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A B S T R A C T

The human auditory system can localize multiple sound sources using time, intensity, and frequency cues in the
sound received by the two ears. Being able to spatially segregate the sources helps perception in a challenging
condition when multiple sounds coexist. This study used model simulations to explore an algorithm for localizing
multiple sources in azimuth with binaural (i.e., two)microphones. The algorithm relies on the “sparseness” prop-

erty of daily signals in the time-frequency domain, and sound coming from different locations carrying unique
spatial features will form clusters. Based on an interaural normalization procedure, the model generated spiral
patterns for sound sources in the frontal hemifield. The model itself was created using broadband noise for better
accuracy, because speech typically has sporadic energy at high frequencies. The model at an arbitrary frequency
can be used to predict locations of speech and music that occurred alone or concurrently, and a classification al-
gorithm was applied to measure the localization error. Under anechoic conditions, averaged errors in azimuth in-

creased from 4.5° to 19° with RMS errors ranging from 6.4° to 26.7° as model frequency increased from 300 to
3000 Hz. The low-frequency model performance using short speech sound was notably better than the general-
ized cross-correlation model. Two types of room reverberations were then introduced to simulate difficult listen-

ing conditions. Model performance under reverberation was more resilient at low frequencies than at high fre-
quencies. Overall, our study presented a spiral model for rapidly predicting horizontal locations of concurrent
sound that is suitable for real-world scenarios.

© 20XX

1. Introduction

Human listeners can localize more than one sound source concur-
rently (Zhong and Yost, 2017, Keller and Takahashi, 2005). Spatial sep-
arations between speech and interfering noise can often improve
speech perception, a phenomenon called “spatial release frommasking”

(Saberi et al., 1991). However, the ability for wearers of conventional
hearing aids to localize sound sources is poor because of compromised
localization cues (Loiselle et al., 2016). Sound-processing algorithms
that can automatically decode sound locations and subsequently segre-
gate the sound into different streams according to the locations would
be highly desirable for hearing devices. The goal of this paper is to ex-
plore a fast and accurate localization algorithm that is invariant with
common sound types in our daily life.

Although an array of directional microphones can enhance speech
perception (Saunders, 1997), users typically prefer wearing more dis-
creet devices with binaural (i.e., two) microphones. With two micro-
phones, the most successful underdetermined blind-source separation
relies on the sparseness of sound signals. Fig. 1 shows the example used
in one of our simulations, having three concurrent sound sources lo-
cated at different places. Here, a guitar is placed 80° left to the front

center, a female speaker is placed 30° left to the front center, and a male
speaker is placed 80° right to the front center. Although sound sources
in our daily life often overlap in the time domain (i.e., “concurrent”),
when projected into a two-dimensional time-frequency domain, the
spectrograms rarely occupy the same time and frequency spots, as
shown in the illustration of Fig. 2B. In other words, adding the fre-
quency dimension is crucial to the sparseness property. With each
sound source carrying distinct spatial cues, different time-frequency
points can be classified into separate source locations. Signals can then
be extracted with a time-frequency binary mask if sound segregation is
also desired (Makino et al., 2007).

According to the duplex theory (Mills, 1972, Tollin, 2009), at low
sound frequencies (e.g., < 2 kHz), sound localization in azimuth is
based on interaural time differences (ITDs) caused by differences in the
sound's arrival time at the two ears. At high frequencies (e.g., > 2 kHz),
interaural level differences (ILDs) caused by head shadows dominate
the localization in azimuth. Localization in elevation relies on monaural
spectral shapes (Musicant et al., 1990, Tollin and Koka, 2009). All those
cues are contained in head-related transfer functions (HRTFs), deter-
mined by acoustic filtering properties of the head and pinnae (Gardner
and Gardner, 1973).
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Fig. 1. An example of a scenario with three active sound sources in azimuth: a
female speaker at ‒30°, a guitar at ‒80°, and a male speaker at 80°. The signals
are linearly summed up at each ear of the human with certain amplitudes and
timing.

