
�alitative analysis of the relationship between design smells
and so�ware engineering challenges
Asif Imran

aimran@csusm.edu
California State University San Marcos

San Marcos, California, USA

Tev�k Kosar
tkosar@bu�alo.edu
University at Bu�alo

Bu�alo, New York, USA

ABSTRACT
Software design debt aims to elucidate the recti�cation attempts
of the present design �aws and studies the in�uence of those to
the cost and time of the software. Design smells are a key cause
of incurring design debt. Although the impact of design smells on
design debt have been predominantly considered in current litera-
ture, how design smells are caused due to not following software
engineering best practices require more exploration. This research
provides a tool which is used for design smell detection in Java
software by analyzing large volume of source codes. More specif-
ically, 409,539 Lines of Code (LoC) and 17,760 class �les of open
source Java software are analyzed here. Obtained results show de-
sirable precision values ranging from 81.01% to 93.43%. Based on
the output of the tool, a study is conducted to relate the cause of
the detected design smells to two software engineering challenges
namely "irregular team meetings" and "scope creep". As a result, the
gained information will provide insight to the software engineers
to take necessary steps of design remediation actions.

CCS CONCEPTS
• Software and its engineering! Risk management.

KEYWORDS
design smell detection, software maintenance, design debt, design
challenges
ACM Reference Format:
Asif Imran and Tev�k Kosar. 2022. Qualitative analysis of the relationship
between design smells and software engineering challenges. In 2022 The 3rd
European Symposium on Software Engineering (ESSE 2022), October 27–29,
2022, Rome, Italy. ACM, New York, NY, USA, 8 pages. https://doi.org/10.
1145/3571697.3571704

1 INTRODUCTION
Software design engineering is an important activity which requires
careful application of design guidelines. Design issues contribute to
64% of software defects as a study by Jones et.al. [11] highlighted.
Hence, quality and maintainability of software are signi�cantly
a�ected by design problems. One of the important design issues

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
ESSE 2022, October 27–29, 2022, Rome, Italy
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9730-8/22/10. . . $15.00
https://doi.org/10.1145/3571697.3571704

is a software su�ering from design smells. Design smells violate
the architectural principles and negatively a�ect the design of the
software [19]. A software which has large volume of design smells
contributes to design debt which in-turn increases technical debt.
In recent years, a greater emphasis to reduce design smells has been
given by software companies, engineers and researchers. Despite
the increased importance, both developing and established software
su�er from design smells, which is undesirable and hampers the
long term sustainability. Research e�orts are needed to identify the
issues in software engineering practices deployed by companies
which results in the design smells.

List of 25 design smells were provided by Suryanarayana et
al. [19] which focused on all the fundamental design aspects. A
design debt prioritization using portfolio matrix was proposed by
Plosch et al. [16]. A model for detecting cyclic dependency and
hub-like dependency smells using link prediction techniques was
discussed by Diaz-Pace [6]. A catalogue to list all architectural
smell detection tools together with their operating platforms was
provided by Azadi et al. [3]. However, the accuracy of the tool
requires further improvement. Additionally, teamwork issues in
real life software development that contributes to design smells
were not analyzed.

Based on the above motivation, this paper contributes primarily
to determining a tool for design smell detection followed by estab-
lishing a relationship between the occurrence of a design smell to
software engineering challenges in real life software development.
First, the paper proposes a tool for design smell detection based
on pseudo-model generation using Abstract Syntax Trees (AST). It
is used to analyze 409,539 Lines of Code (LoC) and 17,760 class
�les of open source Java software. Finally, precision and recall are
calculated to identify the performance of the tool by 16 industry
experts. Next, a survey is conducted with the same experts to iden-
tify a relationship between presence of the detected design smells
to software engineering challenges like "irregular team meetings"
and "scope creep".

