
Particularity

Lee Spector1,2 , Li Ding2, and Ryan Boldi2

1 Amherst College, Amherst MA 01002, USA
2 University of Massachusetts, Amherst, Amherst MA 01002, USA

lspector@amherst.edu

Abstract. We describe a design principle for adaptive systems under
which adaptation is driven by particular challenges that the environ-
ment poses, as opposed to average or otherwise aggregated measures of
performance over many challenges. We trace the development of this
“particularity” approach from the use of lexicase selection in genetic
programming to “particularist” approaches to other forms of machine
learning and to the design of adaptive systems more generally.

Keywords: Lexicase selection · Genetic programming · Deep learning

1 Overview

In this paper we first describe lexicase selection, an algorithm that was originally
developed for use in genetic programming systems, which produce computer
programs through processes of variation and selection.

We then present a generalization of the ideas that underlie lexicase selection,
describing this generalization in terms of a design principle called “particularity.”

After defining particularity, we review a sequence developments that exem-
plify particularity in different ways to extend the problem-solving power of the
systems in which they are used. In doing so, we broaden our scope beyond ge-
netic programming, discussing the use of particularity in other forms of machine
learning, including deep neural networks, and in biology.

We conclude with some general comments about future of particularity in
the design of adaptive systems.

2 Lexicase

In traditional approaches to genetic programming [27], individuals are selected
to serve as parents, and thereby to produce offspring, on the basis of scalar
fitness values. Usually these fitness values are measures of performance over
a collection of training examples, which are often called “fitness cases” in the
genetic programming literature.

In some applications the different fitness cases that define a problem may
present similar challenges to one another, and success or failure on any one
case may be roughly as informative as success or failure on any other. But in



2 Spector et al.

many applications this will not be true. In some, edge cases of several kinds
may be present, and some cases may require qualitatively different approaches
than others. The numbers of cases that call for each approach may vary, and the
number and nature of categories of cases may be unknown.

Lexicase selection [37,23] is a parent selection method that prioritizes a single
fitness case first and foremost when selecting each parent. It breaks ties with a
second single fitness case, and then a third, and so on until a winner emerges.3

If several potential parents remain after considering all cases then the final tie is
broken randomly. In the standard version of the technique the sequence of fitness
cases used is random, with a different shuffle of the cases used for selecting each
parent.

Lexicase selection has been shown to significantly improve the problem-
solving power of genetic programming in settings ranging from digital circuit de-
sign to general software synthesis, and in some settings it has been shown to allow
genetic programming systems to solve problems that could not be solved when
using selection methods based on scalar fitness measures [19,24,23,20,14,39].

Over evolutionary time, lexicase selection focuses on each particular case,
each pair of cases, and more generally each subset of a problem’s fitness cases. It
focuses on each in the sense that eliteness with respect to each will, with some
shuffle of the cases, allow an individual to produce offspring. This is because
each subset of the fitness cases may sometimes occur before all other cases in
the shuffle, and thereby determine which individuals can be selected as parents.

Note that lexicase selection behaves differently than methods that select on
the basis of generally good performance over many cases. Lexicase selection will,
for example, often select individuals that are “specialists” in the sense that they
are elite on one or a small number of cases, but atrociously bad on many others.
This promotion of specialists appears to be connected to the problem-solving
benefits of lexicase selection [18].

Lexicase selection also behaves differently than methods that adjust the in-
fluence that each case can have on an individual’s scalar fitness value, such
as “implicit fitness sharing” [31]. Prior work has demonstrated problem-solving
advantages of lexicase selection over implicit fitness sharing [23], with one ex-
planation being that implicit fitness sharing cannot reward good performance
on particular combinations of cases that are rarely handled well by the same
individual.

Prior work has also considered the co-solvability of pairs of cases [28], along
with mechanisms designed to maintain diversity with respect to user-specified
qualities [33,35]. These techniques can be considered to embrace the particularity
design principle to some extent. While detailed comparisons of these techniques
to lexicase selection are beyond the scope of this paper, we note that lexicase
selection is perhaps both simpler to implement and more thoroughgoing in its
particularity.

3 This lexicographic processing of fitness cases is the reason that lexicase selection is
so named.



Particularity 3

We define the “particularity” design principle as a mandate to prefer design
choices, like those embodied in lexicase selection, that take all particular chal-
lenges and combinations of challenges posed by the environment seriously, and to
explore their implications as independently as possible while avoiding averaging
over multiple challenges.

Often, in the history of the design of adaptive systems, averaging or other
forms of aggregation have been considered necessary because the widely-used
optimization methods operated only with scalar objective functions. But we
now know that in many contexts there are alternatives, for example with lexicase
selection or other many-objective optimization techniques. By attending more
closely to the particular challenges posed by the environment, these methods
may be able to adapt more quickly and successfully.

