
A Cross-Platform Benchmark for Interval

Computation Libraries

Xuan Tang1, Zachary Ferguson1, Teseo Schneider2, Denis Zorin1, Shoaib
Kamil3, and Daniele Panozzo1

1 New York University
2 University of Victoria

3 Adobe Research

Abstract. Interval computation is widely used in Computer Aided De-
sign to certify computations that use floating point operations to avoid
pitfalls related to rounding error introduced by inaccurate operations.
Despite its popularity and practical benefits, support for interval arith-
metic is not standardized nor available in mainstream programming lan-
guages.
We propose the first benchmark for interval computations, coupled with
reference solutions computed with exact arithmetic, and compare popu-
lar C and C++ libraries over different architectures, operating systems,
and compilers. The benchmark allows identifying limitations in existing
implementations, and provides a reliable guide on which library to use on
each system for different CAD applications. We believe that our bench-
mark will be useful for developers of future interval libraries, as a way
to test the correctness and performance of their algorithms.

Keywords: Interval Arithmetic · Transcendental Functions · Certified
Computations · Collision Detection · Robust Computation · Open-Source
Library · Benchmark

BOOST FILIB NATIVE SWITCHED MULTIPLICATIVE PRED-SUCC BIAS

CORRECTNESS (ARITHMETIC) X X X X X X

CORRECTNESS (TRANSCENDENTAL) ✗ X X X X X

CORRECTNESS (COMPOSITE) ✗ X ✗ X X ✗

INTERVAL WIDTH (ARITHMETIC) 1 2 1 3 2 1
INTERVAL WIDTH (TRANSCENDENTAL) 1 2 2 2 2 1
SPEED 6 3 4 1 2 5
CONSISTENCY ✗ X ✗ X ✗ ✗

PORTABILITY X X ✗ ✗ ✗ ✗

Fig. 1. We introduce a benchmark for interval arithmetic computation and test it on
four C/C++ libraries: filib, filib++ (including the native switched, multiplicative,
and pred succ methods), Boost, and BIAS. We evaluate each library for their cor-
rectness, output interval size, speed, consistency, and portability. The table shows a
summary of our benchmark where the numbers indicate a ranking from best (small)
to worst (large).

2 Tang et al.

1 Introduction

Interval computation allows performing floating-point operations with certifi-
able correctness, by accounting for rounding errors. Every floating-point num-
ber is replaced by a pair of numbers, representing an interval that contains the
exact result of the computation, independently from the rounding. While this
approach increases the cost and memory usage of computations, it is a sta-
ple for many algorithms in computer aided design, geometric computing, image
processing, computer graphics, and scientific computing. For example, they are
used for Boolean computation [24], intersections between parametric patches
[23], continuous collision detection [20], subdivision surfaces [28], and precision
manufacturing [25]. More applications are discussed in the survey [15].

While the formal correctness of interval computation has been proven [22],
ensuring that an implementation of interval arithmetic is correct is a daunting
task, as the proof relies on assumptions on the order of operations (which can
be altered by the compiler or the reordering buffers on the CPU) and on a
set of hardware assumptions on the ALUs, which are architecture-dependent.
At the same time, users rely on interval computation to certify the correctness
of their algorithm, assuming that the interval computation library is correct,
which, as we will show in this paper, is not always true for specific combinations
of compilers, operating systems, and architectures.

Because a formal proof for every hardware and software combination is im-
practical (requiring to adapt the proof at every new software or hardware up-
date), we propose an experimental approach: we introduce a large benchmark
of test expressions and real-world algorithms for which the exact answer is com-
puted using exact computation. The benchmark can then be used to test existing
implementations, and identify issues. We note that a library passing our bench-
mark problems might still contain errors, as our benchmarks do not exhaustively
test all possible combinations of operations and operands.

We use our benchmark to evaluate four popular C/C++ interval libraries
(filib, filib++, Boost, BIAS) for correctness, interval size, speed, and consistency.
The results are summarized in Table 1. The only library that is at the same time
correct, consistent, portable, and has a reasonable speed is filib, which does not
rely on using special hardware instructions to control the underlying rounding
mode.

We provide the complete source code and scripts to run our benchmark, and
in addition we provide a CMake build system for using filib on Windows, Linux,
and macOS operating systems with both x86 and ARM architectures. We believe
that our benchmark will be a useful tool to continue to assess the correctness of
existing interval libraries as new compilers and architectures are developed, and
also to provide a standardized set of tests for developers of interval libraries.