This paper focuses on nine design smells highlighted in Table 1
which were selected from existing literature [19]. We also obtained
source codes of release versions for 11 software which formed the
testbed for our experiments. The names of the software have not
been presented due to con�dentiality issues and they are addressed
as (1 ..(11 respectively. Metadata about the software are highlighted
in Table 2. A total of 4,020 design smells are detected in our study.
Quantitative values of the frequency of occurrence for all the smells
is provided in the results analysis section. The results are desirable
as precision values ranging from 81.01% to 93.43% are obtained
for the analyzed software. Next, we conduct a qualitative study to
identify the cause of the smells based on two software engineering

https://orcid.org/0000-0002-1780-0296
https://orcid.org/0000-0002-5600-6706
https://doi.org/10.1145/3571697.3571704
https://doi.org/10.1145/3571697.3571704
https://doi.org/10.1145/3571697.3571704

ESSE 2022, October 27–29, 2022, Rome, Italy Asif Imran and Tevfik Kosar

challenges namely "irregular teammeetings" and "scope creep". These
two challenges are selected mainly due to their in�uence on quality
software development [2]. We conduct a survey among the 16
software experts with an aim to determine this relationship. The
�ndings show signi�cant impact of the two issues on the occurrence
of design smells.

Based on the above information, the major contributions of this
paper can be stated as follows:-

• Provide a tool for design smell detection for Java software
and analyze its performance.

• Establish relationship between key software engineering
challenges and the occurrence of design smells.

Rest of the paper proceeds as follows. Section 2 illustrates the
research questions, identi�es the selected software systems for this
study and describes the implementation of the tool for design smell
detection and recording. Section 3 provides the obtained results
and analyses those. Section 4 describes the conducted survey to
establish relationship between software engineering challenges
and occurrence of design smells. Section 5 highlights the threats
to validity and credibility, Section 6 discusses the related work,
and Section 7 concludes the paper and discusses future research
directions.

2 EMPIRICAL STUDY SETUP
This qualitative study focuses on detecting design smells and iden-
tifying their causes based on feedback from industry experts. The
following subsections identify the research questions and data col-
lection strategy.

2.1 Research Questions
The following research questions are addressed in this paper.

RQ1: How to detect design smells in Java source codes?
This paper provides a tool to detect design related smells. The an-

swer to this research questions will help software engineers detect
design smells in the code, hence saving critical design debt and time.

RQ2: To what extent does real life software engineering
challenges impact the presence of design smells?

The software team faces critical challenges like "irregular team
meetings" and "scope creep"which impacts the design of the software.
Such issues may also result in the occurrence of design smells in
the �nal software product. We aim to study this relationship here.

2.2 Selection of Software Systems
Table 2 summarizes the list of eleven selected systems. For each of
the systems, we highlight the life-time, !>2 , number of commits.
Next, we tested those software to detect the design smells using
the tool described in the following subsection.

2.3 Implementing Smell Detection Tool
The tool described here is motivated by the Designite tool [18].
However, Designite is designed for detection of smells for C# code
whereas our tool is modi�ed for detecting design smells in Java
code. Figure 1 identi�es the process of AST and pseudo-model

Figure 1: Representation for generating AST and pseudo-
model for design smell analysis

generation for obtaining the design smells. It is stated that 33.27%
of the software in the world are coded using Java. Presence of
design smells in Java code signi�cantly challenges the software
engineer during incorporation of new updates. Also design smells
possesses signi�cant issues during �nal deployment of the software.
Therefore, we are motivated to provide a tool to Java developers
which can be used to detect design smells in their software, thus
give them information related to the design smells present in their
code.

Firstly, Java source codes are taken as input which is then used
to form an Abstract Syntax Tree (AST). The tokenized source text is
read, to convert it to a tree. The �rst phase includes lexical analy-
sis followed by syntax analysis. To form the AST, Janett [14] has
been used which converts constructs and calls to Java libraries to
C# format. Hence the AST can be formed using NRefactory [8]
after parsing the Java code with Janett. Special Java constructs like
�1BCA02C2;0BB4B , ArrayInitializer, etc which are not present in C#
are converted using a mapper. IKVM library is used to translate
syntax and constructs, using inheritance whenever is necessary.
Once the AST is ready, it is read via a script which translates it to a
simple pseudo model.

After following the stated steps we can have a simple version
of pseudo-model from the �() consisting of 4 layers. The lowest
layer consists of the data elements and objects in Java code. The
second layer is a description of the elements found in the lowest
layer. The third layer consists of the data types and namespaces of
the objects. Using the information captured in the pseudo-model,
design smells in the Java code are detected with pre-speci�ed rule
cards [9]. Example of a rule card for detecting wide hierarchy design
smell is provided in Figure 2. Finally, those smells are written in a
provenance �le which can be used for analysis.

