
Published as a conference paper at ICLR 2023

PROVABLY EFFICIENT LIFELONG REINFORCEMENT
LEARNING WITH LINEAR REPRESENTATION

Sanae Amani
University of California, Los Angeles
samani@ucla.edu

Lin F. Yang
University of California, Los Angeles
linyang@ee.ucla.edu

Ching-An Cheng
Microsoft Research, Redmond
chinganc@microsoft.com

ABSTRACT

We theoretically study lifelong reinforcement learning (RL) with linear representa-
tion in a regret minimization setting. The goal of the agent is to learn a multi-task
policy based on a linear representation while solving a sequence of tasks that may
be adaptively chosen based on the agent’s past behaviors. We frame the problem as
a linearly parameterized contextual Markov decision process (MDP), where each
task is specified by a context and the transition dynamics is context-independent,
and we introduce a new completeness-style assumption on the representation which
is sufficient to ensure the optimal multi-task policy is realizable under the linear
representation. Under this assumption, we propose an algorithm, called UCB Life-
long Value Distillation (UCBlvd), that provably achieves sublinear regret for any
sequence of tasks while using only sublinear planning calls. Specifically, for K task
episodes of horizon H , our algorithm has a regret bound Õ(

p
(d3 + d0d)H4K)

based on O(dH log(K)) number of planning calls, where d and d
0 are the feature

dimensions of the dynamics and rewards, respectively. This theoretical guarantee
implies that our algorithm can enable a lifelong learning agent to learn to internalize
experiences into a multi-task policy and rapidly solve new tasks.

1 INTRODUCTION

Recently, there has been a surging interest in designing lifelong learning agents that can continuously
learn to solve multiple sequential decision making problems in their lifetimes (Thrun & Mitchell,
1995; Khetarpal et al., 2020; Silver et al., 2013; Xie & Finn, 2021). This scenario is in particular
motivated by building multi-purpose embodied intelligence, such as robots working in a weakly
structured environment (Roy et al., 2021). Typically, curating all tasks beforehand for such problems
is nearly infeasible, and the problems the agent is tasked with may be adaptively selected based on the
agent’s past behaviors. Consider a household robot as an example. Since each household is unique, it
is difficult to anticipate upfront all scenarios the robot would encounter. Moreover, the tasks the robot
faces are not independent and identically distributed (i.i.d.). Instead, what the robot has done before
can affect the next task and its starting state; e.g., if the robot fails to bring a glass of water and breaks
it, then the user is likely to command the robot to clean up the mess. Thus, it is critical that the agent
continuously improves and generalizes learned abilities to different tasks, regardless of their order.

In this work, we theoretically study lifelong reinforcement learning (RL) in a regret minimization
setting (Thrun & Mitchell, 1995; Ammar et al., 2015), where the agent needs to solve a sequence
of tasks using rewards in an unknown environment while balancing exploration and exploitation.
Motivated by the embodied intelligence scenario, we suppose that tasks differ in rewards, but share
the same state and action spaces and transition dynamics (Xie & Finn, 2021).To be realistic, we make
no assumptions on how the tasks and initial states are selected1; generally we allow them to be chosen
from a continuous set by an adversary based on the agent’s past behaviors. Once a task is specified

1We adopt a stricter definition of lifelong RL here to distinguish it from multi-task RL, while there are
existing works on lifelong RL (e.g. Brunskill & Li (2014); Lecarpentier et al. (2021)) assuming i.i.d. tasks.

1

Published as a conference paper at ICLR 2023

and revealed, the agent has one chance (i.e., executing one rollout from its current state) to complete
the task and then it moves to the next task.

The agent’s goal is to perform near optimally for the tasks it faces, despite the online nature of the
problem. This means that the accumulated regret of the learner compared with the best policy for
each task should be sublinear in its lifetime. We assume that there is no memory constraint; this
is usually the case for robotics applications where real-world interactions are the main bottleneck
(Xie & Finn, 2021). Nonetheless, we require that the agent eventually learns to make decisions
without frequent deliberate planning, because planning is time consuming and creates undesirable
wait time for user-interactive scenarios. In other words, the agent needs to learn a multi-task policy,
generalizing from not only past samples but also past computation, to solve new tasks.

Formally, we consider an episodic setup based on the framework of contextual Markov decision
process (CMDP) (Abbasi-Yadkori & Neu, 2014; Hallak et al., 2015). It repeats the following steps:
1) At the beginning of an episode, the agent is set to an initial state and receives a context specifying
the task reward, both of which can be arbitrarily chosen. 2) When needed, the agent uses its past
experiences to plan for the current task. 3) The agent runs a policy in the environment for a fixed
horizon in an attempt to solve the assigned task and gains experience from its policy execution. The
agent’s performance is measured as the regret with respect to the optimal policy of the corresponding
task. We require that, for any task sequence, both the agent’s overall regret and number of planning
calls to be sublinear in the number of episodes.

While lifelong RL is not new, the realistic need of simultaneously achieving 1) sublinear regret and
2) sublinear number of planning calls for 3) a potentially adversarial sequence of tasks and initial
states makes the setup considered here particularly challenging. To our knowledge, existing works
only address a strict subset of these requirements; especially, the computation aspect is often ignored.
Most provable works in lifelong RL make the assumption that the tasks are finitely many (Ammar
et al., 2015; Zhan et al., 2017; Brunskill & Li, 2015), or are i.i.d. (Ammar et al., 2014; Brunskill &
Li, 2014; Abel et al., 2018a;b; Lecarpentier et al., 2021), while others considering similar setups to
ours do not provide regret guarantees (Isele et al., 2016; Xie & Finn, 2021). On the technical side, the
closest lines of work are Modi & Tewari (2020); Abbasi-Yadkori & Neu (2014); Hallak et al. (2015);
Modi et al. (2018); Kakade et al. (2020) for contextual MDP and Wu et al. (2021); Abels et al. (2019)
for the dynamic setting of multi-objective RL, which study the sample complexity for arbitrary task
sequences; however, they either assume the problem is tabular or require a model-based planning
oracle with unknown complexity. Importantly, none of the existing works properly addresses the need
of sublinear planning calls, which creates a large gap between the abstract setup and practice need.

In this paper, we aim to establish a foundation for designing agents meeting these three practically
important requirements, a problem which has been overlooked in the literature. As the first step, here
we study lifelong RL with linear representation. We suppose that the contextual MDP is linearly
parameterized (Yang & Wang, 2019; Jin et al., 2020) and the agent needs to learn a multi-task
policy based on this linear representation. To make this possible, we introduce a new completeness-
style assumption on the representation which is sufficient to ensure the optimal multi-task policy is
realizable under the linear representation. Under these assumptions, we propose the first provably
efficient lifelong RL algorithm, Upper Confidence Bound Lifelong Value Distillation (UCBlvd,
pronounced as “UC Boulevard”), that possesses all three desired qualities. Specifically, for K episodes
of horizon H , we prove a regret bound Õ(

p
(d3 + d0d)H4K) using Õ(dH log(K)) planning calls,

where d and d
0 are the feature dimensions of the dynamics and rewards, respectively.

From a high-level viewpoint, UCBlvd uses a linear structure to identify what to transfer and operates
by interleaving 1) independent planning for a set of representative tasks and 2) distilling the planned
results into a multi-task value-based policy. UCBlvd also constantly monitors whether the new
experiences it gained are sufficiently significant, based on a doubling schedule, to avoid unnecessary
planning. On the technical side, UCBlvd’s design is inspired by single-task LSVI-UCB (Jin et al.,
2020), however, we introduce a novel distillation step based on QCQP, along with a new completeness
assumption, to enable computation sharing across tasks; we also extend the low-switching cost
technique (Abbasi-Yadkori et al., 2011; Gao et al., 2021; Wang et al., 2021) for single-task RL to the
lifelong setup to achieve sublinear number of planning calls.

Notation. Throughout the paper, we use lower-case letters for scalars, lower-case bold letters for
vectors, and upper-case bold letters for matrices. The Euclidean-norm of x is denoted bykxk2. We
denote the transpose of a vector x by x>. For any vectors x and y, we use hx,yi to denote their

2

Published as a conference paper at ICLR 2023

inner product. We denote the Kronecker product by A ⌦B. Let A 2 Rd⇥d be a positive definite
and ⌫ 2 Rd. The weighted 2-norm of ⌫ with respect to A is defined byk⌫kA :=

p

⌫>A⌫. For a
positive integer n, [n] denotes the {1, 2, . . . , n}. For a real number ↵, we denote {↵}+ = max{↵, 0}.
Finally, we use the notation Õ for big-O notation that ignores logarithmic factors.

2 PRELIMINARIES

We formulate lifelong RL as a regret minimization problem in contextual MDP (Abbasi-Yadkori &
Neu, 2014; Hallak et al., 2015) with adversarial context and initial state sequences. We suppose that
a context determines the task reward but does not affect the dynamics. Such a context dependency is
common for the lifelong learning scenario where an embodied agent consecutively solves multiple
tasks. Below we give the formal problem definition.

Finite-horizon contextual MDP. We consider a finite-horizon contextual MDP denoted by M =
(S,A,W, H,P, r), where S is the state space, A is the action space, W is the task context space, H is
the horizon (length of each episode), P = {Ph}

H

h=1 are the transition probabilities, and r = {rh}
H

h=1
are the reward functions. We allow S and W to be continuous or infinitely large, while we assume
A is finite such that maxa2A can be performed easily. For h 2 [H], rh(s, a, w) denotes the reward
function whose range is assumed to be in [0, 1], and Ph(s0|s, a) denotes the probability of transitioning
to state s

0 upon playing action a at state s. In short, a contextual MDP can be viewed as an MDP
with state space S ⇥W and action space A where the context part of the state remains constant in an
episode.2 To simplify the notation, for any function f , we write Ph[f](s, a) := Es0⇠Ph(.|s,a)[f(s

0)].

Policy and value functions. In a finite-horizon contextual MDP, a policy ⇡ = {⇡h}
H

h=1 is a sequence
where ⇡h : S⇥W ! A determines the agent’s action at time-step h. Given ⇡, we define its state value
function as V

⇡

h
(s, w) := E[

P
H

h0=h
rh0
�
sh0 ,⇡h0(sh0 , w), w)|sh = s

⇤
and its action-value function

as Q
⇡

h
(s, a, w) := rh(s, a, w) + Ph[V ⇡

h+1(., w)](s, a), where Q
⇡

H+1 = 0. We denote the optimal
policy as ⇡⇤

h
(s, w) := sup

⇡
V

⇡

h
(s, w), and let V ⇤

h
:= V

⇡
⇤

h
and Q

⇤
h
:= Q

⇡
⇤

h
denote the optimal value

functions. Lastly, we recall the Bellman equation of the optimal policy:

Q
⇤
h
(s, a, w) = rh(s, a, w) + Ph[V

⇤
h+1(., w)](s, a), V

⇤
h
(s, w) = max

a2A
Q

⇤
h
(s, a, w). (1)

Interaction protocol of lifelong RL. The agent interacts with a contextual MDP M in episodes.
For presentation simplicity, we assume that the reward functions r are known, while the transition
probabilities P are unknown and must be learned online; we will discuss how reward learning can be
naturally incorporated in Section 4.3. At the beginning of episode k, the agent receives a task context
w

k
2 W and is set to an initial state s

k

1 , both of which can be adversarially chosen. The agent can
use past experiences to plan for the current task, if needed. Then the agent executes its policy ⇡

k: at
each time-step h 2 [H], it observes the state sk

h
, plays an action a

k

h
= ⇡

k

h
(sk

h
, w

k), observes a reward
r
k

h
:= rh(skh, a

k

h
, w

k), and goes to the next state s
k

h+1 according to Ph(.|skh, a
k

h
). Let K be the total

number of episodes. The agent’s goal is to achieve sublinear regret, where the regret is defined as

RK :=
P

K

k=1 V
⇤
1 (s

k

1 , w
k)� V

⇡
k

1 (sk1 , w
k). (2)

As the comparator policy above (namely ⇡
⇤ that defines V ⇤

1) also knows the task context, achieving
sublinear regret implies that the agent would attain near task-specific optimal performance on average.

Linear Model Representation. We focus on MDPs with linear transition kernels and reward
functions (Jin et al., 2020; Yang & Wang, 2019) that are encapsulated in the following assumption.
Assumption 1 (Linear MDPs). M = (S,A, H,P, r,W) is a linear MDP with feature maps � :
S ⇥ A ! Rd and : S ⇥ A ⇥ W ! Rd

0
. That is, for any h 2 [H], there exist a vector

⌘
h

and d measures µ
h

:= [µh
(1)

, . . . , µh
(d)]> over S such that Ph(.|s, a) =

⌦
µ

h
(.),�(s, a)

↵

and rh(s, a, w) =
⌦
⌘
h
, (s, a, w)

↵
, for all (s, a, w) 2 S ⇥ A ⇥ W . Without loss of generality,���(s, a)

��
2
 1,

�� (s, a, w)
��
2
 1,

��µ
h
(s)
��
2


p
d, and k⌘

h
k2 

p
d0 for all (s, a, w, h) 2

S ⇥A⇥W ⇥ [H].

In real-world problems, we can use the context to model the task specification of a problem. For
example, if we want to design household robots to assist humans with a series of tasks like cooking,
cleaning, washing dishes, lawn mowing, vacuuming, we can treat the the context as a natural language

2In general, a context-dependent dynamics would take the form Ph(s
0|s, a, w).

3

Published as a conference paper at ICLR 2023

instruction that the human user would give to the robot, and we can view the representations and �
as the embedding of a deep neural network model that has been pre-trained.
Example 1 (Weighted Rewards). An interesting and common special case is (s, a, w) = �(s, a)⌦
⇢(w), for some mapping ⇢ : W ! Rm. In this case, it holds that d0 = md and rh(s, a, w) =⌦
⇢(w), rh(s, a)

↵
, where rh(s, a) = Ah�(s, a) 2 Rm, for some Ah 2 Rm⇥d, is the vector reward

functions at time-step h. We can view rh(s, a, w) as a weighted reward with weights ⇢(w) that
depend on task w. This setting is closely related to Multi-Objective RL studied for tabular case in Wu
et al. (2021), which studies the case where ⇢(w) = w 2 Rm along with tabular S and A.

3 A WARM-UP ALGORITHM FOR LIFELONG RL
We first present a warm-up algorithm based on linear representation, termed Lifelong Least-Squares
Value Iteration (Lifelong-LSVI), in Algorithm 1, which is a straightforward extension of the single-
task LSVI-UCB algorithm proposed by Jin et al. (2020) to the lifelong learning setting. The motivation
of this warm-up algorithm is to give intuitions on how the problem structure in Assumption 1 can be
used to achieve small regret and discuss the computational difficulty in lifelong learning.

We will show that Lifelong-LSVI has a sublinear regret bound, which matches the minimax optimal
rate in the special case studied by Wu et al. (2021) in terms of number of objectives, m (see Example
1). However, we will also show that Lifelong-LSVI is not computationally efficient, in the sense
that the number of planning calls it requires grows linearly with the number of episodes, which
would mean the overall computational complexity grows quadratically. This high computation cost is
because the agent never learns to internalize the task solving skills but requires going though all past
experiences for planning every time a new task arrives. Importantly, we will discuss why it cannot be
made computationally efficient in an easy manner without further assumptions on the representation.
This drawback motivates our new completeness assumption and our main algorithm, UCBlvd, which
is provably efficient in terms of both regret and number of planning calls, in Section 4.

We remark that Lifelong-LSVI is only a warm-up algorithm that guides the reader to understand the
mechanisms used for addressing the problem, motivates the need for UCBlvd, and shows what regret
bound is possible when computational complexity is not a concern (though being impractical).

3.1 ALGORITHMIC NOTATIONS

To begin, we introduce the template and the notations that will be used commonly in presenting the
warm-up algorithm, Lifelong-LSVI, and later our main algorithm, UCBlvd. For each algorithm, first
we will define an algorithm-specific action-value function Q

k

h
: S ⇥A⇥W ! R, which determines

the agent’s policy at time-step h in episode k; then we present the full algorithm and its analysis
using the quantities below, which are defined with respect to each algorithm’s definition of Qk

h
.

Given {Q
k

h
}h2[H], we define state value functions and their backups as

V
k

h
(s, w) := min

⇢
max
a2A

Q
k

h
(s, a, w), H

�
, ✓k

h
(w) :=

Z

S
V

k

h+1(s
0
, w)dµ

h
(s0), (3)

Thanks to the linear MDP structure in Assumption 1, it holds that

Ph

h
V

k

h+1(., w)
i
(s, a) =

D
✓k
h
(w),�(s, a)

E
. (4)

Let � > 0 be a constant. We define the �-regularized least squares estimator of ✓k
h
(w) as

✓̃
k

h
(w) :=

⇣
⇤k

h

⌘�1 k�1X

⌧=1

�⌧

h
V

k

h+1(s
⌧

h+1, w), where ⇤k

h
:= �Id +

k�1X

⌧=1

�⌧

h
�⌧

h

>
, (5)

and ✓̃
k

h
(w) is the solution to min✓2Rd

P
k�1
⌧=1(h✓,�(s

⌧

h
, a

⌧

h
)i � V

k

h+1(s
⌧

h+1, w))
2 + �k✓k22, �⌧

h
:=

�(s⌧
h
, a

⌧

h
), and Id 2 Rd⇥d is the identity matrix.

3.2 DETAILS OF LIFELONG-LSVI AND ITS THEORETICAL GUARANTEES

We define the upper confidence bound (UCB) style action-value function of Lifelong-LSVI as follows:

Q
k

h
(s, a, w) := rh(s, a, w) +

⌧
✓̃
k

h
(w),�(s, a)

�
+ �

���(s, a)
��
(⇤k

h
)�1 , (6)

4

Published as a conference paper at ICLR 2023

Algorithm 1: Lifelong-LSVI
1 Set: Qk

H+1(., ., .) = 0, 8k 2 [K]
2 for episodes k = 1, . . . ,K do
3 Observe the initial state s

k

1 and the task context wk.
4 for time-steps h = H, . . . , 1 do
5 Compute ✓̃

k

h
(wk) as in (5) using Q

k

h+1 defined in (6).
6 for time-steps h = 1, . . . , H do
7 Compute Q

k

h
(sk

h
, a, w

k) for all a 2 A as in (6).
8 Play a

k

h
= argmax

a2A Q
k

h
(sk

h
, a, w

k) and observe s
k

h+1 and r
k

h
.

where Q
k

H+1 = 0 and ✓̃
k

h
(w) and ⇤k

h
are defined in (5). Here, � is an exploration factor that will be

appropriately chosen in Theorem 1. At episode k, given w
k, Lifelong-LSVI first performs planning

backward in time based on past data to compute ✓̃
k

h
(wk) in (5) using Q

k

h+1 defined in (6) (Lines 4-

5). Then, in execution, it uses ✓̃
k

h
(wk) to compute Q

k

h
(sk

h
, a, w

k) for the current state and all a 2 A

(Line 7) and executes the action with the highest value (Line 8).

