small, i.e.,
¢ = O(\/d?>H3 /mT), UCBIvd will still enjoy a regret of the same order as that in Theorem@

4.4 PROOF SKETCH OF THEOREM 2]

Because the proof of planning calls’ upper bound follows standard arguments in low switching cost
analysis of |Abbasi-Yadkori et al.|(2011), in this section, we focus on the proof sketch for the regret
bound. We start by introducing the high probability event £, which is the foundation of our analysis:

&1 (w) = {’

The following lemma highlights the importance of the carefully designed planning step in (8), which

6% (w) — B (w)

< B,¥(h,k) € [H] x [K]} . 9)

A%

‘/h+1

ensures good estimators for ;""" without the need of bonus term Hz/)(s, a,w) H ( )71. This step

A,
saves a factor O(m) in planning calls and regret.

Lemma 1. Let W = {w” : 7 € [K]} U{w®) : j € [n]}. Under the setting of TheoremEand
conditioned on events {E1(w)} i defined in ), for all (s,a,w, h, k) € S x Ax W x [H] x [K],

it holds that <éz,¢(s,a,w)> — Ph[thH(.,w)}(s,a) < 2L6||¢(S,CL)||(A£)—1.

As the final step in the regret analysis, we use Lemmal[T]to prove the optimistic nature of UCBIvd, i.e.,
Q¥ (s,a,w*) > Q} (s,a,w") forall (s,a, h, k) € S x A x [H] x [K]. Then following the standard
analysis of single-task LSVI-UCB we derive the regret bound in Theorem 2}

4.5 EXPERIMENTS

We implemented our main algorithm UCBIlvd on synthetic environments and compared its perfor-
mance with the warm-up algorithm Lifelong-LSVI, which is viewed as an idealized baseline ignoring
the computational complexity. In all the experiments, the same setting, task sequences and feature
mappings were used for both UCBIvd and Lifelong-LSVI. Figure[Ta depicts per-episode rewards for
the main setup considered throughout the paper, and Figure[Tb|shows those for the setup in Remark 2]
The plots verify that Lifelong-LSVI and UCBIvd statistically perform almost the same while UCBlvd
uses much smaller numbers of planning calls (1000 vs ~ 20). We remark that Lifelong-LSVI has
an overall computation complexity of O(K?), which makes it not practical for the lifelong learning
setting, as its planning complexity increases linearly with the number of samples. The details on the
parameters of simulations are deferred to Appx. [H.

35
4
=l =
g 25 § r/ e
S ————
(o} I .____-__—-—-"—"" 5] 3 ',-M
= 2 e T (= 7
L ad [}
-8 ’ o]
g 15)/ g 2
= ‘ Z
o 1} )
5 5o
A 05 —— Lifelong-LSVI, # of planning calls = 1000 [a¥ —Lifelong LSVI, # of Planning calls = 1000
0 —--UCBIvd, # of planning calls = 21.8333 —--UCBIvd, # of planning calls = 21.08
0
0 200 400 600 800 1000 200 400 600 800 1000
Episode, k Episode, k

(a) Setting of Theorem@ d=5m=5,d =25 (b) Setting of Remark@ d=5,d =10

Figure 1: UCBIvd vs Lifelong-LSVI. The experimental results include 50 seeds.
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5 RELATED WORK

We consider the regret minimization setup of lifelong RL under the contextual MDP framework,
where the agent receives tasks specified by contexts in sequence and needs to achieve a sublinear
regret for any task sequence. Below, we contrast our work with related work in the literature.

Lifelong RL. Generally lifelong RL studies how to learn to solve a streaming sequence of tasks
using rewards. While it was originally motivated by the need of endless learning of robots (Thrun &
Mitchell, 1995), historically many works on lifelong RL (Ammar et al.,2014; |Brunskill & Li,2014;
Abel et al.; 2018aib; Lecarpentier et al., 2021) assume that the tasks are i.i.d. (similar to multi-task
RL; see below). There are works for adversarial sequences, but most of them assume finite number
of tasks (Brunskill & Li,[2015; |Ammar et al.,[2015; Zhan et al., 2017) or are purely empirical (Xie &
Finn, 2021). The work by |Isele et al. (2016) uses contexts to enable zero-shot learning like here, but
it (as well as most works above) does not provide formal regret guarantees Brunskill & Li (2015)
and Xie & Finn (2021) assume the task identity is latent, which requires additional exploration; in
this sense, their problem is harder than the setup here where the task context is revealed. Extending
the setup here to consider latent context is an important future direction.

Contextual MDP and multi-objective RL. Our setup is closely related to the exploration problem
studied in the contextual MDP literature, though contextual MDP is originally not motivated from
the lifelong learning perspective. A similar mathematical problem appears in the dynamic setup of
multi-objective RL (Wu et al.| 2021} |Abels et al.,[2019), which can be viewed as a special case of
contextual MDP where the context linearly determines the reward function but not the dynamics.
Most contextual MDP works allow adversarial contexts and initial states, but a majority of them
focuses on the tabular setup (Abbasi- Yadkori & Neu| 20145 Hallak et al.| 2015;|Modi et al., [2018;
Modi & Tewari, 2020; |Levy & Mansour, [2022; Wu et al.|[2021), whereas our setup allows continuous
states. |Kakade et al.|(2020) and |Du et al.|(2019) allow continuous state and action spaces, but the
former assumes a planning oracle with unclear computational complexity and the latter focuses on
only LQG problems. While generally contextual MDP allows both the reward and the dynamics to
vary with contexts, we focus on the effects of context-independent dynamics similar to Kakade et al.
(2020); [Wu et al.|(2021)). In particular, the recent work of [Wu et al.|(2021)) is the closest to ours, but
they study the sample complexity in the tabular setup with linearly parameterized rewards. In view of
Example E, their proposed algorithm has a regret bound O(y/min{m,|S[} H|S||A| K). However,
they need linear number of planning calls. On the contrary, our algorithm, UCBIlvd, allows continuous
states, nonlinear context dependency, and has both sublinear regret and number of planning calls.

Multi-task RL. Another closely related line of work is multi-task RL. Compared to our setting,
multi-task RL assumes that there are beforehand known finite tasks and/or they are i.i.d. samples from
a fixed distribution. For example, in|Yang et al.|(2020); |[Hessel et al.|(2019); Brunskill & Li| (2013);
Fifty et al.|(2021);Zhang & Wang|(2021); Sodhani et al. (2021), tasks are assumed to be chosen from
a known finite set, and in|Yang et al.[(2020); Wilson et al.{(2007); Brunskill & Li (2013);|Sun et al.
(2021), tasks are sampled from a fixed distribution. By contrast, our setting provides guarantees on
regret and number of planning calls for adversarial task sequences.

6 DISCUSSION

In this paper, we frame lifelong RL as contextual MDPs and identify a new completeness-style
assumption to enable provably efficient lifelong RL with linear representation. We propose UCBIvd,
an algorithm that simultaneously satisfies the practical need of achieving /) sublinear regret and
2) sublinear number of planning calls for 3) any sequence of tasks and initial states. Specifically,

for K task episodes of horizon H, we prove that UCBIvd has a regret bound O(+/(d® + d’d) H*K)

based on O(dH log(K')) number of planning calls, where d and d’ are the feature dimensions of the
dynamics and rewards, respectively. We believe that our results would inspire new research directions
in the literature of CMDP and multi-objective RL, as existing work to our knowledge does not cover
the computation-sharing aspect of lifelong RL. That said, our work’s limitations motivate further
investigations in the following directions: /) extension to more general class of MDPs, potentially
using general function approximation/representation tools, 2) establishing an information-theoretic
lower bound on the number of planning calls/computation complexity.

YAmmar et al. (2015) give regret bounds but only for linearized value difference; Brunskill & Li|(2015) show
regret bounds only for finite number of tasks.
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A PROOFS OF SECTION [3]

To prove Theorem|[T] we will use the high probability event &, defined in Lemma 3]to prove the UCB
nature of Lifelong-LSVI in Lemma ] which is the key to controlling the regret. We first state the
following lemma that will be used in the proof of Lemma 3]

Lemma 2. Under the setting of Theorem let cg be the constant in the definition of 5. Then, for a
fixed w, there is an absolute constant ¢ independent of cg, such that for all (h, k) € [H| x [K|, with
probability at least 1 — § it holds that

k—1
> 6h (Vi (57000w) = PulViEa (o w)l(s7, 7)) < coH (d+ V') yflog((cs + 1)dd'T /),
T=1 (A,}i)71

where cq and cg are two independent absolute constants.

Proof. We note that [|n,]l, < V/d (Assumption ll),

(a)”

probability at least 1 — ¢ it holds that

9,’3(10)”2 < H+vd (Lemma IE), and
‘ < +. Thus, Lemmas (19 and 21 together imply that for all (h, k) € [H] x [K], with

2

k—1
=6k (Vi (0 0) = BulViia (L w))(s7 ap)
T=1

(ap)™

d kE+ X
< 4H> ilog (+)+d/log(1+4d’/e)+dlog(1+4Hd/e)+d2log(

2 2.2
: 1+ 8B \/E>+10g<1) L8k

Ae2 § A

If we let e = 2Z and 8 = c3(d + V/d') H \/log(dT/5), then, there exists an absolute constant C' > 0
that is independent of cg such that

2

k-1
> 0k (Vi (s700w) = PalVils (o w)l(sh o)) < C(d' + d*) Hlog ((c5 + 1)dd'T/)
=1 (A?)—l
O
Lemma 3. Let the setting of Theorem|[I|holds. The event
~k
E(w) = {’ 0% (w) — 6, (w) < B,V(h,k) € [H] x [K]} (10)
A%

holds with probability at least 1 — 6 for a fixed w.

Proof.

!

