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Abstract
Recently, the study of linear misspecified ban-
dits has generated intriguing implications of the
hardness of learning in bandits and reinforce-
ment learning (RL). In particular, Du et al. (2020)
shows that even if a learner is given linear fea-
tures in Rd that approximate the rewards in a ban-
dit or RL with a uniform error of ", searching for
an O(")-optimal action requires pulling at least
⌦(exp(d)) queries. Furthermore, Lattimore et al.
(2020) show that a degraded O("

p
d)-optimal so-

lution can be learned within poly(d/") queries.
Yet it is unknown whether a structural assump-
tion on the ground-truth parameter, such as spar-
sity, could break "

p
d barrier. In this paper, we

address this question by showing that algorithms
can obtain O(")-optimal actions by querying
Õ(exp(m")) actions, where m is the sparsity pa-
rameter, removing the exp(d)-dependence. We
further show (with an information-theoretical
lower bound) that this is the best possible if one
demands an error m�

" for 0 < � < 1. We further
show that poly(m/") bounds are possible when
the linear features are “good”. These results pro-
vide a nearly complete picture of how sparsity
can help in misspecified bandit learning and pro-
vide a deeper understanding of when linear fea-
tures are “useful” for bandit and reinforcement
learning with misspecification.

1. Introduction
Bandit and reinforcement learning problems in real-world
applications, e.g., autonomous driving (Kiran et al., 2021),
healthcare (Esteva et al., 2019), recommendation sys-
tem (Bouneffouf et al., 2012), marketing and advertising
(Schwartz et al., 2017), are challenging due to the magnif-
icent state/action space. To address this challenge, a func-

1Department of Electrical and Computer Engineering, Univer-
sity of California, Los Angeles, USA. Correspondence to: Jialin
Dong, Lin F. Yang <jialind@g.ucla.edu, linyang@ee.ucla.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

tion approximation framework has been introduced, which
first extracts feature vectors for state/action space and then
approximates the value functions of all policies in RL (or
the reward functions of all actions in bandit problems) with
feature representations. In some real-world applications,
feature representations may not have vanilla linear map-
ping. In these scenarios, a linear feature representation can
approximate the value functions (or the reward functions)
with a small uniform error known as misspecification. Un-
fortunately, Du et al. (2020) shows that searching for an
O(")-optimal action in these scenarios requires pulling at
least ⌦(exp(d)) queries. However, if we relax the goal of
finding O(")-optimal action, there is still a chance. Instead,
Lattimore et al. (2020) find an action that is suboptimal
with an error of at most O("

p
d) within poly(d/") queries,

where d is the dimension of the feature vectors.

By scrutinizing the novel result proposed by Lattimore
et al. (2020), the dependence on

p
d raises concern regard-

ing the potential blowup of the approximation error. We
are modestly optimistic that some structural patterns, such
as sparsity, in feature representation schemes are beneficial
to break the "

p
d barrier. This idea comes from a vast litera-

ture that studies high-dimensional statistics in sparse linear
regression (Bühlmann & Van De Geer, 2011; Wainwright,
2019) and successfully applies it to sparse linear bandits
(Sivakumar et al., 2020; Abbasi-Yadkori et al., 2012; Bas-
tani & Bayati, 2020; Wang et al., 2018; Su et al., 2020;
Lattimore et al., 2015). Moreover, the sparsity-structure
in linear bandits are meaningful and crucial to many prac-
tical applications where there are many potential features
but no apparent evidence on which are relevant, such as
personalized health care and online advertising (Carpentier
& Munos, 2012; Abbasi-Yadkori et al., 2012). The essen-
tial difference in sparse linear bandits between our paper
and state-of-the-art is the study of the possible model mis-
specification; i.e., the ground truth reward means might be
an " error away from a sparse linear representation for any
action.

Model misspecification is widely seen in practice and has
been widely studied only in the dense model (also known as
misspecified linear bandits) (Bogunovic & Krause, 2021;
Takemura et al., 2021; Zanette et al., 2020a; Wang et al.,
2020a), where the best polynomial-sample algorithm suf-
fers a O("

p
d) estimation error, which can be prominent
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when the feature dimension d is sufficiently large. How-
ever, it is unexplored whether a structural sparsity as-
sumption on the ground-truth parameter could break the
"
p
d barrier. Additionally, there is little understanding of

the conditions when linear features are “useful” for ban-
dit problems and reinforcement learning with misspecifica-
tion.

Contribution.

• We establish novel algorithms that obtain O(")-
optimal actions by querying Õ("�m

d
m) actions,

where m is the sparsity parameter. For fixed sparsity
m, the algorithm finds an O(")-optimal action with
poly(d/") queries, breaking the O("

p
d) barrier. The

"
�m dependence in the sample bound can be further

improved to O(1) if we allow an O("
p
m) subopti-

mality.

• We establish information-theoretical lower bounds to
show that our upper bounds are nearly tight. In par-
ticular, we show that any algorithms that can obtain
O(�)-optimal actions need to query ⌦(exp(m"/�))
samples from the bandit environment, where the ap-
proximate error � mentioned in Definition 1 satisfies
� � ". Hence, for approximation error of the form
m

�
", for any 0 < � < 1, exp(m)-dependence in the

sample complexity is not avoidable.

• We further break the exp(m) sample barrier by show-
ing an algorithm that achieves O(m") sub-optimal
actions while only querying poly(dm/") samples in
the regime the action features possess certain benign
structures (hence “good” features).

In summary, our results provide a nearly complete picture
of how sparsity can help in misspecified bandit learning and
provide a deeper understanding of when linear features are
“useful” for bandit and RL with misspecification.

2. Related work
This section summarizes the state-of-the-art in several ar-
eas of interest related to our work: function approximation,
misspecified feature representation, and sparsity in bandits
and reinforcement learning.

Function approximation in bandits and reinforcement
learning Function approximation schemes that approxi-
mate value functions in RL (reward function in bandit prob-
lem) with feature representations are widely used for gen-
eralization across large state/action spaces. A recent line of
work studies bandits (Ding et al., 2021; Russo & Van Roy,
2013; Dani et al., 2008; Chu et al., 2011) and RL with lin-
ear function approximation (Jin et al., 2020; Zanette et al.,

2020a; Cai et al., 2020; Zanette et al., 2020b; Agarwal
et al., 2020; Neu & Pike-Burke, 2020). Beyond the lin-
ear setting, there is a flurry line of research studying RL
with general function approximation (Wang et al., 2020b;
Osband & Van Roy, 2014; Jiang et al., 2017) and bandits
with general function approximation (Li et al., 2017; Kve-
ton et al., 2020; Filippi et al., 2010; Jun et al., 2017; Foster
et al., 2021). The regret upper bound O(poly(d)

p
n) can

be achieved in the above papers, where d is the ambient di-
mension (or complexity measure such as eluder dimension)
of the feature space and n is the number of rounds.

Misspecified bandits and reinforcement learning Re-
cently, interest has been aroused to deal with the situation
when the value function in RL (or the rewards functions
in bandits) is approximated by a linear function where the
approximation error is at most ", also known as the mis-
specified linear bandit and reinforcement learning. The
misspecification facilitates us to establish a more compli-
cated reward function than a linear function. For instance,
it enables the characterization of a reward function that may
change over the rounds, which is common in real-world ap-
plications such as education, healthcare, and recommenda-
tion systems (Chu et al., 2011).

