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ABSTRACT

Machine learning (ML) is increasingly being used in critical decision-
making software, but incidents have raised questions about the
fairness of ML predictions. To address this issue, new tools and
methods are needed to mitigate bias in ML-based software. Previous
studies have proposed bias mitigation algorithms that only work
in specific situations and often result in a loss of accuracy. Our
proposed solution is a novel approach that utilizes automated ma-
chine learning (AutoML) techniques to mitigate bias. Our approach
includes two key innovations: a novel optimization function and a
fairness-aware search space. By improving the default optimization
function of AutoML and incorporating fairness objectives, we are
able to mitigate bias with little to no loss of accuracy. Additionally,
we propose a fairness-aware search space pruning method for Au-
toML to reduce computational cost and repair time. Our approach,
built on the state-of-the-art Auto-Sklearn tool, is designed to reduce
bias in real-world scenarios. In order to demonstrate the effective-
ness of our approach, we evaluated our approach on four fairness
problems and 16 different ML models, and our results show a signif-
icant improvement over the baseline and existing bias mitigation
techniques. Our approach, Fair-AutoML, successfully repaired 60
out of 64 buggy cases, while existing bias mitigation techniques
only repaired up to 44 out of 64 cases.
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1 INTRODUCTION

Recent advancements in machine learning have led to remarkable
success in solving complex decision-making problems such as job
recommendations, hiring employees, social services, and educa-
tion [2, 10, 11, 21, 22, 24, 38, 39, 51, 53, 55, 56, 63]. However, ML
software can exhibit discrimination due to unfairness bugs in the
models [3, 6]. These bugs can result in skewed decisions towards
certain groups of people based on protected attributes such as race,
age, or sex [30, 31].

To address this issue, the software engineering (SE) commu-
nity has invested in developing testing and verification strategies
to detect unfairness in software systems [1, 8, 30, 31, 62]. Addi-
tionally, the machine learning literature contains a wealth of re-
search on defining different fairness criteria for ML models and
mitigating bias [12, 20, 26, 37, 48, 50, 64, 65]. Various bias mitiga-
tion methods have been proposed to build fairer models. Some ap-
proaches mitigate data bias by adapting the training data [15, 16, 52];
some modify ML models during the training process to mitigate
bias [19, 32, 41, 58, 60], and others aim to increase fairness by chang-
ing the outcome of predictions [1, 62, 66].

Despite these efforts, current bias mitigation techniques often
come at the cost of decreased accuracy [6, 42]. Their effectiveness
varies based on datasets, fairness metrics, or the choice of protected
attributes [18, 25, 26, 37]. Hort et al. proposed Fairea [42], a novel
approach to evaluate the effectiveness of bias mitigation techniques,
which found that nearly half of the evaluated cases received poor
effectiveness. Moreover, evaluations by Chen et al. also showed
that in 25% of cases, bias mitigation methods reduced both ML
performance and fairness [18].

Recent works [34, 42, 60] have shown that parameter tuning
can successfully fix fairness bugs without sacrificing accuracy. By
finding the best set of parameters, parameter tuning can minimize
the error between the predicted values and the true values to reduce
bias. This helps to ensure that the model is not overly simplified or
too complex, which can lead to underfitting (high bias) or overfitting
(low accuracy), respectively. By tuning the parameters, we can find
the right balance between bias and accuracy, which leads to a model
that generalizes well to different data or fairness metric. However,
it is challenging to identify which parameter setting achieves the
best fairness-accuracy trade-off [34].

Recent advancements in AutoML technology [28, 29, 43] have
made it possible for both experts and non-experts to harness the
power of machine learning. AutoML proves to be an effective op-
tion for discovering optimal parameter settings; however, currently
there is a lack of focus on reducing bias within the AutoML tech-
niques. Thus, we pose the following research questions: Is it possible
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to utilize AutoML for the purpose of reducing bias? Is AutoML effective
in mitigating bias? Does AutoML outperform existing bias reduction
methods? Is AutoML more adaptable than existing bias mitigation
techniques?

We introduce Fair-AutoML, a novel technique that utilizes Au-
toML to fix fairness bugs in machine learning models. Unlike exist-
ing bias mitigation techniques, Fair-AutoML addresses their limita-
tions by enabling efficient and fairness-aware Bayesian search to
repair unfair models, making it effective for a wide range of datasets,
models, and fairness metrics. The key idea behind Fair-AutoML is to
use AutoML to explore as many configurations as possible in order
to find the optimal fix for a buggy model. Particularly, Fair-AutoML
enhances the potential of AutoML for fixing fairness bugs in two
novel techniques: by generating a new optimization function that
guides AutoML to fix fairness bugs without sacrificing accuracy,
and by defining a new search space based on the specific input
to accelerate the bug-fixing process. Together, these contributions
enable Fair-AutoML to effectively fix fairness bugs across various
datasets and fairness metrics. We have implemented Fair-AutoML
on top of Auto-Sklearn [29], the state-of-the-art AutoML framework.

Fair-AutoML aims to effectively address the limitations of exist-
ing bias mitigation techniques by utilizing AutoML to efficiently
repair unfair models across various datasets, models, and fairness
metrics. We conduct an extensive evaluation of Fair-AutoML using
4 widely used datasets in the fairness literature [1, 31, 62] and 16
buggy models collected from a recent study [6]. The results demon-
strate the effectiveness of our approach, as Fair-AutoML successfully
repairs 60 out of 64 buggy cases, surpassing the performance of
existing bias mitigation techniques which were only able to fix up
to 44 out of 64 bugs in the same settings and training time.

Our main contributions are the following:

e We have proposed a novel approach to fix unfairness bugs
and retain accuracy at the same time.

e We have proposed methods to generate the optimization
function automatically based on an input to make AutoML
fixing fairness bugs more efficiently.

e We have pruned the search space automatically based on an
input to fix fairness bugs faster using AutoML.

e We have implemented our approach in a SOTA AutoML,
Auto-Sklearn [29]. The artifact is available here [33].

The paper is organized as follows: §2 describes the background,
§3 presents a motivation, §4 indicates the problem definition, §5
shows the Fair-AutoML approaches, §6 presents the our evaluation,
§7 discusses the limitations and future directions of Fair-AutoML,
§8 discusses the threats to validity of Fair-AutoML, §9 concludes,
and §10 describes the artifact.

2 BACKGROUND

We begin by providing an overview of the background and related
research in the field of software fairness.

2.1 Preliminaries

2.1.1 ML Software. Given an input dataset D split into a training
dataset D;rqin and a validation dataset D,,;, a ML software system
can be abstractly viewing as mapping problem M) . : x — y from in-
puts x to outputs y by learning from D¢y 4in. ML developers aims to
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search for a hyperparameter configuration A and complementary
components c* for model M to obtain optimal fairness-accuracy
on D,,;. The complementary components can be ML algorithms
combined with a classifier i.e., pre-processing algorithms.

2.1.2  AutoML. Given the search spaces A and C for hyperparame-
ters and complementary components, AutoML aims to find Ax and
c# to obtain the lowest value of the cost function (Equation 1):

M = arg minCOSt(MA*,c*a Dval) (1
AeAceC
(A%, cx) = argminLoss(M) ¢, D¢rain) (2)
(Ae)

2.1.3  Measures. We consider a problem, where each individual in
the population has a true label in y = {0, 1}. We assume a protected
attribute z = {0, 1}, such as race, sex, age, where one label is priv-
ileged (denoted 0) and the other is unprivileged (denoted 1). The
predictions are §j € {0, 1} that need to be not only accurate with
respect to y but also fair with respect to the protected attribute z.

Accuracy Measure. Accuracy is given by the ratio of the number
of correct predictions by the total number of predictions.

Accuracy = (# True positive + # True negative) / # Total

Fairness Measure. We use four ways to define group fairness
metrics, which are widely used in fairness literature [4, 5, 30]:
The Disparate Impact (DI) is the proportion of the unprivileged
group with the favorable label divided by the proportion of the
privileged group with the favorable label [26, 64].

_ Pr[i=1]z=0]
PI= Frlg=tle=1]

The Statistical Parity Difference (SPD) quantifies the disparity be-
tween the favorable label’s probability for the unprivileged group
and the favorable label’s probability for the privileged group [12].
SPD =Pr[j=1|z=0] - Pr[g =1z =1]
The Equal Opportunity Difference (EOD) measures the disparity
between the true-positive rate of the unprivileged group and the
privileged group.
TPR, =Pr[§=1ly=1,2z=0];TPRy =Pr[j=1ly=1,z=1]
EOD =TPRy, — TPRp

The Average Absolute Odds Difference (AOD) is the mean of the
difference of true-positive rate and false-positive rate among the
unprivileged group and privileged group [37].

