
AdaCache: A Disaggregated Cache System with
Adaptive Block Size for Cloud Block Storage

Qirui Yang
Samsung

qirui.y@samsung.com

Runyu Jin
Arizona State University

runyu.jin@asu.edu

Ni Fan, Devasena Inupakutika, Bridget Davis
Samsung

ni.fan, devasena.i, b.davis@samsung.com

Ming Zhao
Arizona State University

mingzhao@asu.edu

Abstract—NVMe SSD caching has demonstrated impressive
capabilities in solving cloud block storage’s I/O bottleneck and
enhancing application performance in public, private, and hy-
brid cloud environments. However, traditional host-side caching
solutions have several serious limitations. First, the cache cannot
be shared across hosts, leading to low cache utilization. Second,
the commonly-used fix-sized cache block allocation mechanism
is unable to provide good cache performance with low memory
overhead for diverse cloud workloads with vastly different I/O
patterns. This paper presents AdaCache, a novel userspace
disaggregated cache system that utilizes adaptive cache block
allocation for cloud block storage. First, AdaCache proposes an
innovative adaptive cache block allocation scheme that allocates
cache blocks based on the request size to achieve both good cache
performance and low memory overhead. Second, AdaCache
proposes a group-based cache organization that stores cache
blocks into groups to solve the fragmentation problem brought by
variable-sized cache blocks. Third, AdaCache designs a two-level
cache replacement policy that replaces cache blocks in both single
blocks and groups to improve the hit ratio. Experimental results
with real-world traces show that AdaCache can substantially
improve I/O performance and reduce storage access caused by
cache miss with a much lower memory usage compared to
traditional fix-sized cache systems.

Index Terms—SSD cache, disaggregated cache, cloud block
storage, rack scale disaggregation, NVMeoF

I. INTRODUCTION

Block storage is widely used in public, private, and hybrid
cloud environments because it is highly effective in providing
fast, scalable, and reliable access to data [1]–[5]. Although
cloud block storage is generally considered to be more I/O
performant than other types of cloud storage such as object
storage and file storage [6], it still falls short of the perfor-
mance provided by directly attached NVMe SSD storage. To
accelerate modern data-intensive applications such as Deep
Learning (DL) training and big data processing [7], NVMe
SSD caching is employed to exploit workload locality for
faster data accesses [8]–[11]. Typically, NVMe SSD cache
devices are directly attached to each computing server which is
usually multiple network hops away from storage servers [12].
However, this host-side caching mechanism [10], [11] can lead
to uneven cache utilization for two reasons. First, different
computing servers run different cloud workloads can require
varying degrees of cache resources. Second, a cache device

Partly supported by National Science Foundation 2126291, 1955593

is only used by the server where it is attached and cannot be
shared or utilized across multiple computing servers.

By decoupling cache devices from computing servers, rack-
scale cache disaggregation enables cache sharing through the
pooling of cache resources within the same group of racks.
Cache resources are managed and allocated as a whole which
can lead to better cache utilization, scalability, and failure
isolation. To achieve this, NVMe over Fabrics (NVMeoF) [13]
can be employed to deliver high performance and scalability.
NVMeoF defines a standard protocol for efficiently transport-
ing the NVMe storage protocol over the network, which can
scale out to large numbers of NVMe devices and extend the
distance over which they can be accessed with low latency
and high IOPS within a data center [14].

The fix-sized cache block management method commonly
used in various cache system designs may not be the desirable
solution for cloud workloads that are constantly changing.
Using smaller cache blocks like 32KiB can achieve better
I/O performance as it incurs smaller cache miss penalty [15]
compared to larger cache block sizes. However, its metadata
overhead for managing the cache resource is higher, which
causes larger memory footprint as the metadata usually needs
to be cached in memory for performance. Conversely, using
larger cache blocks such as 512KiB can improve the cache hit
ratio [16] by exploiting the spatial locality within the requests
and reduce the memory overhead associated with metadata.
However, this comes at the cost of larger cache miss penalty,
which can significantly reduce I/O performance if the spatial
locality is rare.

In this paper, we aim to design a rack-scale disaggregated
cache solution that provides good cache performance with
low metadata overhead, regardless of the cloud workloads. We
propose AdaCache, a rack-scale disaggregated cache system
that employs variable-sized cache blocks to adapt to various
cloud workloads. AdaCache allocates cache blocks of different
sizes based on the I/O request size. For requests with large I/O
sizes, large cache blocks are allocated to reduce the number
of allocated cache blocks, thus improving I/O performance
and reducing metadata memory overhead. For requests with
smaller sizes, AdaCache assigns small cache blocks to avoid
read/write amplification between the cache system and back-
end storage as well as cache pollution.

The contributions of this paper are as follows:
1) The design and implementation of AdaCache, a practi-

ar
X

iv
:2

30
6.

17
25

4v
1

 [c
s.D

C
]

29
 Ju

n
20

23

cal rack-scale disaggregated cache system implemented
using the SPDK framework [17] for cloud block storage.

2) The design of adaptive cache block allocation which
incorporates three core ideas: efficient variable-sized
cache block allocation algorithm, group-based cache
organization, and two-level cache replacement.

3) The comprehensive evaluation of AdaCache using pub-
licly available real-world block I/O traces through both
simulation and AdaCache prototype.

According to the evaluation results, AdaCache has demon-
strated significant improvements in I/O performance compared
to traditional fix-sized cache. Specifically, it can improve read
latency by 20% and write latency by 9% compared to 32KiB
block-sized cache in trace replay. AdaCache is also capable of
saving up to 74% I/O traffic to cloud block storage and up to
63% I/O traffic to the cache compared to 256KiB block-sized
cache. Moreover, AdaCache has achieved up to 41% memory
savings compared to 32KiB block-sized cache. All of these
improvements are accomplished with merely 2 microseconds
of computation overhead at cache layer compared to a tradi-
tional fix-sized cache.

The rest of this paper is structured as follows. In Section II,
we introduce the design and implementation of disaggregated
cache. In Section III, we elaborate on the details of our
AdaCache design. In Section IV, we present our experimental
method and the results. In Section V, we discuss the related
works and conclude in Section VI.

II. DISAGGREGATED CACHE

A. Rack-Scale Cache Disaggregation

Cloud block storage has been widely adopted by today’s
public, private, and hybrid cloud infrastructure for primary
data storage [1]–[4]. With block storage, data is partitioned
into fix-sized blocks and stored on the underlying storage
medium. These blocks can be directly accessed by applications
or through mounted file systems [18], [19], allowing for quick
modification of specific blocks to efficiently serve I/O requests.

NVMe SSDs are commonly used as a caching solution in
large-scale cloud block storage systems to improve I/O perfor-
mance [20]. Typically, caches are deployed on computing hosts
to mitigate the high network latency to the storage clusters.
However, cloud providers often encounter the challenge of
load imbalance where some cache devices are more heavily
used than others, leading to overloaded, under-loaded, or well-
loaded cache devices on computing hosts [21]. This results in
unbalanced cache utilization and wasted cache resources.