Du et al. (2020) showed that no matter whether value-
based learning or model-based learning, the agent needs
to sample an exponential number of trajectories to find
an O(")-optimal policy for reinforcement learning with "-
misspecified linear features. This result shows that good
features (e.g., linear features with small misspecification)
are not sufficient for sample-efficient RL if the approxi-
mation error guarantee is close to the misspecification er-
ror. By relaxing the objective of achieving O(")-optimality,
Lattimore et al. (2020) showed that poly(d/") samples are
sufficient to obtain an O("

p
d)-optimal policy (in the sim-

ulator model setting of RL), where d is the feature dimen-
sion, indicating the same features are “good” in a different
requirement. The hard instances used in both papers are in
fact bandit instances and hence provide understanding for
misspecified linear bandit problems as well.

A number of works in the literature, such as (Foster et al.,
2020; Vial et al., 2022; Takemura et al., 2021; Wei et al.,
2022; Jin et al., 2020), can also deal with misspecification
in linear bandits or RL with linear features. These algo-
rithms can only achieve a O("

p
d) error guarantee at best

(when their regret bounds are translated to PAC bounds)
with poly(d/") samples.

Sparse linear bandits and reinforcement learning In
this section, we briefly review the literature on the sparse
linear bandits and RL, where no misspecification is con-
sidered. We also note that these results are stated in regret
bounds, which can be easily converted to PAC bounds.
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Abbasi-Yadkori et al. (2012) proposed an online-to-
confidence-set conversion approach which achieves a re-
gret upper bound of O(

p
mdn), where m is a known pa-

rameter on the sparsity. A matching lower bound is given
in (Lattimore & Szepesvári, 2020)[Chapter 24.3], which
shows that polynomial dependence on d is generally un-
avoidable without additional assumptions. To address this
limitation, another line of literature (Kim & Paik, 2019;
Bastani & Bayati, 2020; Wang et al., 2018) studied the
sparse contextual linear bandits where the action set is dif-
ferent in each round and follows some context distribution.
Kim & Paik (2019) developed a doubly-robust Lasso ban-
dit approach with an O(m

p
n) upper bound. Bastani &

Bayati (2020) considered the scenario where each arm has
an underlying parameter and derived a O(Km

2(log(n))2)
upper bound which was improved to O(Km

2 log(n)) by
Wang et al. (2018), where K is the number of arms.
Sivakumar et al. (2020) proposed a structured greedy al-
gorithm to achieve an O(m

p
n) upper bound. Hao et al.

(2020) derived a ⌦(n2/3) minimax regret lower bound for
sparse linear bandits where the feature vectors lack a well-
conditioned exploration distribution.

There are many previous works studying feature selec-
tion in reinforcement learning. Specifically, Kolter &
Ng (2009); Geist & Scherrer (2012); Painter-Wakefield &
Parr (2012); Liu et al. (2012) proposed algorithms with
`1-regularization for temporal-difference (TD) learning.
Ghavamzadeh et al. (2011) and Geist et al. (2012) pro-
posed Lasso-TD to estimate the value function in sparse
reinforcement learning and derived finite-sample MDP sta-
tistical analysis. Hao et al. (2021a) provided nearly optimal
statistical analysis of high dimensional batch reinforcement
learning (RL) using sparse linear function approximation.
Ibrahimi et al. (2012) derived an O(d

p
n) regret bound in

high-dimensional sparse linear quadratic systems where d

is the dimension of the state space. The hardness of online
reinforcement learning in fixed horizon has been studied by
Hao et al. (2021b), which shows that linear regret is gen-
erally unavoidable in this case, even if there exists a policy
that collects well-conditioned data.

3. Preliminary
Throughout this paper, f(n) = O(g(n)) denotes that there
exists a constant c > 0 such that |f(n)|  c|g(n)| whereas
f(n) = ⌦(g(n)) means that there exists a constant c > 0
such that |f(n)| � c|g(n)|. In addition, the notation
f(n) = ⇥(g(n)) means that there exists constants c1, c2 >

0 such that c1|g(n)|  |f(n)|  c2|g(n)|. For a given inte-
ger n, let [n] denote the set {1, · · · , n}. Let C > 0 denote a
suitably universal large constant. For a matrix A 2 Rm⇥n,
the set of rows is denoted by rows(A). Define an index set
M ✓ [d] such that |M| = m. Let �M 2 Rk⇥m be the

submatrix of � 2 Rk⇥d and ✓M 2 Rm be the sub-vector
of ✓ 2 Rd.

Consider a bandit problem where the expected rewards are
nearly a linear function of their associated features. Let
� 2 Rk⇥d denote the feature matrix whose rows are fea-
ture vectors corresponding to k actions. In rounds t 2 [n],
the agent chooses actions (at)nt=1 with at 2 rows(�) and
receives a reward

rat = hat, ✓⇤i+ ⌫at , (1)

where ⌫at 2 [�", "], " > 0 for t 2 [n] and ✓
⇤ 2 Rd is

an unknown parameter vector. We here only consider de-
terministic rewards as small unbiased noises from rewards
do not change the sample complexity analysis of this paper
by much but complicate the presentation. In Appendix C,
we provide additional discussion on the noisy setting of the
rewards.

We make the mild boundedness assumption for each ele-
ment of the feature matrix such that rows(�) 2 Sd�1

B . The
parameter vector ✓⇤ is assumed to be m-sparsity:

k✓⇤k0 =
dX

j=1

1{✓⇤j 6= 0} = m and k✓⇤k2  1.

We also assume that 8x 2 rows(�), there is kxk2  1.

4. Main Results
In this section, we first present an O(")-optimal algo-
rithm that takes O("�m

d
m) samples in Section 4.1 for

"-misspecified m-sparse linear bandit. Then we derive a
nearly matching lower bound in Section 4.2.

4.1. An Algorithm that Breaks the ⌦(exp(d)) Sample
Barrier

The core idea of our algorithm is based on an elimination-
type argument. In particular, we would guess an estimator
✓̂ for ✓⇤ and a index set M ⇢ [d]. Then for each guess of
✓̂ and M, we check the actions that have similar features
restricting to M. Querying an action in this group allows
us to rule out the guess of M and ✓̂ if they were not cor-
rect. If the ground truth ✓

⇤ is dense, this algorithm would
take ⌦(exp(d)) queries. Fortunately, since |M| = m, we
can establish an O(")-net with a small size and eliminate
the incorrect parameters in an efficient fashion. Below, we
present the algorithm more formally.

Define an index set M ✓ [d] such that |M| = m. Let M⇤

denote the non-zero subset of ✓⇤. Denote Nm as a maximal
"/2-separated subset of the Euclidean sphere Sm�1 with
radius of 1 . The set Nm satisfies that kx� yk2 � "/2,
for all x, y 2 Nm, and no subset of Sm�1 containing Nm
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satisfies this condition. Thus, the size of Nm is

|Nm| 
✓
4

"
+ 1

◆m

. (2)

For a set M, we denote an estimator as ✓̂M 2 Nm to
indicate the estimator which has only non-zero coordinates
at M.

