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Abstract— Brain-Computer Interface (BCI) and Internet
of Things (IoT) systems have recently been amalgamated to
create BCIoT. Most of the early applications have focused
on the healthcare sector, and more recently, in education,
virtual reality, smart homes, and smart vehicles, amongst
others. While there are many transversal developing stages
that can be satisfied by a single system, no common
enabling technology or standards exist. These challenges
are address in the proposed platform, Brain-eNet. This
technology was developed considering the constraints-space
defined by BCIoT real-time mobile applications. This is
expected to enable the development of BCIoT systems by
providing modular hardware and software resources. Two
instances of this platform implementation are provided, a
motor intent detection for rehabilitation and an emotion
recognition system.

I. INTRODUCTION

Since the term Internet of Things (IoT) was first
used by Ashton in 2009 [1] defining it as the result of
“adding radio-frequency identification and other sensors
to everyday objects”, this field has been vastly growing
and evolving to give shape to a more holistic definition
given by Ng and Wakenshaw [2] “as a network of entities
that are connected through any form of sensor, enabling
these entities, which we term as Internet-connected
constituents, to be located, identified, and even operated
upon”.

In a similar fashion, Brain-Computer Interfaces (BCI)
have been evolving since their inception in 1973 through
the work of Jacques Vidal [3]. The BCI term can be
defined as an additional communication channel of the
brain with the world using non-normal output “pathways
of peripheral nerves and muscles” [4], [5]. From current
BCI technologies, electroencephalography-based BCI
(EEG BCI) is the more affordable and simple to
implement outside the lab in most environments [5].
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Thence, from this point forward, when we refer to BCI
it is assumed that we are referring to EEG-BCI.

Early proof-of-concept BCIoT applications have been
developed in health care [6], smart homes [7], [8], virtual
reality [9], [8], and smart vehicles [10], among others. In
these applications, researchers usually collect data using
off-the-shelf EEG headsets, which are transmitted to a
computing device where it is processed to give commands
to the specific end-effector (e.g., a computer, physical or
virtual object(s), and even an avatar) [11]. This approach
has some difficulties associated with the following:

o Cost: This pertains to the EEG headsets, processing
units, and cloud computing services required in
BCIoT systems.

o Reliability: The dependence on remote processing
units increases latency and increases privacy issues
risk. This indicates the need for the development of
Edge computing to ensure robustness and reliability
[12].

o Usability: To use these systems, a certain level of
technical proficiency is typically required, resulting
in a barrier for users who are not technologically
inclined [13].

o Computational complexity: These systems often
involve a substantial number of channels, which
results in increased computational demands and
complexity [14]. Additionally, an enabling platform
necessitates the development of processing pipelines
that exhibit computational efficiency. This will
be more critical if the application considers
wearable BCIs and mobility, as it is necessary
their implementation in battery powered-embedded
systems [15], [16].

e No real-time denoising: Most of the denoising
algorithms employed in BCI systems are for offline
use, thereby imposing limitations on the practical
implementation of BCIoT systems in real-time [17].

o Context Augmentation: The application context
can be leveraged to relax the constraints-space.
Problems that are considered intractable can be
solved by making the correct assumptions of the
context [18], [19], [20].

Because of these challenges, the exponential growth in
BCIoT applications has been thwarted. Some companies
have tried to counteract the high cost (See Table I) of
the BCI component. Nevertheless, none of these systems
allow for any preprocessing or processing onboard,



needing additional computing resources in-situ.

TABLE I: Low cost solutions

Product Number of Channels Price
Muse 2 [21] IMU and 4 EEG | $249.99
Emotiv Insight 2 [22] IMU and 5 EEG $499.00
Ultracortex Mark IV [23] IMU and 16 EEG $399.99
Neurosky MindWave 2 [24] 1 EEG $129.99

In this article, we proposed Brain-eNet, a BCIoT
platform that addresses the above challenges and it is
expected to become an enabling technology for BCIoT
applications in medical and non-medical sectors. The
article is organized as follows: Section 2 discusses the
methodology. Section 3 presents two applications of the
proposed system, and section 4 provides a discussion and
concluding remarks.