0} (w) — ), (w) = Of (w) — (AF) D @7V (shpnsw)
=1
k—1

-1
= (A}) [ Ak6hw) = Y 6Vt (shansw)

T=1

= n(AF) " ohw) - (af) S o (Vitia (5725w) = PalVils (o)) (s, 7))

q2

13
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k

Thus, in order to upper bound ||0} (w) — 8, (w)

, We bound||q1|\A;c and|\q2||Af separately.
. : :

Ap

From Lemma([l18] we have

Jasllag =\ @i -0 < VAoR@], < VA0 an

Thanks to Lemma for all (w, h, k), with probability at least 1 — ¢, it holds that

k—1
lazllar <|>° @7 (Vifei (ks w) = PalVilis (L w)l(s7, 7)) < coH (d+ V) \flog((cs +1)dd'T/5),
! (a)™!
(12)
where ¢y and cg are two independent absolute constants.
Combining and (12), for all (w, h, k), with probability at least 1 — 4, it holds that
‘ 0" (w) — 8" (w) = (44 V') VAlog(dd'T/3)
Ah
for some absolute constant ¢ > 0.
O
Lemma 4. Let W = {wl,w?, ... ,wK}. Under the setting of Theorem |Z and conditioned on
events {Ea(w)}, i defined in (10), and with QY computed as in (6), it holds that Q¥ (s,a,w) >

Q;.(s,a,w) forall (s,a,w,h,k) € S x A x W x [H] x [K].

Proof. We first note that conditioned on events {&s(w)} forall (s,a,w,h, k) € S x Ax W x

[H] x [K], it holds that

wEW

ruls,a.0) + (B0, 0(6.0) ) = Qissac0) — B [V (o) ~ Vi ()] (510)

=|rp(s,a,w) + <éi(w), d)(s,a)> —rp(s,a,w) — Py [V,fﬂ(.,w)} (s,a)

= (B ots.0)) - B [V ()] (50

~k

_ <0h(w) - 02<w),¢(s,a>>|

k

<[ = ok sl

Sﬁ”fﬁ(&a)H(Aﬁ)fl, (Lemma [3)

for any policy 7.

Now, we prove the lemma by induction. The statement holds for H because Q’}{ s1(on) =
Q7%741(.,-,.) = 0 and thus conditioned on events {E2(w)}, - defined in (10), for all (s,a,w, k) €

—~ weW”?
S x A x W x [K], we have

TH(S,CL,'w) + <0];I(w)7¢(51a)> - Q;I(Svaaw)‘ < 5||¢(sva)||(AI;I)_l :

14
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Therefore, conditioned on events {E;(w)} forall (s,a,w,k) € S x A x W x [K], we have

wew?

Q*H(S,(LU)) < ?"H(S,(LU)) + <0];{(’ZU),¢)(S,G,)> + 5”(1)(57(1)”([\2[)—1 = Q%(s,a,w).

Now, suppose the statement holds at time-step / +- 1 and consider time-step /. Conditioned on events
{&(w)},, ey forall (s, a,w, b, k) € S x Ax W x [H] x [K], we have

0 < rals,a,w) + (0] (w), @(s.0) ) = Qi(s.a,w) = Bi [Viia(2w) = Vilya(sw)] (5.0) + Bl (s, )] ()
<rp(s,a,w) + <0],2(w), b(s, a)> —Qr(s,a,w)+ BHQ&(S, G)H(Aﬁ)fl
(Induction assumption)

Therefore, conditioned on events {E3(w)} for all (s,a,w,h, k) € S x A x W x [H] x [K],

we have
Qi(s.a,w) < ri(s,a,w) + (0] (w), §(s,0)) + B[ $(5.) | )+ = Qhls,a,w).

This completes the proof.

wew?

A.1 PROOF OF THEOREM(I]
Let 0F = Vi (sk, wk) — Vh”k (sfp,w)and &}, =E [ Llsh, ah} 65,1 Conditioned on events
{&a(w)}, ey forall (s,a,w,h k) € S x A x W x [H] x [K], we have
Qh(s,a,w) = QF (s, a,w) = m(s,0,w) + (Oh (w), $(5,0)) = QF (s5,0,w) + 8| (5, 0)]| 5+
< P [ Vit (o w) = Vit (s w)| (s.0) + 28] (5. )| gy o - (13)

Note that 68 < Q¥ (sk, ak wh) — Q’T (sh,ah, ¥). Thus, combining (13), LemmaE and a union

bound over W, we conclude that for all (h, k) € [H] x [K], with probability at least 1 — 4, it holds
that

Sy S &Ry + 05+ 26H¢(s’,§,a’,§)H

(Ap)-r
Now, we complete the regret analysis
Ri *Zvl 81; 7V7T (S}f,wk)

k=1
K k

< Z VE(sh wh) — Vi (88 wh) (Lemmal[4)
k=1
K

-
k=1
K H

S 9 SUEET 99 MRS
k=1h=1 k=1h=1

< 2H\/Tlog(dT/5) 4+ 2HB+\/2dK log(l + K/\)
<0 ( N + dd’)H3T) .

The third inequality is true because of the following: we observe that {¢ ﬁ} is a martingale difference
sequence satisfying |£ ,’j|§ 2H. Thus, thanks to Azuma-Hoeffding inequality, we have

K H
P> ¢k <2H/Tlog(dT/s) | >1 6. (14)

k=1h=1

15
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In order to bound Zszl Zle qufLH (an)" note that for any h € [H], we have
h

K K )
ZHcﬁiH o1 Sa K ZHd)ZH - (Cauchy-Schwartz inequality)
k=1 (A7) k=1 (A7)
det (A{f )
< |2Klog | ——= (15)
det (A}l)
< \/QdK log <1 T g) (16)

In inequality (15)), we used the standard argument in regret analysis of linear bandits (Abbasi- Yadkori
et al., 2011, Lemma 11) as follows:

n—1

- . 2 det Vn+1 T
fz::lmln (HYtHV;l ,1) < QIOgW where V, =V + ;Ytyt . (17)

In inequality (16)), we used Assumptionand the fact that det(A) = Hle Ai(A) < (trace(A)/d)<.

B PROOFS OF SECTION /4]

We start by introducing the high probability event £;, which is the foundation of our analysis in the
following lemma.

Lemma 5. Follow the setting of Theorem[2] The event

1 (w) = {\

holds with probability at least 1 — 6 for a fixed w.

0% (w) — 6 (w)

< B.Y(h k) € [H] x [K]}. (18)

k
Ah

Proof of Lemma[3]is given in Appx. [B.T.

B.1 PROOF OF LEMMAI[3]

First, we state the following lemma that will be used in the proof of Lemma 5]

Lemma 6. Under the setting of Lemma E let cg be a constant in the definition of 3. Then, for a
fixed w, there is an absolute constant ¢ independent of cg, such that for all (h, k) € [H] x [K|, with
probability at least 1 — § it holds that

k—1
> bh (Vi (57000 w) = PulViEa (o w)l(s7, 7)) < coH (d+vVimd) yflog((cs + 1)mdT /),
T=1 (A£)71

where cqo and cg are two independent absolute constants.
< (14 H)v'md and

Ak -1
m, + & ‘(Aﬁ) H < . Thus, LemmasEandE
2
together imply that for all (h, k) € [H] x [K], with probability at least 1 — ¢ it holds that

2

Proof. We note that

k—1

> 6k (Vi (s7asw) = PalVils (o w))(sh o))

=1 —1
(a%)

d k+ A 14 32L2%282%V/d 1 8k2e?
< 4H? B log (;’:) + mdlog(1 4+ 8HvV'md/e) + d* log (W) + log (5) + )\6 )
€
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If we let e = 2 and B = c5(d + vVmd)H/log(dT'/5), then, there exists an absolute constant
C > 0 that is independent of cg such that

2

> 0k (Vs (sh10w) = PalViks (o w))(sh o)) < C(md + d*)H? log ((c5 + 1)mdT /)
(ah)™

O

Now, we begin the formal proof of Lemma 5}

k

k-1
0} (w) — 8, (w) = 0} (w) — (A}) > BV s )

= (AIZ)_l Ake Z¢th+1 5h+1v w)

T=1

a(A8) " obw)— (48) ™ (32 61 (Vs (shs ) — PalVis Cowllshan)
T=1

k

Thus, in order to upper bound ||0 (w) — 8, (w)|| , we bound||q, HA;@; and|\q2||A}kL separately.

Ay

From Lemma([18] we have

Jasllag = @i - < VAoR@], < VA0 (19)

Thanks to Lemma@ for all (w, h, k), with probability at least 1 — ¢, it holds that

k—
lazllay < Z (Vi (i w) = PalViE ()57, 07))
! (ar)”
<coH (d + \/@) \/10g((05 + 1)ymdT/¢), (20)

where ¢ and cg are two independent absolute constants.
Combining and (20), for all (h, k) € [H| x [K], with probability at least 1 — 4, it holds that

for some absolute constant ¢ > 0.

0k (w) — 0y (w)| < cH (d+vmd) v/Nlog(mdT/3)

Al

B.2 PROOF OF LEMMAII]

one set of solution for (8) is

Thanks to Assumption E and conditioned on events {€1(w)},, .3

{OZ (w(J)) } and & ,‘L/h“ with corresponding zero optimal objective value. Therefore, it holds

J€[n]
that

(017 05.0)) = (&9 (s.00) ) VG () € la] %D, a1

17
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Let (s(i), a(i)) be the i-th element of D and {c;(s, a)};c[q) be the coefficients such that

&(s,a) = Z (s a)p (S(i)’a(i)) .