FPR, =P[§=1ly=0,z=0];FPR, = P[§ = 1|y = 0,z = 1]
AOD = L % |FPRu — FPRp| + |TPR, — TPRy|

To use all the metrics in the same setting, DI has been plotted in
the absolute value of the log scale, and SPD, EOD, AOD have been
plotted in absolute value [16, 42]. Thus, the bias score of a model is
measured from 0, with lower scores indicating more fairness.

2.2 Related Work

2.2.1 Bias mitigation. SE and ML researchers has developed var-
ious bias mitigation methods to increase fairness in ML software
divided into three categories [30, 40]:

Pre-processing approaches reduce bias by pre-processing the
training data. For instance, Fair-SMOTE [15] addresses data bias by
removing biased labels and balancing the distribution of positive
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and negative examples for each sensitive attribute. Reweighing [48]
decreases bias by assigning different weights to different groups
based on the degree of favoritism of a group. Disparate Impact
Remover [26] is a pre-processing bias mitigation technique that
aims to reduce bias by editing feature values.

In-processing approaches reduce bias by modifying ML models
during the training process i.e., Parfait-ML [60] present a search-
based solution to balance fairness and accuracy by tuning hyperpa-
rameter to approximate the twined Pareto curves. MAAT [19] is an
ensemble approach aimed at improving the fairness-performance
trade-off in ML software. Instead of combining models with the
same learning objectives as traditional ensemble methods, MAAT
merges models that are optimized for different goals.

Post-processing approaches change the outcome of prediction
to reduce bias. This technique unfavors privileged groups’ instances
and favors those of unprivileged groups lying around the decision
boundary. For example, Equalized Odds [37] reduces the value of
EOD by modifying the output labels. Fax-AI [35] eliminates di-
rect discrimination in machine learning models by limiting the
use of certain features, thereby preventing them from serving as
surrogates for protected attributes. Reject Option Classification [49]
prioritizes instances from the privileged group over those from the
unprivileged group that are situated on the decision boundary with
high uncertainty.

Previous efforts have made significant progress in reducing bias;
however, they come at the cost of decreased accuracy and their
results can vary depending on the datasets and fairness metrics. Our
proposal, Fair-AutoML, aims to strike a balance between accuracy
and bias reduction and demonstrate generalizability across various
datasets and metrics.

2.2.2  Search space pruning. Search space pruning involves reduc-
ing the size or complexity of the search space in optimization or
machine learning tasks. Pruning techniques are employed to accel-
erate the optimization process of AutoML by eliminating unpromis-
ing or redundant options, thus focusing computational resources
on more promising areas of the search space. For example, Feurer
et al. [29] introduce Auto-Sklearn 2.0, a novel approach aimed at
enhancing the performance of Auto-Sklearn. This advancement
involves constraining the search space to exclusively comprise it-
erative algorithms, while eliminating feature preprocessing. This
strategic adjustment streamlines the implementation of successive
halving, as it reduces the complexity to a single fidelity type: the
number of iterations. Otherwise, the incorporation of dataset sub-
sets as an alternative fidelity would require additional consideration.
Another innovative contribution comes from Cambronero et al.,
who introduces AMS [13]. This method capitalizes on the wealth of
source code repositories to streamline the search space for AutoML.
Notably, AMS harnesses the power of unspecified complementary
and functionally related API components. By leveraging these com-
ponents, the search space for AutoML is pruned effectively. Diverg-
ing from prior research efforts, Fair-AutoML distinguishes itself by
leveraging data characteristics to effectively trim down the search
space. Notably, existing techniques in search space pruning primar-
ily target accuracy enhancement within AutoML. In contrast, our
innovative pruning methodology within Fair-AutoML is uniquely
directed towards repairing unfair models.

ESEC/FSE 23, December 3-9, 2023, San Francisco, CA, USA

Inverted trade-off

V:/:_igr:n regions
3 i
I 1 T
S
8 1
Good < —c-ceeeaoo > Original Mode
trade-off = !
region !
1 Lose-lose
Model with 1 = region
mutation degree: Baseline :
100% |
Bad 1
trade-off <€~ 1 .
region Fairness’

Figure 1: Baseline fairness-accuracy trade-off [42]

2.2.3  AutoML extension. AutoML aims to automate the process
of building a high-performing ML model, but it has limitations.
It can be costly, time-consuming to train, and produces complex
models that are difficult to understand. To address these limita-
tions, software engineering researchers have developed methods to
enhance AutoML performance, such as AMS [13] and Manas [54].
AMS utilizes source code repositories to create a new search space
for AutoML, while Manas mines hand-developed models to find a
better starting point for AutoML. The goal of these methods is to
improve AutoML to maximize the accuracy. Different from these
methods, Fair-AutoML, built on top of Auto-Sklearn [29], is the first
to focus on repairing unfair models.

3 MOTIVATION

The widespread use of machine learning in software development
has brought attention to the issue of fairness in ML models. Al-
though various bias mitigation techniques have been developed
to address this issue, they have limitations. These techniques suf-
fer from a poor balance between fairness and accuracy [42], and
are not applicable to a wide range of datasets, metrics, and mod-
els [25, 26, 37]. To gain a deeper understanding of these limitations,
we evaluate six different bias mitigation techniques using four fair-
ness metrics, four datasets, and six model types. The evaluation
criteria are borrowed from Fairea [42] and are presented in Table 1.

Fairea is designed to assess the trade-off between fairness and
accuracy of bias mitigation techniques. The methodology of Fairea
is demonstrated in Figure 1, where the fairness and accuracy of
a bias mitigation technique on a dataset are displayed in a two-
dimensional coordinate system. The baseline is established by con-
necting the fairness-accuracy points of the original model and the
mitigation models on the dataset. Fairea evaluates the performance
of the mitigation technique by altering the original model predic-
tions and replacing a random subset of the predictions with other
labels. The mutation degree ranges from 10% to 100% with a step-
size of 10%. The baseline classifies the fairness-accuracy trade-off
of a bias mitigation technique into five regions: lose-lose trade-off
(lose), bad trade-off (bad), inverted trade-off (inv), good trade-off
(good), and win-win trade-off (win). A technique reducing both
accuracy and fairness would fall into the lose-lose trade-off region.
If the trade-off is worse than the baseline, it would fall into the bad
trade-off region. If the trade-off is better than the baseline, it would
fall into the good trade-off region. If a bias mitigation method simul-
taneously decreases both bias and accuracy, it would fall into the
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Table 1: Mean proportions of mitigation cases that that fall
into each mitigation region

Criteria Lose | Bad | Inv | Good | Win
DI 7% 31% 5% 43% 14%
Metric SPD 4% 36% | 6% 40% 14%
EOD 23% 15% 14% | 40% 8%
AOD 9% 30% 5% 40% 16%
Adult [44] 18% | 6% | 14% | 55% | 7%
Bank [45] 9% | 44% | 7% | 23% | 17%
Dataset
German [46] | 6% 36% | 2% 46% 10%
Titanic [47] | 11% | 26% | 3% | 43% | 17%
Mean 11% 28% | 7% 41% 13%

Bad: bad trade-off region, Lose: lose-lose trade-off region, Inv: inverted trade-off
region, Good: good trade-off region, Win: win-win trade-off region.
inverted trade-off region. If the technique improves both accuracy

and fairness, it would fall into the win-win trade-off region.

The results of the region classification of six bias mitigation tech-
niques - Reweighing [48], Disparate Impact Remover [26], Parfait-
ML [60], Equalized Odds [37], FaX-AI [35], Reject Option Classifi-
cation [49] - are shown in Table 1. The evaluation was conducted
on 64 buggy cases using different criteria such as fairness metrics
and datasets. The case is identified as buggy when it falls below the
Fairea baseline. The mean percentage of each technique falling into
the corresponding regions is listed in each cell. The mean results
provide a general overview of the current state of bias mitigation
techniques. Further details on the performance of each individual
bias mitigation technique can be found in Table 3 of our evaluation.