3 Variance

The particularity of lexicase selection, meaning its promotion of good perfor-
mance on each particular environmental challenge and on each particular com-
bination of environmental challenges, contrasts not only with the common prac-
tice in genetic programming but also with a wide range of practices in machine
learning more generally, where averaging and other forms of aggregation are
ubiquitous.

Many machine learning methods do allow users to specify hyperparameters
that adjust the “bias-variance tradeoff,” meaning the extent to which individual
training examples influence a model’s behavior.

High variance configurations allow each training example to have a large
influence, but in many machine learning settings that means that the influence is
on the behavior of a single model that is being trained. In evolutionary algorithms
that operate on populations, by contrast, the influence can be on one among
many approaches toward solutions that are being explored simultaneously in
the population.

In a sense, particularist methods, when used in population-based algorithms,
allow us to manage the bias/variance trade-off by refusing to sacrifice one for
the other, demanding instead that we prioritize both the guidance provided
by individual challenges (high variance) and the guidance provided by larger
collections of challenges (high bias) in different parts of the population.

We note that higher population diversities often result from particularist
methods, since different sub-populations are advantaged by attention to dif-
ferent combinations of features of the environment [16]. Prior studies suggest,
however, that the advantages of these methods stem not from the maintenance of
diversity per se, but from the fact that the contours of the diverse populations
they produce reflect the diversity of the challenges posed by the environment
[17]. That is, the advantages stem from particularity. The extent to which such
advantages can be obtained in settings that don’t involve populations is a topic
that deserves further study.



4 Spector et al.

4 Epsilon

For some kinds of applications, the particularity of the original form of lexicase
selection is too extreme.

Consider, for example, continuous-valued symbolic regression applications.
In this setting, the error for each individual on each case will be a real number,
and it may be likely, depending on the problem and the genetic programming
configuration, that no two individuals in the population will have exactly the
same error for some particular case.

When this happens there will be only one elite individual for the case in
question, and there will never be ties that must be broken by performance on
other cases. If this is true for a large number of cases then lexicase selection will
usually select parents on the basis of only a single case, or of a small number
of cases. This means that there will be little focus on individuals that do well
on combinations of cases, and little guidance of the evolutionary process toward
individuals that can perform well on all cases.

Fortunately, epsilon lexicase selection solves this problem [30]. By allowing
not only the elite to survive each filtering step of lexicase selection, but also
individuals that under-perform the elite only by a small amount, epsilon lexicase
selection can outperform scalar fitness-based methods in several settings [34,29].

Epsilon lexicase selection can be considered a “relaxation” of lexicase selec-
tion in the sense that the criteria for selection are less stringent. Other forms of
relaxation have been explored, but not all of them appear to be advantageous
[38]. We may speculate that those that will be advantageous will be attentive
to the particularity of the problem environment both with respect to individual
cases and with respect to combinations of cases.

5 Batched

Another form of relaxation of lexicase selection involves the grouping of cases into
batches, within which averaging or some other form of aggregation is performed.
Parents are selected on the basis of shuffled sequences of batches rather than
shuffled sequences of single cases, with each step of filtering being based on
comparisons of aggregate measures of performance over the batch.

Here the particularity of the method is applied not less stringently, as with
epsilon lexicase selection, but rather more coarsely. This method proved suc-
cessful in an application of lexicase selection in learning classifier systems, an
evolutionary computing context quite different from genetic programming [1].

The success of batch lexicase selection in this setting suggests that intermedi-
ate levels of particularity may in some cases be helpful. It also suggests that the
“particulars” upon which a particularist approach focuses need not be exactly
the training examples provided by the problem environment. They might instead
be “cases” that are derived from the training examples in some non-trivial way.
Here they are simply averages over batches of training examples, but in princi-
ple, they might be derived from the training examples in other ways, some of
which we discuss below.



Particularity 5

6 Downsampled

What happens if we reduce the number of cases not by grouping them into
batches over which we aggregate performance, but rather by using only the
cases in a single batch, and considering them individually while ignoring all of
the rest?

Downsampling is a general method by which data sets used for machine learn-
ing applications are decreased in size. Downsampling allows for larger systems to
be used despite the entire data set being prohibitively expensive to enumerate.
Furthermore, when downsampling is done every generation or iteration, it can
help prevent overfitting as only portions of the training set are seen at a time,
reducing the risk of memorization.

Because downsampling constrains the set of challenges that can be seen by
an individual at a given time, it can help an adaptive system to attend to the
particularity of the sampled subset of its problem environment. For this to be
successful in solving the environment’s overarching problems, it is important
that samples are changed sufficiently often, and that the lessons learned from
some samples can be maintained while exploring lessons learned from others.