1€[d)

For any triple (s, a,j) € S x A x [n], we have

= Z ci(s,a) <éi> P (S(i), a®, w(j))> (Assumption 3)

i€[d]

= Z ci(s,a) <9:(j), o} (8(i), a(i)>> (Eqn. (21))
1€[d)

= éﬁ(j), o(s, a)> . (22)

For any (s,a,w) € § x A x W, it holds that

Po [Vt (o w)] (s,0) = (65 (w), ¢(s,0)) (Eqn. @)
= < ]‘j’f+1,1/1(s,a,w)> (Assumption 2)
= Z ¢j(w) < Z’f“,w (s7a,w(j))> (Assumption 3)
i€
= Z ¢j(w)Pp [V,ﬁrl (.,w(j))] (s,a) (Assumption 2)
j€ln]
=Y o) <a',3 (v9) ,¢(s,a)>. 23)
j€[n]

18
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Finally, conditioned on events {€1(w)}, 3, for all (s,a,w, h, k) € § x A x W x [H] x [K], it
holds that

(& 90,0~ P [ (0] (50

_ <£i7¢(s7a,w)> - <02(w>,¢><s7a)>‘

+
o
o
—
&
>
>
s
|
D
> &
/N
S
S
N—
<
—
\.CIJ
&
\/
+
&
g
S~—
RS
Y}
> o
/N
g
S
N—
|
)
>
/N
S
5
N—
<
—
\.CIJ
&
\/

INA
s
g
N P —
RS
2233
| <
1 /N
> EIJ
Q
S/\
>
N—
\/
S
D
ol
<
&
EIJ
&
~_
N——

j€[n] j€[n]
(Eqn. 22))
< 2L,8||¢(s,a)||(A§)71 . (Lemmal[5)

B.3 PROOF OF OPTIMISTIC NATURE OF UCBLVD

Lemma 7. Let W = {w” : 7 € [K]} U{w") : j € [n]}. Under the setting of TheoremEand
conditioned on events {€,(w)}, v defined in ), and with QF. computed as in (1), it holds that

QY (s,a,w) > Qi (s,a,w) forall (s,a,w,h,k) €S x A x W x [H] x [K].

Proof. We first note that conditioned on events {€1(w)}, oy3 » for all (s, a,w, h, k) € S x Ax W x
[H] x [K], it holds that

(s, a,w) + <é2,w<s,a,w>> — QR(s,a,w) = Py [V (o w) = Vi (s w)] (s.a)

rh(s,a,w) + <£IZ, (s, a,w)> —rp(s,a,w) — Py [Vhl:_l(.,w)} (s,a)

<é:,'¢(s,a,w)> — P, [Vfﬂ(.,w)} (s,a)

< 2L5||¢(57a)||(1\£)71 ) (Lemmal[1)

for any policy 7.

Now, we prove the lemma by induction. The statement holds for H because Q’}{ s1(hn) =
Q% 41(., ) = 0 and thus conditioned events {&;(w)}, 5> defined in (9), for all (s, a,w, k) €
Sx AxW x [K], we have

rH(s,a,w) + <él;1, P(s, a,w)> — Q7 (s,a,w)

< 2LﬁH¢)(s,a)H(A%)4 .
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Therefore, conditioned on events {€1(w)},, i3 for all (s, a,w, k) € S x A x W x [K], we have

Qis(s.0:0) < ri(sv0.0) + (5,00 ) 4 205605,

+
= {’I"H(S,CL,UJ) + <éz,¢(s,a,w)> + 2LB‘|¢(3va)|‘(Ag)—l}

= QI}:{(S,G,'LU),

where the first equality follows from the fact that Q% (s, a,w) > 0. Now, suppose the statement
holds at time-step h + 1 and consider time-step h. Conditioned on events {&1(w)} for all

(s,a,w,h, k) €S x Ax W x [H] x [K], we have

wew?

0 < Th(saavw) + <é:,1,b(s,a,w)> - Q;(s,a,w) - IP>h {th+1(.,UJ) - V;+1('7w)i| (S,CL) + 2L5H¢(Saa)H(AIZ)_1

< Th(S,U,JU) + <éfw¢(57aaw)> - Q;(Svavw) + QLﬂH(b(S,CL)H(A;}:)—l :

(Induction assumption)

Therefore, conditioned on events {&; (w)} for all (s,a,w,h, k) € S x Ax W x [H] x [K],

wEW’
we have

Q1 (s,a,w) < rp(s,a,w) + <éZ,¢(s7a,w)> + 2L6”¢(57G>H(Ag)*l

I
= {rh(s,a,w) + éi,'«/}(s,a,w)> +2L5||¢(s,a)||(A,z)_1}

= Q;CL (87 a? w)7
where the first equality follows from the fact that Q} (s, a, w) > 0. This completes the proof. O

B.4 PROOF OF THEOREM[2]

Ak
First, we bound the number of times AlgoﬂthmEupdates &,,, i.e., number of planning calls. Let P
be the total number of updates and k,, be the episode at which, the agent did replanning for the p-th

d
time. Note that det A} = A% and det AKX < trace(ALX /d)? < ()\ + %) , and consequently:

det Ay ﬁ det Ay _ <1+K>d
detAj, L det A ax)
and therefore
H Kk H P k dH
det A det A" K
[t T < (14 55) =
oy det Ay o det Ay
. det AP
Since 1 < dAikh—l for all p € [P], we can deduce from that
et AP
det A,
Jh e [H] suchthat e< —
det AF

happens for at most dH log (1 + %) number of episodes k € [K]. This concludes that the number
of planing calls in UCBIlvd is dH log (1 + %)
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Now, we prove the regret bound. Let &f = VJF(sf,wh) — V7' (sf,w*) and €f,, =
E {6§+1|s’;,aﬂ — 05, 1. Conditioned on events {€;(w)} for all (s,a,w,h,k) € S x A x

W x [H] x [K], we have

QEQ,mUD-QZWS¢uw)=7m(&aﬂw-+<32ﬂb@,mUO>-—Qﬁwswuw)+2L6H¢@%aﬂhAb1

wew?

<P {Vhl;-&-l('vw) - ‘/}Zﬁl('vw)} (5,) + 4L (s, a)H(AE)‘1
(25)

Note that 6§ < Qh(sh,ah, ky — Q’T (s, af,w*). Thus, combining (23)), Lemma[ 5, and a union

bound over W, we conclude that for all (h, k) € [H] x [K], with probability at least 1 — J, it holds
that gives

OF <&k + 0k + 4LBH¢)(s§,a§)H(A%)_1 .
h

Note that for any positive semi-definite matrices A, B, and C such that A = B + C, we have:
det(A) > det(B), det(A) > det(C), (26)
and for any x # 0 ((Abbasi-Yadkori et al.;, 2011, Lemm. 12)):
2 2
Ixly _ det(A) o xlps _ det(A)

< n < . 27)
Ixz ~ det(B) [~ — det(B)
Now, we complete the regret analysis following similar steps as those of Theorem|[I]s proof:
RK*ZVl 317 - (51, k)

K T k

<) VRS W) = v (sh wh) (Lemmal[7)
k=1
K

-3
k=1
K H

S 9) SURRTE) 99 9{ ] PSS
k=1h=1 k=1h=1
L det AF

=D9) D PRI 90 9l LI B S )
k=1h=1 k=1h=1 det A},

< 2H\/Tlog(dT/5) + 8HLB+\/2dK log(1 + K/\)
<0 (L\/A(d3 ¥ md2)H3T) :

B.5 DISCUSSION ON THE TIME COMPLEXITY OF UCBLVD AND LIFELONG-LSVI

In what follows, we clarify on how the time complexity of UCBlvd compares to that of Lifelong

LSVI. When we compute (AZ) by the Sherman-Morrison formula, the computational complexity

of Lifelong-LSVI is dominated by Linein computing max,e Q) (s},,1,a) for all 7 € [k]. This
takes O(d?|.A|K) per step, which gives a total runtime O(d?|.A|H K?). In UCBIvd, every planning
call takes O(md?|A|K +m3d?), where the second term is the time-complexity of thE convex QCQP

with m + 1 constraints and 2/md variables. This gives a total runtime of O(H?(md?| A|K 4+ m3d*)).
Therefore, UCBIvd enjoys a smaller time complexity by a factor of K compared to that of Lifelong-
LSVI, which is a significant reduction in practical scenarios where K >> d' = md.
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Algorithm 3: UCBIvd with Unknown Rewards

Set: Q% (.,.,.)=0,Vk € [K], k=1
for episodes k = 1,..., K do
Observe the initial state s¥ and the task context w”.

X N
if 3h € [H] such that det A, det A,

&
> e or ——=2 > ¢ then
k T k
det Ay det A

~ h
k=k
for time-steps h = H,...,1 do

L Compute éi as in (30).

for time-steps h = 1,..., H do
Compute Q¥ (sF, a, w*) forall a € A as in 28).
| Play af = argmax ¢ 4 Qj (s, a,w") and observe s}, and rf.

C DETAILS OF REMARK |1} UCBLVD WITH UNKNOWN REWARDS

In order for our analysis to go through, we need a slightly different completeness assumption as
below:

Assumption 4. Given feature maps ¢ : S x A — R andp : S x Ax W — R, consider function
class

F = {f : f(s,w) = min {maj({@,@b(s,a,w» + BHd)(s,a)HA,1 + BH’J’(S,mw)HA,l }Jr’H}

ac
wveR' Aest Aes!, 820520}
Then for any f € F, and h € [H], there exists a vector ££ e RY wzthHﬁ{LH < HV/d' such that
P, [f(,w)} (s,a) = (E'}Z,w(s,a,w)).

C.1 OVERVIEW

Let ¢}, = 4(s],,a},,w”). UCBlvd with unknown rewards works with the following action-value
functions:

+
Qh(s,a,w) = {<ﬁ§+é§i,¢(s,a,w>> + B[l (s )| ax +B||¢(s,a,w)||@;)1} , (28)

where
=, . k—1
iy = (Ah) > Wit and Ay =ALna+ Y ien (29)
=1 T=1
and

2

éf;,{éﬁ(”} = agmin > Y <<9“),¢(s,a)>—<£,¢(s,a,w<ﬂ’>)>> (30)
J€[n] Eﬁ{e(j)}je[n] j€[n] (s,a)€D

S.t.

