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Abstract— Big data and its production, management,
and utilization are essential components in smart city
planning. This paper presents a research framework for
applying machine learning and deep learning using
multiple big data sets on real estate. We built ensemble
machine learning models to track property ownership
variance in Austin, TX, USA. Then, the study
employed the long short term memory (LSTM) model
as a deep learning approach to forecasting property
value in the same area. For model validation, root mean
squared errors were calculated in both models. To
avoid underfitting or overfitting of LSTM, we
experimented with specific parameters settings.
Bagging-based random forest machine learning model
outperformed other ensemble machine learning models.
Regarding property ownership variance, the Random
Forest model’s highest feature importance generally
comprised the race, age of residents, land use and built
environment factors, number of schools, and
neighborhood location. Our LSTM model predicted
Austin to retain a rising curve in housing prices and
identified which part of Austin experiences an increase
or decrease in property value. The predictive models
may help city planners to quantify and gain insights on
future impacts of developing neighborhoods.

Keywords: Property Ownership, Property Value,
Machine Learning, Deep Learning, Big Data

I. INTRODUCTION

Advances in new technology have stimulated a
new wave of infrastructure deployments around the
world. Although new and updated infrastructure
deployment is crucial for economic flourishing and
residents'  wellbeing  improvement for local
communities, it can also lead to adverse effects such as
accelerating the gentrification process and increasing
displacement for vulnerable residents [1]. The rapid
gentrification process is an urgent issue for any
community undergoing rapid growth and calls for
attention.

978-1-6654-3902-2/21/$31.00 ©2021 IEEE
Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 20,2023 at 15:12:38 UTC from IEEE Xplore. Restrictions apply.

Past research generally conflated gentrification
and displacement; however, they do have clear
distinctions [2]. Gentrification is neighborhood
revitalization, which results in pressing displacement
[2]. However, displacement can occur in the absence of
gentrification [2].

Displacement occurs when households are forced
to leave the neighborhood as it becomes increasingly
expensive, either out of choice or necessity. Despite
satisfying pre-imposed occupancy conditions, it occurs
beyond the household’s ability to prevent displacement,
or forced pressure makes continued occupancy
unaffordable [2]. There is a clear, traditional pattern of
development that drives displacement.

Gentrification happens when higher-income
households move into a neighborhood, drive up
housing prices, and change the neighborhood's
character or by cities' renewal projects. Although it is
hard to quantify the number of residents forced out due
to gentrification, past research has shown that low-
income and minority residents are often the most at risk
[3]. In the meantime, displacement is a central concern
in gentrification [2]. Studies have documented the
effect of displacement that follows from gentrification
in a diverse range of US urban areas [4-8]. However,
existing studies are often after-the-fact reports that
describe comparative metrics over time.

The main goal of this paper is to investigate viable
computational approaches to predict the gentrification
process using machine learning and big real estate
property data. Too often, the adverse consequences of
gentrification are identified after the process has begun,
and opportunities for early intervention and mitigation
are missed. Even when equity is flagged as a significant
or primary concern during the infrastructure planning
process, adverse outcomes still arise [9-11]. Here we
focus on predicting two critical indicators of
gentrification: real estate property value and ownership
changes. Property value and owner-occupancy reflect



current values and mortgage market conditions which
is a crucial indicator for estimating the affordability of
housing [12].

The first stage of gentrification is the displacement
of residents. When regional economies flourish, the
price of residential and commercial real estate rises.
Existing property owners have an incentive to sell their
property and leave their neighborhood to profit from
the appreciation of their real estate, avoid higher real
estate taxes, and offset increased living costs. In
addition to these economic inducements, they may no
longer feel comfortable given the changing character of
the neighborhood (e.g., demographic shifts, changing
of local businesses). Therefore, looking into property
ownership variance and real estate value trends are
vital indicators for early identification of the
gentrification analysis.

In the case of Austin, TX, housing price has been
steadily increasing over the years. Moreover, Austin
ranks as top ten cities in the nation that experiences
rapid urban gentrification [13]. Early detections of
gentrification neighborhoods and identifications of
high-risk  residents enable early intervention
opportunities for city leaders. For instance, Project
Connect (https://www.capmetro.org/project-connect),
a major new light rail project recently approved in the
City of Austin, seeks innovative, practical solutions to
the anti-displacement challenges.