Another important effect of reducing the size of the training set is that every
iteration becomes cheaper to perform. When downsampling to 10% of the size
of the training set, a similar number of iterations could be 10% as expensive to
perform. An evolutionary process could therefore be run for 10 times as long, or
with 10 times as large a population, using the same computational budget.

When applied to lexicase selection, randomly downsampling training sets has
been found to significantly improve problem-solving performance [25,22,15] when
using the same computational budget as full lexicase selection.

Selection schemes that select on the basis of aggregate measures seem to not
benefit as much from the use of downsampling as lexicase selection does [2].
This may be because lexicase selection pays attention to particular challenges in
the downsample, and is therefore able to maintain high levels of diversity that
prevent premature convergence when running for a long time.

One might think that changing the downsample entirely every generation, as
it is done for random downsampling, could prevent effective learning. The intu-
ition here is that the training set may be changed before the population really
has a chance to get a foothold on the information that it provides. However,
work has been done to show that, at least for genetic programming applied to
certain benchmark program synthesis problems, the problem-solving power of
these techniques is not hindered by rapid changes to the downsample [4]. The
reason for this was attributed to the presence of synonymous or nearly synony-
mous cases that come in adjacent generations’ downsamples. Synonymous cases
are cases that measure similar behavior and as such are passed by similar groups
of individuals. If each downsample is likely to contain cases that are synonymous
with cases in the previous and next downsamples, then there will be some con-
sistency in the challenges presented by the environment over evolutionary time.



6 Spector et al.

7 Informed

One way of sharpening the focus of a downsampled selection scheme, as opposed
to relaxing it, is to reduce the presence of synonymous cases. Synonymous cases
are redundant as they share particularities with each other. Whilst including
them might not be harmful on its own, they take the place of cases that might
provide selection with more useful information.

Table 1. Number of generalizing solutions (successes) out of 100 runs achieved by
PushGP on the test set for a variety of program synthesis benchmark problems as
reported in [3]. Results are comparing the performance of Lexicase selection (Lex),
Informed downsampled lexicase selection (IDS) and randomly downsampled lexicase
selection (Rnd) on these problems. DS rate is the downsampling rate, or what pro-
portion of the test cases appear in the sample each generation. The parent rate is the
proportion of parents used to estimate the niche maintained by a sample, and the gen-
erational interval is the number of generations between we do this estimation. Problem
names in bold face are where an informed downsampling approach performs the best
out of all the techniques. Results signified with an asterisk (*) are significantly better
than the corresponding run with random down-sampling at a p<0.05 level.

Method Lex Rnd IDS Rnd IDS

DS Rate - 0.05 0.1

Parent Rate - - 1 0.01 0.01 0.01 - 1 0.01 0.01 0.01

Gen. Interval - - 1 1 10 100 - 1 1 10 100

Count Odds 24 25 43* 99* 100* 98* 26 55* 95* 99* 97*

Find Pair 5 27 9 32 32 36 15 7 19 19 21

Fizz Buzz 13 64 2 85* 94* 95* 45 3 75 78 81*

Fuel Cost 41 72 1 83 85 83 76 7 69 72 70

GCD 20 74 4 76 67 69 54 6 56 63 62

Grade 0 0 0 0 1 0 1 0 0 1 1

Scrabble Score 8 8 6 69* 64* 75* 16 9 55* 74* 64*

Small or Large 34 93 37 69 69 69 69 39 60 66 54

Informed downsampled lexicase selection is a method to automatically detect
and maintain a downsample of cases that are individually particular or unique
[3]. For example, the downsample would be filled with cases that measure qual-
itatively different behaviors in the individuals being selected. The downsamples
are selected by analyzing how the population performs on training cases over
the course of learning. If two training cases are passed by the same groups of
individuals, then these test cases add no new information over each other. If
two training cases are solved by disjoint sets of population members, these cases
probably measure different behaviors, and are individually important to include
in our training sets.



Particularity 7

It turns out constructing downsamples using this information further im-
proves the success rate of genetic programming runs that use downsampled lex-
icase selection [3,2]. This benefit is likely due to maintaining higher test case
coverage over the course of a run [5]. Because lexicase selection is able to focus
on the particularities in a training set, having specific cases missing results in
the loss of certain ecological niches. When all (or as many as possible) of the
particularities are represented in the sample, lexicase selection can maintain the
niches and more effectively pursue paths to solutions.

8 Weighted

Separately from the stringency, granularity, or downsampling of lexicase selec-
tion’s particularity, one can intervene in the order with which the evolutionary
process is confronted with particular challenges.