Table 1 illustrates that the majority of existing bias mitigation
techniques have a poor fairness-accuracy trade-off across different
datasets, fairness metrics, and classification models. Specifically,
39% of the cases show that these techniques perform worse than
the original model, with 28% of the cases resulting in a poor trade-
off and 11% resulting in a decrease in accuracy and an increase
in bias. Additionally, Table 1 shows that the performance of these
techniques varies depending on the input, as demonstrated by the
different results obtained when using different datasets or fainess
metrics [25, 26, 37]. For example, the bias mitigation techniques
had a high performance in 62% of the cases using the Adult dataset
(55% for good trade-off region and 7% for win-win trade-off region),
but only achieved 40% good effectiveness in the Bank dataset.

Hort et al. [42] have demonstrated that through proper parameter
tuning, it is possible to address fairness issues in machine learning
models without sacrificing accuracy. However, determining the
optimal fairness-accuracy trade-off can be a challenge. Although
AutoML can be effective in finding the best parameter settings, it
does not specifically address bias reduction. This motivates the de-
velopment of Fair-AutoML, a novel approach that utilizes Bayesian
optimization to tune parameters and address fairness issues with-
out hindering accuracy. Fair-AutoML is evaluated for its generality
across different fairness metrics and datasets, and unlike other bias
mitigation methods, it can be applied to any dataset or metric.

This work focuses on improving fairness quantitatively of buggy
models instead of targeting a specific type of datasets and models.
Our method is general since we utilize the power of AutoML to try
as many configurations as possible to obtain the optimal fix; there-
fore, our method can work on various types of datasets and metrics.
The rest of this work describes our approach, Fair-AutoML, that
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addresses the limitations of both existing bias mitigation methods
and AutoML. As a demonstration, Fair-AutoML achieved good per-
formance in 100% of the 16 buggy cases in the Adult dataset, while
75% of the mitigation cases showed a good fairness-accuracy trade-
off, and the remaining 25% exhibited an improvement in accuracy
without sacrificing bias reduction.

4 PROBLEM DEFINITION

This work aims to utilize AutoML to address issues of unfairness in
ML software by finding a new set of configurations for the model
that achieves optimal fairness-accuracy trade-off. Because fairness
is an additional consideration beyond accuracy, the problem be-
comes a multi-objective optimization problem, requiring a new cost
function that can optimize both fairness and accuracy simultane-
ously. To achieve this, we use a technique called weighted-sum
scalarization (Equation 3) [23], which allows us to weigh the impor-
tance of different objectives and create a single scalar cost function.

A= Z ci * fi (©)
i=1

where, f; denotes the relative weight of importance of c;:

D=1 @)
i=1

In this work, we use a cost function (or objective function) that
is a weighted-sum scalarization of two decision criteria: bias and
accuracy. This cost function, as shown in Equation 5, assign weights
to bias and accuracy in the cost function allow us to adjust the trade-
off between the two criteria according to the specific problems:

Cost(Mye, D(2)) =+ f+(1-p) *(1-a) ®)
We analyze the output of the buggy ML software (including bias
and accuracy) to create a suitable cost function for each input.
By analyzing the output, we are able to automatically estimate
the weights of the cost function in order to balance fairness and
accuracy for a specific problem. To the best of our knowledge, this
is the first work that applies output analysis of the software to
AutoML to repair unfair ML models.

However, using AutoML can be costly and time-consuming. To
address this issue, we propose a novel method that automatically
create new search spaces Ax and Cx based on different inputs to
accelerate the bug-fixing process of AutoML. These new search
spaces are smaller in size compared to the original ones, [A*| < |A]
and |C | < |C|. Particularly, as shown in Equation 6, Fair-AutoML
takes as input a ML model and a dataset with a protected attribute
z, and aims to find A+ and c* in the smaller search space, in order
to minimize the cost value.

M= argmin Cost(M) s, Dyar(2)) (6)

Ax€A*,cx€C*

The technique of search space pruning in Fair-AutoML utilizes data
characteristics to enhance bug-fixing efficiency. By shrinking the
search spaces based on input analysis, Fair-AutoML can find better
solutions more quickly. A set of predefined modifications to the
ML model are pre-built and used as a new search space for new
input datasets, reducing the time needed to fix buggy models. Our
approach is based on previous works in AutoML [29], but updated
and modified to tackle bias issues. To the best of our knowledge,
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Figure 2: An Overview of Fair-AutoML Approach

we are the first to propose a search space pruning technique for
fairness-aware AutoML.

5 FAIR-AUTOML

This section describes a detailed description of key components of
Fair-AutoML (Figure 2): the dynamic optimization function (steps
1-3) and the search space pruning (steps 4-13).

5.1 Dynamic Optimization for Bias Elimination

We strive to eliminate bias in unfair models by utilizing Equation 5
as the objective function and determining the optimal value of § to
minimize the cost function. In this section, we propose an approach
to automatically estimate the optimal value of § for a specific dataset
and a targeted model. This method ensures efficient correction of
fairness issues while maintaining high predictive accuracy.

5.1.1 Upper bound of the cost function. To estimate the optimal
value of f, the first step is to determine the upper bound of the cost
function. This can be done by using a "pseudo-model", which is
the 100% mutation degree model [42], as shown in the Figure 1. In
other words, the pseudo-model always achieves the accuracy on
any binary classification problem as follows:

ap = max(P(Y =1),P(Y =0)) 7)

Given an input, the pseudo-model achieves an accuracy of ag
and a bias value of fj on that input. We define the cost function,
Cost, of the buggy ML model with accuracy a and bias value f on
the input. As AutoML tries different hyperparameter configurations
to fix the model, the values of a and f may change over time. The
upper bound of the cost function is defined as Equations 8 and 9:

Cost(M) ¢, D(2)) < p+ fo+ (1 - ) * (1 - ao) ®

Sprf+(1-pfr(1-a <fxfo+(1-p)*(1-a) (9
The upper bound of the cost function is defined with the goal of
repairing a buggy model so that its performance falls within a
good/win-win trade-off region of fairness and accuracy. In other
words, the accuracy of the repaired model must be higher than the
accuracy of the pseudo-model. The repaired model must be better
than the pseudo-model in terms of the cost function’s value. Since
the pseudo-model has zero bias (fy = 0), the upper bound of the
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cost function is defined as follows (Equation 10):
Prf+A=p)x(1-a) <(1-p)*(1-ao) (10)

5.1.2 Lower bound of f. In this work, we desire to optimize the
value of f3 in order to minimize bias as much as possible. The cost
function used by Fair-AutoML is designed to balance accuracy and
fairness, and increasing f will place more emphasis on reducing
bias. However, simply setting § to its highest possible value is
not a viable option, as it may lead to low predictive accuracy and
overfitting. We cannot accept models with poor predictive accuracy
regardless of their low bias [36, 57]. To overcome this challenge,
we aim to find the lower bound of f, which can be done based on
the upper bound of the cost function. From Equation 10, we get:
a—aq
B < T—atf (11)
a—ag
a—-ap+f’
tion function Cost will always meet its upper bound condition. If
the value of  always satisfies the upper bound condition of the cost
function regardless of accuracy and fairness, we can obtain a better
optimization function by either increasing accuracy or decreasing
bias. In this case, we cannot guide AutoML to produce a lower bias.
Therefore, to guide AutoML produces an output with improved
fairness, we set a lower bound for f as Equation 12:

B>

However, if the value of § is smaller than the optimiza-

a—ao
a-ap+f

The intuition being that our method aims to increase the chance
for AutoML to achieve better fairness. However, by setting f <
af;:i 7 and a > qgp (we aim to find a model which has better
accuracy than the pseudo-model), any value of bias (f) can satisfy
upper bound condition of the cost function, which lower chance
to obtain fairer models of AutoML. To increase this chance, we set
B> a::if and a > ag. In this case, AutoML need to find better
models that has lower bias to satisfy Equation 10. In other words,
this lower bound condition indirectly forces bayesian optimization

to search for lower bias models.

