
Better Predicates and Heuristics for Improved

Commutativity Synthesis

Adam Chen1[0000�0002�5159�6532]∗, Parisa Fathololumi1[0000�0002�8602�2862],
Mihai Nicola1[0000�0003�0204�1626], Jared Pincus2[0000�0001�6708�5262], Tegan

Brennan1[0000�0002�9988�8630], and Eric Koskinen1[0000�0001�7363�634X]

1 Stevens Institute of Technology
{achen19,pfathol1,lnicola,tbrenna5,ekoskine}@stevens.edu

2 Boston University pincus@bu.edu

Abstract. Code commutativity has increasingly many applications in-
cluding proof methodologies for concurrency, reductions, automated par-
allelization, distributed systems and blockchain smart contracts. While
there has been some work on automatically generating commutativity
conditions through abstraction refinement, the performance of such re-
finement algorithms critically depends on (i) the universe of predicates
and (ii) the choice of the next predicate during search, and thus far this
has not been examined in detail.
In this paper, we improve commutativity synthesis by addressing
these under-explored requirements. We prune the universe of predicates
through a combination of better predicate generation, new a priori syn-
tactic filtering, and through dynamic reduction of the search space. We
also present new predicate selection heuristics: one based on look-ahead,
and one that utilizes model counting to greedily cover the search space.
Our work is embodied in the new commutativity synthesis tool Servois2,
a generational improvement over the state-of-the-art tool Servois. Ser-
vois2 is implemented in a faster language and has support for CVC5
and Z3. We contribute new, non-trivial commutativity benchmarks. All
of the new features in Servois2 are shown to either increase performance
(geomean 3.58⇥ speedup) or simplify the conditions generated, when
compared against Servois. We also show that our look-ahead heuristic
leads to better scaling with respect to the number of predicates.

1 Introduction

Commutativity of data structure methods and program code applies to a
wide variety of contexts, ranging from proof methodologies for concurrency
(e.g. Siever [1], CIVL [2], Anchor [3]) to exploiting multicore (e.g. parallelizing
compilers [4], transactional memory [5] declarative programming [6,7], scalable
systems [8]) to distributed systems (e.g. CRDTs [9] and blockchain [10,11]).

Accordingly, there have been a variety of techniques and tools for reason-
ing about commutativity, including program analysis [4], sampling [12], random

∗Corresponding author.

interpretation [13], and abstract interpretation [11]. A recent workshop‡ exem-
plifies the rising interest in commutativity.

In many contexts program code does not always commute, and it is therefore
helpful to specify the conditions under which code commutes. In a hashtable,
for example, inserting key k commutes with removing key k

0 only when k 6= k
0.

Bansal et al. [14,15] introduced an abstraction-refinement method for automat-
ically synthesizing such commutativity conditions. The idea is to recursively
test the logical space using an SMT solver, accumulating conditions that im-
ply commutativity or non-commutativity in disjunctive normal form. While the
authors provided a proof-of-concept abstraction-refinement algorithm, they did
not explore deeper performance considerations including more aggressive search
heuristics, semantic predicate treatment, model counting optimizations, scala-
bility, etc.

This paper focuses on how commutativity condition refinement can be im-
proved by addressing the key search parameters. By addressing these perfor-
mance considerations, we improve speed and scalability, as well as quality of
outputted conditions. We encapsulate our results in a new tool that is a gener-
ation improvement in synthesizing commutativity conditions.

Contributions. Our work improves the state-of-the-art in the following ways:
1. Predicate semantics. (Sec. 3) In the state of the art, predicates must be

built by manually writing terms, and are then mildly filtered and used without
any information as to how one predicate relates to another. Refinement is ex-
ponential in the number of predicates so it is important to focus on important
predicates. To that end, we improve the treatment of predicates by both syntac-
tically and then semantically filtering redundant predicates. We next show how
the information from filtering can be used to construct a lattice of predicates,
ordered by implication, and use this lattice to better filter predicates and prune
the state space during search. We also automatically extract terms from the
input problem’s pre/post relations.

2. Search heuristics. (Sec. 4) A key step in the algorithm is choosing the next
predicate to divide the search space. We implement two new heuristics:

– poke2: A new predicate selection heuristic which avoids redundant SMT
work, while also using the information obtained more directly. Consequently,
it performs at most half as many SMT queries, if not fewer, than Servois’s
original implementation.

– mcMax: A heuristic that employs model counting to more quickly cover the
search space. Model counting is the problem of computing the number of
models (i.e. distinct assignments to variables) that satisfy a given predi-
cate [16]. As many predicates have infinitely many solutions, model-counting
constraint solvers return the number of solutions for a given predicate within
a given bound [17,18]. The mcMax heuristic takes a quantitative approach to
predicate selection by leveraging model-counting to greedily pick predicates
based on the largest covering of the state space, making choices based on

‡
https://pldi22.sigplan.org/home/cora-2022

2

approximate finite-domain information, yet maintaining soundness of the
overall infinite-domain algorithm.

3. New implementation and pragmatic concerns. (Sec. 5) We implemented
Servois2 in OCaml, exploiting the expected performance benefits of OCaml
over Python. Our implementation is parametric on SMT solver, now support-
ing CVC4, CVC5 and Z3. We therefore inherit the expanded theory support,
expanding the domains in which commute conditions can be synthesized. Ser-
vois2 can now, for example, synthesize commute conditions for Strings opera-
tions like hasChar and concat. We also support interruption, emitting a sound
but incomplete condition, allowing Servois2 to be used in a larger variety of
new settings. Finally, Servois2 has a more well-defined API (as an OCaml
type), allowing one to use it as a library. Servois2 is publicly available at:
github.com/veracity-lang/servois2. The artifact, which contains a copy of
the code, is available at: https://www.doi.org/10.5281/zenodo.7935263.

4. Evaluation. (Sec. 6) In order to show that our approaches improve per-
formance in practice, we introduced new, non-trivial benchmarks that Bansal et
al. [14]’s tool Servois struggles to solve. We evaluated all of Servois2’s new
approaches, including the poke2 and mcMax heuristics, in comparison to a faith-
ful re-implementation of the poke heuristic in our new OCaml implementation
on both the original benchmarks and our new ones. We also compared the per-
formance improvements between heuristics with additional options for tuning
the synthesis (see Sec. 6). Our experiments demonstrate that our approaches
do give a substantial speedup—3.58⇥ (geometric mean) faster. In cases that
involve theories where model counting can be done e�ciently (strings, linear
integer arithmetic, integer arrays), mcMax is often able to o↵er better perfor-
mance. Furthermore, poke2 scales approximately linearly with the number of
state variables, while the other heuristics (including all those in the prior work)
diverge after only a few variables. Finally, given this wide variety of options, we
used a portfolio approach, running each case with all options (solvers, heuristics,
approaches to terms, etc.) and reporting back the first one to finish.

2 Background: Commutativity synthesis

We begin with a brief review of abstraction-refinement commutativity condition
synthesis, emphasizing key steps.