Cache disaggregation presents a solution to the afore-
mentioned issues by disaggregating all the cache resources,
enabling cache to be shared and managed as a whole. It
decouples SSD cache from the computing nodes and allows
independent utilization of cache resources regardless of where
an application is placed. In this sense, the cache resources are
shared by all the applications and the cache load imbalance
problem is addressed. In cloud environments, this can be
achieved at either cluster scale or rack scale. Cluster-scale

Fig. 1: Rack-Scale Cache Disaggregation

cache disaggregation offers more pooled cache resources and
consequently can result in better cache utilization compared to
rack-scale. However, it suffers from higher network latency to
access cache across the cluster which can negatively impact
I/O performance. Additionally, it requires complicated soft-
ware design and may inversely bring unacceptable software
overhead and offset its benefit. Conversely, rack-scale cache
disaggregation can provide superior cache resource utilization
compared to the local cache and involve much lower network
and software overhead compared to cluster-scale. As such, it
provides an optimal trade-off between cache resource utiliza-
tion and I/O performance. Figure 1 illustrates an example of
rack-scale cache disaggregation.

Rack-scale cache disaggregation enables cache devices
within the same group of racks to share a cache server,
providing computing servers of the same rack group with a
pool of shared cache resources. The fast data transfer between
computing nodes and the cache server can be achieved with the
adoption of NVMe over Fabrics (NVMeoF) [13] technology,
which is a protocol designed to provide storage to computing
servers through the network using the NVMe protocol. It adds
less than 10 microseconds of additional latency to locally at-
tached NVMe devices [22], making it an ideal choice for con-
necting the cache pool to the computing nodes. According to
a recent performance report [23], NVMeoF using RDMA [13]
has demonstrated impressive speed, achieving more than 11M
4K IOPS with an average latency of 231 microseconds using
100 Gbps NICs. As network bandwidth continues to double
every few years, this performance is expected to improve
even further. With such high performance, a single cache
server can effectively serve thousands of concurrent NVMeoF
connections. Furthermore, a single cache server can provide
large storage capacities. For example, Samsung’s Poseidon
reference system [24] can support up to 24 Samsung PM1733
NVMe SSDs with a total capacity of up to 368TiB. This
capacity is sufficient to support thousands of cache clients for
cloud block storage.

Figure 2 compares the I/O performance of different storage

2

Fig. 2: IOPS Comparison of Local SSDs, NVMeoF SSDs, and
All-Flash Ceph RBD.

setup: local NVMe SSDs (local), remote NVMeoF SSDs
(nvmeof), and remote all-flash Ceph Rados Block Devices
(rbd) [4]. Local and nvmeof each consists of four Samsung
PM9A3 NVMe SSDs that form a RAID0. Rbd consists of
12 Samsung PM9A3 NVMe SSDs from a 3-node Ceph
cluster that form a RAID0. We use local to demonstrate the
performance of the local cache, and nvmeof to demonstrate
the performance of the disaggregated cache. Rbd is an open-
sourced cloud block storage system used to demonstrate the
performance of cloud block storage without NVMe SSD
caching. We ran the FIO [25] benchmark issuing 30 minutes
of asynchronous random 4K reads and writes with the same
I/O queue depth to different storage setups. We observe that
local NVMe SSDs outperform cloud block storage by 60X.
Remote SSDs using NVMeoF have comparable performance
to local NVMe SSDs with merely a 9% drop in IOPS.

B. Rack-Scale Cache Management

A cache block is the minimum unit of cache that can
be read from or written to. The block size determines the
size of an I/O operation that can be performed. Common
cache block sizes range from 512B to 64KiB [8], [10], [11],
[26], [27]. The choice of cache block size can impact the
performance, endurance, and cost of a storage solution by
affecting cache hit ratio, I/O volume, and in-memory metadata
overhead. Therefore, it’s important to select a cache block size
that fits the workload best. Smaller cache blocks often have
better I/O performance due to the smaller I/O volume, which
comes from the smaller cache block allocation and smaller
cache miss penalty. However, they may have a lower cache
hit ratio because they cannot fully leverage the spatial locality
within the application requests [16].

For a rack-scale cache with hundreds of terabytes of cache
space, the large memory footprint for the metadata is another
concern for small block sizes. For example, assuming each
cache block only requires 40 bytes of memory metadata to
provide a source address to cache address mapping (including
source address, cache address, a pointer for indexing, and two
pointers for LRU) [10], [28], a 368 TiB cache with 16 KiB
cache block size would require 920 GiB of memory footprint,
which is difficult to fit in memory, considering memory density
grows 10 times slower than SSD density [29].

Fig. 3: Request Size CDF of different traces

Large cache blocks, on the other hand, can potentially im-
prove hit ratio [16] due to better exploitation of spatial locality.
Additionally, the memory footprint reduces linearly with the
increased size of the cache block. Take the last example: a
368 TiB cache with 512 KiB cache block size would require
merely 29 GiB of memory footprint. However, large cache
blocks lead to large cache block allocation and large cache
miss penalty which can significantly harm I/O performance.
These reasons stop large cache blocks from being applied
in reality. Section IV presents a thorough comparison of I/O
performance using cache of different cache block sizes.

The cloud environment is dynamic and changes rapidly over
time with varying workloads. Some workloads involve small
requests, such as those from transactional databases, while
others have large requests, such as those from multimedia
systems. We conducted an analysis of request size cumulative
distribution functions (CDF) from three real-world traces:
Alibaba block I/O Traces (alibaba) [30], MSR Cambridge
Traces (msr) [31], and Systor ’17 Traces (systor) [32] (detailed
information about the traces is presented in Section IV).
Figure 3 shows the results. We observe that the distribution of
request sizes varies across the traces. For alibaba and systor,
more than half of the requests are smaller than or equal to
4KiB. For msr, more than half of the requests are larger than
32KiB. Based on the above observations, a traditional fix-
sized block cache is insufficient for today’s complex cloud
environment. Instead, we design an adaptive cache that can
adapt the cache block size to different cloud workloads which
is elaborated in Section III.

C. Implementation

AdaCache extends PoseidonOS [33], a userspace software-
defined storage (SDS) solution providing high-throughput and
low-latency flash storage virtualization with capacity elasticity
and data protection (RAID), to offer rack-scale disaggregated
cache service for cloud block storage. It is implemented as
a virtual block device (bdev) module [34] using the SPDK
framework. By using a virtual bdev module, AdaCache can be
seamlessly integrated with a wide range of cloud block storage
bdevs, enabling compatibility with existing storage systems.

Figure 4 illustrates the architecture of AdaCache. Each local
NVMe SSD is represented by a cache bdev in the SPDK

3

Fig. 4: Disaggregated Cache Architecture

framework. All the cache bdevs are managed by PoseidonOS
to offer a large virtualized disaggregated cache space to
AdaCache. Each virtual drive in the cloud block storage
is represented by a core bdev. AdaCache claims the cache
and core bdevs and redirects I/Os between them with no
requirement for knowledge of the I/O and network protocol
specifics of the underlying bdevs. AdaCache uses GLib’s [35]
hash table implementation for the in-memory key-value stores.