We show that Lifelong-LSVI achieves sublinear regret for our lifelong RL setup. The complete proof
is reported in Appx. A, which follows the ideas of LSVI-UCB (Jin et al., 2020).
Theorem 1. Let T = KH . Under Assumption 1, there exists an absolute constant c > 0 such that
for any fixed � 2 (0, 0.5), if we set � = 1 and � = cH

⇣
d+

p
d0
⌘p

log(dd0T/�) in Algorithm 1,

then with probability at least 1� 2�, it holds that RK  Õ

⇣p
(d3 + dd0)H3T

⌘
.

Before introducing our main algorithm in Section 4, we make a few remarks on the regret and number
of planning calls of Lifelong-LSVI. First, Theorem 1 implies that for the special case studied by Wu
et al. (2021) (Example 1), the regret bound of Lifelong-LSVI becomes Õ(

p
md3H3T). This rate

is optimal in terms of its dependency on m, as shown in Wu et al. (2021). Furthermore, this rate
matches the LSVI-UCB’s regret dependencies on d and H for the single-task setting (Jin et al., 2020).

While Lifelong-LSVI has a decent regret guarantee, it requires computing ✓̃
k

h
(wk) for all h 2 [H],

whenever a distinct new task w
k arrives. Since the number of unique tasks may be as large as K, the

total number of planning calls required in Lifelong-LSVI is K in the worst case.

Unfortunately, the number of planning calls of Lifelong-LSVI cannot be easily improved, because
under Assumption 1 alone, the optimal Q-function Q

⇤
h
(s, a, w) of the CMDP can be nonlinear in the

representation . As a result, for any algorithm that represents its policy linearly based on both
and �, in general it is necessary to recompute the coefficients for every new w to be optimal. For
Lifelong-LSVI specifically, this nonlinear dependency shows up in ✓̃

k

h
(w) of Qk

h
(s, a, w) in (6).

In the next section, we discuss how placing a completeness-style assumption, which ensures
Q

⇤
h
(s, a, w) can be linearly parameterized by , would circumvent the issue of non-linear de-

pendency of the action-value functions on w, and consequently would enable computation sharing to
decrease the number of planning calls to O(dH log(K)).

4 UCB LIFELONG VALUE DISTILLATION (UCBLVD)
In this section, we present our main algorithm, UCB Lifelong Value Distillation (UCBlvd), in
Algorithm 2. Under new completeness-style assumption that we will introduce in Section 4.1,
we show that UCBlvd shares the same regret bound as Lifelong-LSVI but significantly reduces
the number of planning calls to be logarithmic in K. In contrast to Lifelong-LSVI which learns
individual action-value function for each w

k, UCBlvd learns a single action-value function for all
w 2 W based on (s, a, w) to enable computation sharing across tasks, which is made possible by
the extra completeness-style assumption. In general, in order to directly extend Lifelong-LSVI to only
use feature (s, a, w) 2 Rd

0
with d

0
� d, we need a context-dependent dynamics structure, which

would eventually increase the regret. UCBlvd maintains the same order of regret as Lifelong-LSVI

5

Published as a conference paper at ICLR 2023

by separating the planning into a novel two-step process: 1) independent planning with � for a set
of representative task contexts and 2) distilling the planned results into a multi-task value function
parameterized by . In addition, UCBlvd runs a doubling schedule to decide whether replanning is
necessary, which makes the total number of planning calls logarithmic in K.
4.1 ENABLING COMPUTATION SHARING

As lifelong RL with Assumption 1 alone would require replanning in every episode in general (see
Section 3), here we introduce new structural assumptions on to enable computation sharing across
tasks. First, we define the following class of functions

F =

(
f : f(s, w) = min

⇢
max
a2A

n
h⌫, (s, a, w)i+ �

���(s, a)
��
⇤�1

o+
, H

�
,⌫ 2 Rd0

,⇤ 2 Sd
++,� � 0

)
,

where Sd

++ denotes the set of symmetric positive definite matrices. We now state our main
completeness-style assumption.
Assumption 2 (Completeness). For any f 2 F and h 2 [H], there exists a vector ⇠f

h
2 Rd

0
with���⇠f

h

���  H
p
d0 such that Ph

⇥
f(., w)

⇤
(s, a) = h⇠f

h
, (s, a, w)i.

This assumption says that the backups of functions in F are captured by the feature with bounded
parameters. The definition of F closely models the structure of action-value function used by
Lifelong-LSVI in (6), except h✓̃

k

h
(w),�(s, a)i there is replaced by functions linear in (s, a, w). We

will see that the action-value function used by UCBlvd defined in the next section is contained in
F . In addition, by setting � = 0 in F and (1), we see Q

⇤
h
(s, a, w) is linearly realizable by under

Assumption 2. We note that a similar notion of this assumption is mentioned in previous work for
single-task settings under the name of “optimistic closure” (Wang et al., 2020).

Inspired by Example 1, we now introduce the next assumption on the structure of .
Assumption 3 (Mappings). We assume (s, a, w) = �(s, a)⌦ ⇢(w), for some mapping ⇢ : W !

Rm, i.e., d0 = md. We assume that there is a known set {w(1)
, w

(2)
, . . . , w

(n)
} of n  m task

contexts such that ⇢(w) 2 Span({⇢(w(j))}j2[n]) for all w 2 W . That is, for any w 2 W , there exist
coefficients {cj(w)}j2[n] such that ⇢(w) =

P
j2[n] cj(w)⇢(w

(j)). We assume
P

j2[n]

��cj(w)
��  L

for all w 2 W and some L < 1.

Note that, for finite-dimensional representations, such set {⇢(w(j))}j2[n] always exists. We assume
that this set {w(1)

, w
(2)

, . . . , w
(n)

} is known to the algorithm

4.2 DETAILS OF UCBLVD

We define the UCB style action-value function of UCBlvd as follows:

Q
k

h
(s, a, w) :=

(
rh(s, a, w) +

⌧
⇠̂
k

h
, (s, a, w)

�
+ 2L�

���(s, a)
��
(⇤k

h
)�1

)+

. (7)

The parameter ⇠̂
k

h
is computed by solving the convex quadratically constrained quadratic program

(QCQP) in (8), which is defined on a set of representative task contexts {w(1)
, w

(2)
, . . . , w

(n)
} in

Assumption 3 and state-action pairs D :=
�
(s, a) : �(s, a) are d linearly independent vectors.

.

⇠̂
k

h
, {✓̂

k(j)

h
}j2[n] = argmin

⇠,{✓(j)}
j2[n]

X

j2[n]

X

(s,a)2D

⇣
h✓(j),�(s, a)i � h⇠, (s, a, w(j))i

⌘2
(8)

s.t.
����✓

(j)
� ✓̃

k

h
(w(j))

����
⇤k

h

 �, 8j 2 [n] and k⇠k2  H

p

md,

where ✓̃
k

h
(w) and ⇤k

h
are defined in (5). In Appx. B.3, we will show that the action-value function in

(7) is an optimistic estimate of the optimal action-value function.

UCBlvd also uses the linear dependency of Qk

h
on to reduce calls of the planning step in (8). The

agent triggers replanning only when it has gathered enough new information compared to the last
update at episode k̃. This is measured by tracking the variations in Gram matrices {⇤k

h
}h2[H] (Line

4 for Algorithm 2). Finally, when executing the policy at episode k, the agent chooses the action
according to Q

k̃

h
in Line 10.

6

Published as a conference paper at ICLR 2023

Algorithm 2: UCBlvd (UCB Lifelong Value Distillation)

1 Set: Qk

H+1(., ., .) = 0, 8k 2 [K], k̃ = 1
2 for episodes k = 1, . . . ,K do
3 Observe the initial state s

k

1 and the task context wk.
4 if 9h 2 [H] such that log det⇤k

h
� log det⇤k̃

h
> 1 then

5 k̃ = k

6 for time-steps h = H, . . . , 1 do
7 Compute ⇠̂

k̃

h
as in (8).

8 for time-steps h = 1, . . . , H do
9 Compute Q

k̃

h
(sk

h
, a, w

k) for all a 2 A as in (7).
10 Play a

k

h
= argmax

a2A Q
k̃

h
(sk

h
, a, w

k) and observe s
k

h+1 and r
k

h
.

4.3 THEORETICAL ANALYSIS OF UCBLVD

We present our main theoretical result which shows UCBlvd achieves sublinear regret in lifelong RL
using sublinear number of planning calls, for any sequence of tasks. The proof is given in Appx. B.
Theorem 2. Let T = KH . Under Assumptions 1, 2, and 3, the number of planning calls in Algorithm
2 is at most dH log(1 + K

d�
), and there exists an absolute constant c > 0 such that for any fixed

� 2 (0, 0.5), if we set � = 1 and � = cH(d +
p
md)

p
log(mdT/�) in Algorithm 2, then with

probability at least 1� 2�, it holds that RK  Õ

⇣
L

p
(d3 +md2)H3T

⌘
.

Theorem 2 shows that UCBlvd has the same regret bound as Lifelong-LSVI in Theorem 1, but
reduces the number of planning calls from K to dH log(1 +K/d�). As we discussed before, this is
made possible by the unique QCQP-based distillation step of UCBlvd in (8). If we were to simply
perform least-squares regression to fit h (s, a, w), ⇠̂

k

h
i to {h�(s, a), ✓̃

k

h
(w(j))}j2[n] for distillation,

we cannot guarantee the required optimism, because h�(s, a), ✓̃
k

h
(w)i computed based on finite

samples can be an irregular function that cannot be modelled by (s, a, w).
Remark 1. If the rewards are unknown, we can adopt a slightly different completeness assumption
with an extra bonus in terms of , and then combine tools from linear bandits (Abbasi-Yadkori et al.,
2011) and our proof of Theorem 2. Because reward learning affects the radius of the confidence
intervals for ✓k

h
(w), the number of planning calls and regret would increase by factors of O(m) and

O(
p
m) 3, respectively, compared to those in Theorem 2. See Appx. C for details.

Remark 2. It is possible to eliminate the assumption that (s, a, w) = �(s, a)⌦⇢(w). In this case,
our analysis would instead require a set {w(1)

, w
(2)

, . . . , w
(n)

} of n tasks such that (s, a, w) 2
Span({ (s, a, w(j))}j2[n]) for all (s, a, w) 2 S ⇥A⇥W . In Appx. D, we provide details of this
relaxation, and show that this version still enjoys the same planning calls and regret as in Theorem 2.
Remark 3. We can eliminate Assumptions 1 and 3 and instead design a computation-sharing
version of Lifelong-LSVI under a sightly different completeness assumption with a class F , whose
exploration bonus is �

�� (s, a, w)
��
⇤̃

�1 . This assumption naturally includes settings with linear MDP
in which dynamics also change with task context, i.e., for all h 2 [H], it holds that Ph(.|s, a, w) =

hµ
h
(.), (s, a, w)i for d0 unknown measures [µ(1)

h
, . . . , µ

(d0)
h

]>. Under this assumption, a slightly
modified version of Lifelong-LSVI would use Q

k

h
(s, a, w) = {rh(s, a, w) + h⌫̃k

h
, (s, a, w)i +

�
�� (s, a, w)

��
(⇤̃

k

h
)�1}

+, where ⌫̃k

h
= (⇤̃

k

h
)�1

P
k�1
⌧=1

⌧

h
.min{maxa2A Q

k

h+1(s
⌧

h+1, a, w
⌧), H},

⇤̃
k

h
= �Id0 +

P
k�1
⌧=1

⌧

h
 ⌧

h

>, ⌧

h
= (s⌧

h
, a

⌧

h
, w

⌧), and � = Õ(d0). However, in Appx. E, we show
how these new algorithm and assumption result in Õ(mdH) number of planning calls and a regret

3While for both settings in this remark and Remark 3, the action-value functions contain exploration bonus
in terms of , the regret here is better by a factor of

p
m and this is because the multiplicative factor � here

saves a factor
p
m compared to that in Remark 3.

7

Published as a conference paper at ICLR 2023

scaling with Õ(
p
m3d3) for settings with (s, a, w) = �(s, a)⌦ ⇢(w). These are worse than the

number of planning calls and regret in Theorem 2 of UCBlvd by a factor of O(m).
Remark 4. A natural follow-up relaxation of Assumption 2 is when the equality holds up to an error of
⇣ . In Appx. F, we show that this relaxation results in a regret Õ

⇣p
mdT ⇣ +

p
�(d3 +md2)H3T

⌘

and the same number of planning calls as that in Theorem 2. When ⇣ is sufficiently small, i.e.,
⇣ = O(

p
d2H3/mT), UCBlvd will still enjoy a regret of the same order as that in Theorem 2.

4.4 PROOF SKETCH OF THEOREM 2

Because the proof of planning calls’ upper bound follows standard arguments in low switching cost
analysis of Abbasi-Yadkori et al. (2011), in this section, we focus on the proof sketch for the regret
bound. We start by introducing the high probability event E1, which is the foundation of our analysis:

E1(w) :=

(����✓
k

h
(w)� ✓̃

k

h
(w)

����
⇤k

h

 �, 8(h, k) 2 [H]⇥ [K]

)
. (9)

The following lemma highlights the importance of the carefully designed planning step in (8), which
ensures good estimators for ⇠V

⇤
h+1

h
without the need of bonus term

�� (s, a, w)
��⇣

⇤̃
k

h

⌘�1 . This step

saves a factor O(m) in planning calls and regret.

Lemma 1. Let fW = {w
⌧ : ⌧ 2 [K]} [{w

(j) : j 2 [n]}. Under the setting of Theorem 2 and
conditioned on events {E1(w)}w2fW defined in (9), for all (s, a, w, h, k) 2 S ⇥A⇥ fW ⇥ [H]⇥ [K],

it holds that
����h⇠̂

k

h
, (s, a, w)i � Ph[V k

h+1(., w)](s, a)

����  2L�
���(s, a)

��
(⇤k

h)
�1 .

As the final step in the regret analysis, we use Lemma 1 to prove the optimistic nature of UCBlvd, i.e.,
Q

k

h
(s, a, wk) � Q

⇤
h
(s, a, wk) for all (s, a, h, k) 2 S ⇥A⇥ [H]⇥ [K]. Then following the standard

analysis of single-task LSVI-UCB we derive the regret bound in Theorem 2.

4.5 EXPERIMENTS

We implemented our main algorithm UCBlvd on synthetic environments and compared its perfor-
mance with the warm-up algorithm Lifelong-LSVI, which is viewed as an idealized baseline ignoring
the computational complexity. In all the experiments, the same setting, task sequences and feature
mappings were used for both UCBlvd and Lifelong-LSVI. Figure 1a depicts per-episode rewards for
the main setup considered throughout the paper, and Figure 1b shows those for the setup in Remark 2.
The plots verify that Lifelong-LSVI and UCBlvd statistically perform almost the same while UCBlvd
uses much smaller numbers of planning calls (1000 vs ⇠ 20). We remark that Lifelong-LSVI has
an overall computation complexity of O(K2), which makes it not practical for the lifelong learning
setting, as its planning complexity increases linearly with the number of samples. The details on the
parameters of simulations are deferred to Appx. H.

Pe
r-

ep
is

od
e

re
w

ar
d

Episode, k

(a) Setting of Theorem 2, d = 5, m = 5, d0 = 25

Pe
r-

ep
is

od
e

re
w

ar
d

Episode, k

(b) Setting of Remark 2, d = 5, d0 = 10

Figure 1: UCBlvd vs Lifelong-LSVI. The experimental results include 50 seeds.

8

Published as a conference paper at ICLR 2023

5 RELATED WORK

We consider the regret minimization setup of lifelong RL under the contextual MDP framework,
where the agent receives tasks specified by contexts in sequence and needs to achieve a sublinear
regret for any task sequence. Below, we contrast our work with related work in the literature.

Lifelong RL. Generally lifelong RL studies how to learn to solve a streaming sequence of tasks
using rewards. While it was originally motivated by the need of endless learning of robots (Thrun &
Mitchell, 1995), historically many works on lifelong RL (Ammar et al., 2014; Brunskill & Li, 2014;
Abel et al., 2018a;b; Lecarpentier et al., 2021) assume that the tasks are i.i.d. (similar to multi-task
RL; see below). There are works for adversarial sequences, but most of them assume finite number
of tasks (Brunskill & Li, 2015; Ammar et al., 2015; Zhan et al., 2017) or are purely empirical (Xie &
Finn, 2021). The work by Isele et al. (2016) uses contexts to enable zero-shot learning like here, but
it (as well as most works above) does not provide formal regret guarantees.4 Brunskill & Li (2015)
and Xie & Finn (2021) assume the task identity is latent, which requires additional exploration; in
this sense, their problem is harder than the setup here where the task context is revealed. Extending
the setup here to consider latent context is an important future direction.

Contextual MDP and multi-objective RL. Our setup is closely related to the exploration problem
studied in the contextual MDP literature, though contextual MDP is originally not motivated from
the lifelong learning perspective. A similar mathematical problem appears in the dynamic setup of
multi-objective RL (Wu et al., 2021; Abels et al., 2019), which can be viewed as a special case of
contextual MDP where the context linearly determines the reward function but not the dynamics.
Most contextual MDP works allow adversarial contexts and initial states, but a majority of them
focuses on the tabular setup (Abbasi-Yadkori & Neu, 2014; Hallak et al., 2015; Modi et al., 2018;
Modi & Tewari, 2020; Levy & Mansour, 2022; Wu et al., 2021), whereas our setup allows continuous
states. Kakade et al. (2020) and Du et al. (2019) allow continuous state and action spaces, but the
former assumes a planning oracle with unclear computational complexity and the latter focuses on
only LQG problems. While generally contextual MDP allows both the reward and the dynamics to
vary with contexts, we focus on the effects of context-independent dynamics similar to Kakade et al.
(2020); Wu et al. (2021). In particular, the recent work of Wu et al. (2021) is the closest to ours, but
they study the sample complexity in the tabular setup with linearly parameterized rewards. In view of
Example 1, their proposed algorithm has a regret bound Õ(

p
min{m,|S|}H|S||A|K). However,

they need linear number of planning calls. On the contrary, our algorithm, UCBlvd, allows continuous
states, nonlinear context dependency, and has both sublinear regret and number of planning calls.

Multi-task RL. Another closely related line of work is multi-task RL. Compared to our setting,
multi-task RL assumes that there are beforehand known finite tasks and/or they are i.i.d. samples from
a fixed distribution. For example, in Yang et al. (2020); Hessel et al. (2019); Brunskill & Li (2013);
Fifty et al. (2021); Zhang & Wang (2021); Sodhani et al. (2021), tasks are assumed to be chosen from
a known finite set, and in Yang et al. (2020); Wilson et al. (2007); Brunskill & Li (2013); Sun et al.
(2021), tasks are sampled from a fixed distribution. By contrast, our setting provides guarantees on
regret and number of planning calls for adversarial task sequences.