Suppose we have an abstract data type (ADT) method call m(ā)/rm, with
method name m, taking argument vector ā and returning value rm. Similarly,
consider a second method call n(b̄)/rn. We say these method calls commute
from an initial ADT state �, provided that when methods are applied in either
order, they lead to the same final ADT state, and will have observed the same
return values along the way. We notate this m ./�,ā,b̄,rm,rn n, with subscripts
omitted when the context is clear. A commutativity condition is a logical formula
'
n
m(�, ā, b̄) describing the conditions on the initial ADT state � (and parameters

ā and b̄) under which m and n always commute. (A non-commutativity condition
'̃ describes conditions when they always do not commute.) As an example, a

3

Refinem
n (H,P){

if valid(H) m .̂/ n) then

' := ' _H;
else if valid(H) m \̂./ n) then

'̃ := '̃ _H;
else

let �c = counterexs. to .̂/

�nc = counterexs. to \̂./ in

let p = Choose(H,P,�c,�nc) in

Refinem
n (H ^ p,P \ {p});

Refinem
n (H ^ ¬p,P \ {p});

}

main (spec, terms){
' := false; '̃ := false;
let P = Build(terms)in
try {Refinem

n (true,P); }
catch (Interrupt e) {skip;}
return(', '̃); }

Fig. 1: The commutativity condition Refine algorithm [14].

Set ADT with methods insert(x) and remove(y), a su�cient commutativity
condition would be '

remove

insert
⌘ x 6= y.

We synthesize a commutativity condition ' via the Refine algorithm[14],
which takes as input, an ADT specification, with methods’ pre/post conditions
written in SMTLIB. The algorithm uses the binary operator .̂/, which is defined
as ./ on a lifted (total) version of the ADT; we omit the full details as they are not
relevant to our improvements on the work. When run on a given pair of methods
m and n, the output of the algorithm is a pair ('n

m, '̃
n
m) of commutativity/non-

commutativity conditions. Consider as an example input, an ADT for a hashtable
that has three variables representing the state: a size integer, a Set over sort E
of keys, and a finite array H mapping elements of sort E to sort F . Then, for each
method, e.g., put(k, v), the input ADT specification includes a pre-condition (in
this case true) and a post-condition relating the pre-state with input vector
(size, keys, H, k, v) to a tuple of new values with return value (in this case,
true or false representing success) (size new, keys new, H new, r). The Refine
algorithm as output synthesizes commutativity conditions for the input method
pair. In the case of the hashtable example, the solution for the commutativity
synthesis of two calls of the same method put(k1, v1) and put(k2, v2) generated
by the algorithm is ' ⌘ (v1 = v2 ^ H[k1] = v2 ^ k1 2 H) _ . . . (truncated). Other
cases (disjuncts) omitted for brevity.

The Refine algorithm is presented in Fig. 1. The algorithm recursively par-
titions the logical space along conjunctions of predicates, which are selected
from a set of predicates P. When the algorithm finds a region of the state
space H that is a su�cient condition for commutativity (or mutatis mutandis
non-commutativity), it adds it to an accumulated DNF logical commutativity
condition. Otherwise, the recursive calls use counterexamples to select a predi-
cate p that di↵erentiates the two counterexamples �c and �nc. This predicate is
conjunctively added to H and used in the children recursive calls, and similarly
for its negation. Fig. 2 illustrates this process of partitioning the logical space
through the use of di↵erentiating counterexamples.

4

This process continues until a necessary and su�cient commutativity con-
dition is found, or all combinations of predicates are exhausted. Typically, ex-
haustion of predicates is unlikely as there are exponentially many combinations
of them. Furthermore, the algorithm can theoretically be interrupted (e.g. after
a timeout) to yield a sound commutativity condition.

While the Refine algorithm is a somewhat straightforward form of
abstraction-refinement, the e↵ectiveness of the technique and implementation
thereof critically depends on how predicates are handled, selected, pruned, etc.
We now discuss these details and how Servois2 improves on each of them.

3 Semantic Treatment of Predicates

Refine has worst-case exponential runtime in the number of predicates. While a
Choose function that picks good predicates helps, it is still important to gener-
ate a small set P of relevant predicates and be selective during each recursive call.
At the very least, reducing the number of predicates gives linear improvements
on runtime, as SMT solvers, as well as Choose, must handle every predicate in
P. In this section, we describe better methods of reducing the size of this set P.

(a) Improved predicate filtering. In Servois, after the initial list of predicates
was built from manually provided terms, the SMT solver was queried twice
for each predicate, and any predicate that was tautologically true or false was
discarded. We retain this functionality, but first perform an additional syntactic
layer of filtering by dropping any predicate that is:

1. A reflexive operation on two identical terms,
2. An operation between two constants, or
3. A symmetric case of another predicate already included.

Since all of these filters are done purely syntactically, we save SMT work.

(b) Pruning by exploiting implication. We next determine which predicates imply
other predicates. This can be done via syntactic implication rules such as x >

y) x+n > y+n. As a benefit, we are able to compute the closure of the logical
implication relation, and are able to sort predicates into equivalence classes.
Thus by removing redundant predicates, the size of the set of predicates can be
reduced.

Fig. 2: Refine recursively divides the logical search space using P.

5

Given logical implication relations, we can build a lattice out of the partially
ordered set of predicates, ordered by the) relation. This lattice information can
be used to dynamically prune predicates that become redundant during runtime
due to selection of other, related predicates. For example, consider the follow-
ing LIA benchmark multiVarA ./ multiVarB. (Technically Servois/Servois2
inputs are given as ADT pre/post specifications, but we write this example as
code illustration purposes.)

int x, y;

bool multiVarA() {if(x>0) { x = 2*x + y; }; return true}
bool multiVarB() {if(x>y) { x = x - 2*y; } else { x = x - y; }; return true}

Here, the lattice identifies implication chains such as 0 > (2x+ y)) (2x+ y) 
0) 2 > (2x + y)) (2x + y)  2, or 0 > (2x + y)) 0 6= (2x + y). During
search, we are able to use these chains to e�ciently pruning the predicate lattice,
e↵ectively reducing the height of the lattice and thus width of the search tree.

Fig. 3 illustrates our modifications to the original algorithm in Fig. 1. Starting
from main, we perform automated predicate generation PredGen, which we
will discuss below. From this set P, we construct the lattice L with MkLat.
Within Refine, we parameterize Choose by L, allowing the Choose heuristics
discussed in Sec. 4 to make choices based on L. Finally, we prune the search space
by using RmUpper to remove all predicates that are weaker, i.e. higher in the
lattice, than the selected predicate pair (p,¬p). We may do similarly with the
predicates stronger than the negation (RmLower). As a result, recursive calls
will not have to consider any predicates that are already entailed by H.

Constructing the lattice can be costly as the size of the relation is quadratic
in the number of predicates. Furthermore, syntactic rules cannot discover all
implications, so an SMT solver must be invoked if more precision is desired. As
we will see, it is not always worth this overhead. We have thus kept our lattice
treatment as an optional feature. When disabled, the lattice simply behaves as
a set of predicates (i.e. any predicate is only related to itself), à la Fig. 1, and
assume that the set of predicates is closed under negation§.