(12)

5.1.3 P estimation. The final step is estimating the value of f
based on its lower bound condition. Suppose that the buggy model
achieves an accuracy of a; and a bias value of f; on that input. From
the begining, we have: a = a; and f = f. In that time, the lower

: _ _a1—Q .
bound of fis L = Zi—asf SO We have:

B=L+kkel[01-L] (13)

We present a greedy algorithm for estimating the value of f, which
is detailed in Algorithm 1. Given a dataset D with a protected
attribute z and a buggy model M (Line 1), we start by measuring
the lower bound of f. Next, we run Fair-AutoML on the input under
time constraint ¢ with a value of f set to #ﬁffl (Line 2-8). As
the algorithm searches, whenever Fair-AutoML finds a candidate
model that meets the condition Cost < Costy (Lines 10-12), the
value of f is slightly increased by a (Line 10-12). If after N tries,
Fair-AutoML cannot find a model that satisfies the condition, the
final value of f is set to f = - a for the remaining search time
to prevent overfitting from an excessively high value of § (Lines
13-15). The algorithm returns the best model found (Line 16).
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Algorithm 1 Greedy Weight Identifier

Algorithm 2 Database Building

1: Input: a dataset D with protected attribute z, buggy model M
hyperparametered by A, the increment value «, the searching
time ¢ and the threshold N

X _ 41—
2 f= ar—aotfi

3 Cost(My ., D(2)) =f*f+(1-p)*(1-a)
4 Costo(My,c, D(2)) = (1- ) = (1-ao)
5. count = 0
6: checker = False
7: while t do
8 M, e+ = argminCost(M, ., D(z))
AeEA
9: count = count + 1
10: if Cost(M; ., D(z)) < Costo(M; ., D(z)) then
11: if checker = False then
12: p=F+a
13: count=0
14: if count > N and checker = False then
15: f=p-a
16: checker = True

17: return M, *

5.2 Search Space Pruning for Efficient Bias
Elimination

We propose a solution to speed up the Bayesian optimization pro-
cess in Fair-AutoML by implementing search space pruning. This
technique takes advantage of data characteristics to automatically
reduce the size of the search space in AutoML, thus improving its
efficiency. Our approach includes two phases: the offline phase and
the online phase. The offline phase trains a set of inputs multiple
times to gather a collection of hyperparameters and complementary
components for each input, forming a pre-built search space. In the
online phase, when a new input is encountered, it is matched against
the inputs stored in our database to find a matching pre-built search
space, which is then utilized to repair the buggy model. This ap-
proach effectively replaces the original search space of Fair-AutoML,
making the Bayesian optimization process much faster. Search space
pruning has already been successfully applied before [13, 28]; how-
ever, this is the first application of data characteristics to prune the
search space for fairness-aware AutoML.

5.2.1 Offline Phase. This phase constructs a set of search spaces for
Fair-AutoML based on different inputs. It is important to note that
the input format in the offline phase must match that of the online
phase, which includes a dataset with a protected attribute and a
ML model. This ensures that the pre-built search spaces created in
the offline phase can be effectively utilized in the online phase.

Input. In the offline phase, we collect a set of inputs to build
search spaces for Fair-AutoML. The inputs are obtained as follows.
Firstly, we mine machine learning datasets from OpenML, consider-
ing only the 3425 active datasets that have been verified to work
properly. Secondly, to ensure that the mined datasets are relevant
to the fairness problem, we only collect datasets that contain at
least one of the following attributes: age, sex, race [17]. In total, we
collected 231 fairness datasets. Thirdly, for each mined dataset, we
use all available protected attributes. For example, when dealing
with datasets that contain multiple protected attributes, such as

1: Input: a dataset D with protected attribute z, a model M with
default hyperparameters A. Running time t.

2:d=0

3 dev=1

4: database = {}

5. space = {}

6: count =0

7: while count < n do

8: count = count + 1

9: while t do

10: M) * = arg minCost (M, D(z))

11: d=dU M=

12: kBestPipelines = top_k(d)

13: mBestComponents = top_m(kBestPipelines)

14: for model € kBestPipelines do

15: for para € model do

16: space[para] = space[para]U[para.val]

17: for para € space do

18: if para is numerical then

19: no_outliers = 0
20: for i € space[para] do
21: if |i — space[para]| < dev = o(space[para]) then
22: no_outliers = no_outliers U space[para][i]
23: space[para] = [min(no_outliers), max(no_outliers)]

24: database[input] = (space, mBestComponents)
25: return database

the Adult dataset that includes sex and race as protected attributes,
we treat them as distinct inputs for the dataset. Finally, we use the
default values for the hyperparameters of the input ML model in
the offline phase, as we do not know the specific values that will be
used in the online phase.

Database building. To build a pre-defined search space database,
we use the algorithm outlined in Algorithm 2 to obtain a pre-built
search space for each collected input in order to fix the buggy model.
This process involves training a fairness dataset with a specific pro-
tected attribute and ML model multiple times using Fair-AutoML,
collecting the top k best pipelines found, and extracting parameters
from these pipelines. In particular, we use Fair-AutoML to train the
fairness dataset with a specific protected attribute and a ML model
for n iterations (Line 7-11). We then gather the top k best pipelines,
including a classifier and complementary components, found by
Fair-AutoML according to the optimization function’s value (Line
12). This results in k * n total pipelines. From these pipelines, we
extract and store the m most frequently used complementary com-
ponents in the database (Line 13). For each classifier parameter, we
also store its value (Lines 14-16). This results in k+n values being
stored for each hyperparameter. If a hyperparameter is categorical
and its values are sampled from a set of different values, we store all
its unique values in the database. If a hyperparameter is numerical
and its values are sampled from a uniform distribution, we remove
any outliers and store the range of values from the minimum to the
maximum in the database (Lines 17-23). After this process, we have
collected the pre-built search space for the input (Lines 24-25). We
believe that two similar inputs may have similar buggy models and
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Algorithm 3 Input Matching

1: Input: a input dataset D with the protected attribute z, the
number of data points p, the number of features f, lower bound
L, a buggy model M, and a database.

2: dist = {}

3: for d; in database do

4 dist[di] = |fi = fl + |pi — pl

s: similarDataset = min(dist, key=dist.get)
6: dist = {}

7: for z; in similarDataset do

8: dist[d;] = |L; — L|

9: similarAttribute = min(dist, key=dist.get)

10: similarModel = M with default parameter
11: return similarDataset, similarAttribute, similarModel

fixes, so the pre-built search space is built based on the best mod-
els found by Fair-AutoML from similar inputs, making it a reliable
solution for fixing buggy models.

5.2.2  Online Phase. This phase utilizes a pre-built search space
from the database to fix a buggy model for a given dataset by
replacing the original search space with the pre-built one.

Search space pruning. Our approach of search space pruning in
Fair-AutoML improves the bug fixing performance by reducing the
size of the hyperparameter tuning space. Algorithm 3 is used to
match the input dataset, protected attribute, and ML model to the
most similar input in the database. Firstly, data characteristics such
as the number of data points and features are used to match the new
dataset with the most similar one in the database [28]. L1 distance
is computed between the new dataset and each mined dataset in
the space of data characteristics to determine the closest match.
We consider that the most similar dataset to the new dataset is
the nearest one (Line 2-5). Secondly, we compute the lower bound
ﬁﬁfﬁ of § of the new input. We then estimate the lower
bound of S of all the protected attributes of the matched dataset
and select the attribute whose lower bound is closest to L (Line 6-9).
Lastly, two similar inputs must use the same ML algorithm (Line 10).
The matching process is carried out in the order of dataset matching,
protected attribute matching, and ML algorithm matching. The pre-
built search space of the similar input is then used as the new search
space for the new input.

6 EVALUATION

In this section, we describe the design of the experiments to evalu-
ate the efficient of Fair-AutoML. We first pose research questions
and discuss the experimental details. Then, we answer research
questions regarding the efficiency and adaptability of Fair-AutoML.

RQ1: Is Fair-AutoML effective in fixing fairness bugs? To
answer this question, we quantify the number of fairness bugs
that Fair-AutoML is able to repair compared to existing methods,
allowing us to assess the capability of an AutoML system in fixing
fairness issues.

RQ2: Is Fair-AutoML more adaptable than existing bias
mitigation techniques? The adaptability of a bias mitigation tech-
nique indicates its performance across a diverse range of dataset-
s/metrics. So, we analyze the effectiveness of Fair-AutoML and
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existing bias mitigation techniques on different dataset/metrics to
assess the adaptability of an AutoML system on fix fairness bugs.

RQ3: Are dynamic optimization function and search space
pruning effective in fixing fairness bugs? To answer this ques-
tion, we assess the performance of Auto-Sklearn, both with and
without the dynamic optimization function and search space prun-
ing, to demonstrate the impact of each proposed approach.