For 8w 2 Nm, we collect all x 2 rows(�) close to w by
the measurement |✓̂>M(xM � w)| where xM 2 Rm is the
sub-vector of x 2 Rd restricted to the index set M and
define the set as

Rw
M(✓̂M) := {x 2 rows(�) : |✓̂>M(xM � w)|  "

2
}.

(3)

The above set is simply denoted as Rw
M in the following

proof if ✓̂M is clear from the context. In each round of the
algorithm, we find x 2 Rw

M and a set M0 (M0 6= M)
such that ✓̂>M0xM0 deviates from ✓̂

>
Mw (y at least ⌦(")).

Then, we query such x and receive the corresponding re-
ward rx. By comparing the difference between rx and
✓̂
>
Mw, we can know whether the subset M or M0 of x

is more likely to determine the reward rx and rule out the
incorrect parameters. For x 2 Rw

M, let [x]Nm denote the
vector v = argminw2Nm kw � xMk2 where xM 2 Rm

is the sub-vector of x. Let (⇠,M, ✓̂M) 2 S denote all of
the elements involving the index set M and ✓̂M 2 Nm.
We present the full algorithm in Algorithm 1.

Algorithm 1 Parameter Elimination
1: Input: feature matrix � 2 Rk⇥d

2: Initialize: S := {(w,M, ✓̂M) : w 2 Nm
,M ✓

[d], |M| = m, ✓̂M 2 Nm}.
3: For each (w,M, ✓̂M) 2 S , establish Rw

M as (3).
4: while there exit (w,M, ✓̂M) 2 S , M0 ✓ [d], |M0| =

m, M 6= M0, and x 2 Rw
M such that (⇠,M0

, ✓̂M0) 2
S , |hxM0 , ✓̂M0i � hw, ✓̂Mi| > 5"/2 do

5: Query the action x and receive a reward rx =
hx, ✓⇤i+ ⌫x where ⌫x 2 [�", "].

6: If |rx�hw, ✓̂Mi| > 3"/2 then S = S\(⇠,M, ✓̂M),
otherwise S = S\(⇠,M0

, ✓̂M0).
7: end while
8: Find a certain set L ✓ [d], |L| = m and corresponding

✓̂L 2 Nm such that (⇠,L, ✓̂L) 2 S .
9: Output: ✓̂L and L

Theorem 1. After

O

✓✓
1

"

◆m

·
✓
d

m

◆◆

number of queries, the outputs of Algorithm 1, ✓̂L and L,
satisfy |yi � haiL, ✓̂Li|  O(") for all ai 2 rows(�).

Proof. We first prove the correctness of the algorithm.
Suppose for some (w,M, ✓̂M) 2 S , there is x 2 Rw

M
such that ([xM0 ]Nm ,M0

, ✓̂M0) 2 S and |hxM0 , ✓̂M0i �
hw, ✓̂Mi| > 5"/2 and M0 6= M. Consider two cases in
Lines 4-7 in Algorithm 1.

• Case 1: Suppose |rx�hw, ✓̂Mi|  3"/2, then we have
that |rx � hxM, ✓̂Mi|  2" and |rx � hxM0 , ✓̂M0i| �
|hxM0 , ✓̂M0i � hw, ✓̂Mi|� |rx � hw, ✓̂Mi| > ". Thus
after the iterations, for some (w,M, ✓̂M) 2 S and
x 2 Rw

M, we have |rx�hxM, ✓̂Mi|  2". We remove
the elements (⇠,M0

, ✓̂M0) from S since there exists
an x 2 rows(�) such that |rx � hxM0 , ✓̂M0i| > ".

• Case 2: Assume that |rx�hw, ✓̂Mi| > 3"/2 for some
x 2 Rw

M. Then the elements (⇠,M, ✓̂M) get re-
moved from S since there exists an x 2 rows(�) such
that |rx�hxM, ✓̂Mi| � |rx�hw, ✓̂Mi|�|hxM, ✓̂Mi�
hw, ✓̂Mi| > ".

Moreover, Algorithm 1 guarantees that

• The elements (⇠,M⇤
, [✓⇤M⇤ ]Nm) maintain in the

set S , which involves the ground-truth index set
M⇤ and [✓⇤M⇤ ]Nm 2 Nm such that |rx �
hxM⇤ , [✓⇤M⇤ ]Nmi|  ". Algorithm 1 only elimi-
nates elements (⇠,M, ✓̂M) involving the index set
M and ✓̂M such that |rx � hxM, ✓̂Mi| > " for some
x 2 rows(�).

• If no more pairs in the remaining set S satisfies the
conditions on Line 4 in Algorithm 1, then it must be
the case that, for all (w,M, ✓̂M) 2 S with the re-
maining set S and 8 x 2 Rw

M, |hxM⇤ , [✓⇤M⇤ ]Nmi �
hw, ✓̂Mi|  5"/2, and hence

|rx � hw, ✓̂Mi| = |hx, ✓⇤i+ ⌫x � hw, ✓̂Mi|
|hxM⇤ , [✓⇤M⇤ ]Nmi � hw, ✓̂Mi|+ "  7"/2, (4)

Moreover,

|rx�hxM, ✓̂Mi|  |rx�hw, ✓̂Mi|+|✓̂>M(xM�w)|  4".

In summary, for a set L ✓ [d], |L| = m and corresponding
✓̂L 2 Nm such that (⇠,L, ✓̂L) in the remaining set S , we
can guarantee that

|rx � hxL, ✓̂Li|  4",

for 8 x 2 rows(�).

We arrive at the sample complexity analysis of the al-
gorithm. If we find (w,M, ✓̂M) 2 S , M0 6= M,
x 2 Rw

M satisfying the condition on Line 4 in Algorithm
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1, we remove either the elements either (⇠,M, ✓̂M) or
(⇠,M0

, ✓̂M0) after querying one action. The loop stops
when the condition on Line 4 is not satisfied. Thus, at
most |Nm|

� d
m

�
queries are needed for the algorithm. Re-

call |Nm| (2), the number of queries in m-sparsity case can
be bounded by

O

✓✓
1

"

◆m

·
✓
d

m

◆◆
.

⇤
When m is a fixed constant, the above theorem demon-
strates that poly(d)-samples are sufficient to learn an O(")-
optimal action. This is in stark contrast to the ⌦(exp(d))
lower-bound provided in Du et al. (2020) and Lattimore
et al. (2020). When m is not fixed, the dependence on
exp(m) is not desirable. One may ask, whether it is possi-
ble to achieve poly(m)-dependence for some, e.g., relaxed
error m

�
" for some � > 0. Unfortunately, the next sec-

tion provides a lower bound that rules out the possibility
for � < 1.

4.2. Lower bound

In this section, we establish an information-theoretical
lower bound to show that our upper bound is nearly tight.
The basic idea is by reduction to the INDEX-QUERY prob-
lem (Du et al., 2020; Yao, 1977) using statistical analysis
on sub-exponential random variables. More formally, it is
shown (Du et al., 2020) that if one is given a vector of di-
mension n with only one non-zero entry, then it is neces-
sary to query ⌦(pn) entries of the vector to output the in-
dex of the entry with probability p. In what follows, we
can show that for any algorithm that solves a m-sparse "-
misspecified linear bandit problem, we can use it to solve
the INDEX-QUERY problem of size⌦(exp(m)). The idea
is to establish a set of sparse vectors with sub-exponential
random variables, such that the vector input to the INDEX-
QUERY problem can be embedded into the bandit instance
(without any queries to the vector).