(c) Automatic predicate generation via term extraction. Servois requires the
programmer to manually provide terms with each method in the ADT speci-
fication, which can be error-prone and tedious. These terms are then used to
build predicates by using boolean relations such as =, >, etc. We are able to au-
tomatically generate the terms for synthesizing the predicates by traversing the
method specification (state variables, method arguments, pre/post-condition),
and extracting basic expressions (categorized by type). The expressions are then
combined with predefined operations for each type (e.g. in-/equality for Inte-
gers, membership/subset/etc. for Sets, contains/prefix/etc. for Strings, . . .) to
generate the predicates. With this approach, we generate enough predicates to
establish a su�ciently granular search space across all of our benchmarks and

§To satisfy closure, we include negations of all predicates. This comes at no perfor-
mance loss, as such additions can be skipped over by Choose. This is valid because
Refine recurses upon the negation of the chosen predicate.

6

Refinem
n (H,L){

if valid(H) m .̂/ n) then

' := ' _H;
else if valid(H) m \̂./ n) then

'̃ := '̃ _H;
else

let �c = counterexs. to .̂/

�nc = counterexs. to \̂./ in

let p = Choose(H,P,�c,�nc) in

let L0 = L \ {p,¬p} in

Refinem
n (H ^ p,RmLower(

RmUpper(L0
, p),¬p));

Refinem
n (H ^ ¬p,RmLower(

RmUpper(L0
,¬p), p));

}

main (spec){
' := false; '̃ := false;
let P = PredGen(spec) in
try {Refinem

n (true,MkLat(P)); }
catch (Interrupt e) {skip;}
return (', '̃);

}
RmUpper(L, p){

return L \ {p0 | p) p
0 ^ p 6= p

0};
}
RmLower(L, p){

return L \ {p0 | p0) p ^ p 6= p
0};

}

Fig. 3: Our modified algorithm. Fig. 1 is recovered when taking L to be the
trivial lattice over negation completion.

we are not limited in how exhaustively terms are provided. Manual-vs-automatic
term extraction leads to di↵erent sets and quantities of predicates, which may
a↵ect how conditions are expressed. In Sec. 6 we discuss the performance impact.

(d) Syntax-based generation of predicates. Once predicates are automatically
generated, it is natural to consider whether more complex predicates can be gen-
erated. While the original tool only considered predicates on two given terms,
we found that often, compound terms that may not be provided or directly
in the specification’s syntax would be present in commutativity conditions. We
added the expansion of terms with known and provided functions to allow for the
automated generation of compound terms and predicates. Thus more complex
commutativity conditions could be expressed, and the user does not have to al-
ready have specific predicates in mind when listing terms. Due to the exponential
nature of syntax expansion, we get a greatly increased number of predicates. We
found that this increase was too detrimental to performance to be practical—two
or more iterations often times out. However there were still some test cases that
benefited from performing one or two iterations, and the approach would likely
be beneficial with improved pruning.

4 Search Heuristics

At each step, the Refine algorithm must Choose a predicate that di↵erentiates
the commutative and non-commutative examples. While any implementation of
Choose maintains the soundness of Refine, due to the exponential nature of
the number of subsets of predicates, choosing a “good” predicate is important
both to e�ciency and quality of the form of the emitted condition. We refer to a
Choose strategy as a “heuristic”. Bansal et al. [14] describe a heuristic—referred
to as poke—which performs a greedy one-step look-ahead.

7

(1) Choosepoke2(H,P,�c,�nc){
(2) let P 0 = Di�ngPreds(P,�c,�nc)in
(3) let weight(p) =
(4) let p

0 = if([[p]]�c) then p else !p in

(5) if valid(H ^ p
0) m .̂/ n) then

(6) return 0;
(7) else if valid(H^ !p0) m \̂./ n) then

(8) return 0;
(9) else

(10) let�
0
c = counterexs. to .̂/ in

(11) let �
0
nc = counterexs. to \̂./ in

(12) return Length(
(13) Di�ngPreds(P 0

,�
0
c,�

0
nc))

(14) in list min(weight,P 0)
(15) }
(16) Di�ngPreds(P,�c,�nc){
(17) return filter((fun p ! [[p]]�c 6= [[p]]�nc),P);
(18) }

Fig. 4: Pseudocode for our poke2 heuristic for choosing which predicate to re-
curse upon. Here, P may be obtained from L by taking the underlying set of
predicates. list min(f,P) returns the element of P that minimizes f .

In this section we introduce two new predicate selection heuristics called
Choosepoke2 and ChoosemcMax (or simply, poke2 and mcMax) that, as we show in
Sec. 6, perform better than the Choosepoke of Bansal et al. [14], with trade-o↵s
to consider between the two of them.

4.1 The poke2 heuristic

We begin by formalizing the poke2 heuristic, and compare it to the previous
poke heuristic. When the SMT solver is invoked with the “valid()” queries in
Refine, we obtain two satisfying counterexamples: �c for commutativity and
�nc for non-commutativity. poke and poke2 share the common behavior to then
proceed with two steps: (1) Test each predicate to see which hold in which
counterexample (if either); this can be done in the same SMT query that was
used for valid. This testing lets one find predicates that di↵er between the
commutative counterexample and the non-commutative counterexample. This
is summarized in Di�ngPreds; the pseudocode for this subroutine is given at
the bottom of Fig. 4. (2) Next, perform a partial look-ahead on each of these
predicates—however, the way this is done di↵ers between the heuristics.

– The poke2 heuristic. The full pseudocode for poke2 is given in Fig. 4.
The partial look-ahead is encapsulated in the weight function. If a predicate
was true in the commutative case then we can tentatively conjoin it with
the commutativity condition and its inverse with the non-commutativity
condition (mutatis mutandis for false—keeping track of which case is done on
Line 4), then query the solver (Lines 5 and 7) to see how many predicates still

8

(1) ChoosemcMax(H,P,�c,�nc){
(2) let P 0 = Di�ngPreds(P,�c,�nc) in

(3) let cover(p) = #([[p]]) / #(⌃)
(4) cover(¬p) = 1� cover(p) in

(5) let P 00 = list max(cover,P 0) in

(6) return first(P 00)
(7) }

(a) mcMax

(1) ChoosemcMax-poke2(H,P,�c,�nc)
(2) let P 0 = Di�ngPreds(P,�c,�nc) in

(3) let cover(p) = #([[p]]) / #(⌃)
(4) cover(¬p) = 1� cover(p) in

(5) let P 00 = list max(cover,P 0) in

(6) return list min(weight,P 00)
(7) }

(b) mcMax-poke2

Fig. 5: Pseudocode for mcMax heuristics. As before, P is obtained by taking the
underlying set of L.

di↵erentiate the two cases. We define the number of remaining di↵erentiating
predicates to be the weight of the predicate (Lines 9-11). Finally we pick the
di↵erentiating predicate that results in the fewest remaining di↵erentiating
predicates in the look-ahead (Line 12). In the case that two predicates have
the same number of new di↵erentiating predicates, we prefer the simpler
(measured in number of atoms) one (not shown).

– The poke heuristic. By contrast, in poke the predicate and its inverse
were tested with both the commutative case and the non-commutative case,
irrespective of whether it was true or false in the commutative case. This
resulted in many degenerate return values, which not only increased SMT
time, but also could pick less beneficial predicates.