6 DISCUSSION

In this paper, we frame lifelong RL as contextual MDPs and identify a new completeness-style
assumption to enable provably efficient lifelong RL with linear representation. We propose UCBlvd,
an algorithm that simultaneously satisfies the practical need of achieving 1) sublinear regret and
2) sublinear number of planning calls for 3) any sequence of tasks and initial states. Specifically,
for K task episodes of horizon H , we prove that UCBlvd has a regret bound Õ(

p
(d3 + d0d)H4K)

based on Õ(dH log(K)) number of planning calls, where d and d
0 are the feature dimensions of the

dynamics and rewards, respectively. We believe that our results would inspire new research directions
in the literature of CMDP and multi-objective RL, as existing work to our knowledge does not cover
the computation-sharing aspect of lifelong RL. That said, our work’s limitations motivate further
investigations in the following directions: 1) extension to more general class of MDPs, potentially
using general function approximation/representation tools, 2) establishing an information-theoretic
lower bound on the number of planning calls/computation complexity.

4Ammar et al. (2015) give regret bounds but only for linearized value difference; Brunskill & Li (2015) show
regret bounds only for finite number of tasks.

9

Published as a conference paper at ICLR 2023

ACKNOWLEDGEMENT

This work is partially supported by DARPA grant HR00112190130 and NSF grant 2221871. Sanae
Amani is partially supported by Amazon science hub fellowship.

REFERENCES

Yasin Abbasi-Yadkori and Gergely Neu. Online learning in mdps with side information. arXiv
preprint arXiv:1406.6812, 2014.

Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic
bandits. In Advances in Neural Information Processing Systems, pp. 2312–2320, 2011.

David Abel, Dilip Arumugam, Lucas Lehnert, and Michael Littman. State abstractions for lifelong
reinforcement learning. In International Conference on Machine Learning, pp. 10–19. PMLR,
2018a.

David Abel, Yuu Jinnai, Sophie Yue Guo, George Konidaris, and Michael Littman. Policy and value
transfer in lifelong reinforcement learning. In International Conference on Machine Learning, pp.
20–29. PMLR, 2018b.

Axel Abels, Diederik Roijers, Tom Lenaerts, Ann Nowé, and Denis Steckelmacher. Dynamic weights
in multi-objective deep reinforcement learning. In International Conference on Machine Learning,
pp. 11–20. PMLR, 2019.

Haitham Bou Ammar, Eric Eaton, Paul Ruvolo, and Matthew Taylor. Online multi-task learning for
policy gradient methods. In International conference on machine learning, pp. 1206–1214. PMLR,
2014.

Haitham Bou Ammar, Rasul Tutunov, and Eric Eaton. Safe policy search for lifelong reinforcement
learning with sublinear regret. In International Conference on Machine Learning, pp. 2361–2369.
PMLR, 2015.

Emma Brunskill and Lihong Li. Sample complexity of multi-task reinforcement learning. In
Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence, pp. 122–131,
2013.

Emma Brunskill and Lihong Li. Pac-inspired option discovery in lifelong reinforcement learning. In
International conference on machine learning, pp. 316–324. PMLR, 2014.

Emma Brunskill and Lihong Li. The online coupon-collector problem and its application to lifelong
reinforcement learning. arXiv preprint arXiv:1506.03379, 2015.

Simon S Du, Ruosong Wang, Mengdi Wang, and Lin F Yang. Continuous control with contexts,
provably. arXiv preprint arXiv:1910.13614, 2019.

Chris Fifty, Ehsan Amid, Zhe Zhao, Tianhe Yu, Rohan Anil, and Chelsea Finn. Efficiently identifying
task groupings for multi-task learning. Advances in Neural Information Processing Systems, 34,
2021.

Minbo Gao, Tianle Xie, Simon S Du, and Lin F Yang. A provably efficient algorithm for linear
markov decision process with low switching cost. arXiv preprint arXiv:2101.00494, 2021.

Assaf Hallak, Dotan Di Castro, and Shie Mannor. Contextual markov decision processes. arXiv
preprint arXiv:1502.02259, 2015.

Matteo Hessel, Hubert Soyer, Lasse Espeholt, Wojciech Czarnecki, Simon Schmitt, and Hado
van Hasselt. Multi-task deep reinforcement learning with popart. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pp. 3796–3803, 2019.

David Isele, Mohammad Rostami, and Eric Eaton. Using task features for zero-shot knowledge
transfer in lifelong learning. In IJCAI, volume 16, pp. 1620–1626, 2016.

10

Published as a conference paper at ICLR 2023

Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement
learning with linear function approximation. In Conference on Learning Theory, pp. 2137–2143,
2020.

Sham Kakade, Akshay Krishnamurthy, Kendall Lowrey, Motoya Ohnishi, and Wen Sun. Information
theoretic regret bounds for online nonlinear control. Advances in Neural Information Processing
Systems, 33:15312–15325, 2020.

Khimya Khetarpal, Matthew Riemer, Irina Rish, and Doina Precup. Towards continual reinforcement
learning: A review and perspectives. arXiv preprint arXiv:2012.13490, 2020.

Erwan Lecarpentier, David Abel, Kavosh Asadi, Yuu Jinnai, Emmanuel Rachelson, and Michael L
Littman. Lipschitz lifelong reinforcement learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pp. 8270–8278, 2021.

Orin Levy and Yishay Mansour. Learning efficiently function approximation for contextual mdp.
arXiv preprint arXiv:2203.00995, 2022.

Aditya Modi and Ambuj Tewari. No-regret exploration in contextual reinforcement learning. In
Conference on Uncertainty in Artificial Intelligence, pp. 829–838. PMLR, 2020.

Aditya Modi, Nan Jiang, Satinder Singh, and Ambuj Tewari. Markov decision processes with
continuous side information. In Algorithmic Learning Theory, pp. 597–618. PMLR, 2018.

Nicholas Roy, Ingmar Posner, Tim Barfoot, Philippe Beaudoin, Yoshua Bengio, Jeannette Bohg,
Oliver Brock, Isabelle Depatie, Dieter Fox, Dan Koditschek, et al. From machine learning to
robotics: Challenges and opportunities for embodied intelligence. arXiv preprint arXiv:2110.15245,
2021.

Daniel L Silver, Qiang Yang, and Lianghao Li. Lifelong machine learning systems: Beyond learning
algorithms. In 2013 AAAI spring symposium series, 2013.

Shagun Sodhani, Amy Zhang, and Joelle Pineau. Multi-task reinforcement learning with context-
based representations. In International Conference on Machine Learning, pp. 9767–9779. PMLR,
2021.

Yanchao Sun, Xiangyu Yin, and Furong Huang. Temple: Learning template of transitions for sample
efficient multi-task rl. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pp. 9765–9773, 2021.

Sebastian Thrun and Tom M Mitchell. Lifelong robot learning. Robotics and autonomous systems,
15(1-2):25–46, 1995.

Tianhao Wang, Dongruo Zhou, and Quanquan Gu. Provably efficient reinforcement learning with
linear function approximation under adaptivity constraints. Advances in Neural Information
Processing Systems, 34:13524–13536, 2021.

Yining Wang, Ruosong Wang, Simon Shaolei Du, and Akshay Krishnamurthy. Optimism in rein-
forcement learning with generalized linear function approximation. In International Conference
on Learning Representations, 2020.

Aaron Wilson, Alan Fern, Soumya Ray, and Prasad Tadepalli. Multi-task reinforcement learning: a
hierarchical bayesian approach. In Proceedings of the 24th international conference on Machine
learning, pp. 1015–1022, 2007.

Jingfeng Wu, Vladimir Braverman, and Lin Yang. Accommodating picky customers: Regret bound
and exploration complexity for multi-objective reinforcement learning. Advances in Neural
Information Processing Systems, 34:13112–13124, 2021.

Annie Xie and Chelsea Finn. Lifelong robotic reinforcement learning by retaining experiences. arXiv
preprint arXiv:2109.09180, 2021.

Lin Yang and Mengdi Wang. Sample-optimal parametric q-learning using linearly additive features.
In International Conference on Machine Learning, pp. 6995–7004. PMLR, 2019.

11

Published as a conference paper at ICLR 2023

Ruihan Yang, Huazhe Xu, Yi Wu, and Xiaolong Wang. Multi-task reinforcement learning with soft
modularization. Advances in Neural Information Processing Systems, 33:4767–4777, 2020.

Yusen Zhan, Haitham Bou Ammar, and Matthew E Taylor. Scalable lifelong reinforcement learning.
Pattern Recognition, 72:407–418, 2017.

Chicheng Zhang and Zhi Wang. Provably efficient multi-task reinforcement learning with model
transfer. Advances in Neural Information Processing Systems, 34, 2021.

12

Published as a conference paper at ICLR 2023

A PROOFS OF SECTION 3

To prove Theorem 1, we will use the high probability event E2 defined in Lemma 3 to prove the UCB
nature of Lifelong-LSVI in Lemma 4, which is the key to controlling the regret. We first state the
following lemma that will be used in the proof of Lemma 3.
Lemma 2. Under the setting of Theorem 1, let c� be the constant in the definition of �. Then, for a
fixed w, there is an absolute constant c0 independent of c� , such that for all (h, k) 2 [H]⇥ [K], with
probability at least 1� � it holds that
������

k�1X

⌧=1

�⌧

h
.

⇣
V

k

h+1(s
⌧

h+1, w)� Ph[V
k

h+1(., w)](s
⌧

h
, a

⌧

h
)
⌘
������
(⇤k

h)
�1

 c0H

⇣
d+

p

d0
⌘q

log((c� + 1)dd0T/�),

where c0 and c� are two independent absolute constants.

Proof. We note that k⌘
h
k2 

p
d0 (Assumption 1),

��✓k
h
(w)
��
2

 H
p
d (Lemma 18), and����

⇣
⇤k

h

⌘�1
���� 

1
�

. Thus, Lemmas 19 and 21 together imply that for all (h, k) 2 [H] ⇥ [K], with

probability at least 1� � it holds that
������

k�1X

⌧=1

�⌧

h

⇣
V

k

h+1(s
⌧

h+1, w)� Ph[V
k

h+1(., w)](s
⌧

h
, a

⌧

h
)
⌘
������

2

(⇤k

h)
�1

 4H2

0

@d

2
log

✓
k + �

�

◆
+ d

0 log(1 + 4d0/✏) + d log(1 + 4Hd/✏) + d
2 log

1 + 8B2

p
d

�✏2

!
+ log

✓
1

�

◆1

A+
8k2✏2

�
.

If we let ✏ = dH

k
and � = c�(d+

p
d0)H

p
log(dT/�), then, there exists an absolute constant C > 0

that is independent of c� such that
������

k�1X

⌧=1

�⌧

h

⇣
V

k

h+1(s
⌧

h+1, w)� Ph[V
k

h+1(., w)](s
⌧

h
, a

⌧

h
)
⌘
������

2

(⇤k

h)
�1

 C(d0 + d
2)H2 log

�
(c� + 1)dd0T/�

�
.

Lemma 3. Let the setting of Theorem 1 holds. The event

E2(w) :=

(����✓
k

h
(w)� ✓̃

k

h
(w)

����
⇤k

h

 �, 8(h, k) 2 [H]⇥ [K]

)
. (10)

holds with probability at least 1� � for a fixed w.

Proof.

✓k
h
(w)� ✓̃

k

h
(w) = ✓k

h
(w)�

⇣
⇤k

h

⌘�1 k�1X

⌧=1

�⌧

h
V

k

h+1(s
⌧

h+1, w)

=
⇣
⇤k

h

⌘�1

0

@⇤k

h
✓k
h
(w)�

k�1X

⌧=1

�⌧

h
V

k

h+1(s
⌧

h+1, w)

1

A

= �

⇣
⇤k

h

⌘�1
✓k
h
(w)

| {z }
q1

�

⇣
⇤k

h

⌘�1

0

@
k�1X

⌧=1

�⌧

h

⇣
V

k

h+1(s
⌧

h+1, w)� Ph[V
k

h+1(., w)](s
⌧

h
, a

⌧

h
)
⌘
1

A

| {z }
q2

.

13

Published as a conference paper at ICLR 2023

Thus, in order to upper bound
����✓

k

h
(w)� ✓̃

k

h
(w)

����
⇤k

h

, we boundkq1k⇤k

h

andkq2k⇤k

h

separately.

From Lemma 18, we have

kq1k⇤k

h

= �

���✓kh(w)
���
(⇤k

h)
�1



p

�

���✓kh(w)
���
2
 H

p

�d. (11)

Thanks to Lemma 2, for all (w, h, k), with probability at least 1� �, it holds that

kq2k⇤k

h



������

k�1X

⌧=1

�⌧

h

⇣
V

k

h+1(s
⌧

h+1, w)� Ph[V
k

h+1(., w)](s
⌧

h
, a

⌧

h
)
⌘
������
(⇤k

h)
�1

 c0H

⇣
d+

p

d0
⌘q

log((c� + 1)dd0T/�),

(12)

where c0 and c� are two independent absolute constants.

Combining (11) and (12), for all (w, h, k), with probability at least 1� �, it holds that

����✓
k

h
(w)� ✓̃

k

h
(w)

����
⇤k

h

 cH

⇣
d+

p

d0
⌘p

� log(dd0T/�)

for some absolute constant c > 0.

Lemma 4. Let fW = {w
1
, w

2
, . . . , w

K
}. Under the setting of Theorem 1 and conditioned on

events {E2(w)}w2fW defined in (10), and with Q
k

h
computed as in (6), it holds that Qk

h
(s, a, w) �

Q
⇤
h
(s, a, w) for all (s, a, w, h, k) 2 S ⇥A⇥ fW ⇥ [H]⇥ [K].

Proof. We first note that conditioned on events {E2(w)}w2fW , for all (s, a, w, h, k) 2 S⇥A⇥fW ⇥

[H]⇥ [K], it holds that
�����rh(s, a, w) +

⌧
✓̃
k

h
(w),�(s, a)

�
�Q

⇡

h
(s, a, w)� Ph

h
V

k

h+1(., w)� V
⇡

h+1(., w)
i
(s, a)

�����

=

�����rh(s, a, w) +
⌧
✓̃
k

h
(w),�(s, a)

�
� rh(s, a, w)� Ph

h
V

k

h+1(., w)
i
(s, a)

�����

=

�����

⌧
✓̃
k

h
(w),�(s, a)

�
� Ph

h
V

k

h+1(., w)
i
(s, a)

�����

=

�����

⌧
✓̃
k

h
(w)� ✓k

h
(w),�(s, a)

������



����✓̃
k

h
(w)� ✓k

h
(w)

����
⇤k

h

���(s, a)
��
(⇤k

h)
�1

 �
���(s, a)

��
(⇤k

h)
�1 , (Lemma 3)

for any policy ⇡.

Now, we prove the lemma by induction. The statement holds for H because Q
k

H+1(., ., .) =
Q

⇤
H+1(., ., .) = 0 and thus conditioned on events {E2(w)}w2fW , defined in (10), for all (s, a, w, k) 2

S ⇥A⇥ fW ⇥ [K], we have

����rH(s, a, w) +
D
✓k
H
(w), (s, a)

E
�Q

⇤
H
(s, a, w)

����  �
���(s, a)

��
(⇤k

H)
�1 .

14

Published as a conference paper at ICLR 2023

Therefore, conditioned on events {E2(w)}w2fW , for all (s, a, w, k) 2 S ⇥A⇥ fW ⇥ [K], we have

Q
⇤
H
(s, a, w)  rH(s, a, w) +

D
✓k
H
(w),�(s, a)

E
+ �

���(s, a)
��
(⇤k

H
)�1 = Q

k

H
(s, a, w).

Now, suppose the statement holds at time-step h+1 and consider time-step h. Conditioned on events
{E2(w)}w2fW , for all (s, a, w, h, k) 2 S ⇥A⇥ fW ⇥ [H]⇥ [K], we have

0  rh(s, a, w) +
D
✓k
h
(w),�(s, a)

E
�Q

⇤
h
(s, a, w)� Ph

h
V

k

h+1(., w)� V
⇤
h+1(., w)

i
(s, a) + �

���(s, a)
��
(⇤k

h)
�1

 rh(s, a, w) +
D
✓k
h
(w),�(s, a)

E
�Q

⇤
h
(s, a, w) + �

���(s, a)
��
(⇤k

h)
�1 .

(Induction assumption)

Therefore, conditioned on events {E2(w)}w2fW , for all (s, a, w, h, k) 2 S ⇥A⇥ fW ⇥ [H]⇥ [K],
we have

Q
⇤
h
(s, a, w)  rh(s, a, w) +

D
✓k
h
(w),�(s, a)

E
+ �

���(s, a)
��
(⇤k

h)
�1 = Q

k

h
(s, a, w).

This completes the proof.

A.1 PROOF OF THEOREM 1

Let �k
h
= V

k

h
(sk

h
, w

k)� V
⇡
k

h
(sk

h
, w

k) and ⇠
k

h+1 = E
h
�
k

h+1|s
k

h
, a

k

h

i
� �

k

h+1. Conditioned on events

{E2(w)}w2fW , for all (s, a, w, h, k) 2 S ⇥A⇥ fW ⇥ [H]⇥ [K], we have

Q
k

h
(s, a, w)�Q

⇡
k

h
(s, a, w) = rh(s, a, w) +

D
✓k
h
(w),�(s, a)

E
�Q

⇡
k

h
(s, a, w) + �

���(s, a)
��
(⇤k

h
)�1

 Ph

h
V

k

h+1(., w)� V
⇡
k

h+1(., w)
i
(s, a) + 2�

���(s, a)
��
(⇤k

h
)�1 . (13)

Note that �k
h
 Q

k

h
(sk

h
, a

k

h
, w

k)�Q
⇡
k

h
(sk

h
, a

k

h
, w

k). Thus, combining (13), Lemma 3, and a union
bound over fW , we conclude that for all (h, k) 2 [H]⇥ [K], with probability at least 1� �, it holds
that

�
k

h
 ⇠

k

h+1 + �
k

h+1 + 2�
����(skh, akh)

���
(⇤k

h
)�1

.

Now, we complete the regret analysis

RK =
KX

k=1

V
⇤
1 (s

k

1 , w
k)� V

⇡
k

1 (sk1 , w
k)



KX

k=1

V
k

1 (sk1 , w
k)� V

⇡
k

1 (sk1 , w
k) (Lemma 4)

=
KX

k=1

�
k

1



KX

k=1

HX

h=1

⇠
k

h
+ 2�

KX

k=1

HX

h=1

����(skh, akh)
���
(⇤k

h)
�1

 2H
p

T log(dT/�) + 2H�

p
2dK log(1 +K/�)

 Õ

⇣p
�(d3 + dd0)H3T

⌘
.