II. METHODS

The product specifications considered in the design of
an IoT-enabled BCI system included onboard de-noising
capabilities to handle artifacts that contaminate the
EEG, machine learning model calibration for neural
classification, impedance measurement to assess signal
quality, WiFi/Bluetooth connectivity for IoT, usability
and flexibility for electrode locations to fit a spectrum
of applications in the medical and non-medical sectors,
including neural engineering research applications.
Additional criteria have been summarized in [25], [26]
and [27].

A. Hardware Module

The system is composed of a proprietary chip that is
interfaced with an embedded platform, the BeagleBone
Black - Wireless (BBB-W) [28] chosen due to its low-cost,
compatibility, and wireless capabilities (Bluetooth and
WiFi).

TABLE II: Amplifier Specifications

Amplifier Specifications

Number of Channels 8
SNR, 121 dB
Input Noise 1.39 uVpp
CMRR 110 dB
ADC Resolution 24 bits
Input Impedance 1000 MQ
Maximum Sampling Rate 500 Hz
Bandwidth DC-131 Hz
Input range + 104mV
Resolution 0.012 uV

The amplifier of Brain-eNet is the ADS1299 chip from
Texas Instruments, Inc. [29], specifications shown in
Table II, which follows the technical specifications
defined in [30] and standards considerations
highlighted in [11]. In addition to sensing EEG
and electrooculography (EOG) signals, the system
also measures head motion data using an Inertial

Measurement Unit (IMU, ICM-20948) chosen because
of its low power consumption, low error, and it is
equipped with a 3-axes gyroscope, accelerometer, and
magnetometer. Specifications for the IMU are shown in
Table III.

TABLE III: Inertial Movement Unit Specifications

Inertial Movement Unit Specifications
Gyro Full-Scale Range 250-2000 dps
Acc Full-Scale Range 2-16 g
Zero offset error 5 for 250 dps
ADC Resolution 24 bits
Zero-g Offset +50 mg
Power Consumption Acc+Mgn 0.580 mW
Power Consumption Gyro 4.43 mW

B. Firmware Module

The firmware was developed using modularity as a
core design principle so that the firmware toolkit can be
easily used, adapted, and suitable for different BCIoT
applications. The current programming language used
for the module is C++ for communication with both the
amplifier and IMU. The current communication protocol
is Serial Peripheral Interface (SPI), a synchronous
serial communication commonly used for short-distance
communication. The current EEG, EOG, and IMU
features include amplifier setup of channel amplification,
measurement of impedance values from the electrode
system, raw data collection, saving data into memory,
or streaming it to the BBB-W for processing. The
current sampling frequency of the system is 500 Hz
in open-loop. However, the sampling frequency will be
limited by the computing resources of the embedded
platform and the specific application, for example for
the second implementation (see Section III-D.2), where
a camera and video processing are needed, the sampling
frequency is on average 190 Hz.

Table IV depicts the overall BCIoT specifications of
the Brain-eNet, with embedded Bluetooth and WiFi
communication modules. It can be programmed in
multiple programming languages, it allows for onboard
real-time de-noising of the signals and neural decoding.
The current implementation is limited to applications
with up to eight channels (any combination of dry EEG
and EOG electrodes), excluding the reference electrodes.

III. RESULTS

A. Signal Acquisition

The signal acquisition process starts with amplifier
setup, gathering data at a sampling rate of 500 Hz
(open-loop), converting the received hexadecimal values
into voltage values, and subsequently organizing the
trial data into files suitable for subsequent analysis
or streaming to the BBB-W for processing. Figure 1
illustrates the synchronized collection of 5-EEG, 3-EOG,
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Fig. 1: Raster plot of synchronized EEG, EOG and IMU data from the proposed BCIoT system during eyes closed,
head movement with open eyes, and during walking. A. Eyes closed: A participant was instructed to close his eyes
during a session. B. Blinking Patterns: A participant was instructed to blink his eyes 2 times, and the blinking
artifacts can be observed around 2 sec and 9 sec; identified with green dashed lines. C. Head Movement: The
participant was instructed to move his head to the right (shown by a red dashed line), backward (purple dashed
line), forward (blue dashed line), and to the left (yellow dashed line). D. Walking Back and Forth: The participant
was instructed to walk in one direction back and forth. The plot’s orange dashed line shows places where the

participant changed direction (forward and backward).