The next lemma is the key tool that will be useful in our
lower-bound arguments. It shows that there exists a sparse
matrix� 2 Rk⇥d with sufficiently large k where rows have
unit norm and sparsity m, and all non-equal rows are al-
most orthogonal.

Lemma 1. For 0 < � < 1, c > 1 and C
0 = 2c3

(1+⌧)
p
c2�1

with sufficiently small 0  ⌧ < 1,

• if 0 < "  C0m
d , by choosing k �

p
� exp

⇣
d(1+⌧)"2

4C0

⌘
,

• if " > C0m
d , by choosing k �

p
� exp

⇣
m(1+⌧)"

4

⌘
,

there exists a feature matrix � 2 Rk⇥d with rows such that
for all a, b 2 rows(�) with a 6= b, kak2 = 1, kak0  m,
and |ha, i|  ".

Proof Sketch. The matrix is established by choosing each
entry of the matrix � a small probability (⇠ m/d) to be
non-zero and if it is non-zero, the entry follows a Gaussian
distribution. The formal proof is provided in Appendix A.
⇤
As we will show shortly, the matrix in Lemma 1 can
be used to agnostically embed an arbitrary INDEX-query
problem to a sparse misspecified instance. To start with
the formal reduction, we introduce the definition of (⌘,�)-
sound algorithm for linear bandit problem, where the algo-
rithm returns an estimated optimal action â 2 rows(�) and
an estimation vector ✓̂ 2 Rd.

Definition 1. For any 0 < ⌘ < 1 and� � ", an algorithm
A solving linear bandit problem is called sound for (⌘,�)
if with probability at least 1 � ⌘, algorithm A returns the
estimated optimal action â such that râ � maxx rx ��.

For any input vector v to the INDEX-QUERY problem (of
dimension k) with some unknown index j to be non-zero,
we can simply take � as the feature matrix, and the j-th
row of � to be the ground-truth ✓

⇤. Then we would have
kv � �✓⇤k1  ". Thus any (⌘,�)-sound algorithm for
some appropriate� would identify the non-zero index in v

with good probability and thus inherits the lower bound of
INDEX-QUERY. The formal lower bound is presented in
the following theorem.

Theorem 2. For any (⌘,�)-sound linear bandit algorithm
A, there exists a m-sparse "-misspecified linear bandit in-
stance such that algorithm A takes at least

(1� ⌘) exp

✓
c0d ·

⇣
"

�

⌘2◆
, if 0 <

"

�
 C

0
m

d
, (5)

(1� ⌘) exp

✓
c1m(1 + ⌧)"

�

◆
, if

"

�
>

C
0
m

d
, (6)

actions to halt, where c0, c1, C
0 are absolute constants.

Proof. We begin with the construction of the hard m-
sparsity instances. Consider an INDEX-QUERY problem
with dimension k. Suppose the input vector with the i

⇤-
index (unknown to the algorithm) is non-zero, i.e., ei⇤ .
Here, ei is the standard unit vector with the i-th coordi-
nate equaling 1. In our hard instance, we choose reward
rx = 2� when x = ai⇤ with i

⇤ 2 [k], otherwise is 0. Now
we show that there exists a linear feature representation that
approximates the reward vector�ei⇤ 2 Rk with a uniform
error. Based on Lemma 1, let � be the matrix rows(�) =
(ai)ki=1 such that for all ai, aj 2 rows(�) with i 6= j,
kaik2 = 1 and |hai, aji|  "/(2�). With ✓

⇤ = 2�ai⇤ , we
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have �✓⇤ = (2�a
>
1 ai⇤ , . . . , 2�a

>
i⇤ai⇤ , . . . , 2�a

>
k ai⇤)

>.
By choice of �, the i

⇤-th component of �✓⇤ is � and the
others are all less than " in absolute value. Hence, we can
represent the reward vector 2�ei⇤ by 2�ei⇤ = �✓⇤+⌫ for
some ⌫ 2 [�", "]k.

Then an (⌘,�)-sound algorithm would identify an action a,
such that with probability at least 1�⌘, a>✓⇤ � 2��� =
�, which is only possible if a = ai⇤ . Hence the algorithm
would output i⇤ with probability at least 1�⌘. By the lower
bound of the INDEX query problem (e.g., Theorem A1 in
(Du et al., 2020)), the algorithm takes at least ⌦[(1 � ⌘)k]
queries in the worst-case.

In the construction, we only need Lemma 1 to hold for k
with the correct parameters. Hence we have

• if 0 < "  C0m
d , then k �

p
� exp

⇣
d(1+⌧)"2

16C0�2

⌘
, and

• if " > C0m
d , then k �

p
� exp

⇣
m(1+⌧)"

8�

⌘
,

for constant ⌧ , �, and C
0, completing the proof.

⇤

5. Improvement on the "�m Dependence
Even though the dependence of dm is unavoidable, we can
improve the upper bound in Theorem 1 by eluding the de-
pendence of ". The fundamental idea of the improved al-
gorithm is based on a mix of G-optimal design and elim-
ination argument. Instead of guessing an estimator ✓̂ for
✓
⇤, we use G-optimal design to estimate ✓̂ concerning an

index set M ⇢ [d]. Then for each estimator ✓̂ and M,
we check the actions that have similar features restricting
to M. The rest of the elimination argument is similar to
Section 4.1. Yet the optimal G-optimal design only gives
an error guarantee of O("

p
m), which worsens our error

guarantee. Below, we present the algorithm more formally.

We start with an essential theorem in G-optimal design
which shows that there exists a near-optimal design with
a small core set.
Theorem 3 (Todd (2016)). Given a matrix A 2 Rk⇥m

and a probability distribution ⇢ : rows(A) ! [0, 1], let
G(⇢) 2 Rm⇥m1 and g(⇢) 2 R be given by

G(⇢) =
X

a2rows(A)

⇢(a)aa> , g(⇢) = max
a2rows(A)

kak2G(⇢)�1 .

There exists a probability distribution ⇢ such that g(⇢) 
2m and the size of the support of ⇢ is at most
4m log log(m) + 16.

1Without loss of generality, we assume G(⇢) is invertible in
the rest of the paper. If not, we can discard columns in � until the
� is full column rank.

Remark 1. The distribution satisfying the results in The-
orem 3 can be computed by Frank Wolfe algorithm intro-
duced in (Todd, 2016)[Chapter 3] after O(km2) computa-
tions.