6.1 Experiment

6.1.1 Benchmarks. We evaluated our method using real-world fair-
ness bugs sourced from a recent empirical study [6], with our bench-
mark consisting of 16 models collected from Kaggle covering five
distinct types: XGBoost (XGB), Random Forest (RF), Logistic Re-
gression (LRG), Gradient Boosting (GBC), Support Vector Machine
(SVC). We use four popular datasets for our evaluation [10, 61, 62]:

The Adult Census (race) [44] comprised of 32,561 observations
and 12 features that capture the financial information of individuals
from the 1994 U.S. census. The objective is to predict whether an
individual earns an annual income greater than 50K.

The Bank Marketing (age) [45] has 41,188 data points with 20
features including information on direct marketing campaigns of
a Portuguese banking institution. The classification task aims to
identify whether the client will subscribe to a term deposit.

The German Credit (sex) [46] has 1000 observations with 21
features containing credit information to predict good or bad credit.

The Titanic (sex) [47] has 891 data points with 10 features con-
taining individual information of Titanic passengers. The dataset is
used to predict who survived the Titanic shipwreck.

6.1.2  Evaluated Learning Techniques. We examined the perfor-
mance of Fair-AutoML and other supervised learning methods ad-
dressing discrimination in binary classification including all three
types of bias mitigation techniques and Auto-ML techniques.

Bias mitigation methods. We investigate all three types of bias
mitigation methods: pre-processing, in-processing, post-processing.
We select widely-studied bias mitigation methods for each category:

o The pre-processing includes Reweighing (R) [48], Disparate
Impact Remover (DIR) [26].

o The in-processing includes Parfait-ML (PML) [60].

e The post-processing includes Equalized Odds (EO) [37],
FaX-AI (FAX) [35], Reject Option Classification (ROC) [49].

Auto-Sklearn. We explore the efficiency of Auto-Sklearn (AS) [29]
on mitigating bias in unfair model. Although, Auto-Sklearn does
not seek to decrease bias, we compare its performance with Fair-
AutoML to demonstrate the efficient of our techniques in guiding
Auto-ML to repair fairness bugs.

Fair-AutoML. We create 4 versions of Fair-AutoML in this evalu-
ation representing for Fair-AutoML with different cost functions:

e T1uses f* DI+ (1— f) * (1 — accuracy) as a cost function.
e T2 uses f+SPD+ (1— f) = (1 —accuracy) as a cost function.
e T3 uses f+EOD + (1 - ) * (1 —accuracy) as a cost function.
e T4 uses f* AOD + (1 — ) * (1 — accuracy) as a cost function.
6.1.3 Experimental Configuration. Experiments were conducted
using Python 3.6 on Intel Skylake 6140 processors. Fair-AutoML
leverages the capabilities of Auto-Sklearn [29], taking advantage of
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Table 2: Trade-off assessment results of Fair-AutoML, Auto-Sklearn, and mitigation techniques

Model[Metric] T1 | T2 | T3 | T4 | AS R | DIR [PML| EO | FAX [ROC |[Model[Metric| T1 | T2 | T3 | T4 | AS R [ DIR [PML| EO | FAX [ROC
Acc {0.010]0.001 | 0.005 |-0.003|0.016 | 0.009 | 0.004 | 0.008 [-0.006{ 0.002 |-0.047 Acc |-0.013]-0.022(-0.009{-0.032(-0.001{-0.056{-0.055|-0.054(-0.057{-0.057|-0.061

DI |0.096/0.011{0.118|0.095|0.058(0.337| inv | inv |0.292|0.000|0.445 DI [0.190{0.4100.212|0.179{0.040 | 0.569 | 0.326 | lose |0.375| bad |0.318

«»| RF | SPD |0.023|0.024(0.038|0.048 [0.016|0.055| inv | inv [0.047 | inv |0.055|| LRG | SPD |0.054|0.075|0.029 [0.0590.005 |0.097|0.079 | bad [0.0830.076|0.072
é EOD (0.019| inv |0.014|0.020|0.008| inv | inv | inv |0.041| inv | lose EOD [0.048|0.020 | 0.044|0.049 | lose [0.057|0.056 |0.060 | 0.067 | 0.052 | 0.059
& AOD [0.028| inv [0.0300.0350.021(0.005/0.001| inv |0.0510.007| bad AOD |0.085|0.075 | 0.079 | 0.089 | 0.039 | 0.096 | 0.094 | 0.091 | 0.103 | 0.094 | 0.095
= Acc |-0.019|-0.052{-0.017{-0.015/-0.001(-0.001{-0.018|-0.005|-0.035{ 0.001 |-0.056 Acc |-0.023(-0.046{-0.014{-0.034| 0.002 {-0.006|-0.011|-0.034(-0.018|-0.001|-0.059
5 DI |0.183[0.148|0.143 | 0.156 | 0.004 | 0.378 | lose | lose |0.330| inv |[0.456 DI |0.124(0.188|0.104|0.147 | inv |0.387|0.027 | lose |0.227|0.0760.438
< XGB | SPD |0.028|0.074{0.0230.030 | 0.003 | 0.058 | lose | lose |0.051| inv |0.054 || GBC | SPD | bad |0.055|0.012|0.029| inv [0.058| bad | lose |0.035]|0.011 |0.047
EOD [0.036 | 0.041 [0.037 | 0.030 | lose | lose | lose |0.003|0.044| inv | lose EOD | bad [0.025]|0.013|0.024| inv | lose | lose | lose |0.037]0.010 | lose

AOD |0.055|0.064 | 0.047 [ 0.053 | 0.017 | 0.009 | lose | 0.010 | 0.066 |0.020| bad AOD |0.037 [0.0550.041 | 0.050 |0.018]0.031 [ 0.031 | lose |0.063|0.041| bad

Acc |-0.012(-0.023/-0.001(-0.007| 0.000 |-0.008(-0.014{-0.008|-0.034| 0.001 |-0.082 Acc |-0.001(-0.008| 0.000 | 0.002 | 0.000 | 0.001 [-0.080{-0.005|-0.075| 0.000 |-0.143

DI [0.103]0.224{0.031|0.038|0.000 |0.210 | lose | bad | bad |0.129| bad DI [0.158|0.236 [0.166|0.097| lose [0.312| bad | bad | bad [0.016| bad

é‘a RF | SPD [0.035| bad |0.007 [0.027 | lose [0.065| bad [0.031| bad |0.021| bad ||XGB2| SPD |0.032|0.051|0.028/0.021| lose |0.053| bad | bad | bad |0.002| bad
= EOD | lose | bad | lose | lose | lose | lose | lose [0.029| bad |0.001| bad EOD | lose | lose |0.003(0.012| lose | inv | inv |0.054| bad | inv | inv
"é AOD |0.033/0.039|0.032|0.032|0.016 | bad [0.020|0.046| bad |0.031| bad AOD |0.023/0.018 [0.026|0.027| lose | inv | inv |0.040| bad [0.014| bad
= Acc [-0.002(0.0020.007 | 0.000 |-0.001-0.007{-0.019{-0.005(-0.058| 0.003 [-0.018 Acc |-0.003|-0.007(0.014 [ 0.011 |-0.002( 0.000 |[-0.066|-0.034|-0.058| 0.001 |-0.104
é DI [0.098]0.348(0.114(0.092| lose |0.222|0.174| bad | bad |0.067|0.183 DI [0.010|0.069(0.011/0.014| lose [0.332| bad | bad | bad | inv | bad
& |XGB1| SPD |0.023|0.062|0.023|0.020| lose |0.042| bad [0.029| bad |0.013| bad || GBC | SPD | lose [0.028| inv | inv | lose |0.052| bad | bad | bad | inv | bad
EOD [0.021| inv |0.011|0.018| lose | lose | lose [0.064| bad | inv | lose EOD | lose | lose | inv | inv | lose | inv | lose | bad | bad | inv | inv

AOD | 0.043[0.040(0.043|0.046| lose | lose |0.038|0.054| bad [0.020|0.043 AOD |0.014 [ 0.0230.027(0.025| lose |0.017| lose | bad | bad |0.012| bad

Acc |-0.020|-0.027{-0.012|-0.012|-0.011(-0.016|-0.007|-0.016|-0.529|-0.004|-0.446 Acc |-0.011{-0.022(-0.019{-0.015|-0.007|-0.013|-0.009|-0.044|-0.042|-0.012|-0.203