To use the system, users will require a Linux platform with termi-
nal access. The CLI will enable running the tool to obtain frequency
of speci�c design smells for software. Firstly, the executable ver-
sion of the tool needs to be triggered. This is followed by passing
the path of the Java source �les of the target software. Next, the
parameter and threshold values are passed. Afterwards, the design

�alitative analysis of the relationship between design smells and so�ware engineering challenges ESSE 2022, October 27–29, 2022, Rome, Italy

Unutilized Abstraction: This design smell occurs when an abstraction is declared, however its implementation is missing in the code. For
example, a class ABC may be declared by the software developer, however if it is not used anywhere in the code, then it is a Unutilized
Abstraction design smell.
Insu�cient Modularization: When an abstraction is large and complicated, providing a scope of further modularization, it is said to su�er
from this design smell. This smell occurs when the class is large in size, multiple class de�nitions are present in a �le or the complexity of
the class is high.
Broken Hierarchy: This occurs when the IS-A linkage between the supertype and subtype is absent. This interferes with the substitution
capability among the two classes.
De�cient Encapsulation: When an abstraction given more accessibility to the users than it is required, it threatens the security of the
software. The presence of this smell is called De�cient Encapsulation.
Cyclic Dependent Modularization: This smell occurs when the software violates the acyclic modularization technique. It occurs when
one abstraction is cyclically dependent on another. If this design smell persists, then a change in one abstraction can have a ripple e�ect on
other abstractions in the software. If the cyclic relationship is complicated in a large software, it is a challenge to detect that smell.
Unnecessary Abstraction:When a software has multiple layers of abstraction and many of the intermediate layers are not required, the
software is said to su�er from Unnecessary Abstractions.
Wide Hierarchy: This smell is prevalent when an inheritance tree has a wide breadth and the intermediate types are missing. Our
experiments show that it may appear in smaller volume in the software.
Missing Hierarchy: It occurs when a class has limited functionality within an operation. It may also happen when an operation is covered
to a class. It can have a signi�cant in�uence on the object oriented design, hence it is considered a design smell.
Multifaceted Abstraction: When an abstraction is responsible for multiple functionalities, managing it may become troublesome, resulting
in this design smell . Also, many functionalities might be a�ected if an error occurs in the abstraction.

Table 1: Description of the selected design smells

System Branch History KLoC Commits
(1 02/14-12/21 29.051 1871

(2 09/14-03/21 64.448 88

(3 05/14-02/18 23.002 1644

(4 08/09-03/19 24.267 385

(5 11/20-05/22 17.201 412

(6 07/10-05/19 19.391 352

(7 03/12-04/19 141.038 5531

(8 09/06-03/19 27.271 868

(9 08/05-03/19 24.698 15052

(10 07/02-03/19 49.534 5446

(11 10/19-11/21 17.331 788

Table 2: List of selected systems for the study

Figure 2: Rule card for detecting wide hierarchy design smell

smells can be detected. Once detected, the tool writes the output

of detection to a ?A>E4=0=24 .;>6 �le which can be later further an-
alyzed considering it as a structured data-set of smells to obtain
frequency of design smell prevalent in the software.

3 PRECISION AND RECALL OF THE
DETECTION MECHANISM

In this subsection we analyze the precision and recall for the design
smell detection tool. Previous results are capable of detecting four
types of design smells for Java [13] whereas this approach detects
nine types of smells with desirable accuracy.

The suspicious classes were identi�ed during the detection phase
and those were manually analyzed by a team of 16 software profes-
sionals to validate the �ndings. We analyzed the number of detected
design smells in Table 3. Details of the software professionals are
highlighted in Table 5. It should be mentioned that the team of soft-
ware professionals are from the two companies who designed and
developed (5 and (11. The classes where design smells were detected
by our tool in (5 and (11 were presented to the respective software
teams who further analyzed it to determine true positives for each
smell. We extend the e�ort to the area of information retrieval and
detect precision and recall [7]. More speci�cally, precision identi�es
the smells out of the total which could be successfully detected.
Recall assesses the total number of detected and undetected smells.