In most work with lexicase selection, fitness cases have been chosen randomly,
with each case having an equal chance of being chosen at each step in the selec-
tion process. However, recent work has shown that it can sometimes be helpful
to provide more structure to this process, using weighted shuffles [40]. Rather
than employing a uniformly random shuffle, weighted shuffling techniques skew
the final arrangement of cases according to a specific metric.

Additional work has demonstrated that weighted shuffle methods can en-
hance the efficiency of lexicase selection, using an approach called “fast lexicase
selection” that integrates lexicase selection, weighted shuffles, and partial evalu-
ation [8,9]. Experiments involving both genetic programming and deep learning
tasks suggest that this method can significantly decrease the number of evalua-
tion steps required to find solutions.

9 Gradient

A variety of efforts have been taken to apply lexicase selection to adaptive sys-
tems outside of genetic programming, for example with the applications to learn-
ing classifier systems described above, and applications to fixed-length genetic
algorithms for solving Boolean constraint satisfaction problems [32]. Recently, it
has also been applied to the training of deep neural networks, where it has been
shown to have utility for improving generalization [11].

The technique of “gradient lexicase selection” combines gradient descent and
lexicase selection by performing gradient descent on several copies of a model,
using different subsets of the training examples for each copy, and then using
lexicase selection to determine which of the resulting, partially trained models
will serve as the parent for the next cycle of gradient descent and selection.
This method improves the generalization of popular deep neural network ar-
chitectures on image classification benchmarks (as shown in Table 2), and a
qualitative analysis indicates that the method causes networks to learn more
diverse representations.



8 Spector et al.

Table 2. Comparing gradient lexicase selection to stochastic gradient descent (SGD)
and other selection methods on CIFAR-10. We include the results reported in [11],
which shows that gradient lexicase selection can consistently improve the generalization
performance of various popular network architectures.

Architecture
SGD Random Tournament Lexicase

acc. std. acc. std. acc. std. acc. std.

VGG16 92.85 0.10 92.97 0.15 93.12 0.12 93.40 0.13

ResNet18 94.82 0.10 94.99 0.12 94.90 0.14 95.35 0.06

ResNet50 94.63 0.46 94.75 0.13 94.77 0.04 94.98 0.18

DenseNet121 95.06 0.31 95.13 0.04 95.12 0.02 95.38 0.04

MobileNetV2 94.37 0.19 94.02 0.14 93.91 0.09 93.97 0.12

SENet18 94.69 0.14 95.04 0.15 95.01 0.23 95.37 0.23

EfficientNetB0 92.60 0.18 92.77 0.11 92.83 0.12 93.00 0.22

Models that are selected to serve as parents in gradient lexicase selection may
not have the best aggregated loss among their siblings, but they will excel with
respect to specific combinations of challenges posed by their environments. As a
result, we may expect them to learn feature representations that allow them to
make highly accurate predictions in particular circumstances. Over the course
of learning, all challenges and combinations will have a chance to drive this
process which, we may hypothesize, may be better able to avoid local minima
than search processes driven only by aggregated loss.

Gradient lexicase selection can be viewed as an adaptation of lexicase se-
lection to modern optimization tasks where gradient information is essential for
learning and the dataset is large-scale. Work to date demonstrates the advantage
of a particularity design in gradient-based optimization, and the results suggest
that it will be useful to extend the idea to other forms of machine learning.

10 Plexicase

Theoretical analysis of the lexicase and epsilon lexicase selection methods has
cast light on the expected probabilities of selection under these methods [29],
although other work has shown that calculation of the exact probability distri-
butions is NP-hard [12]. Specifically, the recurrence in lexicase selection events
ultimately generates a probability distribution indicating which individuals will
likely be chosen. However, this recursive process creates incremental dependen-
cies, making it challenging to directly compute the probability distribution as-
sociated with the selection of individuals.

Building on this work, an approximation method has been developed that,
while not exactly duplicating the selection probabilities of lexicase selection,
can be computed much more quickly. On widely-used program synthesis and





10 Spector et al.

Encoderb(θ) Decoder b̂(θ)

l(θ)

Fig. 2. Variational auto-encoder architecture used to learn a latent encoding l(θ) of
an individual’s behavior in an environment b(θ). As this is a variational auto-encoder,
l(θ) is sampled from a distribution that is parameterized by the output of the encoder
(not pictured here for simplicity). Figure adapted from [7]

Encoderb(θ)

l(θ)

p(θ)

Fig. 3. Using the previously trained encoder to predict the particularities p(θ) of an
individual acting in an environment with behavior b(θ). These particularities are either
directly equal to the latent layer l(θ) or some function of that layer. Figure adapted
from [7]

11 Hidden

As noted above, genetic programming problems are often expressed in terms of
training examples known as fitness cases. Lexicase selection uses these cases as
the basis for the particularity upon which selection is based.