2 Background

In the past two decades, numerous interval arithmetic libraries have been devel-
oped in various languages. While the logic behind interval arithmetic has been

A Cross-Platform Benchmark for Interval Computation Libraries 3

explored in many works [12,3], the actual implementations vary from library to
library and may produce different results.

2.1 Hardware Rounding Mode Control

Many modern programming languages comply with the IEEE 754 standard for
implementing floating point datatypes, which supports different rounding rules
(round to nearest, towards ∞, and towards −∞) [14]. These rounding modes
provide good lower and upper bounds on basic arithmetic operations. Libraries
like Boost [21] or CGAL [24] use this functionality to build interval operations.
Their implementation focuses on setting the correct rounding mode before calling
the default math library [4]. Other libraries like Profil/BIAS [16] and filib++ [18]
also use or include this implementation for basic algebraic operations.

Such strategies work well for basic arithmetic operations but require a lot of
care when computing transcendental functions, where many rounding changes
need to happen to evaluate a single transcendental function [10]. Some of them,
like CGAL, sidestep the problem by not supporting transcendental operations.

2.2 Software Implementations

It is possible to avoid relying on hardware rounding mode support by using a
pure software implementation. There are two main approaches.

Multiplicative. While it is hard to obtain the exact floating point error of an
expression, the relative error of single operations can be generalized [17,11] since
there are only a finite number of bits representing a number [7]. Hence, one can
carefully analyze the error to generate a number ǫ such that if the true result is
α and the computed result is β, (1− ǫ)β ≤ α ≤ (1 + ǫ)β holds and 1− ǫ, 1 + ǫ
can be exactly represented in floating-point. Filib++, BIAS, and GAOL [8] all
provide such implementations, although the choice of ǫ varies depending on how
the analysis is performed.

Changing binary representation. Since nowadays almost all floating-point num-
bers implementations follow the IEEE 754 standard, one can deconstruct the
binary representation of a number and directly change the result to obtain an
interval [1]. Filib and filib++ adopt this approach, by directly modifying the
mantissa and exponent of a double, generating a reasonably-small interval with-
out sacrificing performance.

2.3 Other Implementations

Some libraries rely on others as part of their implementation of interval arith-
metic. For example, IBEX [5] and XSC [13] both use filib as the backend for in-
terval computation. These libraries generally do not provide better performance
or smaller interval width, but they focus on providing a more user-friendly inter-
face. Other interval libraries exist in other programming languages. For example,
IntervalArithmetic.jl [2] in Julia, interval-arithmetic [19] in Javascript. Since our
goal is on C/C++ libraries we do not include such libraries for our study.

4 Tang et al.

3 Methodology

A good interval library should maintain four traits: (1) correctness, (2) small
interval widths, (3) efficiency, and (4) consistency across different architectures
and compilers. We design our benchmark to test these four traits. We recognize
that in many applications, an interval itself is initialized from a single number
rather than an actual range since the goal is to compute an interval that in-
cludes the true value of an expression. Hence, the initialization of an interval
in our benchmark is always from a single value. In our benchmark, we compare
the following four popular open source libraries that complies with IEEE 754
standard: filib, filib++, Boost, and BIAS.

Filib++ supports three modes for interval computations: native switched

(uses system rounding modes), pred succ (directly manipulates the bit repre-
sentation of a double), and multiplicative (multiplies two numbers to generate
an interval). BIAS includes three rounding modes (ROUND DOWN, ROUND
UP, and ROUND NEAR) which can be set before an interval operation. Their
documentation is unclear how an interval operation is affected by these rounding
modes, thus we treat them as three different interval types.

3.1 Expressions

We list the expressions that will later be referred to in this paper here:

a(a+ bc)

(b+ cd)
−

d (e+ f/g)

(g + h)
−

i

j
(1)

cos

((

cos

(

cos(f) + exp

(

d

c

)))

(

sin
(√

e+ a+ b−
√
d+ c

))

)

(2)

exp

(
√

exp

(

√

exp
(√

a
)

)

)

(3)

exp





√

exp (cos (a/d))/exp
(

cos
(√

f
))

√

cos(cos(cos(c)))/
√

sin(cos(b))



 (4)

3.2 Correctness

While libraries can optimize interval operations for every single arithmetic or
transcendental function, composite expressions that combine multiple operations
can potentially cause the library to produce incorrect (interval does not include
the true result) or empty (lower bound is greater than upper bound) intervals.
In our benchmark, we test each library on 28 different basic expressions and 104
expressions from FPBench [6], a floating point accuracy benchmark that covers

A Cross-Platform Benchmark for Interval Computation Libraries 5

a variety of application domains. The basic benchmark is composed of: four basic
arithmetic operations (addition, subtraction, multiplication, and division); four
transcendental functions (sqrt, exp, sin, cos); ten composite expressions that only
contain basic arithmetic operations; and ten composite expressions containing
both arithmetic operations and transcendental functions. These expressions are
randomly generated from a fixed seed and listed on the website.