Towards this goal, we constructed both machine
learning and deep learning models to analyze big real
estate property data in Austin.

The machine learning approach is used to create a
predictive model for property ownership changes over
time. The study traced property ownership variation in
Austin, TX, USA, by comparing individual property
owners to the former year.

We obtained sophisticated time series housing sales
data under the agreement. The data was used to
construct a deep learning model to diagnose housing
price trends from an artificial intelligence perspective.
We adopted a Long Short-Term Memory (LSTM)
neural network, which is a Recurrent Neural Network
(RNN) architecture that resolves vanishing, and
exploding gradient problems of conventional RNNs
[14]. Compared to conventional feedforward neural
networks, RNN uses cyclic connection sequences [14].
The predicted housing sales prices in Austin were
compared to actual prices during the study period.

Major research questions include the following:

RQ1: Which variables are found to be having the
highest feature importance on property ownership
variance?

RQ2: Is deep learning applicable to forecast
housing prices?

RQ3: What is the ongoing housing market trend in
Austin from an Al perspective?

In the subsequent sections, we give additional
background and related work in Section II. We describe
data and methods used in Section III. Section IV
presents the results from our analysis and model
validation. We discuss the results of the research
questions in Section V and summarize conclusions in
Section VI.

II. BACKGROUND AND RELATED WORK

The advance of smart city technology and its
application has gained attention in recent years [15].
Though the definition may vary, smart city
technologies include installing hardware, management,
and appliance in software that can be melted into daily
living. Behind these three components, producing,
managing, and analyzing big data remain essential
tasks.

Big data in cities refer to data linked to time and
space [16]. The production, monitoring, and regulation
of these data and analytics methods are essential
aspects of the smart city [17] and codependent with
each other. For instance, the new installation of sensors
in cities provides big real-time data from designated
space throughout their lifetime. Then managed big data
is used to construct a robust artificial intelligence (AI)
model or analyze trends and characteristics. It sounds
simple; however, due to the fuzziness of big data, the
data mining approach, required management, and
analysis skills vary by different types of big data [18].

An atmosphere of applying Al in a functional
normative perspective has been formed. In other words,
we apply them because it is deemed as a good way of
doing it. Though the definition and types of Al vary
[19], AI is already applied in our daily lives, from
mobile phone applications to autonomous vehicles.
Soon, AI will help planners forecast demands from
multi-perspectives like housing, transportation, and
public services concerning sustainable smart city
planning.

To model robust Al, machine learning and deep
learning models should be built prior. Two models are a
subset of Aland closely intertwined with one another.
Among the vein of thought, urban planning discourse
began exploring these approaches in recent years as big
data named urban informatics became available.
Moreover, machine learning or deep learning models
are already found to be outperforming traditional
statistical models.

Ensemble learning uses multiple learners to resolve
the joint problem by constructing varying hypothesis
and combining them [20]. It is widely adopted machine
learning approaches that are deep-rooted from
Decision Tree models. It can be classified into mainly
two types; bagging or boosting approach. The bagging
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uses the same algorithm; however, it runs dissimilar
sampling during the training, referring to bootstrapping
[20-22]. RandomForest (RF) is a widely adopted
bagging approach [21]. In the meantime, boosting put
weight continuously during the training to fix the
incorrectness from the prior prediction. XGB (eXtreme
Gradient Boosting), and LGBM (LightGBM) is the
primary boosting approach [20].

RF is an effective tool that usually resolves
overfitting issues by creating sufficient randomness,
“making them accurate classifiers and regressors.” [21]
It is more flexible and faster than boosting approach
because traditional boosting took a long time to set
proper parameters. However, recent gradient ensemble
learning has constantly improved. For instance, LGBM
came out as the next generation boosting approach,
improving the accuracy and cutting down training
duration. However, in either case, ensemble learning
models’ ‘generalization’ ability is still better than the
single learner model [20].

Similarly, a former study proved that ensemble-
based learning is systematically better and always had
the lowest mean absolute error even in the different
number of estimators compared to other models
regarding housing price prediction [22]. However,
though property value gained much attention [22-24],
property ownership variance has not been deeply
explored.