III. ADAPTIVE CACHE BLOCK SIZE

A. Fix-sized Cache Allocation

Traditional fix-sized cache block allocation has three major
steps: address alignment, address lookup, and cache block
allocation. Address alignment aligns the offset of the original
I/O requests to the aligned offset based on cache block size.
Assume Ro is the request offset, B is the cache block size, and
Ao is the aligned offset. Ao is computed using the following
Equation 1.

Ao = floor(Ro/B) ∗B (1)

For example, a read request with offset 33KiB using 32KiB
as cache block size aligns to aligned offset 32KiB.

During address lookup, the aligned offset is used as the key
to look up the cache address in an in-memory key-value store.
In case of a read cache hit, data is read from the cache address
directly. Otherwise, a new cache block is allocated and data
is read from the backend storage and cached to the newly
allocated cache block.

In case of a write cache miss, data is first read from the
backend storage and cached to a newly allocated cache block.
If the cache uses write-back policy, data is written to the
cache block and dirty cache blocks are written back to the
backend storage periodically or when they are replaced from
the cache. If the cache uses write-through policy, data is
written to the cache block and backend storage simultaneously
to maintain data consistency. When the cache becomes full, a
replacement algorithm such as Least Recently Used (LRU) or
Least Frequently Used (LFU) is used to determine which data
to replace before allocation happens.

B. Variable-Sized Cache Allocation

Cloud workloads are dynamic in nature, and therefore,
the cache system should be able to adapt itself to different
workloads that may have varying request sizes. For small
requests, small cache blocks are deemed sufficient while large
cache blocks may cache unnecessary data, resulting in cache
pollution and increased I/O volumes. Conversely, for large
requests, large cache blocks can reduce the number of I/Os
between the cache and the cloud block storage, and can
also reduce the metadata memory overhead. AdaCache uses
adaptive cache block allocation which allocates different sizes
of cache blocks based on the request size.

AdaCache first generates a list of missing intervals for all
the parts of the request that are missing in the cache. As shown
in Figure 3, a request can be larger than 256KiB and cover
multiple cache blocks. AdaCache determines the aligned range
of the request by aligning the request offset and end address
(offset + length) to the smallest block size and iterates through
the request to find out all the missing intervals.

Because the cache employs variable cache block sizes, it
needs to check the in-memory key-value store of every block
size to find out if any part of the request is cached under each
block size. Figure 5 illustrates an example where a request
at offset 48KiB with length 184KiB on a cache that employs
cache block sizes of 32KiB, 64KiB, 128KiB, and 256KiB. In
this example, the latter part of the request (from 128KiB to
232KiB) is cached under the 128KiB block size. The aligned
request range is from 32KiB to 256KiB.

Within the request range, AdaCache starts the search from
the smallest cache block size (32KiB in the example), and
checks if the current address is cached under any of the
cache block sizes. AdaCache first aligns the current address to
different cache block sizes using Equation 1. For the example,
the aligned offsets are 32KiB, 0, 0, and 0 for the cache block
sizes of 32KiB, 64KiB, 128KiB, and 256KiB respectively.
It then uses these aligned offsets to search the in-memory
key-value store of each cache block size. If the result is all
misses, then it knows that the current address with the smallest
cache block size (the interval between 32KiB and 64KiB in
the example) is not cached, and it adds the interval to the
list of missing intervals. AdaCache merges missing intervals
if they are contiguous to allocate the largest possible cache
block for the intervals. AdaCache then moves on to the next
address covered by the request (64KiB in the example) and
repeats the above process. After checking the whole request,
AdaCache gets a complete list of missing intervals. In the
example, the interval from 32KiB to 128KiB is missing in the
cache. Algorithm 1 presents the pseudo-code of the missing
intervals generation.

For each missing interval in the list, AdaCache tries to
allocate using the largest possible cache block size. This
greedy allocation ensures that AdaCache reduces the number
of allocated cache blocks and I/O counts. To determine if a
block size is suitable for the missing interval, AdaCache makes
sure the cache block is within the range of the missing intervals

4

Fig. 5: Adaptive Cache Block Allocation

Algorithm 1 Missing Intervals Generation

1: Remarks:
Bn, . . . B1: block size from large to small
HB : hash table for block size B
AB(O): align offset O using block size B
MAP (B,E): merge offset interval {B,E} to
MissingIntervals

2: Inputs:
O: request offset in bytes
L: request length in bytes

3: Output:
MissingIntervals: a list of missing cache
blocks

4: MissingIntervals← {}
5: begin← AB1

(O)
6: end← AB1

(O + L) +B1

7: while begin ̸= end do
8: hit← false
9: for B ← B1, . . . Bn do

10: begin aligned = AB(begin)
11: if begin aligned ∈ HB then
12: begin← begin aligned+B
13: hit← true
14: break
15: end if
16: end for
17: if hit ̸= true then
18: MAP (begin, begin+B1)
19: begin← begin+B1

20: end if
21: end while
22: return MissingIntervals

because the addresses that go beyond these intervals may have
been cached.

In the example, AdaCache first checks how to allocate for
the interval from 32KiB to 128KiB. The largest possible cache
block for this interval is actually 32KiB, because all the larger
cache blocks start beyond this interval. For the remaining
missing interval from 64KiB to 128KiB, the largest possible

Algorithm 2 Greedy Cache Block Allocation

1: Remarks:
B1, . . . Bn: block size from small to large
HB : hash table for block size B
AB(O): align offset O on block size B
BA(I): the begin address of interval I
EA(I): the end address of interval I

2: Inputs:
MissingIntervals: a list of cache blocks to
allocate

3: for each I ∈MissingIntervals do
4: begin← BA(I)
5: end← EA(I)
6: while begin ̸= end do
7: for B ← Bn, . . . B1 do
8: if begin ̸= AB(begin) then
9: continue

10: end if
11: if B > end− begin then
12: continue
13: end if
14: HB ← begin ∪HB ▷ allocate cache block
15: begin← begin+B
16: end for
17: end while
18: end for

cache block is 64KiB, because the interval from 64KiB to
128KiB is within the range of the missing interval (64KiB
to 128KiB). Therefore, at the end of this greedy allocation
process, AdaCache caches two blocks that include one 32KiB
cache block from 32KiB to 64KiB and one 64KiB cache block
from 64KiB to 128KiB. Algorithm 2 presents the pseudo-code
of the greedy cache block allocation.

Assuming N is the request length, M is the number of
different cache block sizes, and K is the total number of cache
blocks in the cache, the algorithm’s time complexity of fix-
sized and adaptive cache block allocation have upper bounds
of O(K ∗N) and O(K ∗N ∗M), respectively. In practice, M
is set to a constant value, such as 4 in Figure 5 where the

5

Fig. 6: Group-Based Cache Organization

time complexity can be approximated as O(K ∗N), which is
equivalent to the fix-sized cache block allocation. The space
complexity of the algorithm is identical to the fix-sized cache
block allocation, which is O(K).