For each expression, we generate one million valid inputs for evaluation.
To ensure that the representation of the input and result are precise, and no
additional floating point error is introduced during validation, we convert every
input and output to rational format using GMP [9]. A typical query has the
form

nl

dl
≤ expression(

n1

d1
, . . .) ≤

nu

du

for n, d ∈ Z. Using this format, the queries can be evaluated later by an arbitrary
precision software to get an exact answer. In our benchmark, we use Mathematica
[27].

3.3 Interval width

To report the interval width we utilize a similar procedure to when checking
correctness. Instead of outputting the actual query, we compute the interval
width by using a rational subtraction (i.e., we convert the upper and lower
bound to rational numbers).

3.4 Speed

To test the speed of an interval library, we measure the execution time for each
expression: we generate 1,000 inputs for each expression and execute the expres-
sion 10,000 times for every input. Finally, we accumulate the total execution
time for each library and expression to report the performance. It is important
to execute different sets of inputs since input values may affect the performance
of some operations due to range reduction.

3.5 Consistency and Portability

We deployed our benchmark on four different platforms with different compilers:

– Windows (Intel Core i7 8700k, x86-64, Windows 10, MSVC 14.27.29110)

– macOS Intel (2.4 GHz 8-Core Intel Core i9, x86-64, macOS Big Sur, Darwin
Kernel Version 20.1.0, Apple clang version 12.0.0)

– macOS Arm (3.2 GHz 4-Core/2 + 2 GHz 4-Core Apple M1, arm64, macOS
Big Sur, Darwin Kernel Version 20.1.0, Apple clang version 12.0.0)

– Linux (AMD EPYC 7452 32-Core Processor, x86-64, Ubuntu 19.10, GCC
9.2.1).

6 Tang et al.

4 Results

We discuss in detail how each interval type perform over different platform and
expressions.

4.1 Correctness

As discussed before, we test each library on 28 (constructed by us) and 104
(extracted from FPBench) expressions. We check for correctness by ensuring
that the interval computation produces an interval containing the exact solution,
evaluated with arbitrary precision with Mathematica [27].

We begin with the 28 expressions. All of the libraries produce correct results
for basic arithmetic operations. However, when it comes to transcendental func-
tions, Boost is not correct (since it deals with transcendental functions by setting
rounding modes before calling the standard math library). Specifically, it fails
for exp and trigonometry functions, where the implementation is based on Tay-
lor expansion [10]. For composite expressions that only contain basic arithmetic
operations, all libraries are correct. When transcendental functions are included
in a composite expression, BIAS produces incorrect intervals for Expression (2).

Filib and filib++’s three interval modes are correct for the 28 expressions,
the native switched mode for filib++ is not correct on four of the expressions
from FPBench. For example, “polarToCarthesian, x”, that computes

r cos(θ · (3.14159265359/180.0))

which contains transcendental function cos. Another example is the expression
“sineOrder3”

(0.954929658551372x0)− (0.12900613773279798((x0 x0)x0))

which only contains basic arithmetic operations, and is designed to find floating
point problem caused by the order of evaluation.

We conclude that only filib and filib++’s pred succ and multiplicative

modes produce correct intervals for all tests.

4.2 interval width

Due to the large number of test expressions, we show only some of the most
representative expressions. Specifically, we look at one expression that contains
only arithmetic operations (Expression (1)), one expression that contains only
transcendental functions (Expression (3)), and one that contains both (Expres-
sion (4)).