There is no need to prove correctness of poke2, as theRefine algorithm is correct
for any implementation of Choose that picks a di↵erentiating predicate. Our
evaluation of poke2 is thus based on runtime (more detail in Section 6.1).

4.2 The mcMax heuristic

For theories where model counting is e�ciently supported by existing tools, we
introduce an additional heuristic called mcMax. mcMax uses model counting to
determine the number of satisfying solutions for each constraint on the state
space. It then uses this count to quantify how well each predicate covers the
state space and picks the predicate with the best coverage.

Model counting requires a finite domain, so we treat state variables as finite
on a bounded domain, e.g., treating integers as fixed-length bit vectors. Recall
that any implementation of Choose is sound, so bounding the domain (tem-
porarily as a heuristic hint) does not threaten soundness. For such fixed-length
bit representations, we ideally require a bit width bound that is large enough
to properly di↵erentiate between coverage ratios. Experimentally, we found that
a bound as low as 4-bit representation of integers was su�cient for LIA con-
straints with relatively small coe�cients and a length of 4 was su�cient for
string constraints.

We now describe how mcMax proceeds using the pseudocode given in Fig. 5.
The mcMax heuristic starts o↵ on Line 2 in a similar manner as poke heuristic by

9

constructing the subset of di↵erentiating predicates P 0 from the two satisfying
counterexamples. In the next step (Lines 3-4), we calculate the coverage ratio
for both p and its complement ¬p as the fraction of their corresponding models’
count. Finally, the predicate found to represent the largest state region is chosen
(Line 5). Recall that Refine traverses both the given predicate and its negation
(shown in the recursive calls in Fig. 1). In the case that execution is interrupted,
we observe the first recursive call may be explored, while the second is not.
In these cases mcMax often leads to a better (higher coverage ratio) predicate
compared to a non-model-counting heuristic, since we greedily pick the larger
conjuncts.

To overcome the arbitrary first choice among equally covering predicates at
line 6 in Fig.5a, the variant mcMax-poke2 equips mcMax with the weight-based
ranking of predicates from poke2. Whenever the list of maximal coverage pred-
icates returned by mcMax has at least two candidates, the predicate selection is
turned over to poke2 applied to the candidate list.

5 Implementation

Servois2 is implemented in OCaml and is publicly released under the MIT
License¶. The tool has an underlying representation for SMT expressions, and
parses input YAML files and the SMTLIB2 expressions within them. Examples
of the Servois/Servois2 input format are available in the repository. The out-
put commutativity condition is also an SMTLIB2 expression, but may be further
constrained: since it is always in disjunctive normal form, and we add one con-
junct at a time, we may model disjunctive normal form as a list of conjuncts,
which are in turn lists of atoms. The lattice is implemented as a module param-
eterized by any module exposing an ordering relation, and is encoded as a graph
with vertices stored in a map and two edge sets: that of covering elements and
that of elements covered by it.

Model counting. For counting the solutions satisfied by each predicate, we
use the state-of-the-art model-counting constraint solver ABC [18] that, among
other strengths, allows for passing the specific domain bound along with the
model-counting query. ABC supports precise solving of model-counting queries
over strings, booleans, and linear integer arithmetic. We memorize the counting
results in an association list to reuse them in subsequent calls of ChoosemcMax.

Model counting for integer arrays. We expand the applicability of mcMax

heuristics to predicates over array terms by adopting a method similar to the
state-of-the-art model counter for bounded array constraints MCBAT [19]. This
approach involves applying a sequence of model-count preserving reductions from
the theory of arrays to the theory of uninterpreted functions and linear integer
arithmetic before dispatching the query to ABC. While MCBAT focuses on for-
mulas that are universally quantified over index variables, our procedure below
addresses quantifier-free array constraints with terms a[i] representing the value
stored in the array a at index i.
Consider for example, the problem of counting the solutions hx, i, ji satisfying

¶
https://github.com/veracity-lang/servois2

10

the predicate (x[i] � x[j] � 1), where i, j are integer variables and x represents
arrays of size 4. We accomplish the task in three stages. First, we translate the
predicate into a list of linear integer arithmetic constraints that are conjoined
into a formula. Then we count the number of satisfying solutions hxi, xj , i, ji by
running ABC on this query:

(i � 0) ^ (i < 4) ^ (j � 0) ^ (j < 4) ^ (i = j) xi = xj) ^ (xi � xj � 1)

Finally, we obtain the total model count by multiplying the translated query
result with the value domain size twice, once for each of the unaccounted and
implicitly unconstrained array values.

The reductions below summarize the steps of our model counting proce-
dure for formulas with integer array constraints:

1. Replace all compound array index expressions e with fresh variables i and
add corresponding constraints of the form e = i. Perform the replacement
from the outermost expression inwardly. Consider, for example, the term
x[k + j � 2] > 3 occuring in the query. We first replace the access term
k + j � 2 by a fresh variable i, and then introduce an additional constraint
i = k + j � 2 which captures this replacement.

2. Add array bounds constraints for each array index variable i.
3. Perform Ackermann’s reduction:

– Replace all occurrences of array index terms a[i] with fresh variables ai,
keeping track of the replaced mappings for each array variable a.

– Add functional consistency constraints for each array variable and each
pair of array index terms occurring in the query, i.e. (i = j)) (ai = aj).

4. Dispatch the set of constraints to ABC and obtain the model-count #mctr.
Thus far, there are only minimal di↵erences to the approach in [19].

5. Identify the unaccounted mappings for each array variable and compute the
partial model-count by considering their summation and the unconstrained
value domain: #mcunacc = |Z|unacc.

6. Obtain final model count as #mc = (#mctr ⇤ #mcunacc).

Additional solvers & theories. Servois was hardcoded to work with CVC4
[20]. We have parameterized Servois2 by SMT solver via OCaml modules and
extended support for CVC5 [21] and for Z3 [22]. While mostly an implementa-
tion detail, this does allow us to leverage the additional strength of the other
solvers. For example, CVC4 (as of version 1.8) did not have good support for
modulus and division. Both CVC5 and Z3 are able to support such operations,
and Servois2 is able to generate commutativity/non-commutativity conditions
for modular arithmetic examples.

With expanded solver support, Servois2 can tackle more theories, includ-
ing ones for which specialized solvers are useful. Neither bit-vectors nor strings
were supported in the original release of Servois, but Servois2 can synthe-
size commutativity conditions for both theories. As an example, we showed that
Servois2 is capable of inferring that bit-vector negation always commutes with

11

itself. We also benchmarked a few string examples, such as substr ./ hasChar,
as they also demonstrate the usefulness of model counting.

Early termination. The following theorem is presented in Bansal et al. [14]:

Theorem 1. For each Refinemn iteration: ') m .̂/ n, and '̃) m \̂./ n.

Thus, if updates to ' and '̃ are atomic, then terminating the algorithm at
any point will yield valid conditions. We take advantage of this in Servois2 by
allowing timeouts: the algorithm gracefully terminates after a designated time
by outputting the incomplete (yet valid) conditions ', '̃.