Sound localization based only on ITDs and ILDs suffer from front-
back confusions and room reverberations (Halupka et al., 2005,
Macdonald, 2008, Wang et al., 2016). Recently, localization algorithms
using the entire HRTFs have been developed to predict the locations of
multiple sound sources using two (Wang et al., 2016, Rothbucher et al.,
2012, Keyrouz, 2017) or four microphones (Keyrouz, 2014, Keyrouz,
2015). The advantages of performing localizations using the entire
HRTFs include the ability to localize sources in elevation, higher re-
silience to room reverberations, and reduced front/back confusions.

Keyrouz and colleagues performed a localization study using binau-
ral microphones (Keyrouz, 2017, Keyrouz, 2008), in which sound loca-
tions were determined by forming time-frequency clusters and match-
ing ITDs and ILDs in a HRTF database over a large frequency range.
They achieved an averaged angular error around 10° in both azimuth
and elevation for multiple concurrent sources. However, their algo-
rithm required information processing over a large range of sound fre-
quencies, which could be time consuming and unsuitable for real-time
hearing devices.

Here we present an innovative model as a tool to evaluate the algo-
rithm developed by Keyrouz and colleagues in complex situations that

can arise in artificial localization. The key is a normalization procedure
that confines all the time-frequency points inside the unit circle. How-
ever, it is unclear how those data points behave with various sound lo-
cations and frequencies. To thoroughly understand the model behavior,
series of simulations were performed in the present study to demon-
strate the clustering behavior of the algorithm and to rapidly predict
horizontal locations of multiple sound sources based on the spiral pat-
tern generated by our model.

We found that, at a given frequency, the model predicts a spiral pat-
ten as the location of a sound moves in the azimuth from left to right.
We also found that, with increased model frequency, the spiral pattern
evolves from less than one turn into multiple turns. At any fixed fre-
quency, though, the spiral pattern is quite robust over different sound
elevations and sound profiles.

In addition, using a room-impulse-response database, the effect of
room reverberations was demonstrated. The low-frequency model pre-
diction was accurate under moderate reverberations. As the model fre-
quency increased, errors can occur within adjacent turns. The model
failed under strong reverberations, which is reasonable because each
sound source can generate multiple echo locations in a highly reverber-
ant environment.

Note that only one model frequency is needed to make a prediction
of the horizontal location. This frequency can be arbitrary, as long as
enough energy is present in that frequency band. However, when possi-
ble, frequencies in the range of 300 to 600 Hz are preferred. Frequen-
cies lower than this range will create location centers that are too
packed in the feature space. In contrast, frequencies higher than this
range will require a spiral pattern of multiple turns, which is especially
problematic for localizations under significant reverberations.

2. Methods

2.1. Sound stimuli

All simulations and signal processing were performed in MATLAB
(MathWorks, MA) at a sampling frequency of 44 kHz. A single broad-
band noise (0–22 kHz, 33.6 s) was used to create accurate sound-
location cluster centers at various model frequencies. The broadband

Fig. 2. A, Examples of spectrograms for the three sound stimuli used in the simulations. Each stimulus had a different length (female speech 33.6 s, guitar sound
12.2 s and male speech 52.5 seconds). During simulations, sound files were truncated to make the lengths equal to the shortest sound signal. B, illustration of the
sparseness property for natural sound. At a given time frame, there is usually no more than one sound source.
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noise is preferred when creating the model stereotypes because, unlike
speech sound that has sporadic energy at high frequencies, the broad-
band noise can guarantee sufficient energy at any frequency. It should
be noted that the noise was only used during creating the cluster cen-
ters. It is impossible to predict the location of the noise when it occurs
concurrently with any other sound because it violates the sparseness
property. In addition, a long-duration noise was used in creating the
model, but the algorithm works even when the duration was shortened
to 150 ms (discussed later).

Four types of sound stimuli (Fig. 1)were then used as “test sound” in
the simulation process. First, a sound wave containing a guitar playing,
an English speech file by a male speaker, and English speech by a fe-
male speaker. The female speech was 33.6 s, male speech 52.5 s, both
are reading random lines of a script, i.e., male: “paint the sockets in the
wall dull green…” female: “glue the sheet to the dark blue back-
ground…”; guitar was 12.2 s and included soft intermediate strumming
of an acoustic model guitar. The female speech sound was mostly used
during the simulation. To examine how well the result generalizes to
other speech sound, we also randomly selected five sentences recorded
by a previous study (Calandruccio and Smiljanic, 2012), and concate-
nated the five sentences into one long speech while running the model.
A 5-ms cosine ramp was applied to the onset and offset of the signals.