Across the different platforms, the distribution of interval width does not vary
much. However, within each platform, the distribution of interval width can be
quite different between libraries. The top row of Figure 2 shows that for expres-
sions that contain only arithmetic operations, libraries that use system rounding

A Cross-Platform Benchmark for Interval Computation Libraries 7

Windows Mac Linux ARM

P
er
ce
n
ta
g
e

10 10 10 10 10 9 10 8 10 7 10 6 10 5 10 4 10 3 10 2 EMPTY
0

20

40

60

80

100
ARITHMETIC EXPRESSION 2

FILIB C
BOOST
NATIVE SWITCHED
MULTIPLICATIVE
PRED SUCC

10 10 10 10 10 9 10 8 10 7 10 6 10 5 10 4 10 3 10 2 EMPTY
0

20

40

60

80

100
ARITHMETIC EXPRESSION 2

FILIB C
BOOST
NATIVE SWITCHED
MULTIPLICATIVE
PRED SUCC

10 10 10 10 10 9 10 8 10 7 10 6 10 5 10 4 10 3 10 2 EMPTY
0

20

40

60

80

100
ARITHMETIC EXPRESSION 2

FILIB C
BOOST
NATIVE SWITCHED
MULTIPLICATIVE
PRED SUCC
BIAS ROUND UP
BIAS ROUND DOWN
BIAS ROUND NEAR

10 10 10 10 10 9 10 8 10 7 10 6 10 5 10 4 10 3 10 2 EMPTY
0

20

40

60

80

100
ARITHMETIC EXPRESSION 2

FILIB C
BOOST

P
er
ce
n
ta
g
e

10 8 10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1 100 EMPTY
0

20

40

60

80

100
RANDOM EXPRESSION 2

FILIB C
BOOST
NATIVE SWITCHED
MULTIPLICATIVE
PRED SUCC

10 8 10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1 100 EMPTY
0

20

40

60

80

100
RANDOM EXPRESSION 2

FILIB C
BOOST
NATIVE SWITCHED
MULTIPLICATIVE
PRED SUCC

10 8 10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1 100 EMPTY
0

20

40

60

80

100
RANDOM EXPRESSION 2

FILIB C
BOOST
NATIVE SWITCHED
MULTIPLICATIVE
PRED SUCC
BIAS ROUND UP
BIAS ROUND DOWN
BIAS ROUND NEAR

10 8 10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1 100 EMPTY
0

20

40

60

80

100
RANDOM EXPRESSION 2

FILIB C
BOOST

P
er
ce
n
ta
g
e

10 15 10 15 10 14 10 13 10 12 10 11 10 10 10 9 10 8 10 7 EMPTY
0

20

40

60

80

100
RANDOM EXPRESSION 9

FILIB C
BOOST
NATIVE SWITCHED
MULTIPLICATIVE
PRED SUCC

10 15 10 15 10 14 10 13 10 12 10 11 10 10 10 9 10 8 10 7 EMPTY
0

20

40

60

80

100

BOOST:
0.0009%

RANDOM EXPRESSION 9
FILIB C
BOOST
NATIVE SWITCHED
MULTIPLICATIVE
PRED SUCC

10 14 10 14 10 13 10 12 10 11 10 10 10 9 10 8 10 7 10 6 EMPTY
0

20

40

60

80

100
RANDOM EXPRESSION 9

FILIB C
BOOST
NATIVE SWITCHED
MULTIPLICATIVE
PRED SUCC
BIAS ROUND UP
BIAS ROUND DOWN
BIAS ROUND NEAR

10 14 10 14 10 13 10 12 10 11 10 10 10 9 10 8 10 7 10 6 EMPTY
0

20

40

60

80

100

BOOST:
1.1131%

RANDOM EXPRESSION 9
FILIB C
BOOST

Fig. 2. Distribution of interval width. Top: Expression (1). Middle: Expression (3).
Bottom: Expression (4)

modes (Boost, filib++ native switched, BIAS) produce smaller interval widths
compared to others. The multiplicative mode of filib++ produces the largest
interval widths. However, the differences are small across libraries.

When transcendental functions are added into the expression, the interval
widths can be unpredictable (Figure 2). The difference of overall distribution of
the libraries can also be quite large depending on the expression, but within filib
and filib++’s three interval modes, the interval widths are quite similar. We also
see that Boost produces empty intervals, an indication that Boost’s results are
sometimes incorrect.

4.3 Performance

Single Operations Arithmetic Expressions Random Expressions

T
im

e(
m
s)

ADD SUB MULT DIV SQRT EXP SIN COS
0

1000

2000

3000

4000

5000

6000
 FILIB C
 BOOST
 NATIVE SWITCHED
 MULTIPLICATIVE
 PRED SUCC
 BIAS UPWARD
 BIAS DOWNWARD
 BIAS NEAR

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
0

10000

20000

30000

40000
 FILIB C
 BOOST
 NATIVE SWITCHED
 MULTIPLICATIVE
 PRED SUCC
 BIAS UPWARD
 BIAS DOWNWARD
 BIAS NEAR

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10
0

25000

50000

75000

100000

125000

150000

175000

200000 FILIB C
 BOOST
 NATIVE SWITCHED
 MULTIPLICATIVE
 PRED SUCC
 BIAS UPWARD
 BIAS DOWNWARD
 BIAS NEAR

Fig. 3. Time for each expression (1,000 × 10,000 runs) in ms on Linux.