3-axis gyroscope, and 3-axis accelerometer data. The
five EEG channels are positioned over the sensorimotor
cortex for movement intent detection. The signals shown
have been passed through a fourth-order band-pass filter
between 0.5 Hz and 20 Hz and plotted prior to the
de-noising module.

B. Impedance Measurement

In dry-electrode EEG systems, monitoring good signal
quality (high signal-to-noise ratio (SNR)) is critical as it
is necessary to have good contact between the electrodes
and the scalp or skin. [31]. This requires measuring and
displaying impedance values so potential users can adjust
electrodes that show high impedance accordingly.

C. Onboard Denoising

As discussed earlier, EEG suffers from low spatial
resolution, low SNR, and artifacts such as eye blinks

and eye movements, shifts in electrode potentials, and
motion artifacts. Because of EEG’s signal properties,
a BCIoT system should be able to process EEG
and denoise the brain signals effectively. However,
common signal-denoising methods, such as independent
component analysis (ICA) are not generally applicable
to mobile or real-time applications. Implemented
capabilities of the Brain-eNet system include a high pass
filter, H-Infinity Adaptive Noise Cancellation used for
real-time eye artifact removal [17], and a low pass filter.
Additionally, real-time adaptive motion artifact removal
[32] using IMU data is under development.

D. Deployment of Brain-eNet

In this section, two implementations of BCIoT
demonstrate the adaptability and flexibility of the
proposed hardware across various applications with



TABLE IV: Current Engineering Specifications of
Brain-eNet
Brain-Computer Interface Specifications
Processor Speed 1 GHz
Processor Memory 512 MB
Processor Storage 4 GB
Open-Loop Sampling 500 Hz
Frequency
USB client for power &
communications. USB host.
Connectivity 802.11 b/g/n WiFi,
Bluetooth 4.1 plus BLE.
HDMI.
Back-end Programming C4+, Python
Language
Front-end Programming JS, CSS, HTML, Swift
Language
Battery 2.96 kWh + charge
indicator
Low and High Pass Filters,
De-noising Adaptive Noise
Cancellation (H* based)
Slope, negative peak
Features Extracted amplitude, area, and
Mahalanobis distance
Machine Learning Support Ve.ctor. Machlne,
- Linear Discriminant
Algorithm -
Analysis
Maximum number of
Channels (any combination 8
of EEG/EOG)
minimal modifications. Drawing from the initial

experience, the software modules were subsequently
reconfigured to align with the existing principles of
modularity already implemented in the hardware. The
second implementation shows some partial results.

Fig. 2: NeuroEXO System: In this instantiation, we
have a BCIoT platform for rehabilitation. The system
is dedicated to motor imagery in a BCI application with
five (EEG) electrodes across the sensorimotor cortex,
three EOG electrodes, and two reference electrodes. EOG
electrodes are found in the foremost arms and the front
band. The deployed hardware and software can be found
in the posterior area of the headset inside the white
translucent box. [33]

1) NeuroEXO: An IoT-enabled BCI system for
upper-limb motor rehabilitation: The first application
where the hardware was deployed was the NeuroEXO
system, a “Brain-controlled Upper-Limb Robot-Assisted
Rehabilitation Device for Stroke Survivors” [33]. The
application focuses on using an EEG-controlled robotic
device, rebless (H Robotics) [34], for neural rehabilitation
of the sensorimotor cortex. The clinical application
required the use of five (EEG) comb electrodes located
in FC3, FC1, FCz, FC2, and FC4 (according to the
international 10-20 system), based on findings from
a prior BCI clinical trial for upper-limb rehabilitation
after stroke [35], [36]. Additionally, the system used
three electrooculography (EOG) electrodes located on
the user’s face at the right and left temple and above
the left eye, to create a reference to remove eye artifacts
from EEG signals using Adaptive Noise Cancellation
algorithm based on H-infinity [17] [37].