When the sound-duration effect was examined, sound stimuli were
shortened by taking the beginning of the signal, truncating to match
concurrent stimuli, and adding the 5-ms ramp. When multiple concur-
rent sounds were tested, the durations of the longer sounds were short-
ened to match the shortest sound. Specifically, when the simulation
only included male and female speech, male speech was cut short in
MATLAB by taking a sample of the first 33.6 s, to make it the same
length as the female speech. Whenever the simulation had guitar music
in it, the others were cut short in MATLAB to be equal to the guitar mu-
sic's length, which is the shortest length among the three (12.2 s) in the
simulation since there was no inner-ear nonlinearity involved.

Fig. 2A shows the spectrograms of the three stimuli up to 3000 Hz.
The female speech had a higher pitch (i.e., the fundamental frequency
represented by the first horizontal stripe) than the male speech (Gelfer
and Mikos, 2005). The harmonics are multiples of the fundamental
frequencies. In comparison, the music has more dispersed frequency
components.

2.2. Simulation of sound locations to create the model

As mentioned above, broadband noise violates the sparseness prop-
erty and cannot be separated from other concurrent sound. However, it
has uniform frequency distribution and thus is ideal in creating the lo-
calization model. In contrast, a specific piece of speech or music may
contain “holes” in their frequency spectrum.

When creating the broad-band location model, HRTFs are needed to
simulate the anechoic condition. Because the measurement of HRTFs is
cumbersome, an algorithm that works with a standard HRTF database,
rather than being fitted to individual humans, will be desirable for
hearing devices. The CIPIC database (Algazi et al., 2001) was used in
this study. The database contains HRTFs from ‒80° to +80° in azimuth,
with positive values being the right side and negatives on the left. An-
gular separations were approximately 5°. The distance of each sound
source was fixed as 1 m, according to the distance of the CIPIC data-
base.

The CIPIC database contained a total of 45 sets of HRTFs obtained
from 45 subjects. We randomly selected Subject 21 to create the model;
later this model will be used to predict sound locations for other sub-
jects. The horizontal angle of interest was simulated by filtering a mono
sound with the HRTF pair that corresponded to the desired horizontal
angle. The simulated angle in elevation was kept at 0° for all the plots
except Fig. 7, in which other elevations were simulated.

2.3. Experimental paradigm

In Experiment I, the listening environment was assumed to be an
anechoic chamber; the effect of room reverberations was ignored.
Speech and/or music sound were used as “test sound” while the loca-
tion centers derived from the broadband model were applied to predict
the locations of the test sound.

In Experiment II, reverberations were added to the anechoic signal.
Room impulse responses were obtained from the Aachen Impulse Re-
sponse (AIR) database (Jeub et al., 2009, Jeub, 2019). AIR contains bin-
aural room impulse responses (BRIR) for different listening environ-
ments. The BRIRs were derived in a way similar to HRTFs: sound com-
ing from various speakers was recorded using binaural microphones
that were placed inside a HMS2 artificial head by HEAD acoustics. The
difference was that the room was not anechoic. In other words, BRIRs
contain both HRTFs and the room impulse responses. By filtering a
mono sound with a pair of BRIRs from the AIR database that corre-
sponded to our desired reverberation level and horizontal location, the
effect of reverberation was observed.

Here, two reverberant environments were simulated.
Stairway Hall is a listening environment with moderate reverbera-

tions ( The reverberation time, , is defined as the

time period after the termination of a sound when the sound reaches a
60-dB attenuation. The longer this time, the stronger the reverbera-
tions. An acceptable time is dependent on the room type and what
it will be used for, as a music hall would not want to have zero reverber-
ation, while a lower amount of reverb would be desired for a classroom
setting. In general, an of <1-1.5 s is ideal for a regular speaking
environment. The database for this room includes BRIRs from ‒90° to
+90° in azimuth with angular separations of 15°. The source distance
was also 1 m.