8 Tang et al.

FILIB C BOOST NATIVE SWITCHED MULTIPLICATIVE PRED SUCC BIAS UPWARD BIAS DOWNWARD BIAS NEAR

ADDITION 66.52 405.78 18.49 3.94 3.92 327.93 328.69 327.94
SUBTRACTION 80.08 405.35 18.37 9.20 3.90 327.60 327.44 327.44
MULTIPLICATION 78.40 649.62 25.81 13.59 90.03 339.43 338.87 338.61
DIVISION 84.43 451.78 38.13 68.97 81.12 344.25 343.87 344.13
SQUARE ROOT 84.85 434.21 24.19 24.26 24.18 61.76 60.44 60.40
EXPONENTIAL 199.08 462.47 143.28 143.43 143.43 196.44 196.34 200.39
SIN 202.25 7115.77 171.54 172.79 172.94 2088.65 2088.34 2087.43
COS 190.21 6776.14 168.64 168.65 168.54 2425.19 2424.21 2423.90
ARITHMETIC EXPRESSION 1 861.49 6848.71 1969.52 589.98 1053.79 4126.49 4097.03 4091.17
ARITHMETIC EXPRESSION 2 1292.77 23227.45 3170.62 699.40 1040.81 5706.45 5672.61 5661.78
ARITHMETIC EXPRESSION 3 1844.20 15082.05 4984.85 1318.50 1900.36 7790.34 7769.46 7757.53
ARITHMETIC EXPRESSION 4 3758.37 30943.47 11407.83 2354.18 4077.55 16086.02 16062.78 16054.29
ARITHMETIC EXPRESSION 5 2635.54 21860.23 7910.95 1626.65 2888.93 10891.99 10883.80 10871.13
RANDOM EXPRESSION 1 2449.01 55822.93 3454.41 2112.71 2350.52 12849.99 12853.38 12858.24
RANDOM EXPRESSION 2 1354.32 4737.32 1465.94 1441.29 1440.93 1323.64 1327.30 1324.32
RANDOM EXPRESSION 3 3382.98 69212.48 5741.97 2945.31 3689.13 17524.99 17485.55 17498.33
RANDOM EXPRESSION 4 3067.34 56868.36 4927.13 3063.33 3593.86 17996.21 17975.26 17973.13
RANDOM EXPRESSION 5 5870.61 121944.99 9633.84 5146.98 6081.06 32546.81 32577.18 32540.89

Table 1. Time for each expression (1,000 × 10,000 runs) in ms on Linux. The relative
timings are similar on different platforms and OS. The complete results can be found
on our github page.

We show the accumulated time in milliseconds for each expression on the
Linux platform since the relative performance across platforms is similar. We
also highlight the fastest method for each expression. From Table 1, we see that
Boost has the worst performance on all of the 28 expressions, followed by BIAS,
then filib. While filib++’s native switched mode also sets rounding mode for
basic arithmetic operations, it is highly optimized and is significantly faster than
the other two libraries.

Within filib++, the performance of the three modes on basic operations is
comparable. However, for more complex arithmetic expressions, native switched

mode is consistently the slowest, likely because it changes the rounding mode for
each operations. The multiplicative mode is always the fastest, while pred succ

method is between the two. Since filib++ ignores interval mode when comput-
ing transcendental functions, the performance on sqrt, exp, sin, cos are similar.
As a result, when computing more complicated expressions, multiplicative mode
remains the fastest one among three modes and among all the interval types,
followed by pred succ mode, then native switched mode. Although the speed
of filib++ can drop below filib or even BIAS on some expressions, the relative
difference is minimal.

4.4 Consistency and Portability

While Boost can be deployed on all platforms we test on, it does not produce
consistent results due to its system specific rounding modes.