This proves useful in practice, as not all commutativity conditions may be ex-
pressible in terms of the predicates available; a necessary and su�cient condition
for synthesis of a complete commutativity condition via the Refine algorithm
is given in Bansal et al. [14]. In such cases, the algorithm must finish its expo-
nential run-time, only to determine that no complete commutativity condition
is expressible. Even if the algorithm does terminate, after a certain point, the
commutativity condition may be more complex than is useful. Thus it is usually
more useful to cut the execution short and report only the most important few
disjuncts of the commutativity conditions. In Sec. 6.2 we describe an instance
of both a case where the algorithm does not terminate and a case where the
algorithm terminates, but we still may obtain a reasonable condition by limiting
the execution time.

6 Evaluation

We evaluated whether Servois2 improved over the state-of-the-art Servois in
terms of performance (speed) and expressivity. All experiments below were run
on a machine with an AMD EPYC 7452 32-Core CPU, 128GB RAM, Ubuntu
20.04, and OCaml 4.14.0.

Benchmarks. Our suite of 68 benchmarks begins with those used to evaluate
Servois in the prior work [14]. Since the core goal of our work is to improve per-
formance, we have pruned down this set, removing those benchmarks for which
all tested heuristics can synthesize a condition after zero or one iteration(s). For
example, we omitted the counter and accumulator examples because the con-
ditions generated were either true/false or a single atom. We also removed all
similar method pairs with simple commutativity conditions from the remaining
data structures: sets, hashtables (HT), and stacks (Sta).

In addition to these benchmarks, we contribute new benchmarks for strings
(Str) and linear integer arithmetic calculations (LIA), and a benchmark based
on rigid motions on hexagons (DiH, for “dihedral”). These serve to show the
application of model counting, which works best on these domains. The model
counter is not applicable to the other data sets due to presence of custom data
declarations. It could also be run on the counter and accumulator benchmarks,
but we do not expect that to be illustrative due to triviality.

12

Moreover, we used Veracity� project [6] benchmarks as additional nontrivial
benchmarks. There are 26 reported benchmarks in Veracity that use commuta-
tivity synthesis. We have also implemented some new benchmarks, e.g. Solidity
examples translated to Veracity, to demonstrate various aspects of our improve-
ments in addition to more speedup. We elaborate on the usage of Veracity bench-
marks in Sec. 6.2.

6.1 Performance results

We would ideally compare the performance of Servois2 versus Servois, but
since Servois2 is written in OCaml, and Servois is written in Python, there is
an obvious speedup from compilation, and indeed we found Servois2 to be at
least twice as fast even using the same heuristics and on the same inputs. (As an
example: the Hashtable put/put example was the slowest running benchmark—
it took 5.31s with Servois using poke, and 2.61s with Servois2 using the same
heuristic.)

However, our work is not aimed at comparing Python vs OCaml, so we
instead benchmark across our new heuristics (poke2 and mcMax) and features
in comparison to a faithful re-implementation of Servois’s poke in OCaml.
The re-implementation was created by manually translating the source code of
Servois.

Comparison to poke baseline. To test the variety of features we have added,
we ran each benchmark with all combinations of features:

– The heuristics poke, poke2, and mcMax/mcMax-poke2 (when applicable).
– With each of the CVC4, CVC5, and Z3 solvers.
– With and without automatic term extraction (Sec. 3).

We report the configuration with the best performance in Table 1∗∗, using
poke with CVC4 and no lattice, no term extraction as a reference point for
comparison. The heuristic and solver is given, then whether term extraction was
performed (notated TG). The geometric mean of the speedup ratio of the best
configuration over poke was 3.58⇥. Note that this speedup is conservative, as
the several benchmarks that timed out with poke (and did not with Servois2)
are excluded. We also report the change in the complexity of the synthesized
commutativity condition in �A, indicating the change in the number of atoms
in the synthesized condition. The full generated conditions are omitted; note
that if synthesis terminates with a complete condition, the generated conditions
will be logically equivalent, but sometimes the order of the terms changed. (†)
indicates the cases where the tool terminated with an incomplete condition. We
terminated the benchmarks at 120s, and indicate the ones that still did not finish
within this time with T. A few benchmarks could not be run under CVC4, and
those are marked with j. All benchmarks whose poke baseline took less than 1
second to execute were omitted from the table due to triviality.

�
http://www.veracity-lang.org

∗∗mVarA and mVarB are short for multiVarA and multiVarB

13

Benchmark poke (s) Srv2 (s) Spdup �A Best Configuration

DiH: motion ./ motion j 4.71 n/a n/a mcmax, Z3 ,
HT: put ./ put 2.22 1.28 1.73⇥ 0 poke2, CVC4,
LIA: mVarA ./ mVarB 16.23 3.48 4.66⇥ 0 poke2, CVC5,
LIA: sum ./ multiVarSum 8.45† 8.36† 1.01⇥ 0 poke, CVC4,
LIA: sum ./ posSum 4.38 0.71 6.21⇥ 0 poke2, CVC4,
Str2: set ./ concat 9.89† 6.66† 1.48⇥ -1 poke2, Z3 , TG
Str3: read ./ write 5.31† 0.86† 6.21⇥ 43 poke, CVC5,
Str: hasChar ./ concat 2.93 0.57 5.14⇥ 0 mcmax, CVC5, TG
Str: substr ./ hasChar 1.75 0.74 2.35⇥ 0 mcmaxpoke2, CVC4,
Vcy: array-disjoint 1.16 0.46 2.52⇥ 0 poke2, CVC4, TG
Vcy: array1 1.51 0.51 2.96⇥ -2 mcmax, CVC4,
Vcy: array2 2.91 0.98 2.97⇥ 0 poke2, CVC4,
Vcy: array3 1.92 0.53 3.62⇥ 0 poke2, Z3 ,
Vcy: auction3 76.66 23.17 3.31⇥ 8 poke2, CVC4,
Vcy: auction4 1.79 0.34 5.26⇥ 0 poke2, Z3 , TG
Vcy: dict 13.37 2.82 4.74⇥ 0 poke2, CVC5,
Vcy: even-odd j 1.02† n/a n/a poke2, CVC5,
Vcy: ht-add-put 7.63 3.37 2.26⇥ 0 poke2, CVC4,
Vcy: ht-cond-mem-get 1.28† 1.19† 1.08⇥ -2 poke2, CVC5,
Vcy: ht-cond-size-get 1.66 0.71 2.34⇥ 0 poke2, CVC4,
Vcy: ht-simple 38.84 18.78 2.07⇥ 4 poke2, CVC4,
Vcy: linear-bool 3.15 0.90 3.50⇥ -2 mcmax, CVC4,
Vcy: linear-cond 2.09 1.30 1.61⇥ -1 poke2, Z3 ,
Vcy: loop-amt 11.35† 0.30† 37.83⇥ 10 mcmax, Z3 ,
Vcy: loop-inter 7.83 2.40 3.26⇥ -21 mcmax, CVC5,
Vcy: matrix 3.17 0.24 13.21⇥ 0 poke2, Z3 ,
Vcy: nested-counter 1 1.12 0.51 2.20⇥ 0 poke2, CVC4,
Vcy: nested-counter 2 4.74† 1.42† 3.34⇥ -19 mcmax, CVC5,
Vcy: nonlinear 7.44 0.59 12.61⇥ 0 poke2, Z3 ,
Vcy: pullPayment 7.69 1.59 4.84⇥ 0 poke2, Z3 ,
Vcy: simple 7.69† 2.29† 3.36⇥ 26 poke2, CVC4,
Vcy: standardToken2 T 11.31 n/a n/a poke2, Z3 , TG
Vcy: standardToken3 T 1.45 n/a n/a poke2, Z3 , TG
Vcy: standardToken4 2.34 0.35 6.69⇥ 0 poke2, Z3 ,
Vcy: standardToken5 T 13.25 n/a n/a poke2, Z3 ,

Table 1: Total number of benchmarks: 68 (33 trivial ones omitted)
Benchmarks that previously timed out: 3
Benchmarks that previously crashed: 2

† means condition generated was incomplete. �A is change in atom count.
T indicates time out (set at 120s). j indicates cannot be run.