The third inequality is true because of the following: we observe that {⇠k
h
} is a martingale difference

sequence satisfying |⇠
k

h
| 2H . Thus, thanks to Azuma-Hoeffding inequality, we have

P

0

@
KX

k=1

HX

h=1

⇠
k

h
 2H

p
T log(dT/�)

1

A � 1� �. (14)

15

Published as a conference paper at ICLR 2023

In order to bound
P

K

k=1

P
H

h=1

����k

h

���
(⇤k

h)
�1

, note that for any h 2 [H], we have

KX

k=1

����k

h

���
(⇤k

h)
�1



vuut
K

KX

k=1

����k

h

���
2

(⇤k

h)
�1

(Cauchy-Schwartz inequality)



vuuuut2K log

0

B@
det
⇣
⇤K

h

⌘

det
⇣
⇤1

h

⌘

1

CA (15)



s

2dK log

✓
1 +

K

d�

◆
. (16)

In inequality (15), we used the standard argument in regret analysis of linear bandits (Abbasi-Yadkori
et al., 2011, Lemma 11) as follows:

nX

t=1

min
⇣
kytk

2
V�1

t

, 1
⌘
 2 log

detVn+1

detV1
where Vn = V1 +

n�1X

t=1

yty
>
t
. (17)

In inequality (16), we used Assumption 1 and the fact that det(A) =
Q

d

i=1 �i(A)  (trace(A)/d)d.

B PROOFS OF SECTION 4

We start by introducing the high probability event E1, which is the foundation of our analysis in the
following lemma.
Lemma 5. Follow the setting of Theorem 2. The event

E1(w) :=

(����✓
k

h
(w)� ✓̃

k

h
(w)

����
⇤k

h

 �, 8(h, k) 2 [H]⇥ [K]

)
. (18)

holds with probability at least 1� � for a fixed w.

Proof of Lemma 5 is given in Appx. B.1.

B.1 PROOF OF LEMMA 5

First, we state the following lemma that will be used in the proof of Lemma 5.
Lemma 6. Under the setting of Lemma 5, let c� be a constant in the definition of �. Then, for a
fixed w, there is an absolute constant c0 independent of c� , such that for all (h, k) 2 [H]⇥ [K], with
probability at least 1� � it holds that
������

k�1X

⌧=1

�⌧

h
.

⇣
V

k

h+1(s
⌧

h+1, w)� Ph[V
k

h+1(., w)](s
⌧

h
, a

⌧

h
)
⌘
������
(⇤k

h)
�1

 c0H

⇣
d+

p

md

⌘q
log((c� + 1)mdT/�),

where c0 and c� are two independent absolute constants.

Proof. We note that
����⌘h

+ ⇠̂
k

h

����
2

 (1 +H)
p
md and

����
⇣
⇤k

h

⌘�1
���� 

1
�

. Thus, Lemmas 19 and 22

together imply that for all (h, k) 2 [H]⇥ [K], with probability at least 1� � it holds that
������

k�1X

⌧=1

�⌧

h

⇣
V

k

h+1(s
⌧

h+1, w)� Ph[V
k

h+1(., w)](s
⌧

h
, a

⌧

h
)
⌘
������

2

(⇤k

h)
�1

 4H2

0

@d

2
log

✓
k + �

�

◆
+md log(1 + 8H

p

md/✏) + d
2 log

1 + 32L2

�
2
p
d

�✏2

!
+ log

✓
1

�

◆1

A+
8k2✏2

�
.

16

Published as a conference paper at ICLR 2023

If we let ✏ = dH

k
and � = c�(d +

p
md)H

p
log(dT/�), then, there exists an absolute constant

C > 0 that is independent of c� such that
������

k�1X

⌧=1

�⌧

h

⇣
V

k

h+1(s
⌧

h+1, w)� Ph[V
k

h+1(., w)](s
⌧

h
, a

⌧

h
)
⌘
������

2

(⇤k

h)
�1

 C(md+ d
2)H2 log

�
(c� + 1)mdT/�

�
.

Now, we begin the formal proof of Lemma 5:

✓k
h
(w)� ✓̃

k

h
(w) = ✓k

h
(w)�

⇣
⇤k

h

⌘�1 k�1X

⌧=1

�⌧

h
V

k

h+1(s
⌧

h+1, w)

=
⇣
⇤k

h

⌘�1

0

@⇤k

h
✓k
h
(w)�

k�1X

⌧=1

�⌧

h
V

k

h+1(s
⌧

h+1, w)

1

A

= �

⇣
⇤k

h

⌘�1
✓k
h
(w)

| {z }
q1

�

⇣
⇤k

h

⌘�1

0

@
k�1X

⌧=1

�⌧

h

⇣
V

k

h+1(s
⌧

h+1, w)� Ph[V
k

h+1(., w)](s
⌧

h
, a

⌧

h
)
⌘
1

A

| {z }
q2

.

Thus, in order to upper bound
����✓

k

h
(w)� ✓̃

k

h
(w)

����
⇤k

h

, we boundkq1k⇤k

h

andkq2k⇤k

h

separately.

From Lemma 18, we have

kq1k⇤k

h

= �

���✓kh(w)
���
(⇤k

h)
�1



p

�

���✓kh(w)
���
2
 H

p

�d. (19)

Thanks to Lemma 6, for all (w, h, k), with probability at least 1� �, it holds that

kq2k⇤k

h



������

k�1X

⌧=1

�⌧

h

⇣
V

k

h+1(s
⌧

h+1, w)� Ph[V
k

h+1(., w)](s
⌧

h
, a

⌧

h
)
⌘
������
(⇤k

h)
�1

 c0H

⇣
d+

p

md

⌘q
log((c� + 1)mdT/�), (20)

where c0 and c� are two independent absolute constants.

Combining (19) and (20), for all (h, k) 2 [H]⇥ [K], with probability at least 1� �, it holds that

����✓
k

h
(w)� ✓̃

k

h
(w)

����
⇤k

h

 cH

⇣
d+

p

md

⌘p
� log(mdT/�)

for some absolute constant c > 0.

B.2 PROOF OF LEMMA 1

Thanks to Assumption 2 and conditioned on events {E1(w)}w2fW , one set of solution for (8) is⇢
✓k
h

⇣
w

(j)
⌘�

j2[n]

and ⇠V
k

h+1

h
with corresponding zero optimal objective value. Therefore, it holds

that
⌧
✓̂
k(j)

h
,�(s, a)

�
=

⌧
⇠̂
k

h
,
⇣
s, a, w

(j)
⌘�

, 8(j, (s, a)) 2 [n]⇥D. (21)

17

Published as a conference paper at ICLR 2023

Let
⇣
s
(i)
, a

(i)
⌘

be the i-th element of D and {c
0
i
(s, a)}i2[d] be the coefficients such that

�(s, a) =
X

i2[d]

c
0
i
(s, a)�

⇣
s
(i)
, a

(i)
⌘
.

For any triple (s, a, j) 2 S ⇥A⇥ [n], we have

⌧
⇠̂
k

h
,
⇣
s, a, w

(j)
⌘�

=

⌧
⇠̂
k

h
,�(s, a)⌦ ⇢

⇣
w

(j)
⌘�

=

*
⇠̂
k

h
,

X

i2[d]

c
0
i
(s, a)�

⇣
s
(i)
, a

(i)
⌘
⌦ ⇢

⇣
w

(j)
⌘+

=
X

i2[d]

c
0
i
(s, a)

⌧
⇠̂
k

h
,
⇣
s
(i)
, a

(i)
, w

(j)
⌘�

(Assumption 3)

=
X

i2[d]

c
0
i
(s, a)

⌧
✓̂
k(j)

h
,�
⇣
s
(i)
, a

(i)
⌘�

(Eqn. (21))

=

⌧
✓̂
k(j)

h
,�(s, a)

�
. (22)

For any (s, a, w) 2 S ⇥A⇥W , it holds that

Ph

h
V

k

h+1(., w)
i
(s, a) =

D
✓k
h
(w),�(s, a)

E
(Eqn. (4))

=

⌧
⇠
V

k

h+1

h
, (s, a, w)

�
(Assumption 2)

=
X

j2[n]

cj(w)

⌧
⇠
V

k

h+1

h
,
⇣
s, a, w

(j)
⌘�

(Assumption 3)

=
X

j2[n]

cj(w)Ph


V

k

h+1

⇣
., w

(j)
⌘�

(s, a) (Assumption 2)

=
X

j2[n]

cj(w)

⌧
✓k
h

⇣
w

(j)
⌘
,�(s, a)

�
. (23)

18

Published as a conference paper at ICLR 2023

Finally, conditioned on events {E1(w)}w2fW , for all (s, a, w, h, k) 2 S ⇥ A ⇥ fW ⇥ [H] ⇥ [K], it
holds that
�����

⌧
⇠̂
k

h
, (s, a, w)

�
� Ph

h
V

k

h+1(., w)
i
(s, a)

�����

=

�����

⌧
⇠̂
k

h
, (s, a, w)

�
�

D
✓k
h
(w),�(s, a)

E�����

=

������

X

j2[n]

cj(w)

 ⌧
⇠̂
k

h
,
⇣
s, a, w

(j)
⌘�

�

⌧
✓k
h

⇣
w

(j)
⌘
,�(s, a)

�!������
(Assumption 3 and Eqn. (23))



������

X

j2[n]

cj(w)

 ⌧
⇠̂
k

h
,
⇣
s, a, w

(j)
⌘�

�

⌧
✓̂
k(j)

h
,�(s, a)

�!������

+

������

X

j2[n]

cj(w)

⌧
✓̂
k(j)

h
� ✓̃

k

h

⇣
w

(j)
⌘
,�(s, a)

�������
+

������

X

j2[n]

cj(w)

⌧
✓̃
k

h

⇣
w

(j)
⌘
� ✓k

h

⇣
w

(j)
⌘
,�(s, a)

�������

=

������

X

j2[n]

cj(w)

⌧
✓̂
k(j)

h
� ✓̃

k

h

⇣
w

(j)
⌘
,�(s, a)

�������
+

������

X

j2[n]

cj(w)

⌧
✓̃
k

h

⇣
w

(j)
⌘
� ✓k

h

⇣
w

(j)
⌘
,�(s, a)

�������
(Eqn. (22))

 2L�
���(s, a)

��
(⇤k

h)
�1 . (Lemma 5)

B.3 PROOF OF OPTIMISTIC NATURE OF UCBLVD

Lemma 7. Let fW = {w
⌧ : ⌧ 2 [K]} [{w

(j) : j 2 [n]}. Under the setting of Theorem 2 and
conditioned on events {E1(w)}w2fW defined in (9), and with Q

k

h
computed as in (7), it holds that

Q
k

h
(s, a, w) � Q

⇤
h
(s, a, w) for all (s, a, w, h, k) 2 S ⇥A⇥ fW ⇥ [H]⇥ [K].

Proof. We first note that conditioned on events {E1(w)}w2fW , for all (s, a, w, h, k) 2 S⇥A⇥fW ⇥

[H]⇥ [K], it holds that
�����rh(s, a, w) +

⌧
⇠̂
k

h
, (s, a, w)

�
�Q

⇡

h
(s, a, w)� Ph

h
V

k

h+1(., w)� V
⇡

h+1(., w)
i
(s, a)

�����

=

�����rh(s, a, w) +
⌧
⇠̂
k

h
, (s, a, w)

�
� rh(s, a, w)� Ph

h
V

k

h+1(., w)
i
(s, a)

�����

=

�����

⌧
⇠̂
k

h
, (s, a, w)

�
� Ph

h
V

k

h+1(., w)
i
(s, a)

�����

 2L�
���(s, a)

��
(⇤k

h)
�1 , (Lemma 1)

for any policy ⇡.

Now, we prove the lemma by induction. The statement holds for H because Q
k

H+1(., ., .) =
Q

⇤
H+1(., ., .) = 0 and thus conditioned events {E1(w)}w2fW , defined in (9), for all (s, a, w, k) 2

S ⇥A⇥ fW ⇥ [K], we have

�����rH(s, a, w) +

⌧
⇠̂
k

H
, (s, a, w)

�
�Q

⇤
H
(s, a, w)

�����  2L�
���(s, a)

��
(⇤k

H)
�1 .

19

Published as a conference paper at ICLR 2023

Therefore, conditioned on events {E1(w)}w2fW , for all (s, a, w, k) 2 S ⇥A⇥ fW ⇥ [K], we have

Q
⇤
H
(s, a, w)  rH(s, a, w) +

⌧
⇠̂
k

H
, (s, a, w)

�
+ 2L�

���(s, a)
��
(⇤k

H
)�1

=

(
rH(s, a, w) +

⌧
⇠̂
k

H
, (s, a, w)

�
+ 2L�

���(s, a)
��
(⇤k

H
)�1

)+

= Q
k

H
(s, a, w),

where the first equality follows from the fact that Q⇤
H
(s, a, w) � 0. Now, suppose the statement

holds at time-step h + 1 and consider time-step h. Conditioned on events {E1(w)}w2fW , for all
(s, a, w, h, k) 2 S ⇥A⇥ fW ⇥ [H]⇥ [K], we have

0  rh(s, a, w) +

⌧
⇠̂
k

h
, (s, a, w)

�
�Q

⇤
h
(s, a, w)� Ph

h
V

k

h+1(., w)� V
⇤
h+1(., w)

i
(s, a) + 2L�

���(s, a)
��
(⇤k

h)
�1

 rh(s, a, w) +

⌧
⇠̂
k

h
, (s, a, w)

�
�Q

⇤
h
(s, a, w) + 2L�

���(s, a)
��
(⇤k

h)
�1 .

(Induction assumption)

Therefore, conditioned on events {E1(w)}w2fW , for all (s, a, w, h, k) 2 S ⇥A⇥ fW ⇥ [H]⇥ [K],
we have

Q
⇤
h
(s, a, w)  rh(s, a, w) +

⌧
⇠̂
k

h
, (s, a, w)

�
+ 2L�

���(s, a)
��
(⇤k

h)
�1

=

(
rh(s, a, w) +

⌧
⇠̂
k

h
, (s, a, w)

�
+ 2L�

���(s, a)
��
(⇤k

h)
�1

)+

= Q
k

h
(s, a, w),

where the first equality follows from the fact that Q⇤
h
(s, a, w) � 0. This completes the proof.

B.4 PROOF OF THEOREM 2

First, we bound the number of times Algorithm 2 updates ⇠̂
k

h
, i.e., number of planning calls. Let P

be the total number of updates and kp be the episode at which, the agent did replanning for the p-th

time. Note that det⇤1
h
= �

d and det⇤K

h
 trace(⇤K

h
/d)d 

⇣
�+ K

d

⌘d
, and consequently:

det⇤K

h

det⇤1
h

=
PY

p=1

det⇤
kp

h

det⇤
kp�1

h



✓
1 +

K

d�

◆d

,

and therefore

HY

h=1

det⇤K

h

det⇤1
h

=
HY

h=1

PY

p=1

det⇤
kp

h

det⇤
kp�1

h



✓
1 +

K

d�

◆dH

. (24)

Since 1 
det⇤kp

h

det⇤kp�1
h

for all p 2 [P], we can deduce from (24) that

9h 2 [H] such that e <
det⇤k

h

det⇤k̃

h

happens for at most dH log
⇣
1 + K

d�

⌘
number of episodes k 2 [K]. This concludes that the number

of planing calls in UCBlvd is dH log
⇣
1 + K

d�

⌘
.

20

Published as a conference paper at ICLR 2023

Now, we prove the regret bound. Let �
k

h
= V

k̃

h
(sk

h
, w

k) � V
⇡
k

h
(sk

h
, w

k) and ⇠
k

h+1 =

E
h
�
k

h+1|s
k

h
, a

k

h

i
� �

k

h+1. Conditioned on events {E1(w)}w2fW , for all (s, a, w, h, k) 2 S ⇥ A ⇥

fW ⇥ [H]⇥ [K], we have

Q
k̃

h
(s, a, w)�Q

⇡
k

h
(s, a, w) = rh(s, a, w) +

⌧
⇠̂
k̃

h
, (s, a, w)

�
�Q

⇡
k

h
(s, a, w) + 2L�

���(s, a)
��
(⇤k̃

h
)�1

 Ph

h
V

k̃

h+1(., w)� V
⇡
k

h+1(., w)
i
(s, a) + 4L�

���(s, a)
��
(⇤k̃

h
)�1 .

(25)

Note that �k
h
 Q

k̃

h
(sk

h
, a

k

h
, w

k)�Q
⇡
k

h
(sk

h
, a

k

h
, w

k). Thus, combining (25), Lemma 5, and a union
bound over fW , we conclude that for all (h, k) 2 [H]⇥ [K], with probability at least 1� �, it holds
that gives

�
k

h
 ⇠

k

h+1 + �
k

h+1 + 4L�
����(skh, akh)

���
(⇤k̃

h
)�1

.

Note that for any positive semi-definite matrices A, B, and C such that A = B+C, we have:

det(A) � det(B), det(A) � det(C), (26)

and for any x 6= 0 ((Abbasi-Yadkori et al., 2011, Lemm. 12)):

kxk2A
kxk2B


det(A)

det(B)
and

kxk2B�1

kxk2A�1


det(A)

det(B)
. (27)

Now, we complete the regret analysis following similar steps as those of Theorem 1’s proof:

RK =
KX

k=1

V
⇤
1 (s

k

1 , w
k)� V

⇡
k

1 (sk1 , w
k)



KX

k=1

V
k̃

1 (sk1 , w
k)� V

⇡
k

1 (sk1 , w
k) (Lemma 7)

=
KX

k=1

�
k

1



KX

k=1

HX

h=1

⇠
k

h
+ 4L�

KX

k=1

HX

h=1

����(skh, akh)
���⇣

⇤k̃

h

⌘�1



KX

k=1

HX

h=1

⇠
k

h
+ 4L�

KX

k=1

HX

h=1

����(skh, akh)
���
(⇤k

h)
�1

vuutdet⇤k

h

det⇤k̃

h

(Eqn. (27))

 2H
p
T log(dT/�) + 8HL�

p
2dK log(1 +K/�)

 Õ

⇣
L

p
�(d3 +md2)H3T

⌘
.

B.5 DISCUSSION ON THE TIME COMPLEXITY OF UCBLVD AND LIFELONG-LSVI

In what follows, we clarify on how the time complexity of UCBlvd compares to that of Lifelong

LSVI. When we compute
⇣
⇤k

h

⌘�1
by the Sherman-Morrison formula, the computational complexity

of Lifelong-LSVI is dominated by Line 5 in computing maxa2AQ
k

h+1(s
⌧

h+1, a) for all ⌧ 2 [k]. This
takes O(d2|A|K) per step, which gives a total runtime O(d2|A|HK

2). In UCBlvd, every planning
call takes Õ(md

2
|A|K+m

3
d
3), where the second term is the time-complexity of thE convex QCQP

with m+ 1 constraints and 2md variables. This gives a total runtime of Õ(H2(md
3
|A|K +m

3
d
4)).