Table 4 present the precision and recall values of 2 from the list
of 11 software analyzed during this research. Overall, precision
value for 9 smells were obtained as 81.01% for (5. For (11, average
precision of 93.43% was recorded. The number of suspicious classes
which were manually analyzed by six software engineers are 16
and 33 for (5 and (11 respectively, which are 17.4% and 19.0% of
the total number of classes for the two aforementioned software.

ESSE 2022, October 27–29, 2022, Rome, Italy Asif Imran and Tevfik Kosar

Design smells (3 (6 (4 (5 (1 (2 (7 (9 (10 (8 (11
Unutilized Abstraction 164 69 96 56 99 341 884 104 114 56 89
Insu�cient Modularization 7 9 28 3 22 38 189 62 48 41 43
Broken Hierarchy 49 31 24 16 21 41 47 6 4 0 0
De�cient Encapsulation 39 33 49 19 24 62 18 21 29 16 27
Cyclic-Dependent Modularization 23 0 17 2 5 102 252 34 30 27 33
Unnecessary Abstraction 4 3 5 8 0 26 76 15 11 14 12
Multifaceted Abstraction 3 1 3 1 2 1 18 20 13 11 17
Wide Hierarchy 3 3 7 2 6 4 3 1 0 0 0
Missing Hierarchy 0 0 1 0 1 3 0 2 0 0 0

Table 3: List of considered design smells

Figure 3: Percentage (%) of occurrence of speci�c design smells to the total number of smells

The low percentage of classes which were suspected allowed man-
ual analysis of those within a reasonable time frame compared to
having to analyze a total of 266 classes otherwise for those two
software.

The detection tool has 100% recall value since no smell were
missed within the scope of the nine types of smells considered in
this research. Next the 16 software professionals were assigned a
survey to determine the relationship between software development
challenges like "irregular team meetings" and "scope creep" to the
occurrence of design smells.

4 SURVEY DESIGN FOR ANALYZING CAUSES
OF DESIGN SMELLS

We conducted a survey among two software organizations out of
the eleven considered in this study. The goal of this survey was
to �nd out if the identi�ed design smells were caused by some
issues in the software development approach. Earlier we identify
the two software a (5 and (11 respectively. We try to determine if
the cause of the design smells were due to two software engineering
malpractices which are irregular team communication and scope
creep. We conduct a survey with the 16 software engineers who
designed and developed (5 and (11. The same set of 16 respondents

�alitative analysis of the relationship between design smells and so�ware engineering challenges ESSE 2022, October 27–29, 2022, Rome, Italy

Software
Design
Smell

U
nu

til
iz
ed

A
bs
tr
ac
tio

n

In
su
�
ci
en
t

M
od

ul
ar
iz
at
io
n

Br
ok

en
H
ie
ra
rc
hy

D
e�

ci
en
t

En
ca
ps
ul
at
io
n

Cy
cl
ic

M
od

ul
ar
iz
at
io
n

U
nn

ec
es
sa
ry

A
bs
tr
ac
tio

n

M
ul
tif
ac
et
ed

A
bs
tr
ac
tio

n

W
id
e

H
ie
ra
rc
hy

M
is
si
ng

H
ie
ra
rc
hy

(5

60
56

93.3%

4
3

75%

17
16

94.1%

19
19

100%

2
2

100%

8
8

100%

2
1

50%

3
2

66.7%

2
1

50%

(11

103
89

86.4%

47
43

91.5%

0
0

100%

33
27

81.8%

38
33

86.8%

12
12

100%

18
17

94.4%

0
0

100%

0
0

100%

Table 4: Results of the design smell determination mechanism for nine types of smells. (In each row, the �rst line identi�es
the quantity of number of suspected smells detected by the tool, the second line shows the number of actual design smells (true
positives), the third line shows the precision as percentage.)

Experience
4 years and above -> 2

2-4 years -> 4
1-2 years -> 9

Responsibility

Project manager -> 2
Software developer -> 8
Quality assurance -> 4

Network administrator -> 8

Demographic

North America -> 12
Europe -> 2

Latin America -> 1
Asia -> 1

Java
experience

Spring -> 10
Hibernate -> 5
GWT -> 4
Grails -> 3

*some respondents have multiple expertise
Table 5: Demographic and expertise related information
about the respondents

were asked to establish the precision and recall of the design smell
detection tool.