C. Group-Based Cache Organization

Adaptive cache block allocation is an effective technique
that can leverage both small and large blocks, making it
suitable for dynamic cloud workloads. However, it incurs
fragmentation. When the cache becomes full and adaptive
cache blocks get allocated, the cache space is divided into non-
contiguous variable-sized pieces. When large requests come,
the replacement of smaller blocks can generate many scattered
small holes and it is hard to fit a large cache block in.

To address the issue of fragmentation, AdaCache utilizes the
concept of slab allocator [28], [36], which involves grouping
cache blocks of the same size together into identical-sized
groups. Cache blocks belonging to the same group are stored
physically adjacent to each other in the cache. Consequently,
when the cache is full, a whole group is replaced, creating a
contiguous piece of cache space for cache block allocation.

AdaCache chooses the largest cache block size as the group
size. In this way, replacement of a whole group can free just
enough cache space for the largest cache block allocation. In
the case of small block allocation, the replacement of a whole
group creates an open group that can be used to allocate many
cache blocks of that block size. Figure 6 illustrates an example
of the group-based cache organization. The cache block sizes
are 32KiB, 64KiB, 128KiB, and 256KiB and the group size is
256KiB. There are three open groups storing 32KiB, 64KiB,
and 128KiB cache blocks, respectively, and one full group
storing a 256KiB cache block.

When allocating a cache block, AdaCache checks if the
cache is full. If it is not, the allocator examines if there is an
open group with the same block size. If such a group exists,
the block is allocated from the open group. If there is no
such open group, AdaCache creates a new one and allocates
the cache block from there. If the cache is full, AdaCache
replaces an entire group and follows the above procedure.
Assume M is the number of different cache block sizes, there
are a maximum of M open groups kept in the cache at any
given time, and it does not waste significant cache space. For
example, in Figure 6, at most 4 256KiB open groups are kept

TABLE I: Specifications Of The Testbed.

Server CPU DRAM SSD OS Software
2x Intel

Client Platinum 384GB Ubuntu Replayer /
8260 DDR4 / 18.04 Simulator

96 cores
2x Intel 4x Samsung

Disaggregated Platinum 384GB PM9A3 Ubuntu Poseidon
Cache Server 8260 DDR4 PCIe Gen3 20.04 OS v0.11

96 cores 3.84TB
4x Samsung

3-node 2x AMD 512GB PM9A3 Ubuntu Ceph
Ceph RBD EPYC DDR4 PCIe Gen4 20.04 Quincy

7702 3.84TB

in the cache and used to allocate cache blocks for coming
requests.

D. Two-Level Cache Replacement

Following group-based cache organization, AdaCache uses
a group-based LRU replacement policy that links all the
groups together for cache replacement. When a cache block is
accessed, the group that contains the cache block is promoted
to the head of the group-based LRU list. When the cache is
full, AdaCache replaces the group that is at the tail of the LRU
list. Although each cache miss may trigger a write-back I/O
of the whole group to be evicted, the I/O volume is smaller
than that of using large fix-sized cache blocks. Every time a
whole group is evicted, all of its space is freed up at once in
the cache and can be used to store a number of small cache
blocks from future requests.

One potential drawback of the group-based replacement
policy is that it may retain cold blocks that are in the same
group as the frequently accessed hot blocks in the cache,
leading to cache pollution. To alleviate the problem, AdaCache
incorporates a global cache block LRU replacement policy
in addition to the group-based replacement policy. Figure 6
illustrates the two-level LRU lists.

All the cache blocks are linked using a global LRU list.
When AdaCache tries to allocate a new cache block in case
of a full cache, it first checks the tail of the global LRU
list. If the tail cache block has the same size as the new
cache block, AdaCache replaces it and promotes both the
cache block and its group to the head of the LRU lists.
If the size mismatches, AdaCache uses group-based LRU
replacement policy to replace a whole group. The use of two-
level cache replacement does not incur high lock contention
overhead when the cache is accessed in parallel as AdaCache
leverages the lockless design of modern high performance
storage framework [17].

IV. EVALUATION

We evaluate the performance of AdaCache using both the
simulation and prototype following the design and implemen-
tation described in Section III.

Testbed Setup. The testbed consists of three components
which are the client, the disaggregated cache server, and the

6

(a) Read Latency

(b) Write Latency

Fig. 7: I/O Latency for Alibaba Trace Replay
TABLE II: Trace Segments Statistics.

alibaba msr systor
#Reads 24.5M 61M 40.7M
#Writes 25.5M 9M 19.3M

Read Traffic GiB 607.3 2416.8 1109.2
Write Traffic GiB 375.9 207.2 271.9

cloud block storage cluster. The client issues the I/O workloads
to the disaggregated cache server through NVMeoF RDMA
using a 100Gbps NIC. The disaggregated cache server runs
AdaCache and provides the cloud block storage with NVMe
SSD caching through the network using another 100Gbps NIC.
The disaggregated cache server is configured as RAID0 using
PoseidonOS consisting of four NVMe SSDs. The cloud block
storage is a three-node Ceph cluster with Ceph Rados Block
Devices (RBDs). The specs for each component are shown in
Table I.

Workloads. We considered the following three real-world
block I/O traces to provide a comprehensive evaluation:

• Alibaba block I/O Traces [30] (alibaba): alibaba is
collected from an elastic block service cluster of Alibaba
Cloud and it contains I/Os from 1000 virtual disks.
Among them, we picked 5 virtual disks (vd2, vd10,
vd49, vd124, and vd740) that have a large amount of I/O
volumes for trace replay. We replayed the first 10 million
I/O requests issued to the 5 virtual disks concurrently.
Requests to vd2 and vd740 are write-dominant while I/Os
to vd10 and vd124 are read-dominant. Vd49 has a similar
amount of read and write I/Os.

(a) Read Latency

(b) Write Latency

Fig. 8: I/O Latency for Msr Trace Replay

• MSR Cambridge Traces [31] (msr): msr is block-level
traces collected from Microsoft Research enterprise data
centers and it contains I/Os from 13 servers. Among
them, we picked traces from seven drives (prn 1, proj 1,
proj 2, src1 0, src1 1, usr 1, and usr 2) that have more
than 10 million I/Os. We replayed the first 10 million I/Os
issued to the 7 servers concurrently. All the msr traces
are read-dominant.

• Systor ’17 Traces [32] (systor): systor is collected from
an enterprise Virtual Desktop Infrastructure (VDI) which
contains I/Os from 300 VMs. All these VMs share 6
storage logical unit numbers (LUN). We replayed the first
10 million I/Os issued to the 6 LUNs concurrently. All
the systor traces are read-dominant.