Next,we simulated the reverberant listening environment, Aula Car-
olina, a former church with a ground area of 570 m² and a high ceiling.
This room has strong reverberations with The speaker
was at a distance of 3m. The BRIRs ranged from -90° to +90° with an-
gular separations of 45°.

Again, the female speech was used as “test sound”while the location
centers derived from the broadband model were applied to predict the
locations of the test sound under room reverberations.

2.4. Phase normalization and the clustering algorithm

The localization algorithm developed by Keyrouz and colleagues
(Keyrouz, 2017) is based on a feature space related to ITDs and ILDs at
various sound frequencies. First, the recorded sound signals from bin-
aural microphones are transferred into the time-frequency domain by
means of Short-Time Fourier Transform (STFT). During the process of
STFT, the long signal is divided into overlapping frames, and the
Fourier transform of each frame is computed. Regarding the integration
window size for the STFT, the initial study (Keyrouz, 2017, Keyrouz,
2008) used less than 40 ms. As will be shown later, 40 ms generated rel-
atively large scattering, and we found that 80 ms can yield an almost
ideal result. Therefore, we used 80 ms as the integration window
throughout the study, except for Fig. 5A where we demonstrated the
above-mentioned scattering with the 40 ms window.

Performing the STFT results in a series of complex numbers. The
magnitude and phase can then be subsequently derived from those
complex numbers as and independently for the left and right chan-
nels. The localization algorithm then divides each time frame into fre-
quency bands to perform localization at each frequency band sepa-
rately. The key is a normalization procedure applied to the right-
microphone recording,

(Eq. 1)
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Afterwards, the phase becomes the difference between the right-
and left-ear phases ( ), which is usually called the interaural
phase difference (IPD) and is uniquely related to the ITD at a certain
frequency. Here, is the phase of the left recording. The real and
imaginary parts of the normalized are typically plotted against each
other for each frequency band.

Examining the distance of the moving cluster's center to the fixed
origin, it depends on which ear is louder. When the left ear is louder
(source closer to the left ear), the cluster is closer to the origin. Fig. 3 is
a schematic plot of how the time and level cues work in determining the
feature space. For each sound source, if the right ear leads the left ear,
the normalized phase would be positive (counterclockwise in Fig. 3A).
This phase cue is most robust at low frequencies. If the right ear is

louder, would approach 1 (Fig. 3B); if the left ear is louder,

would approach 0. Equal amplitudes (ILD = 0) lead to

(Fig. 3B, green dotted circle). This level cue is most robust at high fre-
quencies. The behaviors of the points would change according to the
low/high frequencies and whether ITD or ILD dominates, however, we
apply the clustering algorithm in the same manner.

For the scenario shown in Fig. 1 with three active sound sources, the
three corresponding clusters were shown in Fig. 4 over a large range of
frequencies. Each point (Fig. 4, dots) corresponds to a scaled value of
the STFT at a certain time and frequency. The importance of sparseness
for concurrent sound localization lies in the fact that each data point in

Fig. 3. Normalized feature space showing the ITD (3A, left) and ILD (3B, right)
cues at low and high frequencies.

the feature space represents only one sound source in a short time win-
dow (Fig. 2B). All the points are inside the unit circle in the feature
plane due to the normalization procedure implanted (Eq. (1)). The cen-
ter of each cluster (Fig. 4, large circles) supposedly corresponds to the
scaled value of the HRTF for a particular sound-source location. This is
because each HRTF is unique to the location of the sound source, and,
for a stationary source, the transfer function of the sound source to ear
remains the same over time frames. The number of individual centers
corresponds to the number of active sound sources in that frequency
band.

However, there is no easy way to identify which cluster center cor-
responds to which sound source, e.g., the guitar at , the female
speaker at , or the male speaker at . Previous studies did not
systematically examine how those cluster centers vary with sound lo-
cations. This is precisely the reason why we performed this study—to
create a model at various frequencies that allows us to easily identify
the sound-source location(s).

Next, a k-means approach was performed using MATLAB's standard
“k-means” function with five “Replicates”. This function automatically
searches in the normalized feature space and identifies the center loca-
tion of each cluster for one to three clusters, depending on the simula-
tion condition.