Therefore, UCBlvd enjoys a smaller time complexity by a factor of K compared to that of Lifelong-
LSVI, which is a significant reduction in practical scenarios where K >> d

0 = md.

21

Published as a conference paper at ICLR 2023

Algorithm 3: UCBlvd with Unknown Rewards

1 Set: Qk

H+1(., ., .) = 0, 8k 2 [K], k̃ = 1
2 for episodes k = 1, . . . ,K do
3 Observe the initial state s

k

1 and the task context wk.

4 if 9h 2 [H] such that det⇤k

h

det⇤k̃

h

> e or det
˜⇤

k

h

det
˜⇤

k̃

h

> e then

5 k̃ = k

6 for time-steps h = H, . . . , 1 do
7 Compute ⇠̂

k

h
as in (30).

8 for time-steps h = 1, . . . , H do
9 Compute Q

k̃

h
(sk

h
, a, w

k) for all a 2 A as in (28).
10 Play a

k

h
= argmax

a2A Q
k̃

h
(sk

h
, a, w

k) and observe s
k

h+1 and r
k

h
.

C DETAILS OF REMARK 1: UCBLVD WITH UNKNOWN REWARDS

In order for our analysis to go through, we need a slightly different completeness assumption as
below:
Assumption 4. Given feature maps � : S⇥A ! Rd and : S⇥A⇥W ! Rd

0
, consider function

class

F =

(
f : f(s, w) = min

⇢
max
a2A

n
h⌫, (s, a, w)i+ �

���(s, a)
��
⇤�1 + �̃

�� (s, a, w)
��
⇤̃

�1

o+
, H

�

,⌫ 2 Rd
0
,⇤ 2 Sd

++, ⇤̃ 2 Sd
0

++,� � 0, �̃ � 0
o
.

Then for any f 2 F , and h 2 [H], there exists a vector ⇠f
h
2 Rd

0
with

���⇠f
h

���  H
p
d0 such that

Ph

⇥
f(., w)

⇤
(s, a) = h⇠f

h
, (s, a, w)i.

C.1 OVERVIEW

Let ⌧

h
= (s⌧

h
, a

⌧

h
, w

⌧). UCBlvd with unknown rewards works with the following action-value
functions:

Q
k

h
(s, a, w) =

(⌧
⌘̃k

h
+ ⇠̂

k

h
, (s, a, w)

�
+ �

���(s, a)
��
(⇤k

h
)�1 + �̃

�� (s, a, w)
��
(⇤̃

k

h
)�1

)+

, (28)

where

⌘̃k

h
=

✓
⇤̃

k

h

◆�1 k�1X

⌧=1

 ⌧

h
.r

⌧

h
and ⇤̃

k

h
= �Imd +

k�1X

⌧=1

 ⌧

h
 ⌧

h

>
, (29)

and

⇠̂
k

h
,

⇢
✓̂
k(j)

h

�

j2[n]

= argmin
⇠,{✓(j)}

j2[n]

X

j2[n]

X

(s,a)2D

 D
✓(j),�(s, a)

E
�

⌧
⇠,

⇣
s, a, w

(j)
⌘�!2

(30)

s.t.
����✓

(j)
� ✓̃

k

h

⇣
w

(j)
⌘����

⇤k

h

 �, 8j 2 [n] and k⇠k2  H

p

md,

D =
�
(s, a) : �(s, a) are d linearly independent vectors.

, and ✓̃

k

h
(w) and ⇤k

h
are defined in (5).

22

Published as a conference paper at ICLR 2023

We note that compared to (7), action-value function defined in (28) involves an extra termD
⌘̃k

h
, (s, a, w)

E
+ �̃
�� (s, a, w)

��
(⇤̃

k

h
)�1 . This term is in fact an upper bound on rh(s, a, w). Specif-

ically, from Theorem 2 in Abbasi-Yadkori et al. (2011), we know that for �̃ =
p
�md, it holds that

���⌘h
� ⌘̃k

h

���
⇤̃

k

h

 �̃, 8(h, k) 2 [H]⇥ [K]. (31)

Theorem 3. Let T = KH . Under Assumptions 1, 3, and 4, the number of planning calls in Algorithm
3 is at most dH log

⇣
1 + K

d�

⌘
+mdH log

⇣
1 + K

md�

⌘
, and there exists an absolute constant c > 0

such that for any fixed � 2 (0, 0.5), if we set � = 1, � = cH (md)
p
log(mdT/�) and �̃ =

p
md in

Algorithm 3, then with probability at least 1� 2�, it holds that

RK  2H
p
T log(dT/�) + 4H

p

K

⇣
L�

p
2d log(1 +K/�) + �̃

p
2md log(1 +K/�)

⌘

 Õ

⇣
L

p

m2d3H3T

⌘
.

C.2 NECESSARY ANALYSIS FOR THE PROOF OF THEOREM 3

Lemma 8. Let c� be a constant in the definition of �. Then, under Assumptions 1, 3, and 4, for a
fixed w, there is an absolute constant c0 independent of c� , such that for all (h, k) 2 [H]⇥ [K], with
probability at least 1� � it holds that
������

k�1X

⌧=1

�⌧

h
.

⇣
V

k

h+1(s
⌧

h+1, w)� Ph[V
k

h+1(., w)](s
⌧

h
, a

⌧

h
)
⌘
������
(⇤k

h)
�1

 c0mdH

q
log((c� + 1)mdT/�),

where c0 and c� are two independent absolute constants.

Proof. We note that
����⌘̃

k

h
+ ⇠̂

k

h

����
2

 H
p
md + K/� and

����
⇣
⇤k

h

⌘�1
���� 

1
�

and

�����

✓
⇤̃

k

h

◆�1
����� 

1
�

.

Thus, Lemmas 19 and 23 together imply that for all (h, k) 2 [H] ⇥ [K], with probability at least
1� � it holds that

������

k�1X

⌧=1

�⌧

h

⇣
V

k

h+1(s
⌧

h+1, w)� Ph[V
k

h+1(., w)](s
⌧

h
, a

⌧

h
)
⌘
������

2

(⇤k

h)
�1

 4H2

0

@d

2
log

✓
k + �

�

◆
+md log(1 + 8H

p

md/✏) + d
2 log

1 + 32L2

�
2
p
d

�✏2

!

+m
2
d
2 log

1 + 8�̃2

p
md

�✏2

!
+ log

✓
1

�

◆1

A+
8k2✏2

�
.

If we let ✏ = dH

k
and � = c�(md)H

p
log(mdT/�), then, there exists an absolute constant C > 0

that is independent of c� such that
������

k�1X

⌧=1

�⌧

h

⇣
V

k

h+1(s
⌧

h+1, w)� Ph[V
k

h+1(., w)](s
⌧

h
, a

⌧

h
)
⌘
������

2

(⇤k

h)
�1

 C(m2
d
2)H2 log

�
(c� + 1)mdT/�

�
.

Lemma 9. Under Assumptions 1, 3, and 4, if we let � = cmdH

p
� log(mdT/�) with an absolute

constant c > 0, then the event

E3(w) :=

(����✓
k

h
(w)� ✓̃

k

h
(w)

����
⇤k

h

 �, 8(h, k) 2 [H]⇥ [K]

)
. (32)

holds with probability at least 1� � for a fixed w.

23

Published as a conference paper at ICLR 2023

Proof. The proof follows the same steps as those of Lemma 5, except that it uses Lemma 8 instead
of Lemma 6 due to different structure of action-value functions Qk

h
in this section.

Lemma 10. Let fW = {w
⌧ : ⌧ 2 [K]} [{w

(j) : j 2 [n]}. Under the setting of Theorem 3 and
conditioned on events {E3(w)}w2fW defined in (32), for all (s, a, w, h, k) 2 S⇥A⇥fW⇥ [H]⇥ [K],
it holds that

�����

⌧
⇠̂
k

h
, (s, a, w)

�
� Ph

h
V

k

h+1(., w)
i
(s, a)

�����  2L�
���(s, a)

��
(⇤k

h)
�1 .

Proof. The proof follows the exact same steps as those of Lemma 1’s proof.

Lemma 11. Let fW = {w
⌧ : ⌧ 2 [K]} [{w

(j) : j 2 [n]}. Under the setting of Theorem 3 and
conditioned on events {E3(w)}w2fW defined in (32), and with Q

k

h
computed as in (28), it holds that

Q
k

h
(s, a, w) � Q

⇤
h
(s, a, w) for all (s, a, w, h, k) 2 S ⇥A⇥ fW ⇥ [H]⇥ [K].

Proof. We first note that conditioned on events {E3(w)}w2fW , for all (s, a, w, h, k) 2 S ⇥A⇥ fW ⇥

[H]⇥ [K], it holds that
�����

⌧
⌘̃k

h
+ ⇠̂

k

h
, (s, a, w)

�
�Q

⇡

h
(s, a, w)� Ph

h
V

k

h+1(., w)� V
⇡

h+1(., w)
i
(s, a)

�����

=

�����

⌧
⌘̃k

h
+ ⇠̂

k

h
, (s, a, w)

�
� rh(s, a, w)� Ph

h
V

k

h+1(., w)
i
(s, a)

�����



�����

⌧
⇠̂
k

h
, (s, a, w)

�
� Ph

h
V

k

h+1(., w)
i
(s, a)

�����+ �̃
�� (s, a, w)

��⇣
⇤̃

k

h

⌘�1 (Eqn. (31))

 2L�
���(s, a)

��
(⇤k

h)
�1 + �̃

�� (s, a, w)
��⇣

⇤̃
k

h

⌘�1 , (Lemma 10)

for any policy ⇡.

Now, we prove the lemma by induction. The statement holds for H because Q
k

H+1(., ., .) =
Q

⇤
H+1(., ., .) = 0 and thus conditioned events {E3(w)}w2fW , defined in (32), for all (s, a, w, k) 2

S ⇥A⇥ fW ⇥ [K], we have

�����

⌧
⌘̃k

H
+ ⇠̂

k

H
, (s, a, w)

�
�Q

⇤
H
(s, a, w)

�����  2L�
���(s, a)

��
(⇤k

H)
�1 + �̃

�� (s, a, w)
��⇣

⇤̃
k

H

⌘�1 .

(33)

Therefore, conditioned on events {E3(w)}w2fW , for all (s, a, w, k) 2 S ⇥A⇥ fW ⇥ [K], we have

Q
⇤
H
(s, a, w) 

⌧
⌘̃k

H
+ ⇠̂

k

H
, (s, a, w)

�
+ 2L�

���(s, a)
��
(⇤k

H)
�1 + �̃

�� (s, a, w)
��⇣

⇤̃
k

H

⌘�1

=

(⌧
⌘̃k

H
+ ⇠̂

k

H
, (s, a, w)

�
+ 2L�

���(s, a)
��
(⇤k

H)
�1 + �̃

�� (s, a, w)
��⇣

⇤̃
k

H

⌘�1

)+

= Q
k

H
(s, a, w),

where the first equality follows from the fact that Q⇤
H
(s, a, w) � 0. Now, suppose the statement

holds at time-step h + 1 and consider time-step h. Conditioned on events {E3(w)}w2fW , for all

24

Published as a conference paper at ICLR 2023

(s, a, w, h, k) 2 S ⇥A⇥ fW ⇥ [H]⇥ [K], we have

0 

⌧
⌘̃k

h
+ ⇠̂

k

h
, (s, a, w)

�
�Q

⇤
h
(s, a, w)� Ph

h
V

k

h+1(., w)� V
⇤
h+1(., w)

i
(s, a)

+ 2L�
���(s, a)

��
(⇤k

h)
�1 + �̃

�� (s, a, w)
��⇣

⇤̃
k

h

⌘�1



⌧
⌘̃k

h
+ ⇠̂

k

h
, (s, a, w)

�
�Q

⇤
h
(s, a, w) + 2L�

���(s, a)
��
(⇤k

h)
�1 + �̃

�� (s, a, w)
��⇣

⇤̃
k

h

⌘�1 .

(Induction assumption)

Therefore, conditioned on events {E3(w)}w2fW , for all (s, a, w, h, k) 2 S ⇥A⇥ fW ⇥ [H]⇥ [K],
we have

Q
⇤
h
(s, a, w) 

⌧
⌘̃k

h
+ ⇠̂

k

h
, (s, a, w)

�
+ 2L�

���(s, a)
��
(⇤k

h)
�1 + �̃

�� (s, a, w)
��⇣

⇤̃
k

h

⌘�1

=

(⌧
⌘̃k

h
+ ⇠̂

k

h
, (s, a, w)

�
+ 2L�

���(s, a)
��
(⇤k

h)
�1 + �̃

�� (s, a, w)
��⇣

⇤̃
k

h

⌘�1

)+

= Q
k

h
(s, a, w),

where the first equality follows from the fact that Q⇤
h
(s, a, w) � 0. This completes the proof.

C.3 PROOF OF THEOREM 3

First, we bound the number of times Algorithm 3 updates ⇠̂
k

h
, i.e., number of planning calls. Let P

be the total number of policy updates and kp be the episode at, the agent did replanning for the p-th

time. Note that det⇤1
h
= �

d and det⇤K

h
 trace(⇤K

h
/d)d 

⇣
�+ K

d

⌘d
, and consequently:

det⇤K

h

det⇤1
h

=
PY

p=1

det⇤
kp

h

det⇤
kp�1

h



✓
1 +

K

d�

◆d

,

and therefore

HY

h=1

det⇤K

h

det⇤1
h

=
HY

h=1

PY

p=1

det⇤
kp

h

det⇤
kp�1

h



✓
1 +

K

d�

◆dH

. (34)

We similarly have
HY

h=1

det ⇤̃
K

h

det ⇤̃
1
h

=
HY

h=1

PY

p=1

det ⇤̃
kp

h

det ⇤̃
kp�1

h



✓
1 +

K

md�

◆mdH

. (35)

Since 1 
det⇤kp

h

det⇤kp�1
h

for all p 2 [P], we can deduce from (34) and (35) that

9h 2 [H] such that e <
det⇤k

h

det⇤k̃

h

or e <
det ⇤̃

k

h

det ⇤̃
k̃

h

(36)

happens for at most dH log
⇣
1 + K

d�

⌘
+ mdH log

⇣
1 + K

md�

⌘
number of episodes k 2 [K].

This concludes that number of planning calls in Algorithm 3 is at most dH log
⇣
1 + K

d�

⌘
+

mdH log
⇣
1 + K

md�

⌘
.

Now, we prove the regret bound. Let �
k

h
= V

k̃

h
(sk

h
, w

k) � V
⇡
k

h
(sk

h
, w

k) and ⇠
k

h+1 =

E
h
�
k

h+1|s
k

h
, a

k

h

i
� �

k

h+1. Conditioned on events {E3(w)}w2fW , for all (s, a, w, h, k) 2 S ⇥ A ⇥

25

Published as a conference paper at ICLR 2023

fW ⇥ [H]⇥ [K], we have

Q
k̃

h
(s, a, w)�Q

⇡
k

h
(s, a, w) =

⌧
⌘̃k̃

h
+ ⇠̂

k̃

h
, (s, a, w)

�
�Q

⇡
k

h
(s, a, w) + 2L�

���(s, a)
��
(⇤k̃

h
)�1 + �̃

�� (s, a, w)
��
(⇤̃

k̃

h
)�1

 Ph

h
V

k̃

h+1(., w)� V
⇡
k

h+1(., w)
i
(s, a) + 4L�

���(s, a)
��
(⇤k̃

h
)�1 + 2�̃

�� (s, a, w)
��
(⇤̃

k̃

h
)�1

.

(37)

Note that �k
h
 Q

k̃

h
(sk

h
, a

k

h
, w

k)�Q
⇡
k

h
(sk

h
, a

k

h
, w

k). Thus, combining (37), Lemma 9, and a union
bound over fW , we conclude that for all (h, k) 2 [H]⇥ [K], with probability at least 1� �, it holds
that gives

�
k

h
 ⇠

k

h+1 + �
k

h+1 + 4L�
����(skh, akh)

���
(⇤k̃

h
)�1

+ 2�̃
��� (skh, akh, wk)

���
(⇤̃

k̃

h
)�1

.

Now, we complete the regret analysis following similar steps as those of Theorem 1’s proof:

RK =
KX

k=1

V
⇤
1 (s

k

1 , w
k)� V

⇡
k

1 (sk1 , w
k)



KX

k=1

V
k̃

1 (sk1 , w
k)� V

⇡
k

1 (sk1 , w
k) (Lemma 11)

=
KX

k=1

�
k

1



KX

k=1

HX

h=1

⇠
k

h
+ 4L�

KX

k=1

HX

h=1

����(skh, akh)
���⇣

⇤k̃

h

⌘�1 + 2�̃
KX

k=1

HX

h=1

��� (skh, akh, wk)
���✓

⇤̃
k̃

h

◆�1



KX

k=1

HX

h=1

⇠
k

h
+ 4L�

KX

k=1

HX

h=1

����(skh, akh)
���
(⇤k

h)
�1

vuutdet⇤k

h

det⇤k̃

h

+ 2�̃
KX

k=1

HX

h=1

��� (skh, akh, wk)
���⇣

⇤̃
k

h

⌘�1

vuutdet ⇤̃
k

h

det ⇤̃
k̃

h

(Eqn. (27))

 2H
p
T log(dT/�) + 4H

p

K

⇣
L�

p
2d log(1 +K/�) + �̃

p
2md log(1 +K/�)

⌘

 Õ

⇣
L

p

�m2d3H3T

⌘
.

D DETAILS OF REMARK 2: RELAXATION OF ASSUMPTION 3

In this section, we replace Assumption 3 with the following assumption:

Assumption 5. There is a known set {w(1)
, w

(2)
, . . . , w

(n)
} of n  d

0 tasks such that (s, a, w) 2

Span

✓n
 (s, a, w(j))

o

j2[n]

◆
for all (s, a, w) 2 S ⇥A⇥W . This implies that for any (s, a, w) 2

S ⇥A⇥W , there exist coefficients {cj(s, a, w)}j2[n] such that

 (s, a, w) =
X

j2[n]

cj(s, a, w)
⇣
s, a, w

(j)
⌘
. (38)

Moreover,
P

j2[n]

��cj(s, a, w)
��  L for all (s, a, w) 2 S ⇥A⇥W .

Define the concatenated mapping ̃ : S ⇥ A ⇥ W ! Rd+d
0

such that
 ̃(s, a, w) =

⇥
�(s, a)>, (s, a, w)>

⇤>. For any w 2 W , define D(w) =n
(s, a) : ̃(s, a, w) are d+ d

0 linearly independent vectors.
o

. Given Assumption 5, we mod-

26

Published as a conference paper at ICLR 2023

Algorithm 4: Modified UCBlvd

1 Set: Qk

H+1(., ., .) = 0, 8k 2 [K], k̃ = 1
2 for episodes k = 1, . . . ,K do
3 Observe the initial state s

k

1 and the task context wk.