In other settings, however, we may not be given training examples, or the
training examples that we are given may not provide the most helpful particu-
larized basis for selection.

In many such settings we may be able to derive the particularities of the
problem environment from the environment itself. This may allow us to apply
lexicase selection, or other particularized methods such as plexicase selection, to
problems that do not explicitly provide appropriate sets of training examples.
It may also allow us to apply these methods more effectively to problems that
do explicitly provide training examples, if the derived particularities provide a
better basis for selection than the provided examples.

Consider attempting to apply the particularity principle to a reinforcement
learning (RL) domain such as navigating a maze using a robot with a variety
of sensors. Perhaps the only input received in this domain is the raw values of
an agent’s sensors. What particularities should we pay attention to? A single



Particularity 11

Encoderb(θ)

l(θ)

−→
f (θ)

Encoderb(θ)

l(θ)

f(θ)

Fig. 4. Learning the weights for a linear combination of features that sums to an
approximation for the true fitness function f(θ). These weights can then be used to
predict fitness from particularities p(θ) = l(θ). Then, we can de-aggregate the last layer
of the learned fitness model to result in a set of sub-objectives

−→
f (θ) that sum to an

approximation of the ground truth fitness f(θ). Figure adapted from [7]

objective measure such as reward would not be particular enough, and perhaps
taking the raw sensor information could be too high dimensional. In order to
find a level of description that allows us to efficiently learn a high quality pol-
icy, we can learn a lower dimensional encoding from the raw sensor data. This
lower dimensional encoding may give us more information regarding the spe-
cific behavior of the agent than pure reward, while not being intractably high
dimensional.

A simple way to learn a lower dimensional encoding and thus extract the par-
ticularities from an environment is to use an auto-encoder [7]. Figure 2 outlines
the base auto-encoder architecture. Given a phenotype (or agent-environment
sensory data), we can learn to reconstruct the same phenotype after compressing
it through a bottleneck layer. Once the auto-encoder is trained, the features that
are produced as output from the encoder are a lower dimensional representation
of the agent’s behavior. Using the encoder of this trained model to predict fea-
tures (that could be used as measures for quality diversity optimization) [33,35]
is outlined in figure 3. One issue here is that the features that we extract might
not be qualities that we want to promote (i.e. correlated with fitness). We can
augment the model to output a set of features that are positively correlated with
fitness. To do this, the encoder is frozen, and one (or perhaps more) layer can be
added and trained to predict fitness from the output of the encoder (figure 4).
This single node in the final layer will then be computing a sum of weighted
features, where each feature’s weight is its contribution to fitness. Then, disag-
gregating this sum (i.e. changing the dot product to an element wise product)



12 Spector et al.

allows us to receive a vector of features that are each importantly correlated with
the fitness of the agent. This model allows for efficient extraction and weighting
of particularities directly from the environment.

Returning to the RL example given above, we can start to see how such
an extraction of particularities could be helpful for a learning agent. Perhaps
some of the features extracted by the encoder are “distance to closest wall,”
“orientation,” “speed” or other high level features. Then, weights are learned to
make each of these features correlated with fitness. For the feature of “distance
to closest wall” the weight would probably be negative, as getting close walls
likely leads to the low fitness event of a crash. “Speed” would be an example of
a feature with a positive weight. The positively weighted features (or negated
versions of the negative weighted features) are things we want to maximize in
order to perform well in the domain.

The extraction of particularities does not need to involve an auto-encoder.
We simply require a system that can efficiently extract a representation of the
challenges posed by an environment. Whilst running the environment through
an auto-encoder and determining which of its features correlate with challenges
(fitness) is potentially effective, it is not the only way to achieve the same goal.
Consider a neural network reward function, where the input is the behavior or
phenotype of an individual, and the output is a predicted reward value. If this
network works, simply de-aggregating the penultimate layer would create a series
of fitness features that contribute to the overall fitness. Importantly, summing
these de-aggregated fitness features together gives the predicted total fitness.

A similar technique has been used to improve serendipity of recommenda-
tions provided by recommendation systems to help prevent echo chambers in
these systems. Serendipity is a metric that tracks whether items are unique but
still high quality for a user (also known as surprise). This was done by disaggre-
gating the penultimate layer of a neural network predicting how a user would rate
an item. Then, items were lexicase selected based on this penultimate layer [6].
This improved the personalization, diversity and coverage of a series of recom-
mendation lists in comparison to those produced using the aggregated predicted
rating. Results for serendipity have been adapted from [6] and displayed in fig-
ure 5. These results highlight that lexicase maintains higher levels of serendipity
for large recommendation list sizes.