2.5. Horizontal-location classification

As mentioned above, there were 45 HRTF sets in the CIPIC database,
and the model was created by arbitrarily choosing Subject 21’s HRTF.
Under the anechoic condition, the model created using broadband
noise was validated using the first seven subjects’ HRTFs in the same
database for single or multiple speech sound. Localization was per-
formed over the same range of angles as was used in the model creation,
e.g., ‒80°, ‒65°, etc. and at multiple frequencies. Here, each newly gen-
erated test cluster (location unknown) for a novel subject was assigned
to the nearest cluster center (location known) in the model, and thus a
horizontal angular location can be determined. Here, “nearest” means
that the smallest Euclidean distance of this test center to all the model
clusters was selected as the target. For each test data input, a “localiza-
tion error” can be computed by taking the absolute difference between
the true angular location and the classified angular location using the
model. In other words, the error is the systematic error between the pre-

Fig. 4. Three clusters in the feature space for the three sound sources shown in Fig. 1 covering frequencies of 200 to 5450 Hz. Each cluster center (i.e., a red circle)
supposedly corresponds to one of the source locations, ‒30°, ‒80°, or 80°. The. The elevation was fixed at 0°.
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dicted sound location and the true location. The true location deter-
mines the pair of HRTFs used to filter the sound stimuli.

Next, the localization error was measured with a single speech
sound under reverberant conditions. We did not perform multi-sound
localization under reverberations because, as will be shown later, even
a single source was difficult to classify.

3. Results

3.1. The broadband model

To create the basic model and study how a cluster's position changes
according to the sound location in azimuth, an anechoic listening envi-
ronment for various locations in the frontal hemisphere was first estab-
lished. As stated earlier, a single broadband noise filtered with a set of
HRTFs was used to establish the location centers covering the range of
‒80° to 80°.

Fig. 5 shows the model behaviors for four representative frequen-
cies, 300, 600, 1500, and 3000 Hz. As mentioned earlier,we used 80 ms
as the integration window for STFT since it created less scattering in the
model. In Fig. 5A (right), we also plotted the same model when a
shorter time window (40 ms)was used to demonstrate the effect of win-
dow size. Regardless of the window size, it can be seen that, as the hori-
zontal location of the broadband noise moved from left to right, the
clusters traveled in the feature space in a counterclockwise manner. For
the lowest frequency, 300 Hz, the spiral was roughly a half turn (Fig.
5A). As the model frequency further increased, the spiral reached one
full turn and eventually multiple turns (Fig. 5, B‒D).

The spiral pattern was codetermined by both ITD and ILD cues.
Briefly, the distance of each cluster center to the fixed origin (0, 0) de-
pends on which ear is louder. When the left ear is louder (source closer
to the left ear), the cluster is closer to the origin as seen in Fig. 3B,

where approaches 0. When the right ear is louder, the cluster is

closer to the unit circle, and would approach 1 (Fig. 3B). The ITD

determines the counterclockwise turning property. Overall, the results
showed that the cluster's center position follows a spiral pattern that
can help predict the azimuth of the active sound source with only one
frequency.

Here, we used broadband noise to create the model because it has a
uniform energy distribution over frequencies. It is thus important to
verify that the observed spiral pattern did not show sensitivity to the
type of sound stimulus. Fig. 6 shows the raw data points (dots, one color
for each location) after the normalization procedure for the four stimuli
tested in this study (i.e., A, broadband noise; B, female speech; C, male
speech; D,music). The shell-like spiral shape was almost identical when
the frequency was fixed at an arbitrary value, 655 Hz, but the raw data
points were more scattered in the speech and music plots (B–D) than in
the broadband noise plot (A). Here, the large circles in all the plots were
derived from the broadband noise data and superimposed on the other
three conditions. The elevation was fixed at 0°.

Note that the cluster centers are not the geometrical means of each
location, which would have been affected by certain outliers. Instead,
each center was identified by the k-means approach as where the den-
sity of dots was highest.