The mcMax heuristic only applies to ADTs with theories supported by the
model counter ABC[23] extended with our procedure in Sec. 5, hence our results
using that heuristic are limited to the String, LIA, and Dihedral ADTs, as well
as the Veracity benchmarks. Our extension for integer arrays allowed for the
use of mcMax on the majority of the Veracity benchmarks. In some cases, mcMax
provides a significant speedup over poke and even poke2. For example, in the
hasChar ./ concat benchmark, mcMax is 2.89⇥ as fast as poke2 (not shown) and
over 5.41⇥ as fast as poke, with the same configuration aside from heuristic. In
other cases, such as in the sum ./ multiVarSum analysis, mcMax underperforms

14

Best Best Latt
Benchmark Non-Latt. Latt. Spdup �A Best Config. Cnstr.

DiH: motion ./ motion 4.71 n/a n/a n/a n/a T
HT: put ./ put 1.28 1.16 1.11⇥ 0 poke2, CVC4 0.31
LIA: mVarA ./ mVarB 3.48 1.14 3.07⇥ 0 poke2, CVC4 10.39
LIA: sum ./ multiVarSum 8.36† 3.69† 2.27⇥ -53 mcmax, CVC4 1.87
Str2: set ./ concat 6.66† n/a n/a n/a n/a T
Vcy: auction3 23.17 n/a n/a n/a n/a T
Vcy: dict 2.82 2.59 1.09⇥ 0 poke2, CVC5 34.09
Vcy: even-odd 1.02† 0.98† 1.04⇥ 0 poke2, CVC5 1.46
Vcy: ht-add-put 3.37 3.14 1.07⇥ 0 poke2, CVC4 7.50
Vcy: ht-cond-mem-get 1.19† n/a n/a n/a n/a T
Vcy: ht-simple 18.78 18.06 1.04⇥ 0 poke2, CVC4 100.86
Vcy: linear-cond 1.30 1.06 1.23⇥ 0 poke2, Z3 1.44
Vcy: loop-inter 2.40 n/a n/a n/a n/a T
Vcy: nested-counter 2 1.42† n/a n/a n/a n/a T
Vcy: pullPayment 1.59 n/a n/a n/a n/a T
Vcy: simple 2.29† 2.11† 1.09⇥ 0 poke2, CVC4 5.51
Vcy: standardToken2 11.31 10.31 1.10⇥ 0 poke2, Z3, TG 113.51
Vcy: standardToken3 1.45 n/a n/a n/a n/a T
Vcy: standardToken5 13.25 n/a n/a n/a n/a T
Table 2: Comparison of runtimes for cases where lattice construction and model
counting is applicable. Note that in many cases, lattice construction always times
out or errors. Lattice timeout was defined at 300s for Veracity benches and 30s
for other benches. Those rows are marked with n/a. mVarA is short for multiVarA.

compared to poke2 and poke.
The performance of mcMax seems to depend on the methods considered, but

there are cases where it can significantly improve run time. In future work, we
hope to explore additional model-counting heuristics such as bisecting the search
space rather than greedily covering it.

Extraction of terms. The original Servois tool required users to provide
terms, sacrificing some degree of automation which is inconvenient and error-
prone. As described in Sec. 3, Servois2 now can automatically extract terms
from the method specifications. As shown in Table 1, denoted by TG, the auto-
mated term extraction can even outperform manually provided terms.

In addition, by automatically extracting terms, our approach is another step
closer to a fully automated commutativity synthesizer—the user does not have
to do the manual work of providing terms. We believe that in conjunction with
comparable performance, this makes automated term extraction preferable.

Predicate lattice. We also evaluated the performance using the predicate
lattice approach outlined in Sec. 3. In practice, we found that the overhead
of lattice construction using SMT queries was typically too high, and it did
not substantially improve synthesis time in most cases. When using syntactic
rules (using a preliminary set of inference rules and axioms), we did not discover

15

(a) Performance versus increased vari-
ables/predicates.

(b) Predicates versus variables.

Fig. 6: Experimental results on the scalability of general-purpose heuristics

enough implications to be useful in any cases, with still substantial, albeit greatly
reduced overhead. However, we did find that some LIA examples were improved
by using the SMT implication lattice. sum ./ multiVarSum in particular saw a
2.27⇥ speedup from 8.36s to 3.69s, which is a substantial speedup even account-
ing for the lattice construction time of 1.87s. In multiVarA ./ multiVarB, the
discovery of logically equivalent predicates filtered more than half of the initial
list of predicates—from 280 (including negations of predicates) to 106. For the
complete results, see Table 2. While it remains unclear whether the predicate
lattice can be used for performance gains in most cases, the preliminary results
suggest that further work may yield larger gains in di�cult cases.

Scalability. Consider the toy example below, where we have a possibly or-
dered set described by x variables and we want to compute another element a

that can potentially be added to the set after applying a marginal decrement. In
this (somewhat artificial) example, the number of predicates increases (Fig. 6b)
with the number of variables, while the commutativity problem has a straight-
forward solution: (b = 0) _ ((b 6= 0) ^ (a � 0) ^ (a� b � 0)

Vn�1
i=1 (xi < xi+1)).

(1) int a, b, x1, x2, ..., xn;

(2) bool sum(){
(3) a := (a - b); return true; }
(4) bool multiVarSum(){
(5) if (a>0 && x1<x2 && x2<x3 && ... && xn�1<xn){
(6) a := (xn + a); return true;
(7) } else {
(8) a := (xn - a); return true; }}

16

Although mcMax shows promising results, due to reduced applicability to cases
where e�cient model counting is supported, we did not consider it for this partic-
ular experiment. Our focus here is on general-purpose heuristics. Fig. 6a reports
the results of our experiments running the heuristics simple (presented in [14]),
poke, and poke2 on the above example, with increasingly many variables (up to
30) and, consequently, increasingly many predicates. For the precise ADT spec-
ification, refer to the “lia scale var template” file in the artifact or Github
provided in Sec. 1. We observe an impressive performance benefit from the poke2
heuristic. Firstly, observe that starting from only a small number of predicates,
poke2 proved to be one order of magnitude faster than poke which timed out
early in our experiment. Secondly, the increase in the number of state variables
x is roughly linear with the increase of poke2 synthesis time. And lastly, the
poke2 heuristic led to synthesizing the utmost simple condition, namely the one
humanly inferred.