6 — 8, ()| < vjel] and €], < HVmd

Ay

D = {(s,a) : ¢(s,a) are d linearly independent vectors. }, and éZ(w) and A} are defined in (5).
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We note that compared to (7), action-value function defined in involves an extra term

<7~7Z7 (s, a, w)> +BH¢(3, a,w) || (AF)-1- This term is in fact an upper bound on 7, (s, a, w). Specif-
h

ically, from Theorem 2 in |Abbasi-Yadkori et al.|(2011), we know that for 5 = v/ Amd, it holds that

Ak < B, ¥(h, k) € [H] x [K]. 3D

Theorem 3. LetT = KH. UnderAssumpnonsl B3] and[] the number of planning calls in Algorithm

Eis at most dH log (1 + %) + mdH log (1 + %) and there exists an absolute constant ¢ > 0

such that for any fixed § € (0,0.5), if we set A = 1, 8 = cH (md) \/log(mdT /) and 3 = v/md in
Algorithm 3| then with probability at least 1 — 20, it holds that

Ry < 2H+\/Tlog(dT/d) + 4HVEK (Lﬂ\/Qd log(1+ K/\) + Bv/2mdlog(1 + K/A))
<0 (L\/m2d3H3T) .

th *flh‘

C.2 NECESSARY ANALYSIS FOR THE PROOF OF THEOREM 3]

Lemma 8. Let cg be a constant in the definition of B. Then, under Assumptiansz E, and W, for a
fixed w, there is an absolute constant cq independent of cg, such that for all (h, k) € [H| x [K|, with
probability at least 1 — § it holds that

k—1
>~ bh (Vi (57000w) = PulVia (o w)l (57 7)) < comdH \log((cs + 1)mdT /5),
=1 -1

(a%)

where cq and cg are two independent absolute constants.

. -1 AN
At + & < Hvmd + K/A and ‘(A’,j) H < Land (Aﬁ)
2

Thus, Lemmas[19 and 23 together imply that for all (h, k) € [H] x [K], with probability at least
1 — ¢ it holds that

1
Proof. We note that <5

2

k—
Z (Vi (R w) = PalVi (s w)l(s7. 7))
! (ah)”

1+ 321257
<4H? ;llog<kJ;A)+mdlog(1+8H\/ d/e) + d*lo (W)
€

1+ 832vmd 1 8k2e2
+m2d? log (4‘37”) + log () + <.

Ae2 0 A

If we let e = 4 and 8 = c5(md)H \/log(mdT'/5), then, there exists an absolute constant C > 0
that is independent of cg such that
2

k—1
Z o (V,ﬁl(szﬂ,w) — Py [ViF 1 w)](shs a;)) < C(m*d*)H?log ((cg + 1)mdT'/9) .
- (ap)
O

Lemma 9. Under Assumptionslz, E, andlz, if we let B = emdH +/ Xlog(mdT/d) with an absolute
constant ¢ > 0, then the event

Es(w) = {‘

holds with probability at least 1 — 6 for a fixed w.

0% (w) — B, (w)|| < B, V(h,k) € [H] x [K]} : (32)

A%
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Proof. The proof follows the same steps as those of Lemma|[3, except that it uses Lemma 8 instead
of Lemma 6|due to different structure of action-value functions Q¥ in this section. O

Lemma 10. Let W = {w™ : 7 € [K]} U{w" : j € [n]}. Under the setting of TheoremEand
conditioned on events {E3(w)}, v defined in (32), for all (s, a,w, h, k) € S x Ax W x [H]| x [K],
it holds that

’<éi,¢<s,a,w>> B [V 0)] (5,0)| < 20805, | )+

Proof. The proof follows the exact same steps as those of Lemmal[I[s proof. O

Lemma 11. Let W = {w™ : 7 € [K]} U{wY) : j € [n]}. Under the setting of TheoremEand

conditioned on events {E3(w)}, vy defined in B2), and with Q}; computed as in 28), it holds that

Q¥ (s,a,w) > Q5 (s,a,w) for all (s,a,w,h,k) € S x A x W x [H] x [K].

Proof. 'We first note that conditioned on events {E3(w) } forall (s,a,w,h, k) € S x A x W x

[H] x [K], it holds that

weW?

(it & w000 ) - Qo) = B [V o) = Vi ()] (50

(it + &0 w(o0.0) ) = s, = B [V ()] (510)

<

<éi,¢(s,a,w)> _Ph |:th+1(.710):| (s,a)
< 2LﬁH¢)(s,a)H(A,}i)_1 + BH@b(s,a,w)H(A:)_l , (Lemmal 10}

—|—BH’¢J(S7G,’IU)H(A;;)—1 (Eqn )

for any policy 7.

Now, we prove the lemma by induction. The statement holds for H because Q’}I s1(0) =
Q%741(-»+,-) = 0 and thus conditioned events {&3(w)} defined in (32), for all (s,a,w, k) €

SxAxW x [K], we have

weW?

<ﬁ];{ + éllf—lv"/"(87a>w)> - Q;I(Svmw) < 2L6|‘¢<57Q)H(A%)*1 + BH"/’(&G’M)H(AI;{)*I :

(33)

Therefore, conditioned on events {E5(w)} forall (s,a,w,k) € S x A x W x [K], we have

weW?

QFI(S,G,IU) S <’F”If{ +£];I7'¢(svaaw)> + 2Lﬁ”¢(saa)H(AI;{)*l + BH’(/J(S,G,,U])H(AZ)fl

+
= {<ﬁ11€{ + é’;,¢(5aa»w)> + 2L6||¢(57a)||(1\l;[)*1 + BH"#(Svavw)H(Az)l}

= Q%(Svaaw)v

where the first equality follows from the fact that Q7% (s, a,w) > 0. Now, suppose the statement

holds at time-step / + 1 and consider time-step h. Conditioned on events {&3(w)},, 43> for all
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(s,a,w,h, k) €S x Ax W x [H] x [K], we have

0< < h +sh,¢<s,a,w>> = Qi(s,0,w) = Py [V () = Vi ()| (s, 0)
+ 2L (s, a)||(Aﬁ)—1 + BH’I/J(S, a,w)|| (Aﬁ)—l

< (i + € b(s.0m) ) = Qo) + 208 0(5.0) | gy + A5, )] -
(Induction assumption)

Therefore, conditioned on events {&3(w)} forall (s,a,w,h, k) € S x Ax W x [H] x [K],

we have

Qi (s,a,w) < <nh +£h,¢(s,a,w)> +2LBH¢(57‘1)H(Aﬁ)‘1 +B’|¢(S7a,w)”(]\:’)—l

weW?

"
N Ak -

= {<nﬁ + Sh,l/ﬁ(s,a,w)> + 2L,BH¢($, a)H(A,}i)a + BH'(,D(S, a,w)“ ([\:)1}

= Q];L(Sﬂa7w)a

where the first equality follows from the fact that Q) (s, @, w) > 0. This completes the proof. O

C.3 PROOF OF THEOREM[3]

Ak
First, we bound the number of times Algorithm E updates &;,, i.e., number of planning calls. Let P
be the total number of policy updates and &, be the episode at, the agent did replanning for the p-th
d
time. Note that det A} = A% and det A} < trace(A} /d)? < ()\ + ) , and consequently:

P

det AK 11 det AJ” _ <1+K>d
det Ay, o det Ayt T drx) "’

and therefore

H Kk H P dH
det Ay, th K
[T T < (o ) o
i det AL det A

We similarly have

H - H P mdH
1] detAn _ pqteds de“‘h < (1+ﬂf§)\> . (35)

h=1 detA, h=1p= 1detAh

kp
Since 1 < % for all p € [P], we can deduce from and that

et [\,

~k
det A} det A
Jh e [H] suchthat e< b op < SR

det A} det _/NXZ

(36)

happens for at most dH log (1 + %) + mdH log (1 + deA number of episodes k € [K].
This concludes that number of planning calls in Algorithm [3 is at most dH log (1 + %) +
mdH log (1+ 55).

Now, we prove the regret bound. Let 6f = Vh};(s’fb,wk) - Vh”k(s’fb,wk) and &,

E [5}"£+1|s’,§, aﬂ — 0y ;. Conditioned on events {E3(w)} for all (s,a,w,h,k) € S x A x

weW?
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W x [H] x [K], we have

QE(S,CL’LU) - sz(saavw) = <7~7§ + EZ7¢(s,a,w)> - sz (s7a,w) + 2L5H¢(8’G)H(A§,)71 + BH,l/J(&a’w)H(Aﬁ)ﬂ

<P, {vhzsﬂ(,,w) _ vhﬂjl(.,w)} (s,0) + 4L8]|9(s5, )| a2 + 285 0 w)]] 5,
(37)

Note that 5% < QF (s, ak w*) — Q7" (s, ak, w"). Thus, combining (37), LemmaE, and a union
bound over W, we conclude that for all (h, k) € [H] x [K], with probability at least 1 — 4, it holds
that gives

O < €hea + o +4L8 bk ab)| -, +28|ab(sh b )

k (A1

Now, we complete the regret analysis following similar steps as those of Theorem|If's proof:
K k
R =) Vi(st wh) = VT (st u")
k=1

K
< YVt wh) — v (st ) (Lemmall)
k=

(Eqn. 7))

< 2H+/Tlog(dT /) + 4HVK (Lﬁ\/leog(l + K/)\) + Bv/2mdlog(1 + K/)\))
< O (LVAM?BHT) .