DI bad [0.076 | lose |0.060 | lose | 0.066 |0.039|0.076|0.095| bad | bad DI [0.109]0.130{0.103|0.108 [ 0.035 | bad | bad | bad | bad [0.111| bad

=| RF | SPD | bad [0.052 | lose |0.039 | lose |0.044|0.025|0.052|0.068 | bad | bad || SVC | SPD |0.077 |0.092{0.070 |0.078|0.021 | bad | bad | bad | bad |0.078| bad
—ﬂg EOD | 0.044|0.062 |0.045 | 0.059 | 0.033 | 0.054 | 0.042 [ 0.079 | 0.064 | 0.023 | bad EOD (0.101{0.101 {0.101|0.081 [ 0.068 | 0.039|0.039 | bad |0.107 [ 0.092| bad
Qé AOD | lose | bad | lose | lose | lose | lose | lose |0.0150.044 | lose | bad AOD |0.019{0.034| bad |0.027| lose | lose | lose | bad [0.059|0.016| bad
< Acc {0.003]-0.009{-0.014{-0.017|-0.016(-0.028]-0.026| 0.005 [-0.043|-0.006|-0.443 Acc [0.001[0.000 [ 0.010 {-0.005| 0.000 | 0.005 | 0.009 [-0.010{-0.002{-0.049|-0.420
g DI [0.070]0.091|0.119|0.101| bad | bad | bad [0.051| bad |0.035| lose DI (0.112]0.104(0.065|0.123 | 0.038 [0.071|0.046(0.160 | 0.150 [ 0.135| bad
O| XGB | SPD |0.050]0.065 [0.0820.069 | bad |0.060 | 0.048 |0.038| bad [0.025| bad || KNN | SPD [0.072(0.075|0.043|0.090|0.027 [0.047|0.028|0.120 | 0.111{0.098 | bad
EOD (0.069|0.074 |0.073 | 0.083 | 0.036 | 0.064 | 0.064 [0.103| 0.091 | 0.055 | bad EOD |0.104{0.080|0.085| 0.076 | 0.066 [0.066|0.066|0.128 | 0.115| 0.002 | bad

AOD |0.020(0.020 | 0.041 [ 0.037 | lose | bad | bad |0.015|0.064 | bad | bad AOD [0.017|0.011| inv |0.034| lose | inv | inv |0.072|0.065 |0.035| bad

Acc |-0.098|-0.130{-0.129|-0.128|-0.014(-0.166|-0.021|-0.010|-0.179| 0.005 |-0.178 Acc |-0.035(-0.076|-0.136|-0.126| 0.065 |-0.139|-0.015-0.048|-0.189|-0.023|-0.165

DI |1.549(1.864|1.848|1.849| lose |0.536|0.160| lose |2.024|0.449|2.303 DI [0.501{0.885|1.4111.303|0.092|0.385|0.038 | bad |1.769| bad |1.991

RF | SPD [0.395|0.571{0.551[0.545| lose | bad | bad | lose | bad |0.153]0.651 || GBC | SPD |0.121|0.275|0.462|0.447 | inv | bad | bad |0.285| bad |0.1870.641

° EOD [0.274|0.404 [ 0.445 | 0.446 | lose | lose | lose | lose | 0.481(0.045| bad EOD | bad | bad | bad | bad [0.058| lose | lose |0.280| bad |0.116|0.426
‘E AOD |0.477 [ 0.556 [ 0.534 | 0.601 | 0.062 | bad |0.133|0.097 | 0.618 [0.336| bad AOD |0.183[0.3050.467 | 0.445|0.176| bad |0.081|0.374|0.568 | 0.306 | bad
ﬁ Acc |-0.021]-0.084[-0.091{ 0.000 [-0.007(-0.159{ 0.015 | 0.009 [-0.227{-0.023|-0.152 Acc |-0.079(-0.101{-0.099{-0.110|-0.019{-0.129]-0.006 0.008 [-0.157{ 0.009 |-0.159
DI |0.743[1.619|1.673 [0.149|0.086 | 0.597 [0.214|0.643| bad | bad |2.557 DI |1.364(1.701|1.470|1.663 | lose |0.671(0.203|0.539|1.811| Inv |2.172

LRG | SPD [0.101]0.552{0.597 [0.113|0.063 | bad |0.007(0.115| bad |0.312|0.785|| XGB | SPD |0.280 |0.542|0.406 | 0.491| lose | bad [0.065|0.051{0.567 | Inv |0.642
EOD | bad |0.467{0.557 [0.021| lose | lose |0.009[0.171| bad |0.275 |0.623 EOD | bad |0.400|0.285|0.389 | lose | lose | lose [0.058|0.473| Inv |0.423

AOD |0.140 | 0.562 [ 0.632]0.179|0.101 | bad [0.067|0.214| bad |0.420| bad AOD |0.300 | 0.5320.356 | 0.524 | lose | bad [0.174|0.181|0.585|0.062| bad

Each cell shows the accuracy/bias difference between the original and repaired models. For accuracy, accuracy difference = new accuracy - old accuracy. For bias (DI, SPD, EOD,
AOD), bias difference = old bias - new bias. Thus, a positive value indicates an improvement in bias/accuracy in the repaired model compared to the original and vice versa. For bias,
if a method falls into either the good region (regular numbers) or the win-win region (bold numbers), the bias difference value will be provided. If it falls into any other region, the
region type will be indicated. The values highlighted in blue denote the most effective bug fixing method. The data from this table is divided and analyzed in depth in Tables 3, 4, 6.

Table 3: Proportion of Fair-AutoML, Auto-Sklearn, and mitigation techniques that fall into each mitigation region
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25%50% 0% 25% 0%
19%13% 0% 43% 25%
19% 6% 0% 25%50%
0% 44% 0% 56% 0%
0% 13%19% 38% 30%
0% 31% 0% 69% 0%

Avg

7% 31% 5% 43% 14%

4% 36% 6% 40% 14%

23%15%14%40% 8%

9% 30% 5% 40% 16%

18% 6% 14% 55% 1%

9%

44%

7% 23%17%)

6% 36%2%46% 10%

11%26% 3% 43%17%

The proportions in this table are determined based on the data presented in Table 2: proportion for fairness metric = # buggy cases of a metric fall into a reg

that metric, proportion for dataset = # buggy cases fall of a dataset into a region / # buggy cases of that dataset.

its automatic optimization of the best ML model for a given dataset.
We tailored Auto-Sklearn to better fit our method in two ways: (1) its
search space was restricted to the type of the faulty classifier - for
example, if the faulty classifier is Random Forest, Auto-Sklearn will

on / # buggy cases of

only optimize the hyperparameters and identify complementary
components for that specific classifier. (2) The faulty model was
set as the default model for Auto-Sklearn. These modifications are
features of Auto-Sklearn that we utilized.
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Methodology Configuration. We selected an increment value
of a for f§ of 0.05 to balance the time between f search and model
fixing processes. The user can opt for a more accurate value of
by decreasing the increment value and using a longer search time.
To conduct search space pruning, we ran Fair-AutoML 10 times (n)
with a 1-hour search time (t) to gather the best ML pipelines [9].
From each run, we collected the top 10 pipelines (k), resulting in
100 models per input. This pre-built search space includes a set of
hyperparameters and the top 3 most frequently used complemen-
tary components (m). We have explored other parameter settings,
but these have proven to provide optimal results.

Evaluation Configuration. We evaluate each tool on each
buggy scenario 10 times using a random re-split of the data based
on a 7:3 train-test split ratio [42]. The runtime for each run of Fair-
AutoML and Auto-Sklearn is approximately one hour [28, 29]. The
mean performance of each method is calculated as the average of
the 10 runs, which is a commonly used practice in the fairness
literature [4, 6, 14]. Our evaluation targets fixing 16 buggy models
for 4 fairness metrics, resulting in a total of 64 buggy cases.

6.2 Effectiveness (RQ1)

We evaluate the effectiveness of Fair-AutoML by comparing it with
Auto-Sklearn and existing bias mitigation techniques based on
Fairea baseline. The comparisons are based on the following rules:

e Rule 1: A model is considered successfully repaired when
its post-mitigation mean accuracy and fairness falls into
win-win/good trade-off regions.

e Rule 2: A model that falls in the win-win region is always
better than one falling into any other region.

e Rule 3: If two models are in the same trade-off region, the
one with lower bias is preferred.