Let S ⇢ [d]m be all the subsets of cardinality m. For
each M 2 S , suppose that ⇢M is a probability distribu-
tion over rows(�M) satisfying the results of Theorem 3,
where �M 2 Rk⇥m is the sub-matrix of � 2 Rk⇥d. In
the following, we use GM(⇢M) to present G(⇢) defined
in Theorem 3 with respect to M. We begin with query-
ing actions to estimate ✓̂M based on the support of ⇢M and
obtain rewards,

✓̂M = GM(⇢M)�1
X

a2rows(�M),⇢M(a) 6=0

⇢M(a)raa, (7)

With Theorem 3, we can show that, for all b 2 rows(�)
and d4m log log(m) + 16e queries, we have

|hbM⇤ , ✓̂M⇤i � hb, ✓⇤i|  "
p
2m, (8)

where bM⇤ 2 Rm is the sub-vector of b 2 Rd. For
M,M0 2 S , we try to find some x 2 rows(�) making
✓̂
>
M0xM0 deviate from ✓̂

>
MxM. We query such x and re-

ceive the corresponding reward rx. By comparing the dif-
ference between rx and ✓̂

>
MxM, ✓̂

>
M0xM0 , we can know

whether the subset M or M0 of x is more likely to de-
termine the reward rx, and hence eliminate the incorrect
parameters set. The full algorithm is presented in Algo-
rithm 2.

Algorithm 2 ("�m)-free Algorithm
1: Input: feature matrix � 2 Rk⇥d

2: Initialize: S := {M : M ✓ [d], |M| = m}.
3: For each M 2 S, estimate ✓̂M based on (7).
4: while there exit M,M0 2 S , M 6= M0, and x 2

rows(�) such that |hxM0 , ✓̂M0i�hxM, ✓̂Mi| > 2"(1+p
2m) do

5: Query the action x and receive a reward rx =
hx, ✓⇤i+ ⌫x where ⌫x 2 [�", "].

6: If |rx�hxM, ✓̂Mi|  "(1+
p
2m) then S = S\M0.

7: Otherwise S = S\M, if |rx�hxM0 , ✓̂M0i| > "(1+p
2m) then S = S\M0.

8: end while
9: Find a certain set L ✓ [d], |L| = m such that L 2 S

and estimation ✓̂L 2 Rm.
10: Output: ✓̂L and L

Theorem 4. After O
⇣
m logm ·

� d
m

�⌘
number of queries,

the outputs of Algorithm 2, ✓̂L and L, satisfy |yi �
haiL, ✓̂Li|  O("

p
m) for all ai 2 rows(�).

6
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Proof. We first prove the correctness of the algorithm.
Suppose we find some M,M0 2 S , M 6= M0, and
x 2 rows(�) |hxM0 , ✓̂M0i � hxM, ✓̂Mi| > 2"(1 +

p
2m).

Consider two cases in Lines 4-8 in Algorithm 2.

• Case 1: Suppose we have |rx � hxM, ✓̂Mi|  "(1 +p
2m). We remove the element M0 from S since there

exists an x 2 rows(�) such that |rx� hxM0 , ✓̂M0i| �
|hxM0 , ✓̂M0i�hxM, ✓̂Mi|�|rx�hxM, ✓̂Mi| > "(1+p
2m).

• Case 2: Assume that |rx�hxM, ✓̂Mi| > "(1+
p
2m),

then the element M gets removed from S . We can
also remove the other index set M0 from S if |rx �
hxM0 , ✓̂M0i| > "(1 +

p
2m).

Moreover, Algorithm 2 guarantees that

• The ground-truth index set M⇤ maintains in the set
S . According to (8), for all x 2 rows(�), we have
|rx � hxM⇤ , ✓̂M⇤i|  "(1 +

p
2m). Algorithm 2

only eliminates M such that |rx � hxM, ✓̂Mi| >

"(1+
p
2m) for some x 2 rows(�). After each query,

Algorithm 2 removes at least one element from S .

• If no more pair in the remaining set S satisfies the
conditions on Line 4 in Algorithm 2, then it must be
the case that, for all M 2 S with the remaining set
S and 8 x 2 rows(�), |hxM⇤ , ✓̂M⇤i � hxM, ✓̂Mi| 
2"(1 +

p
2m). According to (8), we have

|rx � hxM, ✓̂Mi|
|rx � hxM⇤ , ✓̂M⇤i|+ |hxM⇤ , ✓̂M⇤i � hxM, ✓̂Mi|
3"(1 +

p
2m). (9)

In summary, for a set L ✓ [d], |L| = m in the remaining
set S and the estimation ✓̂L 2 Rm, we can guarantee that

|rx � hxL, ✓̂Li|  3"(1 +
p
2m),

for 8 x 2 rows(�).

We arrive at the sample complexity analysis of the algo-
rithm. The estimation on Line 3 in Algorithm 2 takes
d4m log log(m)+16e

� d
m

�
queries. If we find M,M0 2 S ,

M 6= M0, and x 2 rows(�) satisfying the condition on
Line 4 in Algorithm 2, we remove at least one element
from M,M0 after querying one action. The loop stops
when the condition on Line 4 is not satisfied. Thus, the
number of queries in the m-sparsity case can be bounded
by O

⇣
m logm ·

� d
m

�⌘
.

⇤

6. A poly(m)-sample-complexity Algorithm
for Benign Features

The lower bound derived in Section 4.2 does not rule out
the possibility of exp(m)-free bound when � = O("m),
which we attempt to achieve in this section. The core
idea of our algorithm is based on feature compression fol-
lowed by action-elimination bandit learning. Specifically,
we compress the feature vectors and the sparse parameter
vector to a lower dimensional vector space, thus convert-
ing the sparse linear bandits to a dense case with a much
lower dimensional features. Note that this compression is
agnostic to the ground-truth parameters. Then we imple-
ment action-elimination learning in compressed linear ban-
dits. The detailed algorithm is provided in the following.

We here consider the finite setting where the number of
rows, k, in the feature matrix � is finite (recall the defi-
nition in (1)). This argument is without loss of general-
ity as we can always find an "-net to cover the actions if
there are infinitely many. By Johnson-Linderstrauss lemma
(Johnson & Lindenstrauss, 1984), we have that for some
p = ⇥(log(k)/�2), there is a function f : Rd ! Rp that
preserves inner product, i.e., for each a 2 rows(�),

hf(a), f(✓⇤)i = ha, ✓⇤i± 2�, (10)

for some error � > 0. Such a function can be found
efficiently using techniques in, e.g., Kane & Nelson
(2014). Hence, we transform the previous sparse linear
model ha, ✓⇤i where a, ✓

⇤ 2 Rm to a new linear model
hf(a), f(✓⇤)i where f(a), f(✓⇤) 2 Rp with p < d. We ap-
ply G-optimal design mentioned in (7) to get an estimation
of f(✓⇤), i.e., f(✓̂). The detailed algorithm is illustrated in
Algorithm 3 where C > 0 is a suitable large constant.

Algorithm 3 poly(m)-sample-complexity Algorithm
1: Input: feature matrix � 2 Rk⇥d, function f : Rd !

Rp (10), the total time steps n
2: Initialize: S := {f(a) 2 Rp : a 2 rows(�)}
3: while number of queries is no greater than n do
4: Compute the probability distribution ⇢ : S ! [0, 1]

satisfying the results of Theorem 3.
5: Compute f(✓̂) = G(⇢)�1

P
a2S ⇢(a)raa

6: Update active action set:

S  
⇢
a 2 S : max

b2S
hf(✓̂), b�ai  C·(log(k)) 1

4
p
"

�

7: end while

Theorem 5. Suppose there is a function f : Rd ! Rp

satisfied (10). After n � O
�p

log k/"
�

number of queries,
Algorithm 3 achieves O((log(k))

1
4
p
")-optimal actions.