While filib++ does well in terms of both correctness and speed, it does not
produce the same result across different platforms: we found that it produces
different results on the Linux platform. As seen in Figure 4, the pred succ’s
distribution of interval width differs from Linux to Mac. Additionally, its porta-

A Cross-Platform Benchmark for Interval Computation Libraries 9

Mac Linux

P
er
ce
n
ta
g
e

0 1 2 3 >3 EMPTY
0

20

40

60

80

100
RANDOM EXPRESSION 1

BOOST
NATIVE SWITCHED
MULTIPLICATIVE
PRED SUCC

0 1 2 3 >3 EMPTY
0

20

40

60

80

100
RANDOM EXPRESSION 1

BOOST
NATIVE SWITCHED
MULTIPLICATIVE
PRED SUCC
BIAS ROUND UP
BIAS ROUND DOWN
BIAS ROUND NEAR

Fig. 4. Distribution of each library’s interval width on expression 2, normalized.

bility is limited due to the lack of updates since 2011 and the use of autoconf to
generate the makefile. 4

BIAS is not maintained 5 and currently does not compile out of the box on
modern windows and macOS versions. We thus only tested it on Linux.

4.5 Application on Continuous Collision Detection Queries

As a further benchmark of correctness, we integrate three interval libraries in the
continuous collision detection (CCD) benchmark of [26]. The CCD benchmark
features two interval based algorithms to detect collisions along a continuous lin-
ear trajectory. Both the univariate and multivariate interval-based CCD perform
interval-based bisection root finding [22] and use interval arithmetic to compute
an estimate of the codomain of a function. The correctness of the interval arith-
metic ensures that no false negatives (no collision is reported when there is a
collision) occur and smaller interval width helps to reduce the number of false
positives (a collision is reported when there is no collision).

T
im

e(
u
s)

FILIB C BOOST NATIVE SWITCHED MULTIPLICATIVE PRED SUCC

103

104

Edge-Edge Handcrafted Dataset
WINDOWS
MAC
LINUX
ARM

FILIB C BOOST NATIVE SWITCHED MULTIPLICATIVE PRED SUCC

104

105
Vertex-Face Handcrafted Dataset

WINDOWS
MAC
LINUX
ARM

FILIB C BOOST NATIVE SWITCHED MULTIPLICATIVE PRED SUCC

102

Edge-Edge Simulation Dataset
WINDOWS
MAC
LINUX
ARM

FILIB C BOOST NATIVE SWITCHED MULTIPLICATIVE PRED SUCC

103

104

Edge-Edge Handcrafted Dataset
WINDOWS
MAC
LINUX
ARM

Fig. 5. Average time of each query using different interval types on different platform
in univariate interval root finder test.

4 filib++ source: http://www2.math.uni-wuppertal.de/wrswt/software/filib.html,
last updated in 2011.

5 BIAS source: https://www.tuhh.de/ti3/keil/profil/index e.html, last updated in
2009,

10 Tang et al.

T
im

e(
u
s)

FILIB C BOOST NATIVE SWITCHED MULTIPLICATIVE PRED SUCC

103

104
Edge-Edge Handcrafted Dataset

WINDOWS
MAC
LINUX
ARM

FILIB C BOOST NATIVE SWITCHED MULTIPLICATIVE PRED SUCC

103

104
Vertex-Face Handcrafted Dataset

WINDOWS
MAC
LINUX
ARM

FILIB C BOOST NATIVE SWITCHED MULTIPLICATIVE PRED SUCC

101

102

Edge-Edge Simulation Dataset
WINDOWS
MAC
LINUX
ARM

FILIB C BOOST NATIVE SWITCHED MULTIPLICATIVE PRED SUCC

101

102

Vertex-Face Simulation Dataset
WINDOWS
MAC
LINUX
ARM

Fig. 6. Average time of each query using different interval types on different platform
in multivariate interval root finder test.

Timing-wise (Figure 5, 6), all libraries are in a similar ballpark, with the
exception of Boost being slightly slower than the others in certain tests.

C
o
u
n
t

FILIB C BOOST NATIVE SWITCHED MULTIPLICATIVE PRED SUCC
0

30

60

90

120

150

180

210

240

270

Edge-Edge Handcrafted Dataset
WINDOWS
MAC
LINUX
ARM

FILIB C BOOST NATIVE SWITCHED MULTIPLICATIVE PRED SUCC
0

20

40

60

80

100

120

140

Vertex-Face Handcrafted Dataset
WINDOWS
MAC
LINUX
ARM

FILIB C BOOST NATIVE SWITCHED MULTIPLICATIVE PRED SUCC
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Edge-Edge Simulation Dataset
WINDOWS
MAC
LINUX
ARM

FILIB C BOOST NATIVE SWITCHED MULTIPLICATIVE PRED SUCC
0

2

4

6

8

10

12

14

16

18

Vertex-Face Simulation Dataset
WINDOWS
MAC
LINUX
ARM

Fig. 7. Number of false positives using different interval types on different platform in
univariate interval root finder test.