4.1 Description of selected projects:
Figure 4 identi�es the teams of respondents who participated in
the projects namely (5 and (11. Similar to the software names, we
preserved con�dentiality of the respondents by identifying them as
'B1 ..'B16. Project (5 was developed for in-house use. The software
was designed and developed by a team of 10 members who are
included in the 16 respondents for this survey. The teamwas divided
into subteams among which the core-team was responsible for
various activities such as design, and the other subteams were
responsible for implementation, and validation of the project. The
core-team initially committed to interact with the development
teams on a bi-weekly basis. The communication was supposed to
be online due to Covid-19 and that some members were located in
di�erent geographic locations. The team did not follow any de�ned
software design model to the best of our knowledge.

Project (11 was primarily developed for the public and it was
made available to be downloaded over the web. The team were able
to conduct both in-person and online meetings post-Covid because
they were located in the same geographic location. The team aimed
to followed incremental software development process, however,
members did not conduct regular team communication.

4.2 Survey mechanism:
We identi�ed the respondents and selected (5 and (11 from our list
of 11 software mainly because we were able to contact them via
Github and based on our prior association with the two companies
who designed and developed these projects. To assure diversity,
we focused on these two projects since they had developers from
various backgrounds as identi�ed in Table 5. The respondents pri-
marily came from small-sized companies since we wanted to focus
on the software engineering challenges faced by these companies.
The interviews were semi-structured and were conducted after the
team could give their views on the accuracy and precision of our
design smell detection tool. we presented a questionnaire which
constituted of 12 questions and required 24.5 minutes to complete
on average. We asked whether the design smells which they con-
�rmed as successfully detected by our tool were caused by two
software engineering malpractices namely "irregular team commu-
nication" or "scope creep". Our goal was to determine if solving
these software engineering practices at an early stage of software
development signi�cantly impacts the occurrence of design smells.

We conducted this interview separately from the precision cal-
culation activity and identi�ed the mapping between occurrence
of the design smell to that of the issues in software engineering
practice namely irregular team communication and scope creep. The
questionnaire precisely asked the respondents to relate the cause
of the detected design smells to one of the two speci�c �aws of
software design considered here. We recorded all the responses and
mapped those to the two software development malpractices. We
discuss the survey results in the following.

ESSE 2022, October 27–29, 2022, Rome, Italy Asif Imran and Tevfik Kosar

In house clients

Core team

R1 R2

UI team

R3 (remote) R4

Network team

R5 R6 (remote) R7

API team

R8 (remote) R9 R10 (remote)

Remote team meetings

S5

project
team

In person team meeting

UI team

R13

Database team

R11 R12

API team

R14 R15 R16

Global clients

S11

project
team

Figure 4: Project team structure for the surveyed software

4.3 Survey results
4.3.1 Irregular team communication. : The respondents related
67.60% of design smells detected by our tool to the de�ciency in reg-
ular team meetings. Respondents from both companies stated that
team communications were ine�ectively managed, and important
team discussions were not documented. One responded from (5
stated that "although we were supposed to have pre-scheduled team
meetings, the key stakeholders cancelled team meetings regularly
citing con�icts with another high priority meeting, I believe this lack
of regularly monitoring progress caused so many design smells in the
end". Another response from the same company was such that "we
had to miss some team meetings since we were handling multiple
projects at one time and hence our time was divided".

Regarding project (11 a response to one survey question noted
"at the start, we were asked to implement the software by reading
white-papers and case studies of similar projects from internet, how-
ever, no meeting was held by the manager highlighting technical
aspects, that contributed to the poor design". It was seen that both
the organizations lacked e�ective and regular meetings for these
two projects. Both the organizations were understa�ed at the core
team level and regular team meetings could not happen mainly
due to the fact that the core team was managing other projects at
the same time. Also, it was expected that key requirements of the
design would be kept in mind by the developers hence no design
documents were generated.