D DETAILS OF REMARK [2: RELAXATION OF ASSUMPTION [3]

In this section, we replace Assumption 3] with the following assumption:

Assumption 5. There is a known set {w™ w® ... w™} of n < d' tasks such that 1 (s, a,w) €
Span ({¢(s, a,w(j))}je[n]> forall (s,a,w) € S x A x W. This implies that for any (s,a,w) €
S x A X W, there exist coefficients {c;(s, a,w)}jc[n) such that

P(s,a,w) = Z ci(s,a,w) (&a,w(j)) ) (38)

J€[n]

Moreover, ng[n]|cj(s,a,w)| < Lforall (s,a,w) € S x AxW.

Define the concatenated mapping ¥ : S x A x W — R guch that
P(s,a,w) = [gb(s,a)T,v,b(s,a,w)T]T. For any w € W, define D(w) =

{(s7 a) : (s, a,w) are d + d’ linearly independent Vectors.}. Given Assumption E, we mod-
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Algorithm 4: Modified UCBIvd

Set: Q% 1 (.,.,.) =0, Vk € [K], k=
for episodes k = 1,..., K do
Observe the initial state s¥ and the task context w”.

. A}
it 3h € [H] such that S-2n
B [ ] det Az
k=k
for time-steps h = H,...,1 do
ik
L Compute &, as in (39).
for time-steps h = 1,..., H do
Compute QF (5, a,w*) forall a € A as in (7).
| Play af = argmax ¢ 4 Qj (sf;, a,w") and observe s}, and 7.

> e then

ify the planning step of UCBIvd to the following:

& Lo {Ak a)}je[n] = agmin 3 Y <<0(j),¢(s,a)> _ <£7¢ (s7a7w(j)>>>2

{B(J)} jerm) JEM] (s, a)ED(w(j))
(39)

. ~k .
st. |09 — o, (wm) <8, Vjeln and |||, < HV.

Aj

The only change we make in Algonthml:ls in L1ne|§ in which E », 1s now computed as defined in
(39). We present this modification in Algorithm [ for completeness.

Theorem 4. Let T = KH. Under Assumptions[I, 2, and[5, the number or planning calls in

Algorithm E is at most dH log (1 + %) and there exists an absolute constant ¢ > 0 such that for

any fixed 6 € (0,0.5), ifwe set \ = 1 and 8 = cH (d + \/(?) VAlog(dd'T/é) in Algorithm then
with probability at least 1 — 26, it holds that

Ry < 2H\/Tlog(dT/8) + SHLB/2dK log(K) < O (L (d + dd’)H?’T) . (40)
Proof of Theorem ] follows exactly the same steps as those of Theorem 2] The only difference is the
proof of Lemmal|[I| which we clarify in the proof of following lemma.
Lemma 12. Let W = {w™ : 7 € [K]} U{wY : j € [n]}. Under Assumptions |Z, E, and
E, if we let 3 = cH <d + \/J) VAlog(dd'T/6) with an absolute constant ¢ > 0, then for all
s,a,w,h k) € S x AxW x [H| x [K] with probability at least 1 — §, it holds that

< QLBHQS(S, a)H(A;“L)*l .

(.05, 00)) = B [V w)] (510)

~ T ~
Proof. We let ,(w) = {qﬁz—,tpi(w)q be the i-th element of D(w) =

{12)(5, a,w) : (s,a) € D(w)} and for any triple (s, a,w) € S x Ax W, we let {c[(s, a,w) }ic[d+a]
be the coefficients such that
P(s,aw) = Y s a,w)(w),
i€[d+d’]
which implies that

d(s,a) = Z ci(s,a,w)p; and P(s,a,w) = Z (s, a,w)p, (w). (41)

1€[d+d’] i€ [d+d’]
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Thanks to Assumptionlz and conditioned on events {&1(w)} one set of solution for (39) is

weW”?
. k
{02 <w(J)) } and & Z”“ with corresponding zero optimal objective value. Therefore, it holds

J€[n]
that

(0170, = (G (). ) la+al <ol @)

Moreover, for any triple (s,a,j) € S x A X [n], we have

<é:,1/; (3,a,w(j))> c; (s a w(])) < P, (w(j)>> (Eqn. (1))
(

i€[d+d’]
OARE I
e s a,w ) , P, (Eqn. (42))
z€[d+d’
- < 0,” (s, >> (43)
For any (s,a,w) € S x A x W, it holds that
h [V,f+1(.,w)] (s,a) = <0§(w), ¢(s,a)> (Eqn. ()
= <§Z’f“,1,b(s,a,w)> (Assumption 2)
= Z ci(s,a,w < e P (s,a,w(j))> (Eqn. (38))
j€[n]
= Z ¢j(s,a,w)Py [thﬂ (.,w(j)ﬂ (s,a)) (Assumption 2)
JEln]
= Z (s, a,w <0k ( (j)) ,¢(s,a)>. (44)
j€[n]

Finally, conditioned on events {&; (w)}
holds that

(.05, 00)) = B [V 0)] (510)

weivs forall (s,a,w, b k) € S x Ax W x [H] x [K], it

(45)

&y (s,a,w<ﬂ‘>)> - <0i“), ¢(5,a)>>
Afl(j) B é: (w(j)) ’¢(57a)> + Z ci(s,a,w) <éfL (w(j)) —oF (w(j)) ’¢(57a)>

IN
\)ﬁ
=
\.g F
&
T P o~ T~
|

Jeln] J€ln]
= Z cj(s,a,w) 92(]) 0 (w(])) o(s a)> + Z c;(s,a,w) <é: (w(j)> -0 (w(j)) ,¢(s,a)>
J€n] J€ln]
(Eqn. (22))
< 2L5||q5(s,a)||(A,§)71 ) (Lemmal[3))
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Algorithm 5: Standard Lifelong-LSVI with Computation Sharing
Set: Q% (.,.,.)=0,Vk e [K], k=1

for episodes k =1,..., K do

Observe the initial state s¥ and the task context w*.

Tk
if 3h € [H] such that % > e then

B det Ah
k=k
for time-steps h = H,...,1do
t Compute Compute &} as in (@9).

for time-steps h = 1,..., H do
Compute QF (s¥, a,w*) forall a € A as in {@3).
| Play af = argmax ¢ 4 Q (s, a,w") and observe sf , and rf.

E DETAILS OF REMARK[3]

In this section, we only rely on the following two assumptions:

Assumption 6. Given a feature map ¥ : S X A x W — RY, consider Sfunction class

acA

+ ! ’
F—{f s f(s,w) —min{max{(u,t,b(s,a,w))—|—6||1,b(s,a,w)HA1} ,H}u eRY,3>0,A € S‘_iH_}.
(46)

Then for any f € F and h € [H), there exists a vector V£ e R¥ withHVf;’

, < H\/d' such that

Ph [f(7w)] (Saa’> = (’(/)(S,a,w%u'}i}. (47)
Moreover, for every h € [H), there exists a vector my, such that 1,(s, a,w) = (n,,%(s,a,w)).
Assumption 7. Without loss of generality, | (s, a, w)H2 <1forall (s,a,w) € S x Ax W, and

Mnlly < Vd' forall h € [H].

E.1 OVERVIEW

Let ¥;, = v(s],, aj, w™). Standard Lifelong-LSVI with computation sharing works with the follow-
ing action-value functions:

+
Qhts.00) = {mls.aw) + (Fhpts.00)) + Slweanl gy | o @)

where
—1k-1 k—1
~k _ Ak T s k T T H d Ak _ AI T TT
vy, = h 'l/Jh' min Igleaj\( Qh—i—l(sh—i-ha'aw )a an h — d’ + "ph h -
=1 T7=1

(49)

Theorem 5. Let T = K H. Under Assumptions[6land [/} the number of planning calls in[3]is at most
d' H log (1 + %) and there exists an absolute constant ¢ > 0 such that for any fixed § € (0,0.5), if

we set A\ = 1 and 8 = cd' H+/log(d'T/6) in AlgorithmE, then with probability at least 1 — 296, it
holds that

Ry < 2H\/Tlog(d'T/5) + 4HB+/2d'K log(K) < O (\/ d/3H3T> :
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E.2 NECESSARY ANALYSIS FOR THE PROOF OF THEOREM [3]

Thanks to Assumption |6} we have

Py, {thﬂ(.,w)} (s,a) = <V’,§,Q/J(s,a,w)>, (50)
k
where vf = VZ"“
Lemma 13. Let cg be a constant in the definition of 3. Then, under Assumption |Z, there is an

absolute constant cy independent of cg, such that for all (h, k) € [H] x [K], with probability at least
1 — 6 it holds that

k—1
> ke (Vi (5700 w07) = PalVils (w57, 7)) < cod'Hflog((cs + 1)d'T/5),
T=1

(3)”

where cq and cg are two independent absolute constants.

—1
(AZ) H < % Thus, LemmasEand%

together imply that for all (h, k) € [H] x [K], with probability at least 1 — ¢ it holds that
2

Proof. We note thatth + DZH < (1 + H)Vd and
2

k—1

= 7 (Vs (i w”) = PalVils (w57, 07))

(a)”
k+A

!
< 4H? %bg () + d'log(1 + 8HVd' /e) +d”log <

Ae2 5 A

1 2L2 2 / 1 2.2
- +3 ﬁ\/c7>+log(> L8

If welete = 4L and 8 = c(d' + Vd') H\/1og(dT'/5), then, there exists an absolute constant C' > 0
that is independent of cg such that

2
k—1
> 07 (Vikea (ks ") = PalVibys (L w)] (57, a7) ) < C(d +d®) B2 10g (5 + 1)d'T/3).
(1)
O

Lemma 14. Under Assumptions E andlz, if we let 8 = cd' H+/Alog(d'T/é) with an absolute
constant ¢ > 0, then the event

£ = {Huﬁ — 7}|| . <8, V(hk) € [H] x [K]} . (51)
h
holds with probability at least 1 — 0.
Proof.
A=,
vi-sh=vh- (A1) v
T=1
N k—1
= (Ah> Ah’/g - Z ¢2th+1(5;+17 w”)
T=1

=1

1 -1 (k-1
ik Lk T T T T T T
=A (Ah> V’Z - (Ah> Z'ﬁbh (Vifﬂ(shﬂaw ) — Ph[vhk+1('7w )](S}wah))
—_— T

a1
q2

(Eqn. (50))
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Thus, in order to upper bound Huﬁ - Dﬁ(w)‘

Ar we bound||q; HA’Z and HQZ”A’; separately.