In terms of using big real estate property data,
LSTM has been used to forecast housing prices [25-28].
The previous studies admit that LSTM is an adequate
tool to be used in the time series model. Some conclude
LSTM to produce reliable housing price estimates with
acceptable error [27]. However, as deep learning
performance is based on inputted parameters and the
fact that result changes every time after training do not
result in unequivocal consensus to argue LSTM
outperforms other time series models consistently [28].

III. DATA AND METHODOLOGY

A. Study Area

The study area includes the portion of the city of
Austin located within Travis County, Texas, USA. The
study area composes 103 neighborhoods. Fig. 1
describes the areal interpolated 2010 census population
from census tract to neighborhoods. The result
describes that the census population is mostly evenly
distributed across boundaries.
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B. Property Big Data

The study used two sets of big property data
obtained from Travis Central Appraisal District
(TCAD) and home sales data given from
Austin/Central Texas Realty Information Services
through a data-sharing agreement. Each data set
includes records over ten years period. TCAD data is
from 2010 to 2020. Home sales data is from 2008 to
2018.

Fig. 1. Study Area

TCAD data consists of 6.8 million property records
with unique parcel IDs from 1993 to 2020. Other
features include state property type, owner ID, the total
area of the parcel, the estimated value of the property,
the year built, the interior area of the building, and the
number of building permits issued [29]. Home sales
data include actual sales price, listed price, duration in
the housing market, and other property information
such as exterior features, sales restrictions, property
types. Individual home sales records also include the
latitude and longitude of the property.

TCAD data was used to trace property ownership
variance. Data curation went through five steps. First,
data were split into twelve groups to include data from
2009,2010,2011,2012,2013,2014,2015,2016, 2017,
2018, 2019, and 2020. The 2009 data was used to trace
2010 property ownership variance. Second, using a
geographic information system (GIS), we areal
interpolated building parcels to census tract in Austin
to associate individual building parcels’ with census
tract information. 362,216 property parcels were used
and given their geographic information. Third, we
traced the owner ID variation of individual property
parcels by comparing ownership of the current year
with the previous year. As a result, we created a
dummy variable. In specific, parcels in 2010 were
compared with parcels in 2009 using parcel ID and
owner ID. Parcels in 2011 were compared with parcels
in 2010. Other years went through the same procedure.
Value 1 is used to indicate the owner of the property
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changed from the previous year. For example, if a
property was built and owned in 2013, and the owner
changed in 2014, it is counted as one ownership
change. On the other hand, if the property owner were
the same or untraceable, we marked the value as 0.
Fourth, the ownership variation variable was grouped
by tracts with average and count values computed per
group using Python packages. Fifth, the property
ownership ratio was calculated by dividing the total
ownership variation counts by the total property counts
in each Austin census tract. Lastly, the results were
areal interpolated to neighborhoods in GIS.

Home sales data was used to forecast housing
prices throughout the study area. Each record was
spatially joined with neighborhoods in Austin to add
neighborhood information. We normalized sales price
to price per square feet (sqft) by using the assigned
individual property square feet information. To remove
outliers and to focus on low price single-family
housing sqft sales price was clipped to be greater than
$80 and less than $200 inclusive. In total, 55,334 home
sales data were used. Also, unknown property types
and condominium was removed.

For machine learning modeling, social
demographic factors including population density per
sqft, race (people of color to total population), gender
(male population to female population), aging index
(age under 18 to age over 64), built year, stories,
average property ownership variance from 2010 to
2020 were used. For deep learning modeling,
neighborhood name, subdivision (property type), unit
style of property, sales restriction, occupant type,
property condition at the sale were one-hot encoded.
Also, listed price, sales price, listed and sales price per
sqft, and price gap were used to improve prediction
performance. The price gap is the difference between
the listed housing price and the actual sales price.
Generally, the sales price is lower than the listed price.

Both models include land use factors such as land
use inventory ratio and building footprints, including
average max height of buildings, elevation, number of
hospitals and schools, and other property-related
factors like duration in the market, built year, and
stories.

In total, 498,754 records and 310 features were
used for machine learning modeling. Moreover, 55,334
records and 6,656 features were used for deep learning
modeling. In sum, 522,916,844 data values were used.
The study period is from 2008 to 2020. The geographic
unit of analysis is a neighborhood in the City of Austin.
The dependent variable is traced property ownership
variance and sqft property sales price throughout the
study area. For technological support, we used various
Python libraries, including Scikit-learn, ArcGIS-Pro,
and Tableau Desktop.