4.3.2 Scope creep. : Another critical problem which caused signi�-
cant number of design smells was scope creep. It was a phenomenon
that caused substantial changes to the project scope and design dur-
ing development without proper change management procedure.
This caused unexpected delays and expensive change incorpora-
tion. Scope creep was highlighted as a major challenge for both
the teams and they attributed that sudden introduction of new re-
quirements made the design unmanageable and introduced design
smells. Following responses obtained from the survey regarding

project (5 which highlighted this issue. One respondent from the
(5 project mentioned "Our team was initially formed to implement
a data transfer system, so it was composed of members who had ex-
pertise in networking and programming in Java. However, as days
passed and we were �nishing the third prototype, the management of
our company wanted the software to be able to optimize data transfer
via machine learning. To be honest, none of our team members had
knowledge on advanced ML techniques so the design has �aws as
detected by the tool."

Another notable comment we received during survey from a
member of (110B project team was that "change to scope was in-
evitable, we received a new requirement which drastically changed
one method and added many functionalities, it became a god method,
we added many for-loops in the method for the various activities it
conducted, so the tool found many cyclic dependent modularization
design smells in that method. We did not expect the scope of that
method to change so much, the new features introduced suddenly also
took a lot of time to implement". Based on the above response, we
highlighted that both the projects su�ered from scope creep which
introduced longer time to market and the �nal version had design
smells. As a result, within the scope of the research we related
the cause of the design smells to the two software engineering
malpractices.

The outcome of the survey indicates that improved and regular
team meetings are required during the design phase to prevent
design smells from occurring in the �nal version of the software.
Regular team meetings contribute to a cohesive team and help to
clarify design-related questions. Also, keyminutes of the teammeet-
ings need to be recorded. On the other hand, it has been found that
scope creep plays an important role in introducing design smells.
Sudden changes in project scope will introduce new requirements,
and it is seen within the scope of the two projects analyzed here
that engineers �nd it a challenge to comprehend the design changes
in a short time. As a result, project managers need to be aware of
not allowing scope creep in their projects and document a change
management plan in this regard.

5 THREATS TO VALIDITY AND CREDIBILITY
We identify the common threats to validity as experienced by similar
qualitative research. Generalization of the survey results beyond
the scope of the sampled respondents needs to be conducted with
care. We interviewed only industry experts and not the clients of
the software, also we interviewed the team related to the software
we tested for design smells, the opinion may vary among teams
working on di�erent software projects in the same companies. We
limited our scope to small software companies only, however, the
�ndings may not be re�ected across di�erent sized companies at
di�erent geographic locations.

6 RELATEDWORK
A review of exiting tools to detect architectural smells is provided by
Azadi et.al. [3] which groups those based on the detected smells. The
authors evaluated 9 tools which are currently in place and ignored
those which became obsolete. Smell de�nitions on which the tools
detect the smells are provided and a high level detection mechanism
is described by analyzing the current literature. Although the tools

�alitative analysis of the relationship between design smells and so�ware engineering challenges ESSE 2022, October 27–29, 2022, Rome, Italy

which detect architectural smells are provided, accuracy of the
tool to aide developers regarding which smells to focus on during
di�erent stages of software life cycle was not addressed.

Model depicting the collected e�orts required to detect architec-
tural design smells is proposed based on study of related literature
[4]. The model identi�es negative a�ects, challenges, refactoring
areas and relationship between each activity. The design of the
model was motivated from the literature study conducted earlier
in the paper. Although the model considers important aspects of
design smells, it is a high level design and performance analysis
of it is not provided as it was not tested on any software. Also the
ability of the proposed architecture to detect smells of software was
not discussed.

The a�ect of developer’s seniority, frequency of commits and
interval of commits on reducing design debts in a software was
evaluated by Alfayez et al. [1]. The authors determined that senior-
ity and frequency of commits are negatively correlated to reducing
design debt, whereas interval of commits is positively correlated.
The authors used multiple statistical analysis tests to validate the
a�ects of developer behavior on the design smells.

Nahar et al. [15] studied the collaboration challenges between
ML team and other teams in software projects when the software
requires incorporation of an ML component. In this regard, a survey
was conducted among software practitioners and the results em-
phasized on the importance of e�ective communication and team
meeting for successful ML incorporation. However, the impact of
scope creep on such collaboration have not been studied to the best
of our knowledge.