4 if 9h 2 [H] such that det⇤k

h

det⇤k̃

h

> e then

5 k̃ = k

6 for time-steps h = H, . . . , 1 do
7 Compute ⇠̂

k

h
as in (39).

8 for time-steps h = 1, . . . , H do
9 Compute Q

k̃

h
(sk

h
, a, w

k) for all a 2 A as in (7).
10 Play a

k

h
= argmax

a2A Q
k̃

h
(sk

h
, a, w

k) and observe s
k

h+1 and r
k

h
.

ify the planning step of UCBlvd to the following:

⇠̂
k

h
,

⇢
✓̂
k(j)

h

�

j2[n]

= argmin
⇠,{✓(j)}

j2[n]

X

j2[n]

X

(s,a)2D(w(j))

 D
✓(j),�(s, a)

E
�

⌧
⇠,

⇣
s, a, w

(j)
⌘�!2

(39)

s.t.
����✓

(j)
� ✓̃

k

h

⇣
w

(j)
⌘����

⇤k

h

 �, 8j 2 [n] and k⇠k2  H

p

d0.

The only change we make in Algorithm 2 is in Line 9, in which ⇠̂
k

h
is now computed as defined in

(39). We present this modification in Algorithm 4 for completeness.
Theorem 4. Let T = KH . Under Assumptions 1, 2, and 5, the number or planning calls in
Algorithm 4 is at most dH log

⇣
1 + K

d�

⌘
and there exists an absolute constant c > 0 such that for

any fixed � 2 (0, 0.5), if we set � = 1 and � = cH

⇣
d+

p
d0
⌘p

� log(dd0T/�) in Algorithm 4, then
with probability at least 1� 2�, it holds that

RK  2H
p

T log(dT/�) + 8HL�

p
2dK log(K)  Õ

⇣
L

p
(d3 + dd0)H3T

⌘
. (40)

Proof of Theorem 4 follows exactly the same steps as those of Theorem 2. The only difference is the
proof of Lemma 1, which we clarify in the proof of following lemma.
Lemma 12. Let fW = {w

⌧ : ⌧ 2 [K]} [{w
(j) : j 2 [n]}. Under Assumptions 1, 2, and

5, if we let � = cH

⇣
d+

p
d0
⌘p

� log(dd0T/�) with an absolute constant c > 0, then for all
(s, a, w, h, k) 2 S ⇥A⇥W ⇥ [H]⇥ [K] with probability at least 1� �, it holds that

�����

⌧
⇠̂
k

h
, (s, a, w)

�
� Ph

h
V

k

h+1(., w)
i
(s, a)

�����  2L�
���(s, a)

��
(⇤k

h)
�1 .

Proof. We let ̃
i
(w) =

h
�>

i
,

i
(w)>

i>
be the i-th element of D̃(w) =

n
 ̃(s, a, w) : (s, a) 2 D(w)

o
and for any triple (s, a, w) 2 S⇥A⇥W , we let {c0

i
(s, a, w)}i2[d+d0]

be the coefficients such that
 ̃(s, a, w) =

X

i2[d+d0]

c
0
i
(s, a, w) ̃

i
(w),

which implies that

�(s, a) =
X

i2[d+d0]

c
0
i
(s, a, w)�

i
and (s, a, w) =

X

i2[d+d0]

c
0
i
(s, a, w)

i
(w). (41)

27

Published as a conference paper at ICLR 2023

Thanks to Assumption 2 and conditioned on events {E1(w)}w2fW , one set of solution for (39) is⇢
✓k
h

⇣
w

(j)
⌘�

j2[n]

and ⇠V
k

h+1

h
with corresponding zero optimal objective value. Therefore, it holds

that ⌧
✓̂
k(j)

h
,�

i

�
=

⌧
⇠̂
k

h
,

i

⇣
w

(j)
⌘�

, 8(i, j) 2 [d+ d
0]⇥ [n]. (42)

Moreover, for any triple (s, a, j) 2 S ⇥A⇥ [n], we have
⌧
⇠̂
k

h
,
⇣
s, a, w

(j)
⌘�

=
X

i2[d+d0]

c
0
i

⇣
s, a, w

(j)
⌘⌧
⇠̂
k

h
,

i

⇣
w

(j)
⌘�

(Eqn. (41))

=
X

i2[d+d0]

c
0
i

⇣
s, a, w

(j)
⌘⌧
✓̂
k(j)

h
,�

i

�
(Eqn. (42))

=

⌧
✓̂
k(j)

h
,�(s, a)

�
. (43)

For any (s, a, w) 2 S ⇥A⇥W , it holds that

Ph

h
V

k

h+1(., w)
i
(s, a) =

D
✓k
h
(w),�(s, a)

E
(Eqn. (4))

=

⌧
⇠
V

k

h+1

h
, (s, a, w)

�
(Assumption 2)

=
X

j2[n]

cj(s, a, w)

⌧
⇠
V

k

h+1

h
,
⇣
s, a, w

(j)
⌘�

(Eqn. (38))

=
X

j2[n]

cj(s, a, w)Ph


V

k

h+1

⇣
., w

(j)
⌘�

(s, a)i (Assumption 2)

=
X

j2[n]

cj(s, a, w)

⌧
✓k
h

⇣
w

(j)
⌘
,�(s, a)

�
. (44)

Finally, conditioned on events {E1(w)}w2fW , for all (s, a, w, h, k) 2 S ⇥ A ⇥ fW ⇥ [H] ⇥ [K], it
holds that�����

⌧
⇠̂
k

h
, (s, a, w)

�
� Ph

h
V

k

h+1(., w)
i
(s, a)

����� (45)

=

�����

⌧
⇠̂
k

h
, (s, a, w)

�
�

D
✓k
h
(w),�(s, a)

E�����

=

������

X

j2[n]

cj(s, a, w)

 ⌧
⇠̂
k

h
,
⇣
s, a, w

(j)
⌘�

�

⌧
✓k
h

⇣
w

(j)
⌘
,�(s, a)

�!������
(Eqns. (38) and (23))



������

X

j2[n]

cj(s, a, w)

 ⌧
⇠̂
k

h
,
⇣
s, a, w

(j)
⌘�

�

⌧
✓̂
k(j)

h
,�(s, a)

�!������

+

������

X

j2[n]

cj(s, a, w)

⌧
✓̂
k(j)

h
� ✓̃

k

h

⇣
w

(j)
⌘
,�(s, a)

�������
+

������

X

j2[n]

cj(s, a, w)

⌧
✓̃
k

h

⇣
w

(j)
⌘
� ✓k

h

⇣
w

(j)
⌘
,�(s, a)

�������

=

������

X

j2[n]

cj(s, a, w)

⌧
✓̂
k(j)

h
� ✓̃

k

h

⇣
w

(j)
⌘
,�(s, a)

�������
+

������

X

j2[n]

cj(s, a, w)

⌧
✓̃
k

h

⇣
w

(j)
⌘
� ✓k

h

⇣
w

(j)
⌘
,�(s, a)

�������
(Eqn. (22))

 2L�
���(s, a)

��
(⇤k

h)
�1 . (Lemma 5)

28

Published as a conference paper at ICLR 2023

Algorithm 5: Standard Lifelong-LSVI with Computation Sharing

1 Set: Qk

H+1(., ., .) = 0, 8k 2 [K], k̃ = 1
2 for episodes k = 1, . . . ,K do
3 Observe the initial state s

k

1 and the task context wk.

4 if 9h 2 [H] such that det
˜⇤

k

h

det
˜⇤

k̃

h

> e then

5 k̃ = k

6 for time-steps h = H, . . . , 1 do
7 Compute Compute ⌫̃ k̃

h
as in (49).

8 for time-steps h = 1, . . . , H do
9 Compute Q

k̃

h
(sk

h
, a, w

k) for all a 2 A as in (48).
10 Play a

k

h
= argmax

a2A Q
k̃

h
(sk

h
, a, w

k) and observe s
k

h+1 and r
k

h
.

E DETAILS OF REMARK 3

In this section, we only rely on the following two assumptions:

Assumption 6. Given a feature map : S ⇥A⇥W ! Rd
0
, consider function class

F =

(
f : f(s, w) = min

⇢
max
a2A

n
h⌫, (s, a, w)i+ �

�� (s, a, w)
��
⇤�1

o+
, H

�
⌫ 2 Rd

0
,� � 0,⇤ 2 Sd

0

++

)
.

(46)

Then for any f 2 F and h 2 [H], there exists a vector ⌫f

h
2 Rd

0
with

���⌫f

h

���
2
 H

p
d0 such that

Ph

⇥
f(., w)

⇤
(s, a) = h (s, a, w),⌫f

h
i. (47)

Moreover, for every h 2 [H], there exists a vector ⌘
h

such that rh(s, a, w) =
⌦
⌘
h
, (s, a, w)

↵
.

Assumption 7. Without loss of generality,
�� (s, a, w)

��
2
 1 for all (s, a, w) 2 S ⇥A⇥W , and

k⌘
h
k2 

p
d0 for all h 2 [H].

E.1 OVERVIEW

Let ⌧

h
= (s⌧

h
, a

⌧

h
, w

⌧). Standard Lifelong-LSVI with computation sharing works with the follow-
ing action-value functions:

Q
k

h
(s, a, w) =

⇢
rh(s, a, w) +

D
⌫̃k

h
, (s, a, w)

E
+ �

�� (s, a, w)
��
(⇤̃

k

h
)�1

�+

, (48)

where

⌫̃k

h
=

✓
⇤̃

k

h

◆�1 k�1X

⌧=1

 ⌧

h
.min

⇢
max
a2A

Q
k

h+1(s
⌧

h+1, a, w
⌧), H

�
and ⇤̃

k

h
= �Id0 +

k�1X

⌧=1

 ⌧

h
 ⌧

h

>
.

(49)

Theorem 5. Let T = KH . Under Assumptions 6 and 7, the number of planning calls in 5 is at most
d
0
H log

⇣
1 + K

d0�

⌘
and there exists an absolute constant c > 0 such that for any fixed � 2 (0, 0.5), if

we set � = 1 and � = cd
0
H

p
log(d0T/�) in Algorithm 5, then with probability at least 1 � 2�, it

holds that

RK  2H
p
T log(d0T/�) + 4H�

p
2d0K log(K)  Õ

✓p
d03H3T

◆
.

29

Published as a conference paper at ICLR 2023

E.2 NECESSARY ANALYSIS FOR THE PROOF OF THEOREM 5

Thanks to Assumption 6, we have

Ph

h
V

k

h+1(., w)
i
(s, a) =

D
⌫k

h
, (s, a, w)

E
, (50)

where ⌫k

h
= ⌫

V
k

h+1

h
.

Lemma 13. Let c� be a constant in the definition of �. Then, under Assumption 7, there is an
absolute constant c0 independent of c� , such that for all (h, k) 2 [H]⇥ [K], with probability at least
1� � it holds that������

k�1X

⌧=1

 ⌧

h
.

⇣
V

k

h+1(s
⌧

h+1, w
⌧)� Ph[V

k

h+1(., w
⌧)](s⌧

h
, a

⌧

h
)
⌘
������⇣

⇤̃
k

h

⌘�1

 c0d
0
H

q
log((c� + 1)d0T/�),

where c0 and c� are two independent absolute constants.

Proof. We note that
���⌘h

+ ⌫̃k

h

���
2
 (1 +H)

p
d0 and

�����

✓
⇤̃

k

h

◆�1
����� 

1
�

. Thus, Lemmas 19 and 24

together imply that for all (h, k) 2 [H]⇥ [K], with probability at least 1� � it holds that
������

k�1X

⌧=1

�⌧

h

⇣
V

k

h+1(s
⌧

h+1, w
⌧)� Ph[V

k

h+1(., w
⌧)](s⌧

h
, a

⌧

h
)
⌘
������

2

⇣
⇤̃

k

h

⌘�1

 4H2

0

@d
0

2
log

✓
k + �

�

◆
+ d

0 log(1 + 8H
p

d0/✏) + d
02 log

1 + 32L2

�
2
p
d0

�✏2

!
+ log

✓
1

�

◆1

A+
8k2✏2

�
.

If we let ✏ = dH

k
and � = c�(d0+

p
d0)H

p
log(dT/�), then, there exists an absolute constant C > 0

that is independent of c� such that
������

k�1X

⌧=1

�⌧

h

⇣
V

k

h+1(s
⌧

h+1, w
⌧)� Ph[V

k

h+1(., w
⌧)](s⌧

h
, a

⌧

h
)
⌘
������

2

⇣
⇤̃

k

h

⌘�1

 C(d0 + d
02)H2 log

�
(c� + 1)d0T/�

�
.

Lemma 14. Under Assumptions 6 and 7, if we let � = cd
0
H

p
� log(d0T/�) with an absolute

constant c > 0, then the event

E4 :=

⇢���⌫k

h
� ⌫̃k

h

���
⇤̃

k

h

 �, 8(h, k) 2 [H]⇥ [K]

�
. (51)

holds with probability at least 1� �.

Proof.

⌫k

h
� ⌫̃k

h
= ⌫k

h
�

✓
⇤̃

k

h

◆�1 k�1X

⌧=1

 ⌧

h
V

k

h+1(s
⌧

h+1, w
⌧)

=

✓
⇤̃

k

h

◆�1
0

@⇤̃
k

h
⌫k

h
�

k�1X

⌧=1

 ⌧

h
V

k

h+1(s
⌧

h+1, w
⌧)

1

A

= �

✓
⇤̃

k

h

◆�1

⌫k

h

| {z }
q1

�

✓
⇤̃

k

h

◆�1
0

@
k�1X

⌧=1

 ⌧

h

⇣
V

k

h+1(s
⌧

h+1, w
⌧)� Ph[V

k

h+1(., w
⌧)](s⌧

h
, a

⌧

h
)
⌘
1

A

| {z }
q2

.

(Eqn. (50))

30

Published as a conference paper at ICLR 2023

Thus, in order to upper bound
���⌫k

h
� ⌫̃k

h
(w)
���
⇤̃

k

h

, we boundkq1k⇤̃
k

h

andkq2k⇤̃
k

h

separately.

From Assumption 7, we have

kq1k⇤k

h

= �

���⌫k

h

���⇣
⇤̃

k

h

⌘�1 

p

�

���⌫k

h

���
2
 H

p

�d0. (52)

Thanks to Lemma 13, for all (h, k) 2 [H]⇥ [K], with probability at least 1� �, it holds that

kq2k⇤̃
k

h



������

k�1X

⌧=1

 ⌧

h

⇣
V

k

h+1(s
⌧

h+1, w
⌧)� Ph[V

k

h+1(., w
⌧)](s⌧

h
, a

⌧

h
)
⌘
������
(⇤k

h)
�1

 c0d
0
H

q
log((c� + 1)d0T/�),

(53)

where c0 and c� are two independent absolute constants.

Combining (52) and (53), for all (h, k) 2 [H]⇥ [K], with probability at least 1� �, it holds that

���⌫k

h
� ⌫̃k

h

���
⇤̃

k

h

 cd
0
H

p
� log(d0T/�)

for some absolute constant c > 0.

Lemma 15. Let the setting of Lemma 14 holds. Conditioned on events E4 defined in (51), and
with Q

k

h
computed as in (48), it holds that Qk

h
(s, a, w) � Q

⇤
h
(s, a, w) for all (s, a, w, h, k) 2

S ⇥A⇥W ⇥ [H]⇥ [K].

Proof. We first note that conditioned on the event E4 , for all (s, a, w, h, k) 2 S⇥A⇥W⇥[H]⇥[K],
it holds that����rh(s, a, w) +

D
⌫̃k

h
, (s, a, w)

E
�Q

⇡

h
(s, a, w)� Ph

h
V

k

h+1(., w)� V
⇡

h+1(., w)
i
(s, a)

����

=

����rh(s, a, w) +
D
⌫̃k

h
, (s, a, w)

E
� rh(s, a, w)� Ph

h
V

k

h+1(., w)
i
(s, a)

����

=

����
D
⌫̃k

h
, (s, a, w)

E
� Ph

h
V

k

h+1(., w)
i
(s, a)

����

=

����
D
⌫̃k

h
� ⌫k

h
, (s, a, w)

E����



���⌫̃k

h
� ⌫k

h

���
⇤̃

k

h

�� (s, a, w)
��⇣

⇤̃
k

h

⌘�1

 �
�� (s, a, w)

��⇣
⇤̃

k

h

⌘�1 , (Lemma 14)

for any policy ⇡.

Now, we prove the lemma by induction. The statement holds for H because Q
k

H+1(., ., .) =
Q

⇤
H+1(., ., .) = 0 and thus conditioned on the event E4, defined in (51), for all (s, a, w, k) 2

S ⇥A⇥W ⇥ [K], we have

����rh(s, a, w) +
D
⌫k

H
, (s, a, w)

E
�Q

⇤
H
(s, a, w)

����  �
�� (s, a, w)

��⇣
⇤̃

k

H

⌘�1 .

Therefore, conditioned on the event E4, for all (s, a, w, k) 2 S ⇥A⇥W ⇥ [K], we have

Q
⇤
H
(s, a, w)  rH(s, a, w) +

D
⌫k

H
, (s, a, w)

E
+ �

�� (s, a, w)
��
(⇤̃

k

H
)�1

=

⇢
rH(s, a, w) +

D
⌫k

H
, (s, a, w)

E
+ �

�� (s, a, w)
��
(⇤̃

k

H
)�1

�+

= Q
k

H
(s, a, w),

31

Published as a conference paper at ICLR 2023

where the first equality follows from the fact that Q⇤
H
(s, a, w) � 0. Now, suppose the statement

holds at time-step h+ 1 and consider time-step h. Conditioned on events E4, for all (s, a, w, h, k) 2
S ⇥A⇥W ⇥ [H]⇥ [K], we have

0  rh(s, a, w) +
D
⌫k

h
, (s, a, w)

E
�Q

⇤
h
(s, a, w)� Ph

h
V

k

h+1(., w)� V
⇤
h+1(., w)

i
(s, a) + �

�� (s, a, w)
��⇣

⇤̃
k

h

⌘�1

 rh(s, a, w) +
D
⌫k

h
, (s, a, w)

E
�Q

⇤
h
(s, a, w) + �

�� (s, a, w)
��⇣

⇤̃
k

h

⌘�1 .

(Induction assumption)

Therefore, conditioned on events E4, for all (s, a, w, h, k) 2 S ⇥A⇥W ⇥ [H]⇥ [K], we have

Q
⇤
h
(s, a, w)  rh(s, a, w) +

D
⌫k

h
, (s, a, w)

E
+ �

�� (s, a, w)
��⇣

⇤̃
k

h

⌘�1

=

(
rh(s, a, w) +

D
⌫k

h
, (s, a, w)

E
+ �

�� (s, a, w)
��⇣

⇤̃
k

h

⌘�1

)+

= Q
k

h
(s, a, w),

where the first equality follows from the fact that Q⇤
H
(s, a, w) � 0. This completes the proof.