C
o
u
n
t

FILIB C BOOST NATIVE SWITCHED MULTIPLICATIVE PRED SUCC
0

20

40

60

80

100

120

140

160

Edge-Edge Handcrafted Dataset
WINDOWS
MAC
LINUX
ARM

FILIB C BOOST NATIVE SWITCHED MULTIPLICATIVE PRED SUCC
0

10

20

30

40

50

60

70

80

90
Vertex-Face Handcrafted Dataset

WINDOWS
MAC
LINUX
ARM

FILIB C BOOST NATIVE SWITCHED MULTIPLICATIVE PRED SUCC
0

8

16

24

32

40

48

56

64

72
Edge-Edge Simulation Dataset

WINDOWS
MAC
LINUX
ARM

FILIB C BOOST NATIVE SWITCHED MULTIPLICATIVE PRED SUCC
0

1

2

Vertex-Face Simulation Dataset
WINDOWS
MAC
LINUX
ARM

Fig. 8. Number of false positives using different interval types on different platform in
multivariate interval root finder test.

None of the libraries produces false negatives in this benchmark. The number
of false positives varies as expected, as the intervals are different (Figure 7, 8). It
is concerning to see that Boost and filib++’s native switched produce different
numbers of false positives on different architectures. filib, filib++’s pred succ,
and filib++’s multiplicative method produce consistent results across all op-
erating systems and architectures.

5 Conclusion

In this paper, we designed a benchmark that tests interval libraries for correct-
ness, interval width, speed, and consistency. Using our benchmark we evaluated

A Cross-Platform Benchmark for Interval Computation Libraries 11

four interval libraries: filib, filib++, Boost, and BIAS (Table 1). We also provide
the complete results along with all the expressions on our github page. 6

In our study, filib is the only library that is correct, consistent, portable, and
efficient. We believe it is the best option between the libraries we tested. To
make deployment on multiple platforms easier, we provide a copy of the library
with a modern cmake build system on github. 7

References

1. Abrams, S., Cho, W., Hu, C.Y., Maekawa, T., Patrikalakis, N., Sherbrooke, E., Ye,
X.: Efficient and reliable methods for rounded-interval arithmetic. Computer-Aided
Design 30(8), 657 – 665 (1998). https://doi.org/https://doi.org/10.1016/S0010-
4485(97)00086-9, http://www.sciencedirect.com/science/article/pii/

S0010448597000869

2. Benet, L., Sanders, D.: Juliaintervals.jl package — Rigorous numerics with in-
terval arithmetic & applications (2015), https://github.com/JuliaIntervals/
IntervalArithmetic.jl

3. Benhamou, F., Older, W.J.: Applying interval arithmetic to real, integer,
and boolean constraints. The Journal of Logic Programming 32(1), 1 – 24
(1997). https://doi.org/https://doi.org/10.1016/S0743-1066(96)00142-2, http://
www.sciencedirect.com/science/article/pii/S0743106696001422

4. Brönnimann, H., Melquiond, G., Pion, S.: The design of the Boost in-
terval arithmetic library. Theoretical Computer Science 351(1), 111 – 118
(2006). https://doi.org/https://doi.org/10.1016/j.tcs.2005.09.062, http://www.

sciencedirect.com/science/article/pii/S0304397505006110, real Numbers
and Computers

5. Chabert, G.: IBEX (2007), http://www.ibex-lib.org/
6. Damouche, N., Martel, M., Panchekha, P., Qiu, J., Sanchez-Stern, A., Tatlock,

Z.: Toward a Standard Benchmark Format and Suite for Floating-Point Analysis.
Numerical Software Verification (July 2016)

7. Goldberg, D.: What Every Computer Scientist Should Know about
Floating-Point Arithmetic. ACM Comput. Surv. 23(1), 5–48 (Mar 1991).
https://doi.org/10.1145/103162.103163, https://doi.org/10.1145/103162.