6.2 Case study: commute blocks in Veracity

To show Servois2’s applicability, we present the case study of its use in the
Veracity†† project [6], recalled below. The original Servois lacked features
(e.g. solvers, theories, early termination) and performance to be used in such
a setting. Despite the use of Servois2 in Veracity, the improvements described
in the current paper are orthogonal.

Veracity is a parallelizing compiler for a language in which programmers di-
rectly express conditions under which sequential blocks of code commute [6].
Expanding programs with such commutativity annotations enables paralleliza-
tion of sequential code that has dataflow dependencies, which previously could
not be parallelized. We omit the finer details as it is outside the scope of com-
mutativity synthesis. Consider for example, the following Veracity benchmark
even-odd includes a commute statement, with a blank commutativity condition
to be synthesized (or provided by the user):

commute () { { if(x%2==0) x:=x+y;} (1)
{ x:=x+y; } } (2)

Veracity needs Servois2 in order to synthesize the following commutativity con-
dition for these program fragments labeled (1) and (2): y = 0 _ (y 6= 0 ^ x%2 =
x + y). In more detail, Servois2 is used by first having the Veracity compiler
translate the program code into methods, say block1() and block2() on an ADT
whose state are the program variables x and y. Then, the synthesized commu-
tativity conditions are translated back and inserted in place of the “ ” in the
Veracity commute block. Unfortunately the original Servois’s limited support
for solvers/theories (as well as limited performance) prevents it from synthesiz-
ing a commutativity condition for this benchmark. The divergent behavior of
Servois on some benchmarks was a further impediment to its use in Veracity.

A few selected benchmarks are shown in Table 3. These benchmarks are
illustrative of the di↵erent kinds of typical output from Servois2. Most cases

††
http://www.veracity-lang.org

17

Program Time Inferred Conditions
dict 3.82 i != r && c + x != y || c + x == y

ht-simple 30.64 x + a != z && 3 == tbl[z] && y != z

loop-amt >120 0 == i && amt == i pre && ctr - 1 > i pre && i pre <= amt && 0

!= i pre && i pre <= ctr && amt != amt pre && ctr - 1 > amt pre

&& amt pre <= amt && 0 != amt pre && amt pre <= ctr && ctr - 1

!= 1 && 1 != ctr && 1 != amt && 1 == ctr + amt || ... || amt ==

i && 1 == ctr && 1 != amt && 1 == ctr + amt

Table 3: A selected subset of Veracity benchmarks. (Times are in seconds.)

were similar to the dict example, terminating in a few seconds with a sensible
result. The ht-simple case takes more time. The condition is complete, but due
to the longer time, it may be worth terminating the algorithm early and only
receiving one or two of the disjuncts, especially if they cover the most common
cases. Finally, loop-amt is a case that is not amenable to commutativity inference
and it would be better to terminate sooner and allow the user to attempt a
di↵erent approach.

Unlike direct ADT benchmarks, those derived from Veracity programs in-
volve the composition of numerous e↵ects and thus involve complex commu-
tativity conditions. Consequently, most of the Veracity benchmarks make sub-
stantially more complex queries to Servois2 than the handwritten ADT spec-
ifications. We thus used all of the Veracity benchmarks to test the di↵erent
configurations, as mentioned before and shown in Table 1.

New non-trivial benchmarks were manually translated into the Veracity
programming language. These were various combinations of functions from
the SmartContract/Auction, Solidity/StandardToken, and Solidity/PullPay-
ment source codes. Most of these new benchmarks perform better on the new
heuristic poke2 compared to the previously presented approach poke. Also, for
several of them, poke did not terminate, so we had to use the early termination
feature to synthesize the commutativity condition within a specific time frame.
For StandardToken, for example, after executing TransferForm ./ Approve with
using poke and 120s timeout, we get an incomplete condition; however, with
poke2, we can get a complete condition in about 10 seconds with a reasonable
number of atoms.

7 Conclusion and Future Work

We have shown a more mature and performant method of automatically syn-
thesizing commutativity conditions in the Servois2 synthesizer. Our results
confirm what one might expect: that more advanced heuristics and better treat-
ment of predicates leads to overall performance improvement. Furthermore, we
have released a far more usable tool that has already been used in recent work [6]
and is ready to be integrated into other commutativity settings such as proof
methodologies [1,3,2] or distributed systems [9,11]. There are several directions
for future work in this space, discussed below.

18

Algorithmic improvements. We saw great improvements in the performance
of the heuristic in keeping track of which predicates aligned with the commuta-
tive (resp. non-commutative) case. The algorithm is currently agnostic to which
condition is being pursued, and it may be possible to tag such information in the
recursive calls, leading to similar improvements in performance. Furthermore, the
disjunctive nature of the algorithm may be amenable to parallelization. However,
it is unclear whether the actual reasoning is amenable to parallelization or if it
is not worth the overhead.

Extended use of model counting. mcMax uses the model-counting solver
ABC [23], which targets string, LIA, and boolean constraints, but we could also
use other model counters with support for other theories. Approximate model
counters [24] are a promising avenue for handling model-counting queries across
additional theories, and the integration of such a model counter might lead to
further applicability of mcMax.

The mcMax heuristic provides one model counting heuristic to inform predicate
selection, but we hypothesize that additional heuristics might provide advan-
tages on di↵erent benchmarks, for example, by maximizing partitioning rather
than covering. Given the promising results of mcMax, we plan to pursue a more
extensive evaluation of model-counting heuristics.

Model counting might find an additional use in cases where our commuta-
tivity analysis terminates early. Using model counting, we can determine what
portion of the input domain is covered by the resulting commutativity and non-
commutativity conditions, augmenting our analysis with additional reliability
information in cases of early termination. It also may be possible to use this
information to determine when to terminate.

Improving the use of the predicate lattice. Our experiments indicate that
the overhead of lattice construction is significant. Thus for the lattice to be
practical, one would need to both increase its performance benefit and decrease
the overhead from construction. Although Refine prunes predicates based on
the lattice, none of the current heuristics use information about implication
chains, and there may be even more gains to be had by using lattices. There
are also more sophisticated approaches to building the lattice data structure of
logical implications, such as by using the framework GreenTrie [25]. The number
of queries can be greatly reduced through semantic reasoning and caching of sub-
formulas. This could greatly reduce the overhead of lattice construction, thus
making their use more appealing.

Acknowledgements. This work is supported in part by NSF Award #2008633
and #2107169.

19

References

1. A. Farzan and A. Vandikas, “Reductions for safety proofs,” Proceedings of the
ACM on Programming Languages, vol. 4, no. POPL, pp. 1–28, 2019.

2. B. Kragl and S. Qadeer, “The civl verifier,” in 2021 Formal Methods in Computer
Aided Design (FMCAD). IEEE, 2021, pp. 143–152.

3. C. Flanagan and S. N. Freund, “The anchor verifier for blocking and non-blocking
concurrent software,” Proceedings of the ACM on Programming Languages, vol. 4,
no. OOPSLA, pp. 1–29, 2020.