3.2. Experiment I: dual sources and different elevations under anechoic
conditions

The above basic model was derived with a single broadband-noise
source and fixed elevation of 0°. Next, two active sound sources were
simulated, and the elevation was varied. Because the broadband noise
violates the sparseness property, speech sounds were used here. In Fig.
7, one source (the female speech) was kept stationary at –80° in az-
imuth (i.e., to the left of the virtual listener) and the second source
(male speaker) traveled from one stationary location to the next, cover-
ing –80° to+80° (i.e., toward the right side of the virtual listener) in in-

Fig. 5. The broadband-noise model that displays changes in the spiral patterns with increasing model frequencies. At very low frequencies (A), clusters are formed in
a tight pattern with minimal spirality (half turn). As the frequency increases (B–D), clusters begin to spread further apart, and spirality evolves into multi-turns. In A,

two analysis-window sizes are explored, 80 ms vs. 40 ms. Since the 40 ms generates larger scatters, we will use 80 ms for the rest of the study.
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Fig. 6. Model simulations of cluster centers at an arbitrary frequency (655 Hz) for different sound profiles. The broadband cluster centers are superimposed on
each of the four conditions. In general, the cluster locations in the complex plane were not notably sensitive to the type of stimulus. This provides evidence that
the single-source broadband model can be used to predict the location(s) of single or concurrent sounds with various profiles. The elevation was fixed at 0° in the
simulation.

Fig. 7. Experiment I: localizing two sound sources at 655 Hz under anechoic conditions. One source (female speech) was kept at ‒80° (red symbol). The other
source (male speech) moved from ‒80° to +80° in azimuth. The cluster moved on a pattern that ultimately formed a shell-like shape. Note there were multiple red
asterisks that were overlapping with one another.

crements of 15° or less. At each location, localization was performed for
an arbitrary frequency of 655 Hz, and the position of the moving cluster
center relative to the static source was observed in the complex plane
(Fig. 7). Here, the two source locations were simultaneously identified
using the k-means approach.

In Fig. 7A, both sources were kept within the 0° elevation plane. The
red asterisk indicates the cluster location for the direct source kept at
–80°. Note that there are multiple red asterisks overlapping on one an-
other. The blue asterisks are the direct cluster locations for the moving
source, which formed a counterclockwise spiral pattern. The black cir-
cles are single-source locations derived from the broadband-noise
model presented above. Given that moving-source centers more or less
matched the single-source centers, we conclude that the k-means ap-
proach worked successfully extracting both source locations concur-
rently.

Next, we repeated the simulation at two more elevations. In Fig. 7B,
both sound sources were lowered to –45°, which was the lowest eleva-
tion in the front hemifield of the CIPIC database. The black circles are
again superimposed single-source model centers at 0° elevation. Al-
though there were disparities between the two elevation results (Fig. 7,
A and B), the model structure generally held. When the two sources
were moved to 62° elevation, observations were similar, except that for
one source, –65°, the k-means approach failed to identify the moving-
source location. This is due to the fact that the fixed-source location
(–80°) is not much different from the moving-source location (–65°)
when both sources are elevated by 62°; that is, the two locations reside
closely on a small circle above the head of the virtual listener. The
HRTFs measured for those two locations are presumably quite similar.

In Fig. 6 we showed that the spiral patten did not vary much with
the sound profile. If one prefers constructing the model using speech
sound, it should work equally well at relatively low frequencies where

enough sound energy is present in the speech sound. Fig. 8 shows an ex-
ample of predicting two source locations using a speech model at a sin-
gle model frequency. Again, we used the arbitrary frequency 655 Hz as
an example. Fig. 8A shows the mixed-sound situation when the female-
speech source was located at –45° and the guitar was at –80°. If we com-
pare the raw data points (Fig. 8A) to the same female-speaker model re-
plotted from above (Fig. 6B), we can identify which cluster belonged to
the source at –45° and which belonged to –80°. The large circles are the
cluster centers identified by the k-means from the mixed sound super-
imposed on the female-speech model plot (Fig. 8B), indicating an accu-
rate match of the locations.

3.3. Experiment I: localization errors and the duration effect

In the above model construction, broadband noise, and a random
subject's HRTFs from the CIPIC database were used to generate the clus-
ter centers. The broadband model in Fig. 6A that was used for the rest of
the study had a sound duration of 33.6s.Whereas to evaluate the model
performance under anechoic conditions, the speech and music serving
as test sounds also had durations more than 10-s long. Here, we first ap-
plied the model to make predictions for seven other subjects in the
CIPIC database. Meanwhile, we examined the effect of test-sound dura-
tion on the model accuracy.