Although many software analysis tools provide information on
various metrics, there is a limitation in the number of open source
tools which can detect design smells [5]. AI Reviewer identi�es
code and design smells for C++ projects [3]. Hotspot Detector is
capable of detecting only 4 design smells in Java [12]. Designite is a
commercial software which detects 25 design smells for C# projects
only [18]. Lattix is another commercial tool which uses dependency
matrix to detect modularity violations [20]. Other commercial tools
such as Structure101, Sonargraph and Cast detect cyclic dependency
smells [17]. To the best of our knowledge, although there are tools
to detect code smells, those which detect design smells for Java are
limited to detection of 4 or less smells.

Imran et al. [10] identi�ed the impact of human factors on soft-
ware sustainability. The authors conducted a survey to show the
challenges which software engineers face when incorporating sus-
tainability into their software. They identi�ed human factors which
highly impact software sustainability such as leadership, communi-
cation, peer pressure, and acknowledgement of e�orts. However, the
impact of irregular team meetings was not considered. Additionally,
how the human factors impact the design of the software was not
studied.

7 CONCLUSIONS AND FUTUREWORK
This paper detected design smells using an Abstract Syntax Tree
(�()) based tool. Next, it identi�ed speci�c design qualities and
set up relationships between violation of those and occurrence of
design smells. After testing the tool on the large volume of LoC

and class �les of the Java projects analyzed here, the following
conclusions were drawn.

• The tool was required for correct and time-friendly detection
of design smells.

• Software engineers could focus on the challenges they faced
in terms of team communication and change management
of scope to prevent design smells from occurring.

In the future, it may also be helpful to perform a longitudinal
study that detects how the occurrence of design smells in a program
suite is a�ected by other software design challenges not identi�ed
here. A minor but still interesting point is that the pseudo-model
tool can be extended to include a new layer showing how design
smells change as the software matures.

ACKNOWLEDGMENTS
This project is in part sponsored by the National Science Foundation
(NSF) under award numbers OAC-1724898, OAC-1842054 and CCF-
2007829.

REFERENCES
[1] Reem Alfayez, Pooyan Behnamghader, Kamonphop Srisopha, and Barry Boehm.

2018. An Exploratory Study on the In�uence of Developers in Technical Debt. In
Proceedings of the 2018 International Conference on Technical Debt (Gothenburg,
Sweden) (TechDebt ’18). ACM, New York, NY, USA, 1–10. https://doi.org/10.
1145/3194164.3194165

[2] Maurício Aniche, Joseph Yoder, and Fabio Kon. 2019. Current challenges in
practical object-oriented software design. In 2019 IEEE/ACM 41st International
Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER).
ACM, 113–116.

[3] Umberto Azadi, Francesca Arcelli Fontana, and Davide Taibi. 2019. Architectural
Smells Detected by Tools: a Catalogue Proposal. In International Conference on
Technical Debt (TechDebt 2019).

[4] Terese Besker, Antonio Martini, and Jan Bosch. 2016. A systematic literature
review and a uni�ed model of ATD. In 2016 42th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA). IEEE, 189–197.

[5] Andrea Biaggi, Francesca Arcelli Fontana, and Riccardo Roveda. 2018. An Archi-
tectural Smells Detection Tool for C and C++ Projects. In 2018 44th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA). IEEE,
417–420.

[6] Jorge Andrés Díaz-Pace, Antonela Tommasel, and Daniela Godoy. 2018. To-
wards Anticipation of Architectural Smells using Link Prediction Techniques.
In 2018 IEEE 18th International Working Conference on Source Code Analysis and
Manipulation (SCAM). IEEE, 62–71.

[7] William Bruce Frakes and Ricardo Baeza-Yates. 1992. Information retrieval: Data
structures & algorithms. Vol. 331. prentice Hall Englewood Cli�s, NJ.