103163

8. Goualard, F.: Gaol: NOT Just Another Interval Library (2005), https://

sourceforge.net/projects/gaol/

9. Granlund, T., Team, G.D.: GNU MP 6.0 Multiple Precision Arithmetic Library.
Samurai Media Limited, London, GBR (2015)

10. Harrison, J., Tak, P., Tang, P.: The Computation of Transcendental Functions on
the IA-64 Architecture. In: Intel Technology Journal. vol. 4, pp. 234–251 (1999)

11. Harrison, J.: Formal Verification of Floating Point Trigonometric Functions. In:
Hunt, W.A., Johnson, S.D. (eds.) Formal Methods in Computer-Aided Design. pp.
254–270. Springer Berlin Heidelberg, Berlin, Heidelberg (2000)

12. Hickey, T., Ju, Q., Van Emden, M.H.: Interval Arithmetic: From
Principles to Implementation. J. ACM 48(5), 1038–1068 (Sep 2001).
https://doi.org/10.1145/502102.502106, https://doi.org/10.1145/502102.

502106

6 https://geometryprocessing.github.io/intervals/
7 https://github.com/txstc55/filib.

12 Tang et al.

13. Hofschuster, W., Krämer, W.: C-XSC 2.0 – A C++ Library for Extended Scientific
Computing. In: Alt, R., Frommer, A., Kearfott, R.B., Luther, W. (eds.) Numerical
Software with Result Verification. pp. 15–35. Springer Berlin Heidelberg, Berlin,
Heidelberg (2004)

14. IEEE: Ieee standard for binary floating-point arithmetic. ANSI/IEEE Std 754-1985
pp. 1–20 (1985). https://doi.org/10.1109/IEEESTD.1985.82928

15. Kearfott, R.: Interval Computations: Introduction, Uses, and Resources. Euromath
Bulletin 2 (01 1996)

16. Knüppel, O.: PROFIL/BIAS—A fast interval library. Computing 53(3), 277–287
(Sep 1994). https://doi.org/10.1007/BF02307379, https://doi.org/10.1007/

BF02307379

17. Lefevre, V., Muller, J..: Worst cases for correct rounding of the ele-
mentary functions in double precision. In: Proceedings 15th IEEE Sym-
posium on Computer Arithmetic. ARITH-15 2001. pp. 111–118 (2001).
https://doi.org/10.1109/ARITH.2001.930110

18. Lerch, M., Tischler, G., Gudenberg, J.W.V., Hofschuster, W., Krämer,
W.: FILIB++, a Fast Interval Library Supporting Containment Com-
putations. ACM Trans. Math. Softw. 32(2), 299–324 (Jun 2006).
https://doi.org/10.1145/1141885.1141893, https://doi.org/10.1145/1141885.

1141893

19. Poppe, M.: interval-arithmetic (2015), https://github.com/mauriciopoppe/

interval-arithmetic

20. Redon, S., Kheddar, A., Coquillart, S.: Fast Continuous Collision Detection be-
tween Rigid Bodies. Computer Graphics Forum 21 (May 2002)

21. Schling, B.: The Boost C++ Libraries. XML Press (2011)
22. Snyder, J.: Interval Analysis For Computer Graphics. In: ACM SIGGRAPH. pp.

121–130. ACM (August 1992), https://www.microsoft.com/en-us/research/

publication/interval-analysis-computer-graphics/

23. Snyder, J.M., Woodbury, A.R., Fleischer, K., Currin, B., Barr, A.H.: Interval Meth-
ods for multi-point collisions between time-dependent curved surfaces. In: Proceed-
ings of the 20th Annual Conference on Computer Graphics and Interactive Tech-
niques. p. 321–334. SIGGRAPH ’93, Association for Computing Machinery, New
York, NY, USA (1993)

24. The CGAL Project: CGAL User and Reference Manual. CGAL Editorial Board,
5.3 edn. (2021), https://doc.cgal.org/5.3/Manual/packages.html

25. Tibken, B., Hofer, E.P., Seibold, W.: Quality control of valve push rods using
interval arithmetic. IFAC Proceedings Volumes 32(2), 409–412 (1999), 14th IFAC
World Congress 1999, Beijing, Chia, 5-9 July

26. Wang, B., Ferguson, Z., Schneider, T., Jiang, X., Attene, M., Panozzo, D.: A
Large Scale Benchmark and an Inclusion-Based Algorithm for Continuous Collision
Detection. ACM Transactions on Graphics 40(5) (Oct 2021)

27. Wolfram Research Inc.: Mathematica 12.0 (2020), http://www.wolfram.com
28. Zorin, D.: A Method for Analysis of C1-continuity of Subdivision Sur-

faces. SIAM Journal on Numerical Analysis 37(5), 1677–1708 (Jan 2000).
https://doi.org/10.1137/s003614299834263x, https://doi.org/10.1137/

s003614299834263x

	A Cross-Platform Benchmark for Interval Computation Libraries