E.3 PROOF OF THEOREM 5

First, we bound the number of times Algorithm 5 updates ⌫̃k

h
. Let P be the total number of updates

and kp be the episode at which, the agent did replanning for the p-th time. Note that det ⇤̃
1
h
= �

d
0

and det ⇤̃
K

h
 trace(⇤̃

K

h
/d

0)d
0


⇣
�+ K

d0

⌘d0

, and consequently:

det ⇤̃
K

h

det ⇤̃
1
h

=
PY

p=1

det ⇤̃
kp

h

det ⇤̃
kp�1

h



✓
1 +

K

d0�

◆d
0

,

and therefore

HY

h=1

det ⇤̃
K

h

det ⇤̃
1
h

=
HY

h=1

PY

p=1

det ⇤̃
kp

h

det ⇤̃
kp�1

h



✓
1 +

K

d0�

◆d
0
H

. (54)

Since 1 
det

˜⇤
kp

h

det
˜⇤

kp�1
h

for all p 2 [P], we can deduce from (54) that

9h 2 [H] such that e <
det ⇤̃

k

h

det ⇤̃
k̃

h

happens for at most d0H log
⇣
1 + K

d0�

⌘
number of episodes k 2 [K]. This concludes that number of

planning calls in Algorithm 5 is at most d0H log
⇣
1 + K

d0�

⌘
.

Now, we prove the regret bound. Let �
k

h
= V

k̃

h
(sk

h
, w

k) � V
⇡
k

h
(sk

h
, w

k) and ⇠
k

h+1 =

E
h
�
k

h+1|s
k

h
, a

k

h

i
� �

k

h+1. Conditioned on E4, for all (s, a, w, h, k) 2 S ⇥ A ⇥ W ⇥ [H] ⇥ [K],
we have

Q
k̃

h
(s, a, w)�Q

⇡
k

h
(s, a, w) = rh(s, a, w) +

D
✓k̃
h
, (s, a, w)

E
�Q

⇡
k

h
(s, a, w) + �

�� (s, a, w)
��
(⇤̃

k̃

h
)�1

 Ph

h
V

k̃

h+1(., w)� V
⇡
k

h+1(., w)
i
(s, a) + 2�

�� (s, a, w)
��
(⇤̃

v

h
)�1 .

(55)

32

Published as a conference paper at ICLR 2023

Note that �k̃
h
 Q

k

h
(sk

h
, a

k

h
, w

k) � Q
⇡
k

h
(sk

h
, a

k

h
, w

k). Thus, (55) and Lemma 14 imply that for all
(h, k) 2 [H]⇥ [K], it holds that

�
k

h
 ⇠

k

h+1 + �
k

h+1 + 2�
��� (skh, akh, wk)

���
(⇤̃

k

h
)�1

.

Now, we complete the regret analysis following similar steps as those of Theorem 1’s proof:

RK =
KX

k=1

V
⇤
1 (s

k

1 , w
k)� V

⇡
k

1 (sk1 , w
k)



KX

k=1

V
k̃

1 (sk1 , w
k)� V

⇡
k

1 (sk1 , w
k) (Lemma 15)

=
KX

k=1

�
k

1



KX

k=1

HX

h=1

⇠
k

h
+ 2�

KX

k=1

HX

h=1

��� (skh, akh, wk)
���✓

⇤̃
k̃

h

◆�1



KX

k=1

HX

h=1

⇠
k

h
+ 2�

KX

k=1

HX

h=1

��� (skh, akh, wk)
���⇣

⇤̃
k

h

⌘�1

vuutdet ⇤̃
k

h

det ⇤̃
k̃

h

(Eqn. (27))

 2H
p
T log(d0T/�) + 4H�

p
2�d0K log(1 +K/�)

 Õ

✓p
�d03H3T

◆
.

F DETAILS OF REMARK 4: A MISSPECIFIED SETTING

We first present a definition for an approximate completeness model.
Assumption 8 (⇣-Approximate Completeness). Given feature maps � : S ⇥ A ! Rd and :
S ⇥A⇥W ! Rd

0
in Assumption 1, consider the function class

F =

(
f : f(s, w) = min

⇢
max
a2A

n
h⌫, (s, a, w)i+ �

���(s, a)
��
⇤�1

o+
, H

�
,⌫ 2 Rd0

,⇤ 2 Sd
++,� � 0

)
.

For any f 2 F and h 2 [H], there exists a vector ⇠f
h
2 Rd

0
with

���⇠f
h

���  H
p
d0 such that for all

(s, a, w) 2 S ⇥A⇥W
���Ph

⇥
f(., w)

⇤
(s, a)� h⇠f

h
, (s, a, w)i

���  ⇣.

Theorem 6. Let T = KH . Under Assumptions 1, 8, and 3, the number of planning calls in Algorithm
2 is at most dH log(1 + K

d�
), and there exists an absolute constant c > 0 such that for any fixed

� 2 (0, 0.5), if we set � = 1 and � = cH(d +
p
md)

p
log(mdT/�) in Algorithm 2, then with

probability at least 1� 2�, it holds that

RK  Õ

⇣p
mdT ⇣ +

p
(d3 +md2)H3T

⌘
.

F.1 NECESSARY ANALYSIS FOR THE PROOF OF THEOREM 6

Let
⇣
s
(i)
, a

(i)
⌘

be the i-th element of D and {c
0
i
(s, a)}i2[d] be the coefficients such that

�(s, a) =
X

i2[d]

c
0
i
(s, a)�

⇣
s
(i)
, a

(i)
⌘
.

Then, L� is a positive constant such that
P

i2[d]

��c0
i
(s, a)

��  L� for all (s, a) 2 S ⇥A.

33

Published as a conference paper at ICLR 2023

Lemma 16. Let fW = {w
⌧ : ⌧ 2 [K]} [{w

(j) : j 2 [n]}. Under the setting of Theorem 6 and
conditioned on events {E1(w)}w2fW defined in (9), for all (s, a, w, h, k) 2 S ⇥A⇥ fW ⇥ [H]⇥ [K],
it holds that����h⇠̂

k

h
, (s, a, w)i � Ph[V

k

h+1(., w)](s, a)

����  (2L+ L�

p

md)⇣ + 2L�
���(s, a)

��
(⇤k

h)
�1 .

Proof. Thanks to Assumption 8 and conditioned on events {E1(w)}w2fW , one set of feasible parame-

ters for (8) is
⇢
✓k
h

⇣
w

(j)
⌘�

j2[n]

and ⇠V
k

h+1

h
such that

�����

⌧
✓̂
k(j)

h
,�(s, a)

�
�

⌧
⇠̂
k

h
,
⇣
s, a, w

(j)
⌘������  ⇣

p

md, 8(j, (s, a)) 2 [n]⇥D. (56)

For any triple (s, a, j) 2 S ⇥A⇥ [n], we have
⌧
⇠̂
k

h
,
⇣
s, a, w

(j)
⌘�

=

⌧
⇠̂
k

h
,�(s, a)⌦ ⇢

⇣
w

(j)
⌘�

=

*
⇠̂
k

h
,

X

i2[d]

c
0
i
(s, a)�

⇣
s
(i)
, a

(i)
⌘
⌦ ⇢

⇣
w

(j)
⌘+

=
X

i2[d]

c
0
i
(s, a)

⌧
⇠̂
k

h
,
⇣
s
(i)
, a

(i)
, w

(j)
⌘�

(Assumption 3)



p

md⇣

X

i2[d]

c
0
i
(s, a) +

X

i2[d]

c
0
i
(s, a)

⌧
✓̂
k(j)

h
,�
⇣
s
(i)
, a

(i)
⌘�

(Eqn. (56))

 L�

p

md⇣ +

⌧
✓̂
k(j)

h
,�(s, a)

�
.

Similarly, it holds that
⌧
⇠̂
k

h
,
⇣
s, a, w

(j)
⌘�

� �L�

p
md⇣ +

⌧
✓̂
k(j)

h
,�(s, a)

�
. Therefore, for any

(s, a, j) 2 S ⇥A⇥ [n], it holds that

�����

⌧
⇠̂
k

h
,
⇣
s, a, w

(j)
⌘�

�

⌧
✓̂
k(j)

h
,�(s, a)

������  L�

p

md⇣. (57)

For any (s, a, w) 2 S ⇥A⇥W , it holds that

Ph

h
V

k

h+1(., w)
i
(s, a) =

D
✓k
h
(w),�(s, a)

E
(Eqn. (4))

 ⇣ +

⌧
⇠
V

k

h+1

h
, (s, a, w)

�
(Assumption 8)

= ⇣ +
X

j2[n]

cj(w)

⌧
⇠
V

k

h+1

h
,
⇣
s, a, w

(j)
⌘�

(Assumption 3)

 ⇣

0

@1 +
X

j2[n]

cj(w)

1

A+
X

j2[n]

cj(w)Ph


V

k

h+1

⇣
., w

(j)
⌘�

(s, a)

(Assumption 8)

 2L⇣ +
X

j2[n]

cj(w)

⌧
✓k
h

⇣
w

(j)
⌘
,�(s, a)

�
. (Assumption 3)

Similarly, it holds that Ph

h
V

k

h+1(., w)
i
(s, a) � �2L⇣ +

P
j2[n] cj(w)

⌧
✓k
h

⇣
w

(j)
⌘
,�(s, a)

�
.

Therefore, for any (s, a, w) 2 S ⇥A⇥W , it holds that

34

Published as a conference paper at ICLR 2023

������
Ph

h
V

k

h+1(., w)
i
(s, a)�

X

j2[n]

cj(w)

⌧
✓k
h

⇣
w

(j)
⌘
,�(s, a)

�������
 2L⇣. (58)

Finally, conditioned on events {E1(w)}w2fW , for all (s, a, w, h, k) 2 S ⇥ A ⇥ fW ⇥ [H] ⇥ [K], it
holds that
�����

⌧
⇠̂
k

h
, (s, a, w)

�
� Ph

h
V

k

h+1(., w)
i
(s, a)

�����

 2L⇣ +

������

X

j2[n]

cj(w)

 ⌧
⇠̂
k

h
,
⇣
s, a, w

(j)
⌘�

�

⌧
✓k
h

⇣
w

(j)
⌘
,�(s, a)

�!������
(Assumption 3 and Eqn. (58))

 2L⇣ +

������

X

j2[n]

cj(w)

 ⌧
⇠̂
k

h
,
⇣
s, a, w

(j)
⌘�

�

⌧
✓̂
k(j)

h
,�(s, a)

�!������

+

������

X

j2[n]

cj(w)

⌧
✓̂
k(j)

h
� ✓̃

k

h

⇣
w

(j)
⌘
,�(s, a)

�������
+

������

X

j2[n]

cj(w)

⌧
✓̃
k

h

⇣
w

(j)
⌘
� ✓k

h

⇣
w

(j)
⌘
,�(s, a)

�������

 (2L+ L�

p

md)⇣ +

������

X

j2[n]

cj(w)

⌧
✓̂
k(j)

h
� ✓̃

k

h

⇣
w

(j)
⌘
,�(s, a)

�������
+

������

X

j2[n]

cj(w)

⌧
✓̃
k

h

⇣
w

(j)
⌘
� ✓k

h

⇣
w

(j)
⌘
,�(s, a)

�������
(Eqn. (57))

 (2L+ L�

p

md)⇣ + 2L�
���(s, a)

��
(⇤k

h)
�1 . (Lemma 5)

As the final step in the regret analysis, we state the following lemma which uses Lemma 16 to prove
the optimistic nature of UCBlvd. Then following the standard analysis of single-task LSVI-UCB we
derive the regret bound for misspecified settings.

Lemma 17. Let fW = {w
⌧ : ⌧ 2 [K]} [{w

(j) : j 2 [n]}. Under the setting of Theorem
6 and conditioned on events {E1(w)}w2fW defined in (9), and with Q

k

h
computed as in (7), it

holds that (2L + L�

p
md)(H � h + 1)⇣ + Q

k

h
(s, a, w) � Q

⇤
h
(s, a, w) for all (s, a, w, h, k) 2

S ⇥A⇥ fW ⇥ [H]⇥ [K].

Proof. We first note that conditioned on events {E1(w)}w2fW , for all (s, a, w, h, k) 2 S⇥A⇥fW ⇥

[H]⇥ [K], it holds that
�����rh(s, a, w) +

⌧
⇠̂
k

h
, (s, a, w)

�
�Q

⇡

h
(s, a, w)� Ph

h
V

k

h+1(., w)� V
⇡

h+1(., w)
i
(s, a)

�����

=

�����rh(s, a, w) +
⌧
⇠̂
k

h
, (s, a, w)

�
� rh(s, a, w)� Ph

h
V

k

h+1(., w)
i
(s, a)

�����

=

�����

⌧
⇠̂
k

h
, (s, a, w)

�
� Ph

h
V

k

h+1(., w)
i
(s, a)

�����

 (2L+ L�

p

md)⇣ + 2L�
���(s, a)

��
(⇤k

h)
�1 , (Lemma 16)

for any policy ⇡.

35

Published as a conference paper at ICLR 2023

Now, we prove the lemma by induction. The statement holds for H because Q
k

H+1(., ., .) =
Q

⇤
H+1(., ., .) = 0 and thus conditioned events {E1(w)}w2fW , defined in (9), for all (s, a, w, k) 2

S ⇥A⇥ fW ⇥ [K], we have

�����rH(s, a, w) +

⌧
⇠̂
k

H
, (s, a, w)

�
�Q

⇤
H
(s, a, w)

�����  (2L+ L�

p

md)⇣ + 2L�
���(s, a)

��
(⇤k

H)
�1 .

Therefore, conditioned on events {E1(w)}w2fW , for all (s, a, w, k) 2 S ⇥A⇥ fW ⇥ [K], we have

Q
⇤
H
(s, a, w)  rH(s, a, w) +

⌧
⇠̂
k

H
, (s, a, w)

�
+ 2L�

���(s, a)
��
(⇤k

H
)�1 + (2L+ L�

p

md)⇣

=

(
rH(s, a, w) +

⌧
⇠̂
k

H
, (s, a, w)

�
+ 2L�

���(s, a)
��
(⇤k

H
)�1

)+

+ (2L+ L�

p

md)⇣

= Q
k

H
(s, a, w) + (2L+ L�

p

md)⇣,

where the first equality follows from the fact that Q⇤
H
(s, a, w) � 0. Now, suppose the statement

holds at time-step h + 1 and consider time-step h. Conditioned on events {E1(w)}w2fW , for all
(s, a, w, h, k) 2 S ⇥A⇥ fW ⇥ [H]⇥ [K], we have

0  rh(s, a, w) +

⌧
⇠̂
k

h
, (s, a, w)

�
�Q

⇤
h
(s, a, w)� Ph

h
V

k

h+1(., w)� V
⇤
h+1(., w)

i
(s, a)

+ (2L+ L�

p

md)⇣ + 2L�
���(s, a)

��
(⇤k

h)
�1

 rh(s, a, w) +

⌧
⇠̂
k

h
, (s, a, w)

�
�Q

⇤
h
(s, a, w) + (2L+ L�

p

md)(H � h+ 1)⇣ + 2L�
���(s, a)

��
(⇤k

h)
�1 .

(Induction assumption)

Therefore, conditioned on events {E1(w)}w2fW , for all (s, a, w, h, k) 2 S ⇥A⇥ fW ⇥ [H]⇥ [K],
we have

Q
⇤
h
(s, a, w)  rh(s, a, w) +

⌧
⇠̂
k

h
, (s, a, w)

�
+ (2L+ L�

p

md)(H � h+ 1)⇣ + 2L�
���(s, a)

��
(⇤k

h)
�1

=

(
rh(s, a, w) +

⌧
⇠̂
k

h
, (s, a, w)

�
+ 2L�

���(s, a)
��
(⇤k

h)
�1

)+

+ (2L+ L�

p

md)(H � h+ 1)⇣

= Q
k

h
(s, a, w) + (2L+ L�

p

md)(H � h+ 1)⇣,

where the first equality follows from the fact that Q⇤
h
(s, a, w) � 0. This completes the proof.

F.2 PROOF OF THEOREM 6

The proof for establishing the upper bound on the number of planning calls for misspecified settings
follows exactly the steps as those in the proof of Theorem 2.

Now, we prove the regret bound. Let �
k

h
= V

k̃

h
(sk

h
, w

k) � V
⇡
k

h
(sk

h
, w

k) and ⇠
k

h+1 =

E
h
�
k

h+1|s
k

h
, a

k

h

i
� �

k

h+1. Conditioned on events {E1(w)}w2fW , for all (s, a, w, h, k) 2 S ⇥ A ⇥

fW ⇥ [H]⇥ [K], we have

Q
k̃

h
(s, a, w)�Q

⇡
k

h
(s, a, w) = rh(s, a, w) +

⌧
⇠̂
k̃

h
, (s, a, w)

�
�Q

⇡
k

h
(s, a, w) + 2L�

���(s, a)
��
(⇤k̃

h
)�1

 Ph

h
V

k̃

h+1(., w)� V
⇡
k

h+1(., w)
i
(s, a) + (2L+ L�

p

md)⇣ + 4L�
���(s, a)

��
(⇤k̃

h
)�1 .

(59)

36

Published as a conference paper at ICLR 2023

Note that �k
h
 Q

k̃

h
(sk

h
, a

k

h
, w

k)�Q
⇡
k

h
(sk

h
, a

k

h
, w

k). Thus, combining (59), Lemma 5, and a union
bound over fW , we conclude that for all (h, k) 2 [H]⇥ [K], with probability at least 1� �, it holds
that gives

�
k

h
 ⇠

k

h+1 + �
k

h+1 + (2L+ L�

p

md)⇣ + 4L�
����(skh, akh)

���
(⇤k̃

h
)�1

.

Now, we complete the regret analysis following similar steps as those of Theorem 1’s proof:

RK =
KX

k=1

V
⇤
1 (s

k

1 , w
k)� V

⇡
k

1 (sk1 , w
k)

 (2L+ L�

p

md)HK⇣ +
KX

k=1

V
k̃

1 (sk1 , w
k)� V

⇡
k

1 (sk1 , w
k) (Lemma 17)

= (2L+ L�

p

md)HK⇣ +
KX

k=1

�
k

1

 (4L+ 2L�
p

md)HK⇣ +
KX

k=1

HX

h=1

⇠
k

h
+ 4L�

KX

k=1

HX

h=1

����(skh, akh)
���⇣

⇤k̃

h

⌘�1

 (4L+ 2L�
p

md)HK⇣ +
KX

k=1

HX

h=1

⇠
k

h
+ 4L�

KX

k=1

HX

h=1

����(skh, akh)
���
(⇤k

h)
�1

vuutdet⇤k

h

det⇤k̃

h

(Eqn. (27))

 (4L+ 2L�
p

md)HK⇣ + 2H
p
T log(dT/�) + 8HL�

p
2dK log(1 +K/�)

 Õ

⇣
(L+ L�

p

md)HK⇣ + L

p
�(d3 +md2)H3T

⌘
,

where the last two inequalities follow from the similar steps in the proof of Theorem 1.