4. M. C. Rinard and P. C. Diniz, “Commutativity analysis: A new analysis technique
for parallelizing compilers,” ACM Transactions on Programming Languages and
Systems (TOPLAS), vol. 19, no. 6, pp. 942–991, November 1997. [Online].
Available: citeseer.ist.psu.edu/rinard97commutativity.html

5. A. Spiegelman, G. Golan-Gueta, and I. Keidar, “Transactional data structure li-
braries,” ACM SIGPLAN Notices, vol. 51, no. 6, pp. 682–696, 2016.

6. A. Chen, P. Fathololumi, E. Koskinen, and J. Pincus, “Veracity: Declarative
multicore programming with commutativity),” Proc. ACM Program. Lang.,
vol. 6, no. OOPSLA2, pp. 186:1–186:31, October 2022. [Online]. Available:
https://doi.org/10.1145/3563349

7. P. Prabhu, S. Ghosh, Y. Zhang, N. P. Johnson, and D. I. August, “Commutative
set: A language extension for implicit parallel programming,” in Proceedings of the
32nd ACM SIGPLAN conference on Programming language design and implemen-
tation, 2011, pp. 1–11.

8. A. T. Clements, M. F. Kaashoek, N. Zeldovich, R. T. Morris, and E. Kohler, “The
scalable commutativity rule: Designing scalable software for multicore processors,”
ACM Transactions on Computer Systems (TOCS), vol. 32, no. 4, pp. 1–47, 2015.

9. M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “A comprehensive study
of convergent and commutative replicated data types,” Ph.D. dissertation, Inria–
Centre Paris-Rocquencourt; INRIA, 2011.

10. T. Dickerson, P. Gazzillo, M. Herlihy, and E. Koskinen, “Adding concurrency
to smart contracts,” in Proceedings of the ACM Symposium on Principles of
Distributed Computing, ser. PODC ’17. New York, NY, USA: ACM, 2017, pp.
303–312. [Online]. Available: http://doi.acm.org/10.1145/3087801.3087835

11. G. P̂ırlea, A. Kumar, and I. Sergey, “Practical smart contract sharding
with ownership and commutativity analysis,” in PLDI ’21: 42nd ACM
SIGPLAN International Conference on Programming Language Design and
Implementation, Virtual Event, Canada, June 20-25, 20211, S. N. Freund
and E. Yahav, Eds. ACM, 2021, pp. 1327–1341. [Online]. Available:
https://doi.org/10.1145/3453483.3454112

12. T. Gehr, D. Dimitrov, and M. T. Vechev, “Learning commutativity specifications,”
in Computer Aided Verification - 27th International Conference, CAV 2015, San
Francisco, CA, USA, July 18-24, 2015, Proceedings, Part I, 2015, pp. 307–323.
[Online]. Available: http://dx.doi.org/10.1007/978-3-319-21690-4\ 18

13. F. Aleen and N. Clark, “Commutativity analysis for software parallelization: letting
program transformations see the big picture,” in Proceedings of the 14th interna-
tional conference on Architectural support for programming languages and operat-
ing systems (ASPLOS-XII), M. L. So↵a and M. J. Irwin, Eds. ACM, 2009, pp.
241–252.

14. K. Bansal, E. Koskinen, and O. Tripp, “Automatic generation of precise
and useful commutativity conditions,” in Tools and Algorithms for the

20

Construction and Analysis of Systems - 24th International Conference,
TACAS 2018, ser. Lecture Notes in Computer Science, D. Beyer and
M. Huisman, Eds., vol. 10805. Springer, 2018, pp. 115–132. [Online]. Available:
https://doi.org/10.1007/978-3-319-89960-2\ 7

15. K. Bansal, E. Koskinen, and O. Tripp, “Synthesizing precise and useful commuta-
tivity conditions,” Journal of Automated Reasoning, vol. 64, no. 7, pp. 1333–1359,
2020.

16. C. P. Gomes, A. Sabharwal, and B. Selman, “Model counting,” in Handbook of
satisfiability. IOS press, 2021, pp. 993–1014.

17. J. A. De Loera, R. Hemmecke, J. Tauzer, and R. Yoshida, “E↵ective lattice point
counting in rational convex polytopes,” Journal of symbolic computation, vol. 38,
no. 4, pp. 1273–1302, 2004.

18. A. Aydin, L. Bang, and T. Bultan, “Automata-based model counting for string con-
straints,” in International Conference on Computer Aided Verification. Springer,
2015, pp. 255–272.

19. A. Molavi, T. Schneider, M. Downing, and L. Bang, “Mcbat: Model counting for
constraints over bounded integer arrays,” in Software Verification: 12th Interna-
tional Conference, VSTTE 2020, and 13th International Workshop, NSV 2020,
Los Angeles, CA, USA, July 20–21, 2020, Revised Selected Papers 13. Springer,
2020, pp. 124–143.

20. C. W. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovic, T. King,
A. Reynolds, and C. Tinelli, “CVC4,” in Computer Aided Verification - 23rd
International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011.
Proceedings, ser. Lecture Notes in Computer Science, G. Gopalakrishnan and
S. Qadeer, Eds., vol. 6806. Springer, 2011, pp. 171–177. [Online]. Available:
https://doi.org/10.1007/978-3-642-22110-1\ 14

21. H. Barbosa, C. W. Barrett, M. Brain, G. Kremer, H. Lachnitt, M. Mann,
A. Mohamed, M. Mohamed, A. Niemetz, A. Nötzli, A. Ozdemir, M. Preiner,
A. Reynolds, Y. Sheng, C. Tinelli, and Y. Zohar, “cvc5: A versatile and
industrial-strength SMT solver,” in Tools and Algorithms for the Construction and
Analysis of Systems - 28th International Conference, TACAS 2022, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS
2022, Munich, Germany, April 2-7, 2022, Proceedings, Part I, ser. Lecture Notes
in Computer Science, D. Fisman and G. Rosu, Eds., vol. 13243. Springer, 2022,
pp. 415–442. [Online]. Available: https://doi.org/10.1007/978-3-030-99524-9\ 24

22. L. de Moura and N. Bjørner, “Z3: An e�cient smt solver,” in Tools and Algorithms
for the Construction and Analysis of Systems, C. R. Ramakrishnan and J. Rehof,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 337–340.

23. A. Aydin, L. Bang, and T. Bultan, “Automata-based model counting for string
constraints,” in Computer Aided Verification, D. Kroening and C. S. Păsăreanu,
Eds. Cham: Springer International Publishing, 2015, pp. 255–272.

24. S. Chakraborty, K. S. Meel, and M. Y. Vardi, “Approximate model counting,” in
Handbook of Satisfiability. IOS Press, 2021, pp. 1015–1045.

25. X. Jia, C. Ghezzi, and S. Ying, “Enhancing reuse of constraint solutions to
improve symbolic execution,” in Proceedings of the 2015 International Symposium
on Software Testing and Analysis, ser. ISSTA 2015. New York, NY, USA:
Association for Computing Machinery, 2015, p. 177–187. [Online]. Available:
https://doi.org/10.1145/2771783.2771806

21