[8] Daniel Grunwald. 2012. NRefactory.
[9] Asif Imran. 2019. Design Smell Detection and Analysis for Open Source Java

Software. In 2019 IEEE International Conference on Software Maintenance and
Evolution (ICSME). 644–648. https://doi.org/10.1109/ICSME.2019.00104

[10] Asif Imran and Tev�k Kosar. 2021. The Impact of Human Factors on Software
Sustainability. Springer International Publishing, Cham, 287–300. https://doi.
org/10.1007/978-3-030-69970-3_12

[11] Capers Jones. 2012. Software Quality in 2012: A Survey of the state of the
art. Retrieved May 3, 2019 from http://stal.blogspot.com/2008/02/removing-
unnecessary-abstractions.html

[12] Ran Mo, Yuanfang Cai, Rick Kazman, and Lu Xiao. 2015. Hotspot patterns: The
formal de�nition and automatic detection of architecture smells. In 2015 12th
Working IEEE/IFIP Conference on Software Architecture. IEEE, 51–60.

[13] Naouel Moha, Yann-Gael Gueheneuc, Laurence Duchien, and Anne-Francoise
Le Meur. 2009. Decor: A method for the speci�cation and detection of code and
design smells. IEEE Transactions on Software Engineering 36, 1 (2009), 20–36.

[14] Mehdi Mohammadi. 2014. Janett. Retrieved April 13, 2019 from https://github.
com/mehdimo/janett

[15] Nadia Nahar, Shurui Zhou, Grace Lewis, and Christian Kästner. 2022. Collab-
oration Challenges in Building ML-Enabled Systems: Communication, Docu-
mentation, Engineering, and Process. In Proceedings of the 44th International
Conference on Software Engineering (Pittsburgh, Pennsylvania) (ICSE ’22). As-
sociation for Computing Machinery, New York, NY, USA, 413–425. https:
//doi.org/10.1145/3510003.3510209

https://doi.org/10.1145/3194164.3194165
https://doi.org/10.1145/3194164.3194165
https://doi.org/10.1109/ICSME.2019.00104
https://doi.org/10.1007/978-3-030-69970-3_12
https://doi.org/10.1007/978-3-030-69970-3_12
http://stal.blogspot.com/2008/02/removing-unnecessary-abstractions.html
http://stal.blogspot.com/2008/02/removing-unnecessary-abstractions.html
https://github.com/mehdimo/janett
https://github.com/mehdimo/janett
https://doi.org/10.1145/3510003.3510209
https://doi.org/10.1145/3510003.3510209

ESSE 2022, October 27–29, 2022, Rome, Italy Asif Imran and Tevfik Kosar

[16] Reinhold Plösch, Johannes Bräuer, Matthias Saft, and Christian Körner. 2018. De-
sign debt prioritization: a design best practice-based approach. In 2018 IEEE/ACM
International Conference on Technical Debt (TechDebt). IEEE, 95–104.

[17] R Roveda. 2018. Identifying and evaluating software architecture erosion (Doc-
toral dissertation). (2018). https://boa.unimib.it/retrieve/handle/10281/199005/
287440/phd_unimib_723299.pdf

[18] T. Sharma, P. Mishra, and R. Tiwari. 2016. Designite - A Software Design Qual-
ity Assessment Tool. In 2016 IEEE/ACM 1st International Workshop on Bringing

Architectural Design Thinking Into Developers’ Daily Activities (BRIDGE). 1–4.
https://doi.org/10.1109/Bridge.2016.009

[19] Girish Suryanarayana, Ganesh Samarthyam, and Tushar Sharma. 2014. Refactor-
ing for software design smells: managing technical debt. Morgan Kaufmann.

[20] Sunny Wong, Yuanfang Cai, Miryung Kim, and Michael Dalton. 2011. Detecting
software modularity violations. In 2011 33rd International Conference on Software
Engineering (ICSE). IEEE, 411–420.

https://boa.unimib.it/retrieve/handle/10281/199005/287440/phd_unimib_723299.pdf
https://boa.unimib.it/retrieve/handle/10281/199005/287440/phd_unimib_723299.pdf
https://doi.org/10.1109/Bridge.2016.009

	Abstract
	1 Introduction
	2 Empirical study setup
	2.1 Research Questions
	2.2 Selection of Software Systems
	2.3 Implementing Smell Detection Tool

	3 Precision and Recall of the Detection Mechanism
	4 Survey design for analyzing causes of design smells
	4.1 Description of selected projects:
	4.2 Survey mechanism:
	4.3 Survey results

	5 Threats to validity and credibility
	6 Related Work
	7 Conclusions and Future Work
	Acknowledgments
	References