For trace segments replay, the cache employs a write-back
policy and we can leverage related work [37] to ensure cache
consistency. Trace segments are replayed using pread() and
pwrite() to issue direct I/Os to different target devices in
parallel according to the trace. Each target device consists of 1
TiB Ceph RBD as the backend storage and 10% of each trace’s
total working set size (WSS) as the cache size. Table II shows
the statistics of the trace segments that we use for replay. We
also replay the entire traces using a simulator with the same
implementation as the AdaCache prototype to show metrics
from the whole trace simulation. In the evaluation, the cache
block sizes used by AdaCache are 32KiB, 64KiB, 128KiB,
and 256KiB. We compare AdaCache to fix-sized disaggregated
caches with these four cache block sizes. Each experiment is

7

(a) Alibaba Trace Replay

(b) Systor Trace Replay

Fig. 9: Request Processing Latency

repeated three times and we show the average results here.
Due to the space limit, we only show evaluation results that
are representative of all results.

A. I/O performance

I/O Latency. Figure 7 shows the average read and write la-
tency from alibaba trace replay. Results reveal that AdaCache
has the best overall read and write latency compared to fix-
sized caches with different trace segments. For read latency,
AdaCache improves it by 19% for trace segment vd740
compared to 32KiB cache and 63% compared to 256KiB
cache. For write, AdaCache has an improvement of 9% for
trace segment vd10 compared to 64KiB cache and 50% for
vd124 compared to 256KiB cache. Figure 8 shows the read and
write latency from msr trace replay. AdaCache also improves
the read latency by 7% compared to 32KiB cache for usr 1 and
44% compared to 256KiB cache for proj 2. For write latency,
AdaCache can improve it by 9% compared to 32KiB cache
for proj 1 and 39% compared to 256KiB cache for prn 1.

Comparing the two traces’ latency results from fix-sized
caches, alibaba mostly has the best read and write perfor-
mance when using a 64KiB cache. Msr has the best read
performance when using a 32KiB cache. For write, different
cache block sizes perform differently for different trace seg-
ments. For example, trace segment prn 1 has the best write
performance using 32KiB cache while trace segment proj 1
performs the best using 128KiB cache. This also proves that a
fix-sized cache cannot provide optimal performance for differ-
ent cloud workloads. Of the two traces, AdaCache outperforms

(a) Alibaba Trace Replay

(b) Msr Trace Replay

Fig. 10: I/O volumes

all the fix-sized caches in both read and write. Although
AdaCache has similar I/O volumes as 32KiB cache (discussed
later in Section IV-B), it is achieving better performance
because of the adaptiveness of AdaCache which allocates large
cache blocks for large requests. These large cache blocks have
reduced the number of I/Os and can therefore improve the
performance.

Average Request Processing Latency. Figure 9 shows the
average request processing latency from trace replay. This
latency is captured from when an I/O request is received by
the cache to when a processed I/O request is sent to the storage
devices. It includes the latency for the cache block allocation
as described in Section III-A and III-B. This illustrates the
cache block allocation overhead of AdaCache compared to fix-
sized caches. Figure 9a shows the request processing latency
from alibaba trace replay. For fix-sized caches, large cache
blocks can reduce the number of cache block allocations
and therefore reduce the request processing latency. We also
observe that AdaCache outperforms 32KiB cache in request
processing latency by 25% for vd124. There are two reasons
behind this. First, AdaCache uses large cache blocks for large
requests which can help reduce the average request processing
latency. Second, the high hit ratio for alibaba trace segment
(around 70% for read and 90% for write) has amortized the
extra overhead of adaptive cache block allocation.

Figure 9b shows the results from systor trace replay. We
observe that AdaCache has larger average request process
latency than fix-sized caches by 29% compared to 32KiB

8

(a) Read Hit Ratio

(b) Write Hit Ratio

Fig. 11: Whole Trace simulation results

cache for LUN1. Systor trace segment has around 60% read hit
ratio and because it is read dominant, the low hit ratio fails
to amortize the overhead. Although AdaCache brings extra
process overhead from adaptive cache block allocation, the
overhead is merely a few microseconds and does not hurt the
I/O performance as we have seen previously from the I/O
latency results.

B. I/O Volumes

Figure 10 shows the total I/O volumes from alibaba trace
replay and msr trace replay. The I/O volume consists of writes
to the cloud block storage (write-to-core), reads from the cloud
block storage (read-from-core), writes to the cache (write-to-
cache), and reads from the cache (reads-from-cache). Due to
the space limit, we only show 32KiB cache and 256KiB cache
I/O volumes which have the smallest and the largest amount
of I/O volumes, respectively. As discussed in Section II, using
large cache blocks may cache unnecessary data and lead to
cache pollution and high cache miss penalty. We also observe
that AdaCache has a similar amount of I/O volumes as the
32KiB cache. This is because although it uses large cache
blocks, it caches only necessary data based on the request
size. It does not suffer from the large cache miss penalty as
the 256KiB cache does. Of the four types of I/O volumes, I/Os
to cloud block storage has much larger overhead than I/Os to
cache. Compared to 256KiB cache, AdaCache can save 74%
I/Os to cloud block storage and 63% I/Os to cache for vd49
from alibaba.

Fig. 12: Memory Usage For Alibaba Trace Replay

C. Memory Usage

Figure 12 compares the average metadata memory usage
of AdaCache to fix-sized caches during the trace replay of
alibaba. For larger cache blocks, the number of cache blocks
used is smaller which leads to smaller metadata memory us-
age. AdaCache saves 41% memory usage compared to 32KiB
cache for vd740. From the request size analysis in Section II,
alibaba mostly consists of small requests. For workloads that
have larger requests, AdaCache tends to allocate larger cache
blocks and can potentially save more memory.

D. Hit Ratio

Figure 11 shows the read and write hit ratio from the whole
trace simulation of alibaba, msr, and systor. As discussed in
Section II, larger cache blocks can benefit from the potential
spatial locality within the requests and can achieve better
hit ratio compared to smaller cache blocks. We also observe
similar behavior when replaying the trace segments. For the
whole trace simulation, compared to 256KiB cache, AdaCache
has up to 39% drop in read hit ratio and up to 38% drop in
write hit ratio from msr. For trace replay, AdaCache has up to
60% drop in read hit ratio and up to 59% drop in write hit ratio
from msr compared to 256KiB cache. Although the hit ratio is
much lower for AdaCache, it has up to 39% improvement in
write performance and 40% improvement in read performance
in trace replay compared to 256KiB cache. This shows that
compared to the hit ratio and memory usage, I/O volumes play
a more significant role in affecting the cache performance.

E. Effectiveness of Adaptive Cache Block Allocation

Figure 13 validates the effectiveness of AdaCache block
allocation algorithms. It shows two metrics: the average re-
quest size for all the missed requests v.s. the average cache
block size that AdaCache allocates when a cache miss occurs
during trace replay. The core design idea of AdaCache is to
adaptively allocate variable-sized cache blocks based on the
request size. The differences between these two metrics tell
us how well AdaCache follows the design idea. We observe
that AdaCache follows the trend of the request size to allocate
cache blocks. With larger requests, the average cache block
size also gets larger. For small requests which are mostly
seen from alibaba and systor, the average cache block size of

9

(a) Alibaba Trace Replay (b) Msr Trace Replay (c) Systor Trace Replay

Fig. 13: Average Request Size v.s Average Cache Block Size

AdaCache is bounded by the smallest cache block size 32KiB.
For the best case, AdaCache achieves merely a 1% difference
in msr trace replay of trace segment proj 1.