We found that the shortest duration that can produce the cluster be-
havior sufficient for our algorithm to make a reasonable prediction was
around 150 ms. Durations shorter than that would likely generate a sig-
nificant error even under “easy” conditions, such as a single sound un-
der the anechoic condition. Fig. 9A applied the model constructed with
a random subject (Subject 21 in the CIPIC database) to predict sound lo-
cations using HRTFs recorded with seven novel subjects (also from the
CIPIC database) for durations of 10 s (Fig. 9A, top row) vs. 150 ms (Fig.
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Fig. 8. Comparisons between raw data (A) and the model clusters (B). A, simulation with the female speaker fixed at ‒45° degree and the guitar at ‒80°. B, when the
broadband model was re-run with the female speech.

9A, bottom row). The x-axis was the true angular location associated
with a particular HRTF. The y-axis was the classified location using the
broadband model at various frequencies (Fig. 5).

Generally speaking, under the anechoic condition, the model at low
frequencies (i.e., 300 and 600 Hz) performed better than at high fre-
quencies (1500 and 3000 Hz). Recall that the spiral pattern began to
evolve into multi-turns above 1 kHz (Fig. 5). This is not a problem for
the broadband noise, as the clusters were quite focused for broadband
noise. However, speech sound tended to have more dispersed clusters,
as illustrated in Fig. 6 (B and C), even though the cluster centers more
or less matched the centers derived from the broadband model. Conse-
quently, as the model frequency and the number of spiral turns in-
creased, more localization errors appeared due to misclassifications
across the turns (Fig. 9, right two columns). In fact, even at 600 Hz,
some subjects already showed misclassifications between the 80° and
–80° locations (Fig. 9, second column). In summary, under the anechoic
condition, low model frequencies generated better performance. The
predicted angles were closest to the true values at the model frequency
of 300 Hz (Fig. 9A) with an average error of 4.5° and RMS error of 6.4°.

Meanwhile, there was no duration effect as long as the signal dura-
tion was no less than 150 ms. No statistical difference (t test) was found
between the classification results for the two durations, 10 s vs. 150 ms
(Fig. 9A, upper and lower rows). In other words, the “near-real time” of
this model when applied to real-time hearing devices would be around
150 ms.

Up to this point, the model has been established using HRTFs from a
random human subject (Subject 21) in the CIPIC database, and the re-
sult was mainly obtained with the female speech sound. In Fig. 9A, the
model created with this subject was used to predict sound locations for
eight new human subjects. To examine whether the choice of the model
subject affects the model performance, another subject (Subject 48)was
randomly chosen from the database to establish the model and the lo-
calization was repeated (Fig. 9B). Meanwhile, five speech sentences
were randomly selected from recordings in a previous study
(Calandruccio and Smiljanic, 2012) and concatenated into one long
speech sound. Despite the two major changes, the model performance
was qualitatively similar (Fig. 9B). Therefore, we did not consider it a
problem when constructing the model with HRTFs from one subject,

and we believe our simulation results can generalize well with daily
speech sound. All results from experiment I are summarized in Table 1
below.

To evaluate the model performance, we also repeated the experi-
ment (Fig. 9A) using a Generalized Cross-Correlation Phase Transform
(GCC-PHAT) approach (Knapp and Carter, 1976). The same set of hu-
man HRTFs used in Fig. 9 was applied to create the virtual sound loca-
tions. The standard MATLAB function, gccphat, was used to compute
the time delay between the simulated left- and right-ear sound. Next,
the horizontal angle was determined (Ollivier et al., 2019) given that
the average distance between the two ears was 14.5 cm and the speaker
rack had a radius of 1 m in the CIPIC database.

Using a 1-s broadband noise as the single-source stimulus, the per-
formance of the GCC-PHAT algorithm was satisfactory (Fig. 10A),
which proves that the method generally works. However, when using
the same 0.15-s speech sound as used in Fig. 9A, the GCC-PHAT perfor-
mance was notably worse. It either predicted a location similar to the
broadband condition (Fig. 10A), or a location at the front center regard-
less of the true location. For those error trials, the delay identified by
the GCC-PHAT was always 0; that is, it failed to yield a non-zero delay.
The performance was certainly worse than our low-frequency models
(Fig. 9).