Using lexicase selection, or other methods that attend to particularities,
could reduce the presence of echo chambers in networks that rely on recommen-
dation systems. Particularized recommendation systems will recommend items
that each maximally satisfy some combination of the user’s preferences, and the
recommendations will be diverse overall because different combinations of pref-
erences will guide each recommendation. We see the potential here for systems
that maximize the value of recommendation systems for both the platform and
the users, while also creating richer, healthier, and more resilient information
ecosystems.





14 Spector et al.

Does this mean that biological selection will always favor specialists over
mediocre generalists, as lexicase selection does in genetic programming [18]?
It does not appear to do so, and there is a large and rich literature exploring
the evolution of specialists vs. generalists in biological systems. The extent to
which generalists may be favored has been shown to depend on many factors
including environmental heterogeneity [26], the relative speeds of reproduction
and environmental change [36], and the phenotypic plasticity of individuals [13].
This is still an area of active research. Conceivably, particularity-based analyses
or simulations may contribute to work in this area.

In any case, biology’s highly particularized search strategy has produced the
most adaptive systems of which we have any knowledge. It seems therefore to
be a good model on which to build new adaptive systems.

13 Honor

Specificity is the soul of narrative.

—John Hodgman

One way to think about the particularity design principle is that it counsels
us to design adaptive systems in ways that make them sensitive to the specific
elements of the circumstances that they encounter, and the specific results of
their actions in those specific circumstances. All of this is opposed to using
averages or other forms of aggregation along the pathway from the environment
back to the mechanisms of adaptation. As we have seen above, it may not always
pay to take this advice too strictly. But the principle nonetheless suggests a
preference for specificity.

Alternatively, and perhaps more memorably, the particularity design princi-
ple might be glossed as a mandate to “honor all the things, and all the combi-
nations of all the things.”

What are the things? Sometimes they are given in the form of training ex-
amples. Sometimes they may be batches of examples. Sometimes they may be
learned features of the problem environment.

What does it mean to honor them? In lexicase selection it means to treat each
of them as having primary importance sometimes, and secondary importance
sometimes, and so on. By doing this, via filtering based on random sequences of
fitness cases, lexicase selection maintains a population in which all of the things,
and all of the combinations of the things, can serve as the foundation for the
evolution of solutions.

More generally, “honoring” here means to explore approaches to solutions
that begin with a focus on each environmental feature, and on each combination
of environmental features.

We have seen that such focus can enhance our ability to solve difficult prob-
lems in several settings. So far, however, we have only scratched the surface
of exploring this approach. Within genetic programming there is clear evidence



Particularity 15

that it can be useful in a variety of contexts. Within the study of machine learn-
ing methods and adaptive systems more generally, there is much more work to
be done to study this approach’s effectiveness and range of applicability.

Acknowledgments

We thank Bill Tozier, Anil Saini, Eddie Pantridge, Andrew Ni, Nic McPheee,
Tom Helmuth, Ramita Dhamrongsirivadh, and other members of the Amherst
College PUSH lab for stimulating conversations that helped us to develop the
ideas described in this paper. We also thank participants in the 2023 Genetic
Programming Theory and Practice workshop, and particularly Alex Lalejini,
Erik Hemberg, and Joel Lehman, who commented on a draft. This material is
based upon work supported by the National Science Foundation under Grant
No. 2117377. Any opinions, findings, and conclusions or recommendations ex-
pressed in this publication are those of the authors and do not necessarily reflect
the views of the National Science Foundation. This work was also performed
in part using high-performance computing equipment obtained under a grant
from the Collaborative R&D Fund managed by the Massachusetts Technology
Collaborative.

References

1. Aenugu, S., Spector, L.: Lexicase selection in learning classifier systems. In:
GECCO ’19: Proceedings of the Genetic and Evolutionary Computation Confer-
ence. pp. 356–364. ACM, Prague, Czech Republic (13-17 Jul 2019)

2. Boldi, R., Bao, A., Briesch, M., Helmuth, T., Sobania, D., Spector, L., Lalejini,
A.: Analyzing the interaction between down-sampling and selection. arXiv preprint
arXiv:2304.07089 (2023)

3. Boldi, R., Briesch, M., Sobania, D., Lalejini, A., Helmuth, T., Roth-
lauf, F., Ofria, C., Spector, L.: Informed down-sampled lexicase selection:
Identifying productive training cases for efficient problem solving (2023).
https://doi.org/10.48550/arxiv.2301.01488, https://arxiv.org/abs/

4. Boldi, R., Helmuth, T., Spector, L.: The environmental discontinuity hypothesis
for down-sampled lexicase selection. In: 2022 Conference on Artificial Life - Why
it Didn’t Work-Shop (2022)

5. Boldi, R., Lalejini, A., Helmuth, T., Spector, L.: A static analysis of informed
down-samples. In: Genetic and Evolutionary Computation Conference Companion
(GECCO ‘23 Companion), July 15–19, 2023, Lisbon, Portugal (2023)