G AUXILIARY LEMMAS

Notations. N✏(V) denotes the ✏-covering number of the class V of functions mapping S to R with
respect to the distance dist(V, V 0) = sup

s

��V (s)� V
0(s)
��.

Lemma 18 (Bound on Weights ✓k
h
(w)). Under Assumption 1, for any set of action-value functions

{Q
k

h
}h2[H], and (w, h, k) 2 W ⇥ [H]⇥ [K], it holds that

���✓kh(w)
���
2
 H

p

d.

Proof. Recall that V
k

h
(s, w) = min

�
maxa2A Q

k

h
(s, a, w), H

and ✓k

h
(w) :=R

S V
k

h+1(s
0
, w)dµ

h
(s0). Thus, we have

���✓kh(w)
���
2
=

����
Z

S
V

k

h+1(s
0
, w)dµ

h
(s0)

����  H

p

d.

Lemma 19 (Lemma D.4 in Jin et al. (2020)). Let {s⌧}1⌧=1 be a stochastic process on state space
S with corresponding filtration {F⌧}

1
⌧=0. Let {�

⌧
}
1
⌧=0 be an Rd-valued stochastic process where

�
⌧
2 F⌧�1, andk�

⌧
k  1. Let ⇤k = �Id +

P
k�1
⌧=1 �⌧

�>
⌧

. Then with probability at least 1� �, for
all k � 0 and V 2 V such that sup

s2S
��V (s)

��  H , we have
������

kX

⌧=1

�
⌧
.

⇣
V (s⌧)� E

⇥
V (s⌧)|F⌧�1

⇤⌘
������

2

⇤�1
k

 4H2

d

2
log

✓
k + �

�

◆
+ log

✓
N✏(V)

�

◆!
+

8k2✏2

�
.

37

Published as a conference paper at ICLR 2023

Lemma 20. For any ✏ > 0, the ✏-covering number of the Euclidean ball in Rd with radius R > 0 is
upper bounded by (1 + 2R/✏)d.

Lemma 21. For a fixed w, let V denote a class of functions mapping from S to R with following
parametric form

V (.) = min

⇢
max
a2A

⌦
z, (., a, w)

↵
+
⌦
y,�(., a)

↵
+ �

q
�(., a)>Y�(., a), H

�
,

where the parameters � 2 R, z 2 Rd
0
, y 2 Rd, and Y 2 Rd⇥d satisfy 0  �  B,kzk  z,kyk  y,

andkYk  �
�1. Assume

���(s, a)
��  1 and

�� (s, a, w)
��  1 for all (s, a, w) 2 S ⇥A⇥W . Then

log
�
N✏(V)

�
 d

0 log(1 + 4z/✏) + d log(1 + 4y/✏) + d
2 log

1 + 8B2

p
d

�✏2

!
.

Proof. First, we reparametrize V by letting Ỹ = �
2Y. We have

V (.) = min

⇢
max
a2A

⌦
z, (., a, w)

↵
+
⌦
y,�(., a)

↵
+
q
�(., a)>Ỹ�(., a), H

�
,

for kzk  z, kyk  y, and
���Ỹ
��� 

B
2

�
. For any two functions V1, V2 2 V with parameters

⇣
z1,y1

, Ỹ1
⌘

and
⇣
z2,y2

, Ỹ2
⌘

, respectively, we have

dist(V1, V2)  sup
(s,a)2S⇥A

�����

D
z1, (s, a, w)

E
+
D
y1

,�(s, a)
E
+
q
�(s, a)>Ỹ1�(s, a)

�

�

D
z2, (s, a, w)

E
+
D
y2

,�(s, a)
E
+
q
�(s, a)>Ỹ2�(s, a)

������

 sup
 :k k1,�:k�k1

�����

D
z1,

E
+
D
y1

,�
E
+
q
�>Ỹ1�

�
�

D
z2,

E
+
D
y2

,�
E
+
q
�>Ỹ2�

������

 sup
 :k k1

����
D
z1 � z2,

E����+ sup
�:k�k1

����
D
y1

� y2
,�
E����+ sup

�:k�k1

s�����
>
⇣
Ỹ1 � Ỹ2

⌘
�

����

(because
���
p
a�

p
b

��� 
p
|a� b| for a, b � 0)

=
���z1 � z2

���+
���y1

� y2
���+

r���Ỹ1 � Ỹ2
���



���z1 � z2
���+

���y1
� y2

���+
r���Ỹ1 � Ỹ2

���
F

. (60)

Let Cz and Cy be ✏/2-covers of {z 2 Rd
0
: kzk  z} and {y 2 Rd : kyk  y}, respectively, with

respect to the 2-norm, and CY be an ✏
2
/4-cover of {Y 2 Rd⇥d :kYk

F


B
2
p
d

�
}, with respect to

the Frobenius norm. By Lemma 20, we know

|Cz|  (1 + 4z/✏)d
0
,
��Cy
��  (1 + 4y/✏)d, |CY| 

1 + 8B2

p
d

�✏2

!d
2

.

According to (60), it holds that N✏(V)  |Cz|
��Cy
��|CY|, and therefore

log
�
N✏(V)

�
 d

0 log(1 + 4z/✏) + d log(1 + 4y/✏) + d
2 log

1 + 8B2

p
d

�✏2

!
.

38

Published as a conference paper at ICLR 2023

Lemma 22. For a fixed w, let V denote a class of functions mapping from S to R with following
parametric form

V (.) = min

(
max
a2A

⇢⌦
z, (., a, w)

↵
+ 2L�

q
�(., a)>Y�(., a)

�+

, H

)
,

where the parameters � 2 R, z 2 Rd
0

and Y 2 Rd⇥d satisfy 0  �  B,kzk  z, andkYk  �
�1.

Assume
���(s, a)

��  1 and
�� (s, a, w)

��  1 for all (s, a, w) 2 S ⇥A⇥W . Then

log
�
N✏(V)

�
 d

0 log(1 + 4z/✏) + d
2 log

1 + 8B2

p
d

�✏2

!
.

Proof. First, we reparametrize V by letting Ỹ = �
2Y. We have

V (.) = min

⇢
max
a2A

⌦
z, (., a, w)

↵
+
q
�(., a)>Ỹ�(., a), H

�
,

forkzk  z, and
���Ỹ
��� 

B
2

�
. For any two functions V1, V2 2 V with parameters

⇣
z1, Ỹ1

⌘
and

⇣
z2, Ỹ2

⌘
, respectively, we have

dist(V1, V2)  sup
(s,a)2S⇥A

�����

D
z1, (s, a, w)

E
+
q
�(s, a)>Ỹ1�(s, a)

�
�

D
z2, (s, a, w)

E
+
q
�(s, a)>Ỹ2�(s, a)

������

 sup
 :k k1,�:k�k1

�����

D
z1,

E
+
q
�>Ỹ1�

�
�

D
z2,

E
+
q
�>Ỹ2�

������

 sup
 :k k1

����
D
z1 � z2,

E����+ sup
�:k�k1

s�����
>
⇣
Ỹ1 � Ỹ2

⌘
�

����

(because
���
p
a�

p
b

��� 
p
|a� b| for a, b � 0)

=
���z1 � z2

���+
r���Ỹ1 � Ỹ2

���



���z1 � z2
���+

r���Ỹ1 � Ỹ2
���
F

. (61)

Let Cz be an ✏/2-cover of {z 2 Rd
0
:kzk  z} with respect to the 2-norm, and CY be an ✏

2
/4-cover

of {Y 2 Rd⇥d :kYk
F


B
2
p
d

�
}, with respect to the Frobenius norm. By Lemma 20, we know

|Cz|  (1 + 4z/✏)d
0
, |CY| 

1 + 8B2

p
d

�✏2

!d
2

.

According to (61), it holds that N✏(V)  |Cz||CY|, and therefore

log
�
N✏(V)

�
 d

0 log(1 + 4z/✏) + d
2 log

1 + 8B2

p
d

�✏2

!
.

Lemma 23. For a fixed w, let V denote a class of functions mapping from S to R with following
parametric form

V (.) = min

(
max
a2A

⇢⌦
z, (., a, w)

↵
+ 2L�

q
�(., a)>Y�(., a) + �̃

q
�(., a, w)>Ỹ�(., a, w)

�+

, H

)
,

39

Published as a conference paper at ICLR 2023

where the parameters �, �̃ 2 R, z 2 Rd
0
, Y 2 Rd⇥d and Ỹ 2 Rd

0⇥d
0

satisfy 0  �  B,
0  �̃  B̃ kzk  z,kYk  �

�1 and
���Ỹ
���  �

�1. Assume
���(s, a)

��  1 and
�� (s, a, w)

��  1

for all (s, a, w) 2 S ⇥A⇥W . Then

log
�
N✏(V)

�
 d

0 log(1 + 4z/✏) + d
2 log

1 + 8B2

p
d

�✏2

!
+ d

02 log

1 + 8B̃2

p
d0

�✏2

!
.

Proof. First, we reparametrize V by letting Z = �
2Y and Z̃ = �̃

2Ỹ. We have

V (.) = min

⇢
max
a2A

⌦
z, (., a, w)

↵
+
q
�(., a)>Z�(., a) +

q
�(., a)>Z̃�(., a), H

�
,

for kzk  z, kZk 
B

2

�
, and

���Z̃
��� 

B̃
2

�
. For any two functions V1, V2 2 V with parameters

⇣
z1,Z1

, Z̃1
⌘

and
⇣
z2,Z2

, Z̃2
⌘

, respectively, we have

dist(V1, V2)  sup
(s,a)2S⇥A

�����

D
z1, (s, a, w)

E
+
q
�(s, a)>Z1�(s, a) +

q
 (s, a, w)>Z̃1 (s, a, w)

�

�

D
z2, (s, a, w)

E
+
q
�(s, a)>Z2�(s, a) +

q
 (s, a, w)>Z̃2 (s, a, w)

������

 sup
 :k k1,�:k�k1

�����

D
z1,

E
+
q
�>Z1�+

q
 >Z̃1

�
�

D
z2,

E
+
q
�>Z2�+

q
 >Z̃2

������

 sup
 :k k1

����
D
z1 � z2,

E����+ sup
�:k�k1

r����> (Z1 � Z2)�
���+ sup

 :k�k1

s����
>
⇣
Z̃1 � Z̃2

⌘

����

(because
���
p
a�

p
b

��� 
p
|a� b| for a, b � 0)

=
���z1 � z2

���+
p
kZ1 � Z2k+

r���Z̃1 � Z̃2
���



���z1 � z2
���+

q
kZ1 � Z2k

F
+

r���Z̃1 � Z̃2
���
F

. (62)

Let Cz be an ✏/2-cover of {z 2 Rd
0
:kzk  z} with respect to the 2-norm, CZ be an ✏

2
/4-cover of

{Z 2 Rd⇥d : kZk
F


B

2
p
d

�
}, and CZ̃ be an ✏

2
/4-cover of {Z̃ 2 Rd

0⇥d
0
:
���Z̃
���
F


B̃

2
p
d

�
} with

respect to the Frobenius norm. By Lemma 20, we know

|Cz|  (1 + 4z/✏)d
0
, |CZ| 

1 + 8B2

p
d

�✏2

!d
2

,
��CZ̃
�� 

1 + 8B̃2

p
d0

�✏2

!d
02

.

According to (62), it holds that N✏(V)  |Cz||CY|, and therefore

log
�
N✏(V)

�
 d

0 log(1 + 4z/✏) + d
2 log

1 + 8B2

p
d

�✏2

!
+ d

02 log

1 + 8B̃2

p
d0

�✏2

!
.

Lemma 24. Let V denote a class of functions mapping from S to R with following parametric form

V (., .) = min

(
max
a2A

⇢⌦
z, (., a, .)

↵
+ 2L�

q
 (., a, .)>Y (., a, .)

�+

, H

)
,

where the parameters � 2 R, z 2 Rd
0

and Y 2 Rd
0⇥d

0
satisfy 0  �  B,kzk  z, andkYk  �

�1.
Assume

�� (s, a, w)
��  1 for all (s, a, w) 2 S ⇥A⇥W . Then

log
�
N✏(V)

�
 d

0 log(1 + 4z/✏) + d
02 log

1 + 8B2

p
d0

�✏2

!
.

40

Published as a conference paper at ICLR 2023

Proof. First, we reparametrize V by letting Ỹ = �
2Y. We have

V (., .) = min

⇢
max
a2A

⌦
z, (., a, .)

↵
+
q
 (., a, .)>Ỹ (., a, .), H

�
,

forkzk  z, and
���Ỹ
��� 

B
2

�
. For any two functions V1, V2 2 V with parameters

⇣
z1, Ỹ1

⌘
and

⇣
z2, Ỹ2

⌘
, respectively, we have

dist(V1, V2)  sup
(s,a,w)2S⇥A⇥W

�����

D
z1, (s, a, w)

E
+
q
 (s, a)>Ỹ1 (s, a)

�

�

D
z2, (s, a, w)

E
+
q
 (s, a, w)>Ỹ2 (s, a, w)

������

 sup
 :k k1

�����

D
z1,

E
+
q
 >Ỹ1

�
�

D
z2,

E
+
q
 >Ỹ2

������

 sup
 :k k1

����
D
z1 � z2,

E����+ sup
 :k k1

s����
>
⇣
Ỹ1 � Ỹ2

⌘

����

(because
���
p
a�

p
b

��� 
p
|a� b| for a, b � 0)

=
���z1 � z2

���+
r���Ỹ1 � Ỹ2

���



���z1 � z2
���+

r���Ỹ1 � Ỹ2
���
F

. (63)

Let Cz be an ✏/2-cover of {z 2 Rd
0
:kzk  z} with respect to the 2-norm, and CY be an ✏

2
/4-cover

of {Y 2 Rd
0⇥d

0
:kYk

F


B
2
p
d0

�
}, with respect to the Frobenius norm. By Lemma 20, we know

|Cz|  (1 + 4z/✏)d
0
, |CY| 

1 + 8B2

p
d0

�✏2

!d
02

.

According to (63), it holds that N✏(V)  |Cz||CY|, and therefore

log
�
N✏(V)

�
 d

0 log(1 + 4z/✏) + d
02 log

1 + 8B2

p
d0

�✏2

!
.

H DETAILS OF THE EXPERIMENTS

In all the experiments, we have chosen � = 0.01, � = 1, d = 5, and H = 5. The parameters
{⌘

h
}h2[H] are drawn from N (0, Id0). In order to tune parameters {µ

h
(.)}h2[H] and the feature

mappings � such that they are compatible with Assumption 1, we consider that the feature space
{�(s, a) : (s, a) 2 S ⇥A} is a subset of the d-dimensional simplex, {� 2 Rd :

P
d

i=1 �i
= 1,�

i
�

0,�
i
 1, 8i 2 [d]}, and e>

i
µ

h
(.) is an arbitrary probability measure over S for all i 2 [d].

The results shown in Figure 2a depict averages over 50 realizations for the main setup considered
throughout the paper with m = 5 and the results shown in Figure 2b depict averages over 50
realizations, for the more general setup of Remark 2 with d

0 = 10. For the results shown in Figure 2a,
the mappings ⇢(w) are drawn from N (0, Im) except for the n = m representative tasks {w(j)

}j2[m]

introduced in Assumption 3, for which we set ⇢(w(j)) = ej for j 2 [m]. For the results shown in
Figure 2b, the mappings (s, a, w) are drawn from N (0, Id0) and we set (s, a, w(j)) = ej for
j 2 [d0], where {w

(j)
}j2[d0] are n = d

0 representative tasks introduced in Assumption 5 in Appx. D.
The parameters {⌘

h
}h2[H] are drawn from N (0, Id0), where d

0 = m⇥ d = 25 in Figure 2a. In our

41

Published as a conference paper at ICLR 2023

experiments, the exact same settings are used for both UCBlvd and Lifelong-LSVI in both Figures 2a
and 2b. We chose fairly large d, m, and d

0 and by checking online, we noticed that the optimal value
of QCQP in (8) happens always to be zero. All these together suggest that the assumptions made in
the paper approximately hold. Figures 2a and 2b depict the average per-episode reward of UCBlvd
and state the average number of planning calls and compare them to those of baseline algorithm
Lifelong-LSVI, a direct extension of LSVI-UCB in Jin et al. (2020). The results emphasize the value
of UCBlvd in terms of requiring much smaller numbers of planning calls. The plots verify that the
performances of Lifelong-LSVI and UCBlvd are almost the same statistically, while UCBlvd uses
much smaller numbers of planning calls (1000 vs ⇠ 20).

In Figure 3, we plot UCBlvd’s number of planning calls for different number of task episodes, K,
while the setting is same as that in 2a. In this figure, we empirically verify the logarithmic dependence
of number of planning calls on K as suggested by Theorem 2.

Pe
r-

ep
is

od
e

re
w

ar
d

Episode, k

(a) Setting of Theorem 2, d = 5, m = 5, d0 = 25

Pe
r-

ep
is

od
e

re
w

ar
d

Episode, k

(b) Setting of Remark 2, d = 5, d0 = 10

Figure 2: UCBlvd vs Lifelong-LSVI

#
of

pl
an

ni
ng

ca
lls

in
U

C
B

lv
d

Total number of task episodes, K

Figure 3: Setting of Theorem 2, d = 5, m = 5, d0 = 25

42

	Introduction
	Preliminaries
	A warm-up algorithm for lifelong RL
	Algorithmic notations
	Details of Lifelong-LSVI and its theoretical guarantees

	UCB Lifelong Value Distillation (UCBlvd)
	Enabling computation sharing
	Details of UCBlvd
	Theoretical analysis of UCBlvd
	Proof sketch of Theorem 2
	Experiments

	Related work
	Discussion
	Proofs of section 3
	Proof of Theorem 1

	Proofs of section 4
	Proof of Lemma 5
	Proof of Lemma 1
	Proof of optimistic nature of UCBlvd
	Proof of Theorem 2
	Discussion on the time complexity of UCBlvd and Lifelong-LSVI

	Details of Remark 1: UCBlvd with unknown rewards
	Overview
	Necessary analysis for the proof of Theorem 3
	Proof of Theorem 3

	Details of Remark 2: Relaxation of Assumption 3
	Details of Remark 3
	Overview
	Necessary analysis for the proof of Theorem 5
	Proof of Theorem 5

	Details of Remark 4: A misspecified setting
	Necessary analysis for the proof of Theorem 6
	Proof of Theorem 6

	Auxiliary lemmas
	Details of the experiments