From Assumption [7} we have

P
h

Thanks to Lemma|13] for all (h, k) € [H| x [K], with probability at least 1 — 4, it holds that

k—1
lasll s <[>k (Vi (70 w7) = PalViE (w57 ap) < cod'Hlog((cs + 1)d'T/5),
T=1 -1
(A7)

(53)
where ¢y and cg are two independent absolute constants.
Combining and (53), for all (h, k) € [H| x [K], with probability at least 1 — 4, it holds that

2

. < cd H\/Xlog(d'T/$)
Ah
for some absolute constant ¢ > 0. O

Lemma 15. Let the setting of Lemma [I4 holds. Conditioned on events £, defined in (51), and
with Q% computed as in (48), it holds that Q% (s, a,w) > Q}(s,a,w) for all (s,a,w,h,k) €
Sx AxW x [H] x [K].

Proof. We first note that conditioned on the event &, , for all (s, a, w, h, k) € Sx AxW x [H]| x [K],
it holds that

(s @ w) + (7h, (5,0, w) ) = QF(s,0,w) = By | Vi (sw) = Vi (w)| (s.a)

=|run(s,a,w) + <DZ, w(s,a,w)> —rp(s,a,w) — Py [Vfﬂ(.,w)] (s,a)

SBH’l»b(‘%a’w)H(AZ)*l ) (Lemma

for any policy 7.

Now, we prove the lemma by induction. The statement holds for H because Q’;I +1(., ") =
Q%741(.,-,-) = 0 and thus conditioned on the event &4, defined in (51)), for all (s,a,w, k) €
S x A x W x [K], we have

ru(s,a,w) + <V’;I71/J(s7a,w)> — Qj‘q(s,a,w)‘ < B||1,b(s7a,w)H(AZ)_1 .
Therefore, conditioned on the event &y, for all (s, a,w, k) € S x A x W x [K], we have

Q5,0 w) < rar(s,0,0) + (W, h(s,0,0) ) + B[, 0,0) |

+
—{ruts.a0) + (vl wis.0,0) + (s, g,

= Q?{(‘&aaw)a
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where the first equality follows from the fact that Q% (s, a, w) > 0. Now, suppose the statement
holds at time-step ~ + 1 and consider time-step ~. Conditioned on events &y, for all (s, a, w, h, k) €
S x A x W x [H] x [K], we have

05 (s, asw) + (Voo w) = @i w) = B [Vila (o) = Vs (s )] (5,0) & 885,00 09 -

< Th(S, a7w) + <VZ,’I,ZJ(S,(Z,U))> - QZ(&‘L“’) + 5‘!’%5(3; (17’LU)H ([\:)_1
(Induction assumption)

Therefore, conditioned on events &y, for all (s,a,w, h, k) € S x A x W x [H] x [K], we have

QZ(&G,U]) S ’I"h(S,G,U]) + <Vﬁa¢(8aa7w)> + Buw(saavw)u(j\z)*l

4
— {Th,(s, a,w) + <V]fl, ¢(s,a,w)> + ﬂHz,b(s,a,w)H (AZ>1}
= QZ(S,Q,’IU),

where the first equality follows from the fact that Q% (s, @, w) > 0. This completes the proof.

E.3 PROOF OF THEOREM[3

First, we bound the number of times Algorithm |5|updates 172. Let P be the total number of updates
and £, be the episode at which, the agent did replanning for the p-th time. Note that det Ai =\

_ _ ) d
and det Af < trace(Af Jd)? < ()\ + %) , and consequently:

detAhK - det[&ﬁp K\
- = T S\ gy
det A, =i det Ay

and therefore

H < H P d'H
Hdetj}h HH detAh < (1‘1‘[1},()\) . (54)

h=1 det Ah h=1p=1 det Ah

Since 1 < % for all p € [P], we can deduce from (54) that
det h
det A,
e
Jh € [H] suchthat e < h
<k
det A,

happens for at most d’H log (1 + %) number of episodes k € [K]. This concludes that number of

planning calls in Algorithm [5|is at most d’H log (1 + d{&).

Now, we prove the regret bound. Let 6f = VF(sk w®) — Vi7" (sf,w*) and &,
E {6ﬁ+1|sﬁ,aﬂ — 05,1 Conditioned on &, for all (s,a,w,h, k) € S x Ax W x [H] x [K],
we have

Qi(s,a,w) - sz(saaaw> = ’I"h(S,G,’LU) + <0§;?’¢'(8?a,w)> - sz(saaaw) + BH"/)(Saaaw)H

< ]P)h, {Vh%—s-l('vw) - ‘/lzr+k1(7w)} (Saa) + 2B|’¢(57a7w)”(1’x;’1)—1 .
(55)

Ay
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Note that 6 < Q¥ (sk, ak wk) — Q7" (s%, ak, w"). Thus, and Lemma |14 imply that for all
(h,k) e [H ] [K], it holds that

O < &b+ Ol + 28| w(sh, ab, 0|

(Ap)-1'

Now, we complete the regret analysis following similar steps as those of Theorem [I]'s proof:

K
Ry = Z Vi (sh,wh) — V™ (sh, wh)

Vlfc(s]f,wk) - Vfrk (8%, wh) (Lemmal[13]

M= T

=~
Il
—

I
M=
S

k;l .,
SZZ +2522H¢* s oak w H
k=1h=1 k=1h=1
Sii h+2’BZZH¢ sy, ay,w H( ) (Eqn. (27))
k=1h=1 k=1h=1 An

< 2H\/Tlog(d'T/8) + 4H B+/2Ad'K log(1 + K /\)
<O <\/ /\d’3H3T> .

F DETAILS OF REMARK [4: A MISSPECIFIED SETTING

We first present a definition for an approximate completeness model.

Assumption 8 (¢-Approximate Completeness). Given feature maps ¢ : S x A — R? and 9 :
SxAxW =R in Assumption consider the function class

. + d’ d
f:{f:f(s,w):mm{max{(u,'«/}(s,a,w))—l—ﬁ“(f)(s,a)HA_l} ,H},VGR ,AGS++,BZO}.

acA

Forany f € F and h € [H|, there exists a vector ££ e RY withHEﬁH < H/d' such that for all
(s,a,w) €S x AxW

[P [£(w)] (s.0) = (€] (s, 0 w))] < €.

Theorem 6. Let T = K H. Under Assumptions|[I|[8| and[3] the number of planning calls in Algorithm
E is at most dH log(1 + Cﬁ) and there exists an absolute constant ¢ > 0 such that for any fixed

d € (0,0.5), if we set \ = 1 and B = cH(d + vVmd)+/log(mdT /) in Algarzthml: then with
probability at least 1 — 20, it holds that

<0 (\/@Tg + /(@ + md2)H3T) .

F.1 NECESSARY ANALYSIS FOR THE PROOF OF THEOREM [G]

Let (s(i), a(i)) be the i-th element of D and {¢}(s, a)};c[q be the coefficients such that

&(s,a) = Z ci(s,a)p (s(i),a(i)> )

1€[d)

Then, L is a positive constant such that 3, |ci(s,a)| < Ly forall (s,a) € S x A
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Lemma 16. Ler W = {w” : 7 € [K]}U{wY) : j € [n]}. Under the setting of Theoremléand
conditioned on events {&1(w)} v defined in ©), for all (s,a,w,h, k) € S x Ax W x [H] x [K],
it holds that

’(ézv¢(37avw)> - Ph[vhk-&-l('vw)](saa) < (2L + L¢m)< + QLBHQZS(Saa)H(Aﬁ)*l .

one set of feasible parame-

Proof. Thanks to Assumption and conditioned on events {&1(w)}, o3

] k
ters for (8] is {02 (w(3)> } and Exh'“ such that
je€ln]

(617 005,00 - (&9 (sau))
For any triple (s, a,j) € S x A x [n], we have

<é:7¢ (s,a,w(ﬁ'))> = <§:a o(s,a) @ p (w(j))>
= <€Z» > d(s,a)¢ (s(i),a(i)) ®p (w(j))>

<(Vmd, Y, (s,a)) €n]xD.  (56)

i€[d]
= ci(s,a) <élfcu P (S(i)7 a®, w(j))> (Assumption 3)
i€[d]
< Vmde 3 di(s,a) + 3 clls,a) <é,’2“>,¢ (s<i>,a<i>)> (Eqn. (58))
i€[d] 1€[d]
Ak;(

Similarly, it holds that <éi, ) (s, a, w(j))> > —LevVmd( + <92(j), o(s, a)>. Therefore, for any
(s,a,j) € S x A x [n], it holds that

‘<£’Z,¢ (sau®)) = (8 0(6.0))| < Lovimit. 57)

For any (s,a,w) € S x A x W, it holds that
Py [V ()| (s.0) = (05 (w), $(5.0)) (Ean. @)
<¢+ <€;‘L/}f+l7’l/)(57a’ w)> (Assumption [8)
=(+ Z ¢;(w) <§Z’i€“,1/; (57 a,w(j))> (Assumption [3)

J€(n]

<<¢|(1+ Z ci(w) | + Z c;i(w)Py, {V}fﬁrl (.,w(j))} (s,a)
J€ln] JEn]
(Assumption [8)

< 2L¢ + Z ¢j(w) <OZ (w(j)) , O(s, a)> . (Assumption 3)

J€n]

Similarly, it holds that P, {V,fﬁrl(.,w)} (s,0) > —2LC + X e ¢ (w) <0’;; (wm) ,¢(s,a)>.
Therefore, for any (s, a,w) € S x A x W, it holds that
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Py [Vfﬂ(.,w)} (s,a) — Z ¢;(w) <0§ (w(j)> ,¢(s,a)> < 2L¢. (58)

j€ln]

Finally, conditioned on events {&1(w)},, oy for all (s, a,w, h, k) € S x A x W x [H] x [K], it
holds that

(& 900~ P [V (0] ()

<200+ Y ¢(w) <<éi§,¢ (sva.w) ) = (0% () ,¢<s,a>>>

Jj€ln]
(Assumption [3]and Eqn. (58))

< 2L+ ZH ¢ (w) <<éﬁ,¢ (s,a,w<f’>)> - <éff”,¢(s,a>>>
JE[n
ei(w) (8, () = 0F (1) 0(s.0))

H X eitw) (017 - 8 (w) 0ls0) )| +
Jj€[n] J€[n]
< L+ Lovimd)c +| 3 ey(w) <éﬁ(j) 0 (w) ,¢(5,a)> +13 ¢5(w) <é’; () - 0 (w) ,¢(5’a)>
i) jeln]
(Eqn. (57))
< (2L+L,N@)g+2L5H¢(s,a)H(Am4. (Lemma[5)

O

As the final step in the regret analysis, we state the following lemma which uses Lemma[I6]|to prove
the optimistic nature of UCBIlvd. Then following the standard analysis of single-task LSVI-UCB we
derive the regret bound for misspecified settings.