6. Boldi, R., Lokhandwala, A., Annatone, E., Schechter, Y., Lavrenenko, A., Sigrist,
C.: Improving recommendation system serendipity through lexicase selection
(2023), https://arxiv.org/abs/2305.11044

7. Boldi, R., Spector, L.: Can the problem-solving benefits of quality diversity be
obtained without explicit diversity maintenance? In: Genetic and Evolutionary
Computation Conference Companion (GECCO ‘23 Companion). Lisbon, Portugal
(2023)

8. Ding, L., Boldi, R., Helmuth, T., Spector, L.: Going faster and hence further with
lexicase selection. In: Proceedings of the Genetic and Evolutionary Computation
Conference Companion. pp. 538–541 (2022)



16 Spector et al.

9. Ding, L., Boldi, R., Helmuth, T., Spector, L.: Lexicase selection at scale. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference Companion.
pp. 2054–2062 (2022)

10. Ding, L., Pantridge, E., Spector, L.: Probabilistic lexicase selection. In: GECCO
’23: Proceedings of the Genetic and Evolutionary Computation Conference. pp.
forthcoming, preprint at https://arxiv.org/abs/2305.11681. ACM (2023)

11. Ding, L., Spector, L.: Optimizing neural networks with gradient lexicase selection.
In: International Conference on Learning Representations (2022)

12. Dolson, E.: Calculating lexicase selection probabilities is np-hard (2023).
https://doi.org/10.48550/arXiv.2301.06724, https://arxiv.org/abs/

13. Fraebel, D.T., Gowda, K., Mani, M., Kuehn, S.: Evolution of gen-
eralists by phenotypic plasticity. iScience 23(11), 101678 (2020).
https://doi.org/10.1016/j.isci.2020.101678

14. Helmuth, T., Kelly, P.: PSB2: The second program synthesis benchmark suite. In:
Proceedings of the 2021 Genetic and Evolutionary Computation Conference. pp.
785–794. GECCO ’21, Association for Computing Machinery, internet (Jul 10-14
2021), nominated for best paper

15. Helmuth, T., Kelly, P.: Applying genetic programming to psb2: the next generation
program synthesis benchmark suite. Genetic Programming and Evolvable Machines
23(3), 375–404 (2022)

16. Helmuth, T., McPhee, N.F., Spector, L.: Lexicase selection for program synthe-
sis: A diversity analysis. In: Riolo, R., Worzel, W.P., Kotanchek, M., Kordon, A.
(eds.) Genetic Programming Theory and Practice XIII. pp. 151–167. Genetic and
Evolutionary Computation, Springer, Ann Arbor, USA (14-16 May 2015)

17. Helmuth, T., McPhee, N.F., Spector, L.: Effects of lexicase and tournament selec-
tion on diversity recovery and maintenance. In: GECCO ’16 Companion: Proceed-
ings of the Companion Publication of the 2016 Annual Conference on Genetic and
Evolutionary Computation. pp. 983–990. ACM, Denver, Colorado, USA (20-24 Jul
2016)

18. Helmuth, T., Pantridge, E., Spector, L.: On the importance of specialists for lexi-
case selection. Genetic Programming and Evolvable Machines 21(3), 349–373 (Sep
2020), special Issue: Highlights of Genetic Programming 2019 Events

19. Helmuth, T., Spector, L.: Evolving a digital multiplier with the pushgp genetic
programming system. In: GECCO ’13 Companion: Proceeding of the fifteenth an-
nual conference companion on Genetic and evolutionary computation conference
companion. pp. 1627–1634. ACM, Amsterdam, The Netherlands (6-10 Jul 2013)

20. Helmuth, T., Spector, L.: General program synthesis benchmark suite. In: GECCO
’15: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Com-
putation. pp. 1039–1046. ACM, Madrid, Spain (11-15 Jul 2015)

21. Helmuth, T., Spector, L.: General program synthesis benchmark suite. In: Proceed-
ings of the 2015 Annual Conference on Genetic and Evolutionary Computation.
pp. 1039–1046 (2015)

22. Helmuth, T., Spector, L.: Problem-Solving Benefits of Down-Sampled Lexicase
Selection. Artificial Life 27(3–4), 183–203 (Mar 2022)

23. Helmuth, T., Spector, L., Matheson, J.: Solving uncompromising problems with
lexicase selection. IEEE Transactions on Evolutionary Computation 19(5), 630–
643 (Oct 2015)

24. Helmuth, T.M.: General Program Synthesis from Examples Using Genetic Pro-
gramming with Parent Selection Based on Random Lexicographic Orderings of
Test Cases. Ph.D. thesis, College of Information and Computer Sciences, Univer-
sity of Massachusetts Amherst, USA (Sep 2015)