Proof Sketch. We start with the approximation error of

7
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f(✓⇤).

Similar to the G-optimal design in Section 5, we have

|hf(a), f(✓̂)i � ha, ✓⇤i|
|hf(a), f(✓̂)i � hf(a), f(✓⇤)i|+ |hf(a), f(✓⇤)i � ha, ✓⇤i|,

(11)

for 8 a 2 rows(�).

The first term in (11) can be termed as misspecified linear
bandits in Rp. Similar to (8), the first term in (11) can be
bounded by

|hf(a), f(✓̂)i � hf(a), f(✓⇤)i|  C ("
p
p) (12)

with O(p log(p)) number of queries, where C > 0 is a
suitably universal large constant. The second term in (11)
can be bounded by 2�. Hence, we have

|hf(a), f(✓̂)i � ha, ✓⇤i|  C ("
p
p+ �) , (13)

Recall that p = ⇥(log(k)/�2), thus C("
p
p + �) can be

presented as an function with respect to �, given by

g(�) = C("
p
log(k)/�2 + �).

By optimizing g(�) with respect to �, we have the approx-
imation error of O((log(k))

1
4
p
") achieved by the number

of queries O(
p
log k/").

We can derive the final approximate error as

|hf(a), f(✓̂)i � ha, ✓⇤i|  C

⇣
(log(k))

1
4
p
"

⌘
. (14)

⇤
Corollary 1. Based on the notations in Theorem 5, if set-
ting � = O(m�

") for 0 < � < 1, the number of queries
O(m1+�) can be achieved whenever log(k)  "

2
m

2(1+�).
Additionally, the regret of Algorithm 3 is bounded by
O(m�

"n log(n)).

According to Corollary 1, when the coefficient m�
<
p
d,

Algorithm 3 can break the "
p
d barrier with polynomial

samples in all parameters if log(k) is small, which is
achievable if the feature space possesses certain benign
structures. E.g., the features are (close to) sparse as the in-
stance in our lower bound construction. This also demon-
strates that this result may not admit additional improve-
ment as it resolves the lower bound instance.

All results above focus on the noiseless case. We further
give a discussion on the noisy cases in Section C.

7. A log(d)-dependent-sample-complexity
Algorithm for General Features

Theorem 5 presents an algorithm with sample complex-
ity dependent on log(k) where k is the number of ac-
tions. Corollary 1 shows that it is possible to achieve sam-
ple complexity of poly(m) when k satisfies the condition
log(k)  "

2
m

2(1+�). However, to accommodate a wider
range of scenarios, we aim for a sample complexity with
a better dependence. In the following section, we will de-
scribe the method for achieving a sample complexity de-
pendent on log(d).

The core idea of our algorithm is to select a submatrix
 2 Rk0⇥d from the feature matrix � 2 Rk⇥d where
k
0
< k. The submatrix  should contain enough represen-

tative actions, which we obtain by using G-optimal design
with respect to M as (7) and collecting the correspond-
ing actions a 2 Rd. Then, we apply the same compres-
sion process as in Section 6 to reduce the dimensionality of
the feature vectors  and the sparse parameter vector ✓⇤.
Finally, we use action-elimination learning in compressed
linear bandits. This method consists of two main steps:

1. G-optimal design with respect to M: We first find
a probability distribution ⇢M over rows(�M) that
meets the conditions of Theorem 3. We then use this
distribution ⇢M to generate m

2 distinct feature vec-
tors aM 2 Rm. We collect all the corresponding ac-
tions a 2 Rd and denote them as  2 R(

d
m)·m

2⇥d.

2. Compression: By Johnson-Linderstrauss lemma
(Johnson & Lindenstrauss, 1984), we have that for
some q = ⇥(log(

� d
m

�
· m2)/�2), there is a function

h : Rd ! Rq that preserves inner product, i.e., for
each a 2 rows( ),

hh(a), h(✓⇤)i = ha, ✓⇤i± 2�, (15)

for some error � > 0.

After inputting the feature matrix and function h, we can
use Algorithm 3 to select actions. The following theorem
presents the sample complexity of our method.
Theorem 6. Suppose there is a function g : Rm ! Rq

satisfied (15). After n � O

⇣p
m log(d)/"

⌘
number of

queries, the method introduced in this section achieves
O((m log(d))

1
4
p
")-optimal actions.

Proof Sketch. We begin with the approximation error of
h(✓⇤). For 8b 2 rows(�), we have

|hh(b), h(✓̂)i � hb, ✓⇤i|
|hh(b), h(✓̂)i � hh(b), h(✓⇤)i|+ |hh(b), h(✓⇤)i � hb, ✓⇤i|,

(16)

8
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For any b 2 rows(�), the first term can be bounded by

hh(b), h(✓̂)� h(✓⇤)i

(a)
=

*
h(b), G(⇢̃)�1

X

a2rows( )

⇢̃(a)⌫ah(a)

+

=
X

a2rows( )

⇢̃(a)(⌫a)hh(b), G(⇢̃)�1
h(a)i

(b)
 "

X

a2rows( )

⇢̃(a)|hh(b), G(⇢̃)�1
h(a)i|

(c)
 "

s X

a2rows( )

⇢̃(a)hh(b), G(⇢̃)�1h(a)i2

= "

s X

a2rows( )

⇢̃(a)h(b)>G(⇢̃)�1h(a)h(a)>G(⇢̃)�1h(b)

= "

q
kh(b)k2G(⇢̃)�1

 "

r
max

b2rows(�)
kh(b)k2G(⇢̃)�1

(d)
 "

r
max
h(v)
kh(v)k2G(⇢)�1  "

p
g(⇢)  "

p
2q.

Here, step (a) depends on ⌫a 2 [�", "] and ⇢̃ := ⇢ · ⇢M,
where ⇢ is the probability distribution over h(a) for all
a 2 rows( ) and ⇢M for all M determines  . Step
(b) derives from Holder’s inequality and (c) comes from
Jensen’s inequality. At step (d), we have v 2 rows( )
and the inequality is due to the construction of  that in-
cludes sufficient representative actions. The last two in-
equalities are derived from the G-optimal design on h(v)
for all v 2 rows( ).

We are left to bound the second term in (16). If b in (16)
belongs to rows( ), the second term can be bounded by
2�. If b 2 rows(�\ ), the bound is similar. Since  
contains enough representative rows of the feature matrix
�, we can bound |hh(b), h(✓⇤)i � hb, ✓⇤i|  2� for b 2
rows(�). Hence, we have

|hh(b), h(✓̂)i � hb, ✓⇤i|  C ("
p
q + �) , (17)

Follow the same arguments in the proof of Theorem 5, we
have the approximation error of O((log(

� d
m

�
· m2))

1
4
p
")

achieved by the number of queries O(
q
log
� d
m

�
·m2/").

We can derive the final approximate error as

|hh(b), h(✓̂)i � hb, ✓⇤i|  C

⇣
m(log(d))

1
4
p
"

⌘
. (18)

⇤
The results in Theorem 6 do not depend on the number of
actions k, unlike Theorem 5. This is achieved by select-
ing representative actions and applying compression to get

the submatrix  . In other words, this method works for
general features, not just benign ones introduced in Section
6. The following corollary restates Theorem 5 and shows
the relaxed requirements on the sparse linear bandit model
to achieve O(m")-optimal actions within O(m2) queries,
which present more general results compared to Corollary
1.