V. RELATED WORKS

Flash Caching. Flash caching [38]–[41] has been exten-
sively studied to improve the I/O performance for slow primary
storage systems. Solutions have been proposed to solve the ca-
pacity and endurance [11], [42], multi-tenancy [8], [10], [26],
[41], [43] and multi-tier [44]–[46] problems of flash caching.
For example, CloudCache [10] presents an on-demand cache
management solution that meets the performance requirements
of each tenant by introducing the Reuse Working Set (RWS)
cache demand model. SHARDS [26] is an Miss Ratio Curve
(MRC) approximation algorithm that focuses on improving
MRC efficiency for online cache reassignment by employing
uniform randomized spatial sampling. These orthogonal works
can be integrated with AdaCache to improve the cache uti-
lization in a disaggregated cloud environment. Nitro [42] is
a host-side flash cache solution that performs deduplication
and compression on the data blocks, after which the com-
pressed variable-sized data chunks are stored in the cache as
fixed-size Write-Evict Units (WEUs). Nitro uses LRU at the
granularity of WEU for cache replacement. Besides the coarse-
grained cache replacement policy employed by both Nitro and
AdaCache, AdaCache also uses the fine-grained cache block
replacement policy to further improve the cache hit ratio by
replacing cold cache blocks inside each group as discussed
Section III.

Flash Disaggregation. Storage disaggregation [1], [4],
[47]–[50] is common practice in production environment.
High-performance flash disaggregation is also an active re-
search area [51], [52]. Since modern NVMe SSDs are signif-
icantly faster than SATA SSDs and hard drives, the software
overhead becomes nonnegligible. Guz et al. [51] evaluated
the overhead of NVMe SSD storage disaggregation through
NVMeoF [13] and concluded that the overhead of remote
access is negligible compared to local NVMe SSDs. Deci-
bel [52] is a solution for flash storage disaggregation at the
rack scale, which follows a design of sharing-nothing and
provides virtualized storage with low latency by minimizing
the software overhead through the integration of network and
storage layers.

In-Memory Caching. In-memory caching systems [28],
[53], [54] are widely used in modern software architecture to

improve application performance and scalability. For example,
Memcached [28] is a lightweight DRAM key-value store that
stores key-value pairs of the same value size in slabs of the
same slab class. Unlike AdaCache which does global cache
block groups replacement, Memcached does time-consuming
slab reassignment [55]–[57] across slab classes due to the
high concurrency. Data structure optimization [58]–[60] to
save the metadata memory overhead has also been studied. For
example, MemC3 [58] reduces the metadata memory footprint
by up to 30% for Memcached by using concurrent Cuckoo
hashing and CLOCK LRU-approximation cache replacement.
These data structure optimization techniques are complemen-
tary to AdaCache and can be leveraged to further reduce the
metadata memory overhead.

Adaptive Cache Block Sizes. The performance impact of
varying cache block sizes for both memory and storage cache
has been thoroughly studied in literature [61]–[66]. However,
few have studied the benefits and drawbacks of a cache system
with adaptive cache block sizes. Jeremic et al. [67] proposed
a two-size cache block allocation mechanism that employs
a small-block and a large-block SSD cache. The source
address space is divided into segments of contiguous source
blocks where either the small or the large cache block size
can be used. The assignment relationship between segments
and cache block sizes is adjusted in the background based
on the measurement of I/O latency. AdaCache differs from
the related work including but not limited to 1) AdaCache
supports different numbers of cache block sizes to cater to
the workloads’ characteristics without delay, 2) AdaCache
adapts the cache block size based on the request size which is
more efficient and effective than monitoring I/O latency of the
system. To our best knowledge, AdaCache is the first practical
storage cache solution using adaptive cache block sizes.

VI. CONCLUSION
This paper presents a cache system optimized for cloud

block storage with constantly changing workloads. The nov-
elties of this work lie in a new cache block allocation design
that dynamically adapts the cache block size to the workloads’
characteristics. The entire work is cautiously designed to
solve the challenges brought by variable-sized cache block
allocation. An extensive experimental evaluation based on real-
world block traces confirms that AdaCache can achieve vast
improvements in I/O performance and memory usage with
negligible run-time overhead.

10

REFERENCES

[1] “Amazon elastic block store (ebs),” 2023. https://aws.amazon.com/ebs/.
[2] “Persistent disk,” 2023. https://cloud.google.com/persistent-disk.
[3] “Ibm cloud block storage,” 2023. https://www.ibm.com/cloud/

block-storage.
[4] “Ceph block device,” 2023. https://docs.ceph.com/en/quincy/rbd/index.

html.
[5] “What is block storage,” 2021. https://aws.amazon.com/what-is/

block-storage/.
[6] “Ebs pricing and performance: A comparison with amazon

efs and amazon s3,” 2018. https://bluexp.netapp.com/blog/
ebs-efs-amazons3-best-cloud-storage-system.

[7] Q. Yang, R. Jin, B. Davis, D. Inupakutika, and M. Zhao, “Performance
evaluation on cxl-enabled hybrid memory pool,” in 2022 IEEE Inter-
national Conference on Networking, Architecture and Storage (NAS),
pp. 1–5, 2022.

[8] Y. Zhang, P. Huang, K. Zhou, H. Wang, J. Hu, Y. Ji, and B. Cheng,
“Osca: An online-model based cache allocation scheme in cloud block
storage systems,” in Proceedings of the 2020 USENIX Conference on
Usenix Annual Technical Conference, pp. 785–798, 2020.

[9] K. Zhou, Y. Zhang, P. Huang, H. Wang, Y. Ji, B. Cheng, and Y. Liu,
“Efficient ssd cache for cloud block storage via leveraging block reuse
distances,” IEEE Transactions on Parallel and Distributed Systems,
vol. 31, no. 11, pp. 2496–2509, 2020.

[10] D. Arteaga, I. Ahmad, J. Cabrera, S. Jun, J. Xu, S. Xu, S. Sundararaman,
M. Zhao, S. Zhen, V. Tarasov, et al., “Cloudcache: On-demand flash
cache management for cloud computing,” in 14th {USENIX} Conference
on File and Storage Technologies ({FAST} 16), pp. 355–369, 2016.

[11] W. Li, G. Jean-Baptise, J. Riveros, G. Narasimhan, T. Zhang, and
M. Zhao, “Cachededup: In-line deduplication for flash caching,” in 14th
{USENIX} Conference on File and Storage Technologies ({FAST} 16),
pp. 301–314, 2016.

[12] S. Legtchenko, H. Williams, K. Razavi, A. Donnelly, R. Black, A. Dou-
glas, N. Cheriere, D. Fryer, K. Mast, A. D. Brown, et al., “Understanding
rack-scale disaggregated storage.,” HotStorage, vol. 17, p. 2, 2017.