Regarding signal processing, the system incorporates
onboard capabilities for denoising and decoding to
identify motor intent effectively. Onboard denoising
encompasses the removal of EOG artifacts and bandpass
filtering. To detect motor intent, the system utilizes a
Support Vector Machine (SVM) model, which undergoes
training and testing directly onboard. Furthermore, the
system includes other requirements, such as the control
of the robotic device and a web application. This
web application, developed using Labview and LINX
toolkit, facilitates the display of impedance, EEG, and
EOG signals. Additionally, it provides a protocol for
subjects to follow. The web application is hosted on
the same BBB-W used for signal processing onboard,
and the visualizations generated can be accessed from a
tablet (Amazon Fire 8) or an iPhone (7 and onward).
Notably, all the necessary processing for this application
is executed locally onboard, eliminating the reliance on
external computing resources. Figure 2 illustrates the
headset developed.

This system is currently undergoing clinical trials at
the clinic and at home based on [35], [36]. In the current
trials, each participant has one week of training at
the clinic and 6 weeks at home training. Up to this
point, 5 stroke survivors have been enrolled in this
study. The system is currently being validated in a
longitudinal study with healthy participants for potential
use in non-medical applications. These studies’ results
and details of implementation are beyond this paper’s
scope and are partially reported in [33], [38].

2) Remote Health Monitoring: The system was
adapted for an emotion recognition application requiring
four EEG channels, FT7, T7, FT8, and T8, located
over the temporal areas as suggested by [39], one EOG
channel, and synchronized video recording for context
awareness capabilities. Additional requirements included
WiFi communication with an iOS mobile application
developed in Swift, a Firebase database to save mobile
app information and video context awareness data, and



machine learning.

The system required minimal changes to be
implemented and integrated into the emotion recognition
application, suggesting that the current hardware and
software implementation can be easily adapted to other
systems for research in IoT-BCI applications. Figure 3
shows the version of the system for emotion recognition
where four EEG electrodes are positioned on the inner
lateral areas of the headset, the reference electrodes are
located on the posterior arms of the headset, and the
deployed system located in the box located in the back
of the headset.

(a) Frontal View

(b) Top View

Fig. 3: Remote Health Monitoring: Version of the
system dedicated to emotion recognition with 4 EEG
electrodes in temporal areas, 1 EOG electrode, 2
reference electrodes, and a camera for context-awareness.
The deployed hardware and software can be found in the
posterior area of the headset inside the gray box.

IV. DISCUSSION AND CONCLUSIONS

The development of a customized BCI system
capable of measuring EEG signals with real-time
onboard processing capabilities presents a complex
design challenge that necessitates careful consideration
of wvarious factors, including portability, usability,
interoperability, and reliability. The proposed platform,
Brain-eNet, aims to serve as an open test bed for

creating cost-effective and portable yet highly efficient
and reliable custom IoT-BCI systems. Brain-eNet has
been successfully implemented in two real-time fully
onboard processing applications, namely motor intent
and emotion recognition, and it is anticipated to
be applicable in other IoT-BCI implementations. The
combination of all these discussed features renders
Brain-eNet a self-contained system, which is currently
absent from the existing commercial landscape.

Future work is needed to address various areas
common to IoT systems, including energy harvesting

techniques [40], cloud computing integration [41],
Deep Learning algorithms [42], and cybersecurity
measures  [43].  Cybersecurity is of particular

concern, wherein attacks on IoT systems have been
observed, targeting specific aspects such as device
vulnerabilities, location-based exploits, access level
breaches, information damage potential, host reliability,
protocol-related and layer-based vulnerabilities, among
others [43]. Current implementations do not consider
the aspect as it is out of scope. However, the authors
are aware of their needs and expect to implement some
of the available approaches in the near future.
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