We used the Frontera supercomputer in TACC
(Texas Advanced Computing Center) to train and test
data. Frontera has 39PF (Petaflops Peak Performance
with over 8,000 compute nodes, each equipped with
Intel Cascade Lake CPU and 128GB DDR4 memory.
Frontera is equipped with 50+ PB disk, 3PB of Flash
with 1.5TB/sec peak 1/O rate. The training and testing
of deep learning models used GPU nodes on Frontera.
Each GPU node has four RTX5000 GPUs. All
computation conducted in this paper is limited to a
single compute node at a time.

C. Ensemble Learning ML Model Building

The present study ran four ensemble machine
learning regressor models; RandomForest (RF),
GradientBoostingModel (GBM), XGB (eXtreme
Gradient Boosting), and LGBM (LightGBM). For
bagging, we used RF. For boosting, we used GBM,
XGB, and LGBM. Ensemble learning can smoothly
handle nonlinear features and does not require feature
scaling. However, to reduce the losses, we took a log
on the dependent variable as described in Fig. 2.

Fig. 3 describes the counted total property
ownership change over time in Travis county. From
2010 to 2020, property ownership change
incrementally increased and hit its peak in the first year
(2020) of COVID-19 with 39,667 cases (12.5%). Year
by year, the first year (2020) of COVID-19 had the
greatest property ownership change by 39,667 cases
(12.5%). On average, 26,908 of the property goes
through ownership changes annually, which compose
9.1% of all properties.

300000
250000
200000
150000

100000

50000

-—_
000 005 010 015 020 025 030

i

0

350000
300000
250000
200000

150000

100000
50000 I
-——

0
0.00 0.05 0.10 0.15 0.20 0.25

Fig. 2. Ownership Variance Taken Log
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D. LSTM (Long Short-Term Memory)

We used a Long Short-Term Memory (LSTM)
neural network and a recurrent neural network (RNN)
algorithm to forecast housing prices. Traditional neural
networks have vanishing gradient or long-term
dependency (LTD) issues in which RNNs gradually
forget previous inputs due to the sensitivity of input
values decaying over time [30].

LSTM resolves the vanishing gradient problem by
adding one additional cell (called a “forget gate™) that
lets the model decide whether to add or exclude
information in its cell state [31]. In addition to the
forget gate, LSTM uses two other gates (input and
output gate), as shown in Fig. 4. The input gate
determines whether to update the information to the
cell state, and the output gate updates attribute.

An equation for each stage is shown below in (1)
through (6). f;, iz, C¢, Cy, 04, h, are forget gate, input
gate, cell input activation, cell state, output gate, hidden
layer output in the time sequence t, respectively. All
three gates (f,, iy, 0,) use the sigmoid function (o),
and tanh also refers sigmoid function. W are weight
matrices, b is bias, x; is input in time sequence t. The
variables were scaled using MinMaxScaler.

Forget gate: f, = a(Wy - [he—1,x¢] + by) )

Input gate: iy = o(W, - [he—1, %] + b)) (2)

Cell input activation: C; = tanh(W - [h¢—1, x¢] + bc) (3)
Cellstate: C, = f, " Co—q1 + i, - Cc (4

Output gate: 0, = a(W, * [he—1,xe] + bo)  (5)

Hidden layer output: hy = o, - tanh(C;)  (6)

RNN

©

Fig. 4. Data Transmission in RNN & LSTM [31]

E. Model Validation

For model validation, RMSE (Root Mean Square
Error) was measured as summarized in Table 1. RMSE
is calculated by determining the residuals [32].
Residuals are the differences between the actual values
(y;) and predicted values (¥ ):, The equation of RMSE is
described below and n is a number of validation
samples.

The number of estimators for ensemble learning
was set as 30. The data were split into 80% for training
and 20% for machine learning and deep learning
testing. Then, the feature importance was pulled out
based on the RF model for having the lowest RMSE.

For the deep learning model, train loss and validation
loss were compared. For a proper model, train loss
should always be lower than validation (test) loss. It
resolved either underfitting or overfitting issues as
described in Fig. 5 when using specific parameters; the
batch size of 2000, 80 nodes, the dropout rate of 0.05,
and 100 epochs.