Corollary 2. Based on the notations in Theorem 6, if m >

(log(d)/"2)1/3, O(m")-optimal actions can be achieved
with the number of queries O(m2) .

8. Conclusions
We aim to utilize the sparsity in linear bandits to remove the
"
p
d barrier in the approximation error in existing results

(Lattimore et al., 2020) about the misspecified setting. We
provide a thorough investigation of how sparsity helps in
learning misspecified linear bandits.

We establish novel algorithms that obtain O(")-optimal ac-
tions by querying Õ("�m

d
m) actions, where m is the spar-

sity parameter. For fixed sparsity m, the algorithm finds
an O(")-optimal action with poly(d/") queries, removing
the dependence of O("

p
d). The "

�m dependence in the
sample bound can be further improved to O(1) if we in-
stead find an O("

p
m) suboptimal actions. We establish

information-theoretical lower bounds to show that our up-
per bounds are nearly tight. In particular, we show that any
algorithms that are able to obtain O(�)-optimal actions
need to query ⌦(exp(m"/�)) samples from the bandit en-
vironment. We further break the exp(m) sample barrier
by showing an algorithm that achieves O(m") sub-optimal
actions while only querying poly(dm/") samples in the
regime the action features possess certain benign structures
(hence “good” features).

Starting from our results on the general bound in misspeci-
fied sparse linear bandits, it is interesting to explore results
in different bandit learning settings, e.g., contextual bandit
problems, RL problems, and distributed/federated-learning
settings.
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A. Proof of Lemma 1
Let P = {a1, a2, · · · , ak} be a set of k independent random vectors in Rd. For 8i 2 [k], ai = [ai1, ai2, · · · , aid]> 2 Rd,
we have

ai` :=

(
ai` ⇠ N (0, 1

m ) with probability m
d ,

0 otherwise.
(19)

Thus, we have the following properties

E[hai, aii] = 1, 8i 2 [k],

E[hai, aji] = 0, 8i, j 2 [k], i 6= j,

E[kaik0] = m, 8i 2 [k].

Based on the above definitions, three steps achieve the proof of Lemma 1:

1. Prove that under certain condition, for any i, j 2 [k] with i 6= j, with probability at least 1� 2�
k2 , we have |hai, aji|  ".

With probability at least 1 � �
k , we have | kaik22 � 1|  ⌧ and kaik0  m + ⌧ for any i 2 [k]. This is provided in

Lemma 2.

2. By a union bound over all the
�k
2

�
= k(k � 1)/2 possible pairs of (i, j) mentioned in Step 1, it concludes that for

all i, j 2 [k] with i 6= j, we have |hai, aji|  " with probability at least 1 � �. We also have | kaik22 � 1|  ⌧ and
kaik0  m+ ⌧ for all i 2 [k] with probability at least 1� � by a union bound over all i 2 [k].

3. We normalize 8 ai 2 P and get P̃ = {ã1, ã2, · · · , ãk} where kãik2 = 1 with i 2 [k]. From kaik0  m + ⌧ and
0  ⌧ < 1 mentioned in Step 2, we can bound kãik0  m with m 2 [k]. Based on Lemma 2 and normalized set
P̃ , Theorem 1 presents the condition where the feature matrix � 2 Rk⇥d in Lemma 1 can be constructed by setting
rows(�) = (ãi)ki=1.

Lemma 2. Let 0 < � < 1. Consider the set P = {a1, a2, · · · , ak} described in (19).

If 0 < "  C2m
d , by choosing k �

p
� exp

⇣
d"2

4C2

⌘
, we have

for any i, j 2 [k], i 6= j, |hai, aji|  " with probability at least 1� 2�/k2. (20)

If " > C2m
d , by choosing k �

p
� exp

�
m"
4

�
, we have

for any i, j 2 [k], i 6= j, |hai, aji|  " with probability at least 1� 2�/k2. (21)

For sufficiently small ⌧ , 0  ⌧ < 1, by choosing k � �
2e

⌧2/8, we have

for any i 2 [k],
���kaik22 � 1

���  ⌧ with probability at least 1� �/k. (22)

Moreover, by choosing k � �e
2⌧2/d, we have

for any i 2 [k], kaik0  m+ ⌧ with probability at least 1� �/k. (23)

Proof. Please refer to Section B for detailed proof. ⇤
Proposition 1. Let 0 < � < 1, 0  ⌧ < 1, c > 1 and C

0 = 2c3

(1+⌧)
p
c2�1

. Consider the normalized set

P̃ = {ã1, ã2, · · · , ãk} derived from P (19). For sufficiently small ⌧ , we have

for all i, j 2 [k] i 6= j, |hãi, ãji|  ", kãik0  m with probability at least 1� �, (24)
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by choosing k �
p
� exp

⇣
d(1+⌧)"2

4C0

⌘
if 0 < "  C0m

d . If " > C0m
d , we choose k �

p
� exp

⇣
m(1+⌧)"

4

⌘
to achieve (24).

Therefore, with probability at least 1 � �, the normalized set P̃ satisfies that for all i, j 2 [k], i 6= j, hãi, ãji  ",
kãik0  m. Hence, the feature matrix � 2 Rk⇥d in Lemma 1 can be established by choosing rows(�) = (ãi)ki=1 where
ãi 2 P̃ when k is sufficiently large according to Proposition 1.

B. Proof of Lemma 2
We first introduce some existential definitions and propositions which are helpful to our proof.

Definition 2. A random variable X with mean µ = E[X] is sub-exponential if there are non-negative parameters (v,↵)
such that

E
h
e
�(X�µ)

i
 e

v2�2

2 , 8 |�| < 1

↵
.

Proposition 2 (Sub-exponential tail bound). Assume that X is sub-exponential with parameters (v,↵). Then

P[|X � µ| � t] 
(
2e�

t2

2v2 , 0  t  v2

↵ ,

2e�
t

2↵ , t >
v2

↵ .

For 8 a 2 P , each element of a can be taken as the product of two independent random variables, i.e., one is from the
Bernoulli distribution and the other is from the Gaussian distribution. Hence, the individual term, i.e., ai`aj`, of hai, aji =Pd

`=1 ai`aj` with 8ai, aj 2 P, i 6= j can be represented by a random variable Z`. Specifically, Z` = P`X`Q`Y` where
` 2 [d] is the product of independent random variables. Herein, P` and Q` are independent Bernoulli random variables
which take the value 1 with probability m/d and the value 0 with probability 1�m/d. X` and Y` are independent Gaussian
random variables drawn from N (0, 1/m). For |�| < m, we have