Particularity 17

25. Hernandez, J.G., Lalejini, A., Dolson, E., Ofria, C.: Random subsampling improves
performance in lexicase selection. In: Proceedings of the Genetic and Evolutionary
Computation Conference Companion. pp. 2028–2031. ACM, Prague Czech Repub-
lic (Jul 2019)

26. Kassen, R.: The experimental evolution of specialists, generalists, and the mainte-
nance of diversity. Journal of Evolutionary Biology 15(2), 173–190 (2002)

27. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge, MA, USA (1992)

28. Krawiec, K., Lichocki, P.: Using co-solvability to model and exploit synergetic ef-
fects in evolution. In: Schaefer, R., Cotta, C., Kolodziej, J., Rudolph, G. (eds.)
PPSN 2010 11th International Conference on Parallel Problem Solving From Na-
ture. Lecture Notes in Computer Science, vol. 6239, pp. 492–501. Springer, Krakow,
Poland (11-15 Sep 2010)

29. La Cava, W., Helmuth, T., Spector, L., Moore, J.H.: A probabilistic and multi-
objective analysis of lexicase selection and epsilon-lexicase selection. Evolutionary
Computation 27(3), 377–402 (Fall 2019)

30. La Cava, W., Spector, L., Danai, K.: Epsilon-lexicase selection for regression. In:
Friedrich, T. (ed.) GECCO ’16: Proceedings of the 2016 Annual Conference on
Genetic and Evolutionary Computation. pp. 741–748. ACM, Denver, USA (20-24
Jul 2016)

31. McKay, R.I.B.: Fitness sharing in genetic programming. In: Whitley, D., Goldberg,
D., Cantu-Paz, E., Spector, L., Parmee, I., Beyer, H.G. (eds.) Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO-2000). pp. 435–442.
Morgan Kaufmann, Las Vegas, Nevada, USA (10-12 Jul 2000)

32. Metevier, B., Saini, A.K., Spector, L.: Lexicase selection beyond genetic program-
ming. In: Banzhaf, W., Spector, L., Sheneman, L. (eds.) Genetic Programming
Theory and Practice XVI. pp. 123–136. Springer, Ann Arbor, USA (17-20 May
2018)

33. Mouret, J.B., Clune, J.: Illuminating search spaces by mapping elites (Apr 2015),
http://arxiv.org/abs/1504.04909, arXiv:1504.04909 [cs, q-bio]

34. Orzechowski, P., Cava, W.G.L., Moore, J.H.: Where are we now? A large bench-
mark study of recent symbolic regression methods. CoRR abs/1804.09331 (2018),
http://arxiv.org/abs/1804.09331

35. Pugh, J.K., Soros, L.B., Stanley, K.O.: Quality Diversity: A New Fron-
tier for Evolutionary Computation. Frontiers in Robotics and AI 3 (Jul
2016). https://doi.org/10.3389/frobt.2016.00040, http://journal.frontiersin.
org/Article/10.3389/frobt.2016.00040/abstract

36. Sachdeva, V., Husain, K., Sheng, J., Murugan, A.: Tuning environmental
timescales to evolve and maintain generalists. PNAS 117(23), 12693–12699 (2020).
https://doi.org/https://doi.org/10.1073/pnas.1914586117

37. Spector, L.: Assessment of problem modality by differential performance of lexi-
case selection in genetic programming: A preliminary report. In: McClymont, K.,
Keedwell, E. (eds.) 1st workshop on Understanding Problems (GECCO-UP). pp.
401–408. ACM (7-11 Jul 2012)

38. Spector, L., La Cava, W., Shanabrook, S., Helmuth, T., Pantridge, E.: Relaxations
of lexicase parent selection. In: Banzhaf, W., Olson, R.S., Tozier, W., Riolo, R.
(eds.) Genetic Programming Theory and Practice XV. pp. 105–120. Genetic and
Evolutionary Computation, Springer, University of Michigan in Ann Arbor, USA
(May 18–20 2017)



18 Spector et al.

39. Tetteh, M., Dias, D.M., Ryan, C.: Evolution of complex combinational logic circuits
using grammatical evolution with SystemVerilog. In: Hu, T., Lourenco, N., Medvet,
E. (eds.) EuroGP 2021: Proceedings of the 24th European Conference on Genetic
Programming. LNCS, vol. 12691, pp. 146–161. Springer Verlag, Virtual Event (7-9
Apr 2021)

40. Troise, S.A., Helmuth, T.: Lexicase selection with weighted shuffle. In: Genetic
Programming Theory and Practice XV. pp. 89–104. Springer (2018)


	Particularity