TABLE L. COMPARSION OF ROOT MEAN SQUARE ERROR FOR
DIFFFERENT MODEL PREDICTIONS

DV Model RMSE

RF 0.000

GBM 0.010

Ownership Variance ML

XGB 0.002

LGBM 0.003

Per Sqft. Sales Price DL LST™M 31.163
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IV. RESULT
A. Machine Learning: Regressor Model Result

Fig. 6 describes the top 20 feature importance from
RF. Social demographic factors like race, aging index,
gender were found with high importance. Also, one hot
encoded neighborhood, including Avery Ranch-
Lakeline, River Place, Barton Hill, Boggy Creek, were
included as top 20. Land use and built environment
factors such as average elevation and average max
building heights, zoning ratio (Office, Civic, Single-
family, Commercial, Mobile Homes, Multi-family,
Open Space, Industry), and a number of schools were
included.

B. Deep Learning: LSTM Forecast Result

Fig. 7 illustrates the average sqft listed housing price
and sqft sales housing price based on home sales data.
Both lines show ups and downs. And average sqft sales
price is always lower than sqft listed price. The gap is
about $15 on average. Starting from 2014, average
housing prices drastically increased than previous
years.

The prediction began in 2016. Fig. 8 Compares
predicted sqft home sales point to original ones. Similar
to original records, predicted sqft home sales values
showed an incrementally rising curve. The prediction
records do overlap with to original values. However,
underestimation was observed as having fewer red dots
on the right upper side.

We calculated the increase rate by dividing the 2017
average sqft sales price or prediction by 2016 average
sqft sales price or prediction and compared them. The
model predicts that there will be a decrease in housing
prices, mainly in central Austin. These neighborhoods
do overlap with actual sqft sales price average increase
rate ones as described in Fig. 9.

V. DISCUSSION

RQ1: Which variables are found to be having the
highest feature importance on property ownership
variance?

5180

Ensemble learning is proven to outperform
traditional models in estimating the housing market
price [33]. We used four Decision Tree based ensemble
regressor models to estimate property ownership
variance. The bagging-based RF outperformed than
boosting models by having the lowest error score.

RF model defined several social demographic
factors, land use, and built environment factors, and
one hot encoded neighborhoods dummy to have the
highest importance than other 290 features.
Surprisingly, the race and aging index ranked as having
the highest feature importance by taking the
importance of nearly 45%. As Austin has suffered
contentious tensions of gentrification between East and
West Austin concerning race, poverty, and inequity [3],
it seems reasonable for these two factors to have the
highest importance on understanding property
ownership variance.

Land use and built environment factors like office,
civic, commercial, open space land use ratio, location
of neighborhoods, and the number of schools seem to
play an essential role in property ownership variance.
This result suggests that urban amenities and schooling
may play a significant indicator for buying and selling

property.

RQ2: Is deep learning applicable to forecast
housing price?

We used a neural network based deep learning
method named LSTM to forecast sqft housing sales
prices for individual neighborhoods. LSTM forecasted
the average sales price to show a rising curve in line
with the rising pattern of the concurrent sales price in
Austin. From a growth rate perspective, the model
predicted the central part of Austin to experience a
decrease in housing prices than neighborhoods in the
edges. Surprisingly this forecast was quite similar to
the actual growth rate calculated by original home sales
data. A TCAD data that only compose single-family
housing showed a similar pattern, for having a decrease
in average housing price in central in 2017 than 2016.
These results suggest that LSTM can be a valuable tool
to forecast housing price when combined with
geographic information for locating increase or
decrease in property value.

RQ3: What is the ongoing housing market trend in
Austin in Al perspective?

Machine learning and deep learning are the basis
for modeling artificial intelligence. They are linked to
one another. We used four ensemble learning models
to track property ownership variance and LSTM as a
deep learning model to forecast housing prices. Among
four ensemble machine learning models. RF scored
0.000 RMSE, which is quite an astounding
performance. RF viewed the race, age, land use and
built environment, school, and neighborhood location
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as having greater effects on property ownership
variance.