[13] “Nvm express moves into the future,” 2023. https://nvmexpress.org/
wp-content/uploads/NVMe Over Fabrics.pdf.

[14] “Making a case for a disaggregated storage ar-
chitecture,” 2021. https://www.kalrayinc.com/blog/
making-case-disaggregated-storage-architecture/.

[15] S. Prybylski, M. Horowitz, and J. Hennessy, “Performance tradeoffs in
cache design,” SIGARCH Comput. Archit. News, vol. 16, p. 290–298,
may 1988.

[16] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantita-
tive approach. Elsevier, 2011.

[17] I. Corporation, “SPDK: Storage Performance Development Kit.” https:
//spdk.io/, Accessed 2023.

[18] Y. Liu, H. Li, Y. Lu, Z. Chen, and M. Zhao, “An efficient and flexible
metadata management layer for local file systems,” in 2019 IEEE 37th
International Conference on Computer Design (ICCD), pp. 208–216,
2019.

[19] Y. Liu, H. Li, Y. Lu, Z. Chen, N. Xiao, and M. Zhao, “Hasfs:
optimizing file system consistency mechanism on nvm-based hybrid
storage architecture,” Cluster Computing, vol. 23, pp. 2501–2515, 2020.

[20] K. Zhou, Y. Zhang, P. Huang, H. Wang, Y. Ji, B. Cheng, and Y. Liu,
“Efficient ssd cache for cloud block storage via leveraging block reuse
distances,” IEEE Transactions on Parallel and Distributed Systems,
vol. 31, no. 11, pp. 2496–2509, 2020.

[21] S. Afzal and G. Kavitha, “Load balancing in cloud computing–a
hierarchical taxonomical classification,” Journal of Cloud Computing,
vol. 8, no. 1, p. 22, 2019.

[22] “Nvm express moves into the future,” 2021. https://nvmexpress.org/
wp-content/uploads/NVMe Over Fabrics.pdf.

[23] “Spdk nvme-of rdma (target & initiator) performance report release
22.09,” 2023. https://ci.spdk.io/download/performancereports/SPDK
rdma mlx perf report 2209.pdf.

[24] “Samsung’s poseidon v2 e3.x reference system,” 2021. https://www.
inspursystems.com/product/open-storage/.

[25] “Fio,” 2021. https://github.com/axboe/fio.
[26] C. A. Waldspurger, N. Park, A. T. Garthwaite, and I. Ahmad, “Efficient

mrc construction with shards.,” in FAST, vol. 15, pp. 95–110, 2015.

[27] J. Fu, D. Arteaga, and M. Zhao, “Locality-driven mrc construction and
cache allocation,” in Proceedings of the 27th International Symposium
on High-Performance Parallel and Distributed Computing, pp. 19–20,
2018.

[28] “Memcached,” 2023. https://memcached.org.
[29] “The density, cost, and marketing of semicon-

ductor memory,” 2021. https://news.skhynix.com/
the-density-cost-and-marketing-of-semiconductor-memory/.

[30] J. Li, Q. Wang, P. P. Lee, and C. Shi, “An in-depth analysis of
cloud block storage workloads in large-scale production,” in 2020
IEEE International Symposium on Workload Characterization (IISWC),
pp. 37–47, IEEE, 2020.

[31] D. Narayanan, A. Donnelly, and A. Rowstron, “Write off-loading:
Practical power management for enterprise storage,” ACM Transactions
on Storage (TOS), vol. 4, no. 3, pp. 1–23, 2008.

[32] C. Lee, T. Kumano, T. Matsuki, H. Endo, N. Fukumoto, and M. Sug-
awara, “Understanding storage traffic characteristics on enterprise virtual
desktop infrastructure,” in Proceedings of the 10th ACM International
Systems and Storage Conference, pp. 1–11, 2017.

[33] “Poseidonos,” 2023. https://github.com/poseidonos/poseidonos.
[34] “Block device user guide.” https://spdk.io/doc/bdev.html.
[35] The GNOME Project, “GLib – C Utility Library.” https://developer.

gnome.org/glib/, 2023.
[36] J. Bonwick et al., “The slab allocator: An object-caching kernel memory

allocator.,” in USENIX summer, vol. 16, Boston, MA, USA, 1994.
[37] R. Koller, L. Marmol, R. Rangaswami, S. Sundararaman, N. Talagala,

and M. Zhao, “Write policies for host-side flash caches,” in Presented as
part of the 11th {USENIX} Conference on File and Storage Technologies
({FAST} 13), pp. 45–58, 2013.

[38] T. Luo, S. Ma, R. Lee, X. Zhang, D. Liu, and L. Zhou, “S-cave: Effective
ssd caching to improve virtual machine storage performance,” in Pro-
ceedings of the 22nd International Conference on Parallel Architectures
and Compilation Techniques, pp. 103–112, 2013.

[39] R. Koller, A. J. Mashtizadeh, and R. Rangaswami, “Centaur: Host-
side ssd caching for storage performance control,” in 2015 IEEE
International Conference on Autonomic Computing, pp. 51–60, IEEE,
2015.

[40] J. Fu, Y. Lu, J. Shu, G. Liu, and M. Zhao, “Cowcache: effective flash
caching for copy-on-write virtual disks,” Cluster Computing, vol. 23,
pp. 623–639, 2020.

[41] J. Fu, Y. Liu, and G. Liu, “Jcache: Journaling-aware flash caching,”
IEEE Access, vol. 8, pp. 61289–61298, 2020.

[42] C. Li, P. Shilane, F. Douglis, H. Shim, S. Smaldone, and G. Wallace,
“Nitro: A Capacity-Optimized SSD cache for primary storage,” in 2014
USENIX Annual Technical Conference (USENIX ATC 14), (Philadelphia,
PA), pp. 501–512, USENIX Association, June 2014.

[43] F. Meng, L. Zhou, X. Ma, S. Uttamchandani, and D. Liu, “vCacheShare:
Automated server flash cache space management in a virtualization
environment,” in 2014 USENIX Annual Technical Conference (USENIX
ATC 14), (Philadelphia, PA), pp. 133–144, USENIX Association, June
2014.

[44] G. Yadgar, M. Factor, and A. Schuster, “Karma: Know-it-All replace-
ment for a multilevel cache,” in 5th USENIX Conference on File and
Storage Technologies (FAST 07), (San Jose, CA), USENIX Association,
Feb. 2007.

[45] L. Ou, X. He, M. Kosa, and S. Scott, “A unified multiple-level cache
for high performance storage systems,” in 13th IEEE International
Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, pp. 143–150, 2005.

[46] X. Li, A. Aboulnaga, K. Salem, A. Sachedina, and S. Gao, “Second-
Tier cache management using write hints,” in 4th USENIX Conference on
File and Storage Technologies (FAST 05), (San Francisco, CA), USENIX
Association, Dec. 2005.

[47] A. Amar, A. Raja, and V. Sundararajan, “Glusterfs: a scalable network
filesystem,” in Proceedings of the 6th USENIX Symposium on Operating
Systems Design and Implementation, USENIX Association, 2004.