Lemma 17. Let W = {w™ : 7 € [K]} U{w"Y : j € [n]}. Under the setting of Theorem

Eand conditioned on events {E1(w)}, i defined in (9), and with QY computed as in (), it
holds that (2L + Leyvmd)(H — h + 1)¢ + Q% (s, a,w) > Qj (s, a,w) for all (s,a,w,h, k) €

Sx AxW x [H] x [K].

Proof. We first note that conditioned on events {&1(w)}, .y » forall (s,a,w, h, k) € S x A x W x
[H] x [K], it holds that

(s a,w) + <é27¢<s7a,w>> - QR(s,.w) = By [ Vi (w) = Vil (w) (s, )

rh(s, a,w) + <éﬁ, (s, a,w)> —rp(s,a,w) — Py [th+1(.,w)] (s,a)

‘<é2,w<s,a,w>> By [V (w)] (s,0)

< (2L + LyvVmd)¢ + 2LBH¢(3,@)||(AZ)71, (Lemmal16)

for any policy 7.
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Now, we prove the lemma by induction. The statement holds for H because Q’}{ 110 =
Q%41(.,-,.) = 0 and thus conditioned events {&;(w)} defined in (9), for all (s, a,w,k) €

S x A x W x [K], we have

weWw”’

ra(s,a,w) + <é];1,1/}(s,a,w)> — Q% (s,a,w)| < (2L + L¢\/%)g + 2L6H¢(S,CL)H(A%)—1 .

Therefore, conditioned on events {&1(w)},, 55 forall (s, a,w, k) € S x A x W x [K], we have

Qis(s.0:0) < ru(sv0.0) + (Eop(s,0.0) ) 4 20 6(5.0) | g1+ L+ Lo

+
- {m<s,a,w> + (&l ) 4200605, o, )_1} QL+ LpVimd)C

= QI;-I(Sa a,w) + (2L =+ L¢‘m)Ca

where the first equality follows from the fact that Q%;(s,a,w) > 0. Now, suppose the statement
holds at time-step h + 1 and consider time-step h. Conditioned on events {&;(w)} for all

(s,a,w,h, k) €S x Ax W x [H] x [K], we have

weW?

0 < ru(s.00) + (&1 0(0,0) ) = Qi) = P [V (o) = Vi ()] (50
+ (2L + LyVmd)C + 2LB é(s, a)| 5y~
< rp(s,a,w) + <£Z,1/)(s, a, w)> — Q. (s,a,w) + (2L + LeV'md)(H — h 4+ 1) + 2L6H¢(s,a)H(A?)71 )
(Induction assumption)

Therefore, conditioned on events {&; (w)} for all (s,a,w,h, k) € S x A x W x [H] x [K],

weW’
we have

QZ(Sa avw) < rh(sa avw) + <é:7¢(37 a, w)> + (2L + L¢M)(H —h+ 1)< + 2L6H¢(57 Q)H(Aﬁ)_l

"
= {rh(s,a,w) + <é:,w(s,a,w)> + 2L6H¢(s,a)|‘(A,;’)1} + (2L + LgV'md)(H — h 4+ 1)¢

= QF(s,a,w) + (2L 4+ LyVmd)(H — h + 1)C,

where the first equality follows from the fact that Q0 (s, @, w) > 0. This completes the proof.

F.2 PROOF OF THEOREM[G]

The proof for establishing the upper bound on the number of planning calls for misspecified settings
follows exactly the steps as those in the proof of Theorem 2]

Now, we prove the regret bound. Let 6f = VF(sk w®) — Vi7" (sf,w*) and &,
E {(5,’§+1|5ﬁ, aﬂ — 65 ,1- Conditioned on events {&(w)}, _y3» for all (s,a,w,h, k) € S x A x
W x [H] x [K], we have
~ . iy "
QIFCL(& Cl,’lU) - QZ (8, a, w) = Th(sa a, w) + <€h7¢(57aaw)> - QZ (Sa CL,UJ) + 2L6H¢(57 G’)H(Aﬁ)*l
7. k Vs
S ]P)h, {th—s-l('vw) - Vif+1(~7w)} (S’ a) + (2L + L¢ md)C + 4L/8||¢(57a)’|(/\§)—1 .
(59)
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Note that 6§ < Qh(sh,ah, k) — Q’T “(s¥, af, w*). Thus, combining (59), Lemma[ 5, and a union

bound over W, we conclude that for all (h, k) € [H] x [K], with probability at least 1 — 4, it holds
that gives

% < s + 0 + 2L+ LoVmd)C +4L8 o sk ah) |
h

Now, we complete the regret analysis following similar steps as those of Theorem|[I]s proof:

K
* v Trk
Ri = ZVI (Slfvwk) -V (Slf’wk)

K
< (2L + LoVmd)HKC + > VF(sk wb) — Vi (sf, wh) (Lemmal[i7)
K
= 2L+ LyVmd)HKG + Y 6F
k=1
< (AL + 2LgV'm HKC+ZZ§,L+4LﬁZZH¢ sk ab H
k=1h=1
det A
< (4L + 2LypV'm HK(+ZZ£h +4LBZZH¢ (s5,ak H h
k=1 h—1 k=1h=1 det Ay,
(Eqn. 7))

< (4L + 2LgV'md)HK ¢ + 2H /T log(dT/5) + 8HLB\/2dK log(1 + K/))
<0 ((L + LoVmd)HKC + L/ NP + mdz)m:r) ,

where the last two inequalities follow from the similar steps in the proof of Theorem

G AUXILIARY LEMMAS

Notations. N (V) denotes the e-covering number of the class V of functions mapping S to R with
respect to the distance dist(V, V') = sup,|V (s) — V'(s)|.

Lemma 18 (Bound on Weights Hk( ). Under Assumpttonl 1| for any set of action-value functions
{QFYnem), and (w, h, k) € W x [H] x [K], it holds that

HOZ(w)HQ < HVd.

Proof. Recall that V¥(s,w) = min {max,c 4 Qf(s,a,w),H} and 0% (w) =
Js Vi1 (', w)dpy, (). Thus, we have

Jotcw, =] [ vt i)

O

Lemma 19 (Lemma D.4 inJin et al.|(2020)). Let {s,}3°, be a stochastic process on state space
S with corresponding filtration {F, },. Let {¢, }°%, be an R%-valued stochastic process where

¢, € Froy, and| .|| < 1. Let Ay, = NIy + le;i ¢, P . Then with probability at least 1 — 8, for
allk > 0and V € V such that sup, 5|V (s)| < H, we have

zk:%. (V(Sr) —E [V(ST)\]:T,ID < 4H? <;ilog (k—&—)\A) tlog (N}(V))> N Skj\eQ.

=1 —1
Ak
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Lemma 20. For any € > 0, the e-covering number of the Euclidean ball in R¢ with radius R > 0 is
upper bounded by (1 + 2R /¢)?.

Lemma 21. For a fixed w, let V denote a class of functions mapping from S to R with following
parametric form

V(.) = min {Iglea} (z,9(,a,w)) + (y,0(.a)) + B/o(.a)TYo(., a),H} ,

where the parameters § € R, z € Rd', y € RY andY € R¥xd < <
and||Y || < A71 Assume || (s, a)|| < 1and ||y (s,a,w)|| < 1forall (s,a,w) €S x A x W. Then

1+ 8B2/d
)\ 2

log (Ve(V)) < d'log(1 4 4z/€) + dlog(1 + 4y/e€) + d°* log (

Proof. First, we reparametrize V by letting Y = 52%Y. We have

V() = min { i (2,00 000) + (v,000) + /0 0) Vo017,

for ||z|| < =z |yl £ y, and H?H < BTZ. For any two functions V3, V2 € V with parameters
(zl,yl,?1> and (zz,yQ,?z), respectively, we have

diSt(Vl, VQ) S sup
(s,a)eSx.A

(2 wlo0,0) + (3 8(5.0) +/65.0) Y 05.0)

_ |:<z2,'(/)(8,a,’lU)> <y P(s,a > \/¢> (s,a)TY2(s, a)}

ng¢+@a@+¢EW%4—Rﬁw%%fﬁO+¢f?%H

< sup
PiYl<1,¢dlol<1

< o [ o [ -vna) ¢ e o7 (v1- %)
P <1 dlloll<1 Pfl@l<1
(because’\/a— \/l;‘ < /a —b| for a,b > 0)
o ot
I =
F

Let C, and Cy be ¢/2-covers of {z € R? :||z|| < 2} and {y € R? :|y| < y} respectively, with

respect to the 2-norm, and Cy be an €2 /4-cover of {Y € R%*4 :||Y||, < & f} with respect to
the Frobenius norm. By Lemma[20] we know

d‘Z
1 +8BQ\/E>

Cal < (1 +4z/)% . ley] <« (1+4y/e)t, |Cy| < ( 2

According to (60), it holds that ¢ (V) <|C,||Cy||Cy|. and therefore

2
log (Ve(V)) < d'log(1 4 4z/€) + dlog(1 + 4y/e€) + d* log <M> .