LSTM forecasted the average sqft sales price to go
up over the years and retain the rising curve. It
identified central Austin to suffer a decline in home
sales value and edges to experience a rise in home sales
value. Fig. 10 describes the highest and lowest housing
price increase rate of neighborhoods in order. RMMA,
South Lamar, Upper Boggy Creek, Hancock,
Spicewood, Zilker, Bull Creek, Holly, South River
City, and Windsor Park were estimated to experience
the highest housing price increase rate. Among this list
of top ten neighborhoods, Spicewood and Bull Creek
intersects with Northwest neighborhoods, where will
have a grand new opening of Apple Campus in 2022
[34]. Policymakers can closely look into these
neighborhoods for having a high likelihood of suffering
gentrification with steadily rising home values.

On the other hand, Chestnut, Highland Park,
Johnston Terrace, Old West Austin, Robinson Ranch,
North Shoal Creek, Windsor Road, Wooten, Walnut
Creek—Pioneer Hill, and Del Valle East are forecasted
to have the lowest housing price increase rate and
suffer a decrease in housing price. Here, Del Valle is
well known for accommodating affordable housing and
having low-income households. And Johnston Terrace
ranks as among the top dangerous places to live in,
having a 1 in 15 chance of getting involved in crime
[35]. One thing of note is that Highland Park, where
ranks as the 7th affluent place in the states [36], was
also predicted to experience a decrease in home values.
These neighborhoods can be closely watched out for
possible urban decline or flee. Perhaps, using a testing
dataset concerning Project Connect and fitting the
trained LSTM models to predict future home values
would contribute to understanding more pending
concerns.

VI. CONCLUSION

Big data is an essential component in a smart city.
As a methodological framework, machine learning and
deep learning analytics strategies enable planners to
detect the patterns that hide in big data. As two methods
are closely intertwined as a subset of Al, intermingling
machine learning and deep learning would help
planners have both human structured and
computational artificial frameworks.

Our study has explored the potential of using
ensemble machine learnings and LSTM deep learning
on big real estate property data. By using regressor
machine learning models, we can use big data to
uncover new patterns—moreover, the bagging-based
model outperformed boosting models in tracking
property ownership variance. We suggest using LSTM
when having sophisticated time-series data such as
property value data. Adding assigned geographic
information such as neighborhood, property type, sales

restriction, and building features could be a valuable
way to improve LSTM performance. Here,
spatiotemporal geographic information is crucial to
spot a change in home values from a given time to
space.

The present study suggests the feasibility of
applying machine learning and deep learning methods
with big property data. However, we would like to
point out that there is a tendency to apply these new
tools because they are deemed suitable. This is similar
to previous planning traditions of implementing zoning
and building code regulation in cities. Machine
learning and deep learning applications need to be
carefully validated. Some studies skip explaining this
part. Previous studies defined LSTM to produce a
pretty accurate result with minor errors than the
traditional times series model regarding housing price
forecast [26].

Nevertheless, it is not clear whether the former
studies validated the underfitting and overfitting of
their LSTM models. Instead, they only discern error
scores like RMSE. Either machine learning or deep
learning both require an optimization process regarding
hyper parameters. Explaining the structure of
components and the optimization process to reduce the
error score is an essential part. These facts should be
wisely incorporated.

For future studies mixture of qualitative and ‘new’
quantitative analysis methods should be intertwined.
First, understanding the process of gentrification
concerning displacement should be prioritized. Second,
home assessment, including property value, should
incorporate contentious racial segregation pertinent to
planning histories like redlining, racial covenants, and
contract homebuyers. Categorizing neighborhoods by
different race types and low-income households could
be one option. Third, linking the prediction to newly
rising property finance options and diverse tenure
options that accommodate both renters and owners like
ADU (accessory dwelling unit) and CLT (community
land trust) may bring innovative insight [37].

VII. LIMITATION

The study has several limitations. First, due to
confidential agreement, the explanation of obtained
property big data is only briefly introduced. Second,
there was a slight overfitting issue in LSTM. Thus, the
performance could differ when using different
parameters. Third, home sales data do not have the
records from 2018 to study points. Fourth, areal
interpolated factors would be more accurate if it was
given by the individual neighborhood unit. Fifth,
optimization on a number of estimators in Ensemble
Learning modeling has not taken place. Future studies
should consider these limitations.
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