Our comparison rules for bug-fixing performance were estab-
lished based on Fairea and our evaluations. Firstly, we define a
successful bug fix as a fixed model that falls within the win-win
or good trade-off regions, as these regions demonstrate improved
fairness-accuracy trade-offs compared to the baseline in Fairea.
Secondly, when comparing successfully fixed models in different
trade-off regions (win-win versus good), we consider the win-win
models to be superior as they offer improved fairness and accuracy.
Lastly, for models that fall within the same trade-off region, the
one with lower bias is deemed to be better, as our goal is to fix
unfair models. Our evaluations then consider two aspects of the
bug-fixing performance: the number of successful bug fixes and the
number of times a bias mitigation method outperforms others.

6.2.1 Is Fair-AutoML effective in fixing fairness bugs? The results
presented in Table 4 show that Fair-AutoML was effective in re-
solving 60 out of 64 (94%) fairness bugs, while Auto-Sklearn only
fixed 28 out of 64 (44%) and bias mitigation techniques resolved
up to 44 out of 64 (69%). This indicates that Auto-Sklearn alone
was not effective in reducing bias, however, our methods were suc-
cessful in enhancing AutoML to repair fairness bugs. Moreover,
Fair-AutoML was able to repair more cases than other bias mitiga-
tion techniques, which often resulted in lower accuracy for lower
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Table 4: Fair-AutoML (FA) vs bias mitigation methods in
fixing fairness bugs

FA AS R DIR PML EO FAX ROC
# bugs fixed 60 28 35 30 36 37 44 23
# best models 19 4 9 0 10 9 9 3
The results in this table are derived from the data presented in Table 2. The row # bugs
fixed indicates the number of cases where the technique falls into either the win-win
or good trade-off region. The row # best models represents the number of instances
where a bias mitigation technique outperforms all other methods.

bias. This highlights the effectiveness of our approaches in guid-
ing AutoML towards repairing models for better trade-off between
fairness and accuracy compared to the Fairea baseline.

6.2.2 Does Fair-AutoML outperform bias reduction techniques?
Fair-AutoML demonstrated superior performance in fixing fairness
bugs compared to other bias mitigation techniques. The results
presented in Table 4 indicate that 63 out of 64 buggy cases were
fixed by Fair-AutoML, Auto-Sklearn, or bias mitigation techniques.
Among the repaired buggy cases, Fair-AutoML outperformed other
techniques 19 times (30%). On the other hand, Auto-Sklearn outper-
formed Fair-AutoML and bias mitigation techniques only 4 times
(6%), and bias mitigation techniques outperformed other techniques
10 times at most (16%). This highlights that Fair-AutoML is often
more effective in improving fairness and accuracy simultaneously
or reducing more bias than other bias mitigation techniques.

6.3 Adaptability (RQ2)

To assess the adaptability of Fair-AutoML, we measure the propor-
tions of each evaluated tools that fall into each fairness-accuracy
trade-off region in different categories: fairness metric and dataset
(Table 3). To further evaluate the adaptability of Fair-AutoML, in-
stead of using our prepared models and datasets, we used the bench-
mark [59] of Parfait-ML to evaluate Fair-AutoML. Particularly, we
evaluate Fair-AutoML and Parfait-ML on three different ML models
(Decision Tree, Logistic Regression, Random Forest) on two datasets
(Adult Census and COMPAS) (Table 5 and Figure 3).

6.3.1 Is Fair-AutoML more adaptable than existing bias mitigation
techniques and Auto-Sklearn? Table 3 shows Fair-AutoML demon-
strates exceptional repair capabilities across various datasets and
fairness metrics, with a high rate of success in fixing buggy models.
For example, in the Adult Census, Bank Marketing, German Credit,
and Titanic datasets, Fair-AutoML (T4) repaired 100%, 82%, 94%, and
94% of the models, respectively. Similarly, in the DI, SPD, EOD, and
AOD fairness metrics, Fair-AutoML (T4) achieved repair rates of
100%, 94%, 82%, and 94%. On the other hand, bias mitigation meth-
ods often show inconsistent results. For instance, Equalized Odds
repaired all buggy cases in Adult Census but none in Bank Marketing.
In fact, our methods effectively guides AutoML in hyperparameter
tuning to reduce bias, leading to superior repair performance across
different datasets and metrics.

6.3.2 Is Fair-AutoML effective in fixing fairness bugs on other bias
mitigation methods benchmark? Based on evaluation of Parfait-
ML [60], we only use accuracy and EOD as evaluation metrics
for this evaluation. To make a fair comparison with Parfait-ML,
we utilize the version of Fair-AutoML that incorporates EOD and
accuracy as its cost function (T3). The results are displayed in Table
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Table 5: Accuracy and fairness achieved by Fair-AutoML and
Pafait-ML on Pafait-ML’s benchmark

Giang Nguyen, Sumon Biswas, and Hridesh Rajan

Table 6: Trade-off assessment results of Auto-Sklearn, FAv1,

Decision Tree Logistic Regression Random Forest

Data T3 PML T3 PML T3 PML

Acc {EOD| Acc |EOD | Acc [EOD| Acc [EOD| Acc [EOD | Acc [EOD
Adult [0.847{0.036{0.817|0.002|0.818|0.038(0.803{0.023[0.851(0.032|0.843|0.039
Compas |0.969(0.000[0.970{0.000|0.970 [0.000|0.968|0.000 | 0.970{0.000 | 0.970|0.000

0.850 ') 0.82 ®
50.825 >
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Figure 3: Accuracy and fairness achieved by Fair-AutoML
(green circle) and Pafait-ML (orange circle) with Decision
Tree (left) and logistic regression (right) on Adult dataset
(Pafait-ML’s benchmark). The blue line shows the Fairea
baseline and red lines define the trade-off regions.

5, showcasing the accuracy and bias (EOD) achieved by both Fair-
AutoML (T3) and Parfait-ML in Parfait-ML’s benchmark. The table
showcases the actual results of the repaired models, rather than the
difference in accuracy/fairness between the original and repaired
models. Upon inspection, the results for the COMPAS dataset for
both Fair-AutoML and Parfait-ML are similar. However, for the
Adult dataset, some differences arise. For instance, with the Ran-
dom Forest classifier, Fair-AutoML performs better than Parfait-ML
in both accuracy and EOD. With the Logistic Regression classifier,
Fair-AutoML achieved a higher accuracy but higher bias compared
to Parfait-ML. Nevertheless, Fair-AutoML falls into the win-win
trade-off region, while Parfait-ML only falls into good trade-off re-
gion (Figure 3). With the Decision Tree classifier, both Fair-AutoML
and Parfait-ML fall into the win-win trade-off region (Figure 3);
however, Parfait-ML performed better since it has lower bias. These
results highlights the generalization capability of Fair-AutoML to
repair various datasets and ML models.

6.4 Ablation Study (RQ3)

We create an ablation study to observe the efficiency of the dynamic
optimization function and the search space pruning separately. The
ablation study compares the performance of the following tools:

o Auto-Sklearn (AS) represents AutoML.

o Fair-AutoML version 1 (FAvI) represents AutoML + dynamic
optimization function.

o Fair-AutoML version 2 (FAv2) represents AutoML + dynamic
optimization function + search space pruning.