[48] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon, “The
design and implementation of a distributed file system,” in Proceedings
of the 1985 Summer USENIX Conference, USENIX Association, 1985.

[49] M. contributors, “MinIO - object storage for the next generation.” https:
//min.io/, 2021. Accessed: March 3, 2023.

[50] Amazon Web Services, “Amazon S3 - simple storage service.” https:
//aws.amazon.com/s3/, 2021. Accessed: March 3, 2023.

11

https://aws.amazon.com/ebs/
https://cloud.google.com/persistent-disk
https://www.ibm.com/cloud/block-storage
https://www.ibm.com/cloud/block-storage
https://docs.ceph.com/en/quincy/rbd/index.html
https://docs.ceph.com/en/quincy/rbd/index.html
https://aws.amazon.com/what-is/block-storage/
https://aws.amazon.com/what-is/block-storage/
https://bluexp.netapp.com/blog/ebs-efs-amazons3-best-cloud-storage-system
https://bluexp.netapp.com/blog/ebs-efs-amazons3-best-cloud-storage-system
https://nvmexpress.org/wp-content/uploads/NVMe_Over_Fabrics.pdf
https://nvmexpress.org/wp-content/uploads/NVMe_Over_Fabrics.pdf
https://www.kalrayinc.com/blog/making-case-disaggregated-storage-architecture/
https://www.kalrayinc.com/blog/making-case-disaggregated-storage-architecture/
https://spdk.io/
https://spdk.io/
https://nvmexpress.org/wp-content/uploads/NVMe_Over_Fabrics.pdf
https://nvmexpress.org/wp-content/uploads/NVMe_Over_Fabrics.pdf
https://ci.spdk.io/download/performancereports/SPDK_rdma_mlx_perf_report_2209.pdf
https://ci.spdk.io/download/performancereports/SPDK_rdma_mlx_perf_report_2209.pdf
https://www.inspursystems.com/product/open-storage/
https://www.inspursystems.com/product/open-storage/
https://github.com/axboe/fio
https://memcached.org
https://news.skhynix.com/the-density-cost-and-marketing-of-semiconductor-memory/
https://news.skhynix.com/the-density-cost-and-marketing-of-semiconductor-memory/
https://github.com/poseidonos/poseidonos
https://spdk.io/doc/bdev.html
https://developer.gnome.org/glib/
https://developer.gnome.org/glib/
https://min.io/
https://min.io/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/

[51] Z. Guz, H. Li, A. Shayesteh, and V. Balakrishnan, “Nvme-over-fabrics
performance characterization and the path to low-overhead flash disag-
gregation,” in Proceedings of the 10th ACM International Systems and
Storage Conference, pp. 1–9, 2017.

[52] M. Nanavati, J. Wires, and A. Warfield, “Decibel: Isolation and sharing
in disaggregated rack-scale storage.,” in NSDI, vol. 17, pp. 17–33, 2017.

[53] S. Sanfilippo, “Redis.” https://redis.io/, 2009. Accessed: March 4, 2023.
[54] B. Bulkowski and S. Srinivasan, “Aerospike: Architecture of a real-time

operational dbms,” IEEE Data Eng. Bull., vol. 36, no. 1, pp. 3–9, 2013.
[55] D. Byrne, N. Onder, and Z. Wang, “Faster slab reassignment in mem-

cached,” in Proceedings of the International Symposium on Memory
Systems, pp. 353–362, 2019.

[56] D. S. Berger, B. Berg, T. Zhu, S. Sen, and M. Harchol-Balter, “Robin-
Hood: Tail latency aware caching – dynamic reallocation from Cache-
Rich to Cache-Poor,” in 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18), (Carlsbad, CA), pp. 195–212,
USENIX Association, Oct. 2018.

[57] X. Hu, X. Wang, Y. Li, L. Zhou, Y. Luo, C. Ding, S. Jiang, and Z. Wang,
“LAMA: Optimized locality-aware memory allocation for key-value
cache,” in 2015 USENIX Annual Technical Conference (USENIX ATC
15), (Santa Clara, CA), pp. 57–69, USENIX Association, July 2015.

[58] B. Fan, D. G. Andersen, and M. Kaminsky, “MemC3: Compact and
concurrent MemCache with dumber caching and smarter hashing,” in
10th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 13), (Lombard, IL), pp. 371–384, USENIX Association,
Apr. 2013.

[59] X. Li, D. G. Andersen, M. Kaminsky, and M. J. Freedman, “Algorithmic
improvements for fast concurrent cuckoo hashing,” in Proceedings of the
Ninth European Conference on Computer Systems, EuroSys ’14, (New
York, NY, USA), Association for Computing Machinery, 2014.

[60] H. Chen, H. Zhang, M. Dong, Z. Wang, Y. Xia, H. Guan, and B. Zang,
“Efficient and available in-memory kv-store with hybrid erasure coding
and replication,” ACM Trans. Storage, vol. 13, sep 2017.

[61] C. Dubnicki and T. J. LeBlanc, “Adjustable block size coherent caches,”
SIGARCH Comput. Archit. News, vol. 20, p. 170–180, apr 1992.

[62] A. J. Smith, “Line (block) size choice for cpu cache memories,” IEEE
Transactions on Computers, vol. C-36, no. 9, pp. 1063–1075, 1987.

[63] S. Przybylski, “The performance impact of block sizes and fetch
strategies,” SIGARCH Comput. Archit. News, vol. 18, p. 160–169, may
1990.

[64] G. H. Loh and M. D. Hill, “Efficiently enabling conventional block
sizes for very large die-stacked dram caches,” in Proceedings of the
44th Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO-44, (New York, NY, USA), p. 454–464, Association for Com-
puting Machinery, 2011.

[65] S. Prybylski, M. Horowitz, and J. Hennessy, “Performance tradeoffs
in cache design,” in Proceedings of the 15th Annual International
Symposium on Computer Architecture, ISCA ’88, (Washington, DC,
USA), p. 290–298, IEEE Computer Society Press, 1988.

[66] A. Agarwal, J. Hennessy, and M. Horowitz, “An analytical cache model,”
ACM Trans. Comput. Syst., vol. 7, p. 184–215, may 1989.

[67] N. Jeremic, H. Parzyjegla, and G. Muhl, “On adapting the cache
block size in ssd caches,” in 2021 IEEE International Conference on
Networking, Architecture and Storage (NAS), pp. 1–8, 2021.

12

https://redis.io/

	Introduction
	Disaggregated Cache
	Rack-Scale Cache Disaggregation
	Rack-Scale Cache Management
	Implementation

	Adaptive Cache Block Size
	Fix-sized Cache Allocation
	Variable-Sized Cache Allocation
	Group-Based Cache Organization
	Two-Level Cache Replacement

	Evaluation
	I/O performance
	I/O Volumes
	Memory Usage
	Hit Ratio
	Effectiveness of Adaptive Cache Block Allocation

	Related Works
	Conclusion
	References