E[e�Z` ] =
X

pq2{0,1}

P[P`Q` = pq] · m
2⇡

Z 1

�1

Z 1

�1
e
�(pq)xy · e�m(x2+y2)/2

dxdy

=
m

2⇡

Z 1

�1

Z 1

�1
e
�xy · e�m(x2+y2)/2

dxdy ·
⇣
m

d

⌘2

+
m

2⇡

Z 1

�1

Z 1

�1
e
�m(x2+y2)/2

dxdy ·
✓
1�

⇣
m

d

⌘2◆

(i)
 m

2⇡
· 2⇡p

m2 � �2
·
⇣
m

d

⌘2
+

m

2⇡
· 2⇡
m

✓
1�

⇣
m

d

⌘2◆

 m
3

d2
p
m2 � �2

+ 1

(ii)
=

c
3
�
2

d2
p
c2 � 1

+ 1

(iii)
 e

c3�2

d2
p

c2�1 (25)
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where step (i) comes from
Z 1

�1

Z 1

�1
e
�(xy)

e
�m(x2+y2)/2

dxdy

=

Z 1

�1

Z 1

�1
e
�m(x� �

my)2/2
e
�2y2/(2m)

e
�my2/2

dxdy

=

r
2⇡

m

Z 1

�1
e
�2y2/(2m)

e
�m2y2/(2m)

dy

=

r
2⇡

m

Z 1

�1
e
�y2(m2��2)/(2m)

dy

=
2⇡p

m2 � �2
, (26)

step (ii) is derived by choosing m = c|�|, c > 1, and step (iii) is due to the fact x+ 1  e
x.

Following (25) and Definition 2, we find that

E[e�Z` ]  e

c3�2

d2
p

c2�1 = e
v2�2

2 , for all |�| < m and v
2 =

2c3

d2
p
c2 � 1

, c > 1, (27)

which shows that Z` is sub-exponential with parameters (v`,↵`) = (C/d, 1/m) where C =
q

2c3p
c2�1

and c > 1. Further-

more, the variable
Pd

`=1 (Z` � E[Z`]) is sub-exponential with the parameters (v⇤,↵⇤), where

↵⇤ := max
`=1,...,n

↵` =
1

m
and v⇤ :=

vuut
dX

`=1

v2` .

Based on the fact E[Z`] = 0, the tail bound can be derived from Proposition 2,

P
"�����

dX

`=1

Z`

����� � t

#


8
<

:
2e

� t2

2v2⇤ , 0  t  v2
⇤

↵⇤
,

2e�
t

2↵⇤ , t >
v2
⇤

↵⇤
.

(28)

Thus, we have for two vectors ai, aj 2 P and i 6= j,

P [|hai, aji| � t] 
(
2e�

dt2

2C2 , 0  t  C2m
d ,

2e�
mt
2 , t >

C2m
d ,

(29)

where C =
q

2c3p
c2�1

and c > 1. By setting 2e�
dt2

2C2 = 2�/k2, we have t =
q

2C2

d log(k
2

� ). We choose k �
p
� exp

⇣
d"2

4C2

⌘

such that t � ". Hence, we conclude P [|hai, aji| � "]  2�/k2, which implies the statement (20) when 0 < "  C2m
d

in Lemma 2. Similar arguments can be applied to the proof of the statement (21) when " >
C2m
d in Lemma 2. The proof

of the statement (22) can also be completed by following similar but simpler arguments of proving the statement (20) and
(21).

We are left to the proof of statement (23). For 8 a 2 P , the random variable kak0 obeys the binomial distribution with
parameters d and m/d, i.e., B(d,m/d). It is the discrete probability distribution of the number of d independent Bernoulli
trials which return Boolean-valued outcome: the `-th (` 2 [d]) element of a is non-zero (with probability m/d) or zero
(with probability 1�m/d).

According to the book by Ross (Ross, 2014), we first introduce several properties of the binomial distribution. The
cumulative distribution function of binomial distribution B(n, p) can be represented by
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F(k;n, p) = P[X  k] =

bkcX

i=0

✓
n

i

◆
p
i(1� p)n�i

,

where we also have F(n� k;n, 1� p) = 1� F(k;n, p). Based on Hoeffding’s inequality, F (k;n, p) can be bounded by

F(k;n, p)  exp

 
�2n

✓
p� k

n

◆2
!
.

Hence, the upper tail bound for the random variable kak0 is given by

P[kak0 � m+ ⌧ ] = F(d�m� ⌧ ; d, 1� m

d
)  exp

✓
�2⌧2

d

◆
, (30)

where 0  ⌧ < 1. By choosing k � � exp(2⌧2/d), it yields P[kak0 � m + ⌧ ]  �
k  exp

⇣
�2⌧2

d

⌘
. Thus, we completed

the proof of statement (23).

C. poly(m)-sample-complexity Algorithm for m-sparsity Case with Noise
All results above focus on the noiseless case. We briefly give a discussion on the noisy cases. Consider the stochastic
misspecified sparse linear bandits where a feature matrix � 2 Rk⇥d, xt 2 rows(�), and the reward

rxt = hxt, ✓
⇤i+ ⌫xt + ⌘t (31)

where ⌫xt 2 [�", "] and {⌘t} is a sequence of independent 1-subgaussian random variables.

Based on the reward function (31) and the notation in Algorithm 3, we start with the approximation error of f(✓⇤):

|hf(a), f(✓̂)i � ha, ✓⇤i|
|hf(a), f(✓̂)i � hf(a), f(✓⇤)i|+ |hf(a), f(✓⇤)i � ha, ✓⇤i|,



�����f(a)
>
G(⇢)�1

X

bt2S
⇢(bt)⌫btbt + f(a)>G(⇢)�1

X

bt2S
⇢(bt)bt⌘t

�����+ 2�



�����f(a)
>
G(⇢)�1

X

bt2S
⇢(bt)⌫btbt

�����+

�����f(a)
>
G(⇢)�1

X

bt2S
⇢(bt)bt⌘t

�����+ 2� (32)

for 8 a 2 rows(�).

The first term in (32) can be bounded as
�����f(a)

>
G(⇢)�1

X

bt2S
⇢(bt)⌫btbt

�����  "

X

bt2S
⇢(bt)

��f(a)>G(⇢)�1
bt

��

"

vuut
 
X

bt2S
⇢(bt)

!
f(a)>

X

bt2S
⇢(bt)G(⇢)�1btb

>
t G(⇢)�1f(a)

="

sX

bt2S
⇢(bt) kf(a)k2G(⇢)�1

2"pp , (33)

where is derived from Jensen’s inequality and the fact that kf(a)k2G�1  2p/t for t-th time step in Algorithm 3. The

16



Does Sparsity Help in Learning Misspecified Linear Bandits?

second term in 32 can be bounded by standard concentration bounds: with probability at least 1� 2/(kn),
�����f(a)

>
G(⇢)�1

X

bt2S
⇢(bt)bt⌘t

�����  kf(a)kG�1

p
2 log (kn)


r

4p

t
log (kn). (34)

Combining (32), (33), (34), we have

|hf(a), f(✓̂)i � ha, ✓⇤i|  2"
p
p+

r
4p

t
log (kn) + 2�. (35)

Similarly to the analysis in Section 6, we can derive the final approximate error as

|hf(a), f(✓̂)i � ha, ✓⇤i|

C
✓
(log(k))

1
4
p
"+

r
p

t
log (kn)

◆
. (36)

Based on (36), the active action set in Algorithm 3 in the noise case should be

S  
⇢
a 2 S : max

b2S
hf(✓̂), b� ai  C

✓
(log(k))

1
4
p
"+

r
p

t
log (kn)

◆�
.
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