To evaluate the efficiency of the dynamic optimization function,
we compare the performance of FAvI with Auto-Sklearn. We com-
pare FAvI with FAv2 to observe the efficiency of the search space
pruning approach. The complete result is shown in Table 6. Notice
that we use Fair-AutoML to optimize different fairness metrics; thus,
we only consider the metric that each tool tries to optimize. For
instance, the results of Random Forest on Adult dataset in the Table
6 shows that achieved scores of 0.096 for DI, 0.014 for SPD, 0.024 for
EOD, and 0.035 for AOD. This result means that T1 achieves 0.096
for DI, T2 achieves 0.014 for SPD, T3 achieves 0.024 for EOD, T4
achieves 0.035 for AOD. The evaluation only considers cases where

and FAv2
Metric | Model | AS FAvl | FAv2 | Model | AS FAvl | FAv2
DI 0.058 0.096 0.04 0.19
SPD 0.016 0.024 0.005 0.075
@
§ EOD RE 5008 [ 0015 IRG o 0.044
& AOD 0.021 | 0.025 0.039 0.089
= DI 0.004 0.183 inv bad 0.124
E| :
< | SPD 0.003 0.074 inv bad | 0.055
< Eop | X8 [Tose 0057 B¢ T oo
AOD 0.017 0.053 0.018 inv
DI 0.000 | 0.663 lose inv 0.158
@ [ SPD lose | 0.026 bad lose inv 0.051
=]
% | EOD RF Tose | v | Tose | ~CP% [Tose | Tose | 0.003
% [ AOD 0.016 | 0.004 Tose 0.027
= DI lose inv 0.098 lose 0.014
~ SPD lose 0.062 lose lose | 0.028
E]
& [ EOD XGB1 lose inv | 0.011 GBC lose lose inv
AOD lose | lose | 0.046 lose 0.025
DI lose bad bad 0.035 | 0.127
= SPD Tose bad 0.052 0.021 0.092
Srrop | N bad [ 0055 | 5'C [0068 [ 0112
© [TAOD lose | lose lose lose | 0.032
g DI bad | bad | 0.07 inv | 0.112
= SPD bad lose 0.065 0.027 0.075
(05 EOD XGB Tose 0.073 KNN 0.066 0.085
AOD lose lose | 0.037 lose inv 0.034
DI lose 1.549 0.092 | 0.447
SPD lose 0.571 inv 0.275
© EOD RF lose 0.445 GBC 0.058 bad
g AOD 0.062 0.601 0.058 | 0.429
g DI 0.086 | 1.062 Tose 1364
SPD 0.063 | 0.594 Tose 0.542
EOD LRG lose 0.557 XGB lose | 0.287
AOD 0.101 0.179 lose 0.524

The data in Table 6 is created in the same ways as Table 2. For each method in the
good trade-off region and win-win region (bold number), a trade-off measurement
value is given; for other regions the region type is displayed. The values in blue,

, and black indicate the top 1, top 2, top 3 bug fixing tools, respectively.

the tools successfully repair the bug. The same rules described in
RQL1 is applied in this evaluation.

6.4.1 Are dynamic optimization function and search space pruning
effective in fixing fairness bugs? From Table 6, our results show that
the dynamic optimization function approach in Fair-AutoML helps
fix buggy models more efficiently. Comparing the performance
in fixing fairness bugs, FAvI outperforms Auto-Sklearn 39 times,
while Auto-Sklearn outperforms FAvI only 7 times. The search space
pruning approach in Fair-AutoML also contributes to more efficient
bug fixing, as FAv2 outperforms both FAv1 and Auto-Sklearn 46 and
55 times respectively, while FAvI and Auto-Sklearn only outperform
FAv2 14 and 4 times respectively.

7 DISCUSSION

In this work, we bring particular attention to the fairness-accuracy
tradeoff while mitigating bias in ML models. Many works in the
area only optimize fairness metrics by sacrificing accuracy, and do
not consider the tradeoff rigorously. However, as shown by recent
work [42], trivial mutation methods can also achieve fairness if accu-
racy is compromised in different magnitudes. Therefore, a rigorous
evaluation method is necessary to demonstrate that the tradeoff is
beneficial. Another limitation of existing tools is not generalizing
over different ML classifiers (e.g., LRG, GBC, RF, XGB), multiple
fairness metrics, and dataset characteristics. To that end, we lever-
aged the recent progress of AutoML in the context and achieved
better tradeoff than SOTA methods. We believe that our approach
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is versatile and can be applied to various ML problems. Particu-
larly, the dynamic optimization function approach remains versatile
across various datasets and models. Furthermore, the search space
pruning approach is refined through pre-constructed database and
a matching mechanism, that capitalizes on diverse datasets stored
in repositories such as OpenML or Kaggle.

We implemented Fair-AutoML on top of Auto-Sklearn to ensure
its wide applicability on ML algorithms. State-of-the-art bias mit-
igation techniques also primarily use classic ML algorithms [6, 7,
15, 16, 19, 60] that are supported by Auto-Sklearn. These models
are more suitable than the DL models since the fairness critical
tasks in prior works commonly use tabular datasets. Should one
desire to explore alternative model types not directly supported
by Auto-Sklearn, they can adopt the general ML model adoption of
Auto-Sklearn [27].

Our approach also outlines several opportunities towards lever-
aging AutoML and search-based software engineering to ensure
fairness in new ML models that are becoming available. First, the
greedy weight identifier algorithm’s performance might suffer for
complex models due to computational costs (Algorithm 1). Sec-
ond, search space pruning quantitatively estimates the similarity
of datasets based on data characteristics. Thus, if we do not have
a dataset similar enough to the input dataset, AutoML may not
perform well. To address this, we plan to regularly update our
database with new datasets. Lastly, constructing suitable search
spaces, particularly for resource-intensive methods like deep learn-
ing, could entail significant computational expenses. Further works
are needed to maximize the versatility and effectiveness of our
approach over novel fairness-critical tasks. One key direction is to
combine Fair-AutoML with other bias mitigation techniques, such
as integrating Fair-AutoML’s model with pre-processing bias miti-
gation methods to enhance overall pipeline fairness. Additionally,
integrating Fair-AutoML with ensemble learning could improve
both performance and fairness by capturing a broader range of
biases and patterns. These directions could significantly amplify
the impact of this work, making Fair-AutoML a potent tool for
promoting fairness and equity in machine learning across various
domains.

8 THREATS TO VALIDITY

Construct Validity. The choice of evaluation metrics and existing
mitigation techniques may pose a threat to our results. We mitigate
this threat by employing a diverse range of metrics and mitiga-
tion methods. First, we have used accuracy and four most recent
and widely-used fairness metrics to evaluate Fair-AutoML and the
state-of-the-art. These metrics have been commonly applied in
the software engineering community [15, 16, 19, 60]. Second, we
demonstrate the superiority of Fair-AutoML over state-of-the-art
methods in different categories: pre-processing, in-processing, and
post-processing, which are most advanced techniques from the SE
and ML communities. For evaluating fairness and applying these
mitigation algorithms except Parfait-ML [60], we have used AIF
360 toolkit. For evaluating Parfait-ML, we have used its original
implementation. We create a baseline using the original Fairea im-
plementation, enabling us to conduct a comprehensive comparison
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between our approach and existed mitigation methods. In the fu-
ture, we intend to explore supplementary performance metrics and
extend our analysis to incorporate additional mitigation techniques
for a more comprehensive evaluation.

External Validity. To ensure an equitable comparison with cutting-
edge bias mitigation techniques, we leverage a diverse array of
real-world models, datasets, and evaluation scenarios. Particularly,
we utilize a practical benchmark comprising 16 real-world models
thoughtfully curated by prior research [6]. Then, these meticulously
chosen models undergo evaluation using four extensively studied
datasets in the fairness literature [10, 61, 62]. We conducted ex-
periments under identical setups and subsequently validated our
findings [6]. In addition to assessing Fair-AutoML against alter-
native methods within our established settings and benchmarks,
we subject Fair-AutoML to evaluation using the Parfait-ML [60]
benchmark, a leading-edge bias mitigation framework.

Internal Validity. Implementing Fair-AutoML on top of Auto-
Sklearn may introduce a threat to its actual bias mitigation perfor-
mance. In other words, the favorable outcomes achieved by Fair-
AutoML could be attributed to its integration with Auto-Sklearn. To
address this threat, we evaluated Auto-Sklearn on various bench-
marks, comparing its performance with (Fair-AutoML) and without
(Auto-Sklearn) our proposed approaches, to gauge the effectiveness
of Fair-AutoML.

9 CONCLUSION

We present Fair-AutoML, an innovative system that enhances exist-
ing AutoML frameworks to resolve fairness bugs. The core concept
of Fair-AutoML is to optimize the hyperparameters of faulty models
to resolve fairness issues. This system offers two novel technical
contributions: a dynamic optimization function and a search space
pruning approach. The dynamic optimization function dynamically
generates an optimization function based on the input, enabling
AutoML to simultaneously optimize both fairness and accuracy. The
search space pruning approach reduces the size of the search space
based on the input, resulting in faster and more efficient bug repair.
Our experiments show that Fair-AutoML outperforms Auto-Sklearn
and conventional bias mitigation techniques, with a higher rate of
bug repair and a better fairness-accuracy trade-off. In the future,
we plan to expand the capabilities of Fair-AutoML to include deep
learning problems, beyond the scope of the current study.

10 DATA AVAILABILITY

To increase transparency and encourage reproducibility, we have
made our artifact publicly available. All the source code and evalu-
ation data with detailed descriptions can be found here [33].
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