Ae2
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Lemma 22. For a fixed w, let V denote a class of functions mapping from S to R with following
parametric form

V(.) = min {gleaj( {<z,¢(.,a,w)> +2LB\/ (., a)TY (., a)}+ ,H} )

where the parameters 3 € R, z € RY and Y € R satisfy 0 < 3 < B,||z|| < z and||Y|| < A~
Assume”qb(s,a)” <1 and”’t/;(s,a,w)H <1forall (s,a,w) €S x AXW. Then

1+832\/&>

log (N.(V)) < d'log(1 + 4z/e) + d*log < e

Proof. First, we reparametrize V by letting Y = %Y. We have

V(.) = min {glezﬁ( (z,9(.,a,w)) +1/ (., a)TY (., a), H} ,

for||z|| < z, andHYH < BTQ. For any two functions V3, V5 € V with parameters (zl,Y1> and

<z2, Y~'2) , respectively, we have

dist(V4,V2) < sup

<z1, (s, a,w)> + \/cl)(s7 a)T?lqb(s,a)} - Rzz,iﬁ(s, a, w)> + \/¢(3,@)TY2¢(3, a)] ‘

(s,a)eSx.A
- SIplSLBlsl<1 [<Z1’ ¢> " \/m] B [<Z2’ ¢> + W] ‘
= ol <Z1 - Z2’¢>’ T siore \/’¢T (Yl - ?2) ¢’

(because‘\/&—\/g‘ < ]a —b| fora,b > 0)
=t =]y -

<l o]

Let C, be an €/2-cover of {z € RY :||z|| < z} with respect to the 2-norm, and Cy be an €2 /4-cover
of {Y e R4 ||Y| . < 2 QA‘/E}, with respect to the Frobenius norm. By Lemma , we know

d2
1+8B%/d
e2 ’

Cal < (L4 42/, JCy| < (
According to (61), it holds that N (V) <|C,||Cy|, and therefore

Ae2
O

Lemma 23. For a fixed w, let V denote a class of functions mapping from S to R with following
parametric form

V(.) = min {I;leaj( {<z,¢(., a,w)> +2LB\/P(.,a)TY P(.,a) + B\/tb(., a,11))TY~'(]5(.,CL,111)}Jr ,H} ,
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where the parameters B,B ER zeRY Y € R gpg Y € RV satisfy 0 < 8 < B,
0<j3<B|z - andHYH <AL AssumeH¢(s,a)H <1 and||1,b(5,a,w)” <1
Sorall (s,a,w) € S x AXW. Then

2 o
log (M) < d'log(1 + 4/¢) + & log <M> +d*1og (M) |

Ae? Ae2

Proof. First, we reparametrize V by letting Z = *Y and Z = 3*Y. We have

V(.) = min {I;lax<z,¢(.7a,w)>+\/¢)(., VTZo(., —l—\/qb a)TZo(.,a), },

for ||z| 1Z|| < B ,andHZH < ]?\2. For any two functions V7, V5 € V with parameters

< z,
( A ) and (z ,Z2, ZQ), respectively, we have

dist(V4,V2) < sup
(s,a)eSx.A

Kzl,'«,b(s, a,w)> + \/¢(s7a)TZ1¢(s, a) + \/1/J(s,a,w)Tzl1,b(s, a, w)}

- Kz?, (s, 0,w)) + 1/ Bls, )T 22 (s,0) + \/2b(s,a,0) T2 (s, 0, w)} |

[<Z1’¢>+\/¢Tzl¢+\/¢1’zl¢] B {<z2,¢>+\/¢TZQ¢+ \/¢T22¢]|

< sup
Pip[|<1,¢]¢[<1

< sup <z1 - z2,¢>‘ + sup \/’¢>T (Z' — Z2)¢>‘ + sup \/‘dzT (Zl - 22) 1/1‘
Pilp<1 P #lI<1 Pilpll<1
(because’ff \/l;‘ < Va —b| fora,b > 0)
=zt - 22 1zt — 77| + HZl-Z?H

SHZI*ZQH+’/HZLZQHF+’/HZLZQHF' (62)
Let C, be an €/2-cover of {z € R? :||z| < z} with respect to the 2-norm, Cz be an €2 /4-cover of

{Z € R¥™*4 . |Z||» < Bi\\/a}, and C; be an €2/4-cover of {Z € R¥*¢" HZHF < @} with
respect to the Frobenius norm. By Lemma 20} we know

d2 ~ d/2
, 1+ 8B? 1+ 8B2Vd
ICal < (1 +4z/e), |Cz| < <M> ’ !Cz‘ < <M>

Ae? Ae?
According to (62)), it holds that N.(V) <|C,||Cy]|, and therefore

2 R2 !
1+8B \/E> +d,glog<1+83 \/d7>'

log (M(V)) < d'log(1 +4z/€) + d*log < N2 Ae2

O

Lemma 24. Let V denote a class of functions mapping from S to R with following parametric form

V(.,.) = min {max{<z71/;( +2L6\/¢ TY (. a )}+7H},

acA

where the parameters 3 € R, z € R? and Y € R4 xd satisfy 0 < B < B,||z|| < 2z, and|| Y| < A7L.
Assume”t,b(s,a,w)” <1forall (s,a,w) €S x AXW. Then

2 !
log (N.(V)) < d'log(1 + 42/¢) + @ log <1+8)\BQ 'd> ~
€
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Proof. First, we reparametrize V by letting Y = 52Y. We have

V(.,.) = min {gleaj( (z,%(.,a,.)) + \/’lﬂ(.,a, )TY%(.,a, ),H} ,

~ 2 . . Y
for|z| < =z, andHYH < £ For any two functions Vi, V2 € V with parameters (zl,Yl) and

(ZQ, YQ), respectively, we have

dist(V1, Vo) < sup | Kzl’q’b(s, a,w)> + \/’(,b(s, a)Tqup(s, a)}

(s,a,w)ESXAXW

_ Kz?, P(s, a,w)> + \/’(ﬁ(s, a,w)TYQ"/’(Svaaw)] |

< (o) o ] [ + VT

<) e o (¥
(because’f— \/B‘ < /a —b| for a,b > 0)

A . HYl _'&‘QH

<|lzt — 22| + H?l _?QHF' .

Let C, be an ¢/2-cover of {z € R? :||z|| < z} with respect to the 2-norm, and Cy be an €2 /4-cover
of {Y € R*? ;|| Y|, < ZYZ}, with respect to the Frobenius norm. By Lemma we know

d/2
1+ 8B2/d'
Ae? '

Cal < (1+42/)%, |Cy| < (

According to (63), it holds that NV (V) <|C,||Cy|, and therefore

2 /
log (No(V)) < ' log(1 +42/¢) + d”* log (HiB ”d> ~
€

H DETAILS OF THE EXPERIMENTS

In all the experiments, we have chosen 6 = 0.01, A = 1, d = 5, and H = 5. The parameters
{mn}he(a are drawn from N(0, Ip). In order to tune parameters {ft;,(.)}he(m) and the feature
mappings ¢ such that they are compatible with Assumption 1, we consider that the feature space

{#(s,a) : (s,a) € S x A} is a subset of the d-dimensional simplex, {¢p € RY : ijl ¢, =1,¢, >
0,¢; < 1,Vi € [d]}, and e, p,,(.) is an arbitrary probability measure over S for all i € [d].

The results shown in Figure [2a]depict averages over 50 realizations for the main setup considered
throughout the paper with m = 5 and the results shown in Figure [2b depict averages over 50
realizations, for the more general setup of Remarkwith d’ = 10. For the results shown in Figure [E,
the mappings p(w) are drawn from N(0, 1,,,) except for the n = m representative tasks {w@)}; )
introduced in Assumption E, for which we set p(w(/)) = e; for j € [m]. For the results shown in
Figure @, the mappings (s, a,w) are drawn from A(0, I) and we set t(s,a, w)) = e; for
j € [d'], where {w()} jela] are n = d’ representative tasks introduced in Assumptionin Appx. E
The parameters {1, }c[x)] are drawn from N (0, Iy/), where d’ = m x d = 25 in Figure@ In our
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experiments, the exact same settings are used for both UCBIvd and Lifelong-LSVI in both Figures[2a
and We chose fairly large d, m, and d’ and by checking online, we noticed that the optimal value
of QCQP in () happens always to be zero. All these together suggest that the assumptions made in
the paper approximately hold. Figures [2ajand[2b depict the average per-episode reward of UCBlvd
and state the average number of planning calls and compare them to those of baseline algorithm
Lifelong-LSVI, a direct extension of LSVI-UCB in |Jin et al. (2020). The results emphasize the value
of UCBIvd in terms of requiring much smaller numbers of planning calls. The plots verify that the
performances of Lifelong-LSVI and UCBIlvd are almost the same statistically, while UCBIvd uses
much smaller numbers of planning calls (1000 vs ~ 20).

In Figure[3, we plot UCBlvd’s number of planning calls for different number of task episodes, K,
while the setting is same as that in[2a] In this figure, we empirically verify the logarithmic dependence
of number of planning calls on K as suggested by Theorem[2]
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Figure 2: UCBIvd vs Lifelong-LSVI
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Figure 3: Setting of Theorem d=5m=5,d =25
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