3.4. Experiment II: the reverberation condition

The above simulation shows predictions for ideal localizations in an
anechoic chamber. In real life, reverberations often create echoes that
affect both the timing and level of the received sound. Here, we simu-
lated two types of reverberations to examine the effect on localization
accuracy using the above-mentioned spiral model. After filtering a
mono sound with BRIRs chosen from the AIR database, the resulting
sound contains both room reverberation and binaural cues that are the
result of filtering by the listener's head (same cues that are contained in
HRTFs).

Fig. 11 shows an example of the female sound with different vir-
tual locations using the model frequency 655 Hz under the reverber-
ation condition, Stairway. The simulation generated moderate rever-
beration ( ). Here we plotted four locations, –45°, –30°,
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Fig. 9. Experiment I: sound-localization performance in the anechoic condition for different sound durations and model frequencies. A. the model was created using
HRTFs from a random human subject (Subject 21), just as the rest of the study. The first seven subjects’ HRTFs were selected from the CIPIC database as the test sub-

jects. For each condition, the grand average error, Mean e, and the RMS error were shown in the figure. The sound stimulation was the female long speech. B, the
model was recreated with HRTFs from Subject 48 in the CIPIC database. The sound stimulation was five random sentences recorded by an external study
(Calandruccio and Smiljanic, 2012).
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Table 1
Experiment I Results.

Experiment I: A. Original Model

Frequency (Hz) Duration (s) Mean (e) RMS (e)

300 10 4.5° 6.4°

600 10 5.6° 13.9°

1500 10 11.0° 22.9°

3000 10 19° 26.7°

300 0.15 6.3° 8.9°

600 0.15 6.6° 18.4°

1500 0.15 10.9° 22.9°

3000 0.15 18.9° 26.6°

Continue2A Model established with a different subject and sentences

Frequency (Hz) Duration (s) Mean (e) RMS (e)
300 10 10.9° 15.7°

600 10 22.8° 43.6°

1500 10 16.0° 27.3°

3000 10 19.9° 25.8°

300 0.15 12.4° 17.4°

600 0.15 23.4° 44.9°

1500 0.15 17.5° 31.0°

3000 0.15 19.7° 25.8°

15° and 60° (there are a total of 13 locations in this reverberation
database to choose from) superimposed with the female-speech
model. That is, both the model and the reverberant simulation were
generated with the same speech so that it is easier to compare the
amount of data-point dispersion in the anechoic condition (the
model) with the reverberant condition. The position of the cluster un-
der reverberation is shown with a green asterisk. It can be seen that
even though the reverberant room type was used, the cluster was
more or less close to the expected cluster from the model. The exact
errors for different source locations and different frequencies will be
presented in Fig. 13.

Fig. 12 shows the result for angles –90°, –45°, 0° and 45° for Aula
Carolina. This listening environment has strong reverberations due to a
high ceiling and architecture of the church. Additionally, the speaker
was very far from the microphones (9.8 ft). In other words, there were
essentially multiple sound sources (i.e., the origin and loud echoes) pre-
sent in the listening condition, while the model was trying to come up
with a single location using the k-means approach. The predicted single
source was not close to the true source for those peripheral angles (Fig.
12).

Similar to the anechoic condition (Fig. 9), to quantify the localiza-
tion performance under reverberations, we classified the locations
based on clusters elicited by reverberant sound according to the ane-

choic broadband spiral model. Fig. 13 shows the classified horizontal
locations as a function of true angles used in the simulation for both re-
verberation conditions at multiple model frequencies.

For the Stairway simulation, the reverberation was moderate with
. The predicted angles were closest to the true values at

the model frequency of 600 Hz (Fig. 12B), with an averaged mean er-
ror of 15.4° and RMS error of 21.5°. At high frequencies (i.e., 1500 and
3000 Hz), the model failed to predict the locations. As shown in Figs.
10 and 11, reverberations always reduced the vector length, i.e., mak-
ing the cluster closer to the center of the feature space, (0, 0). There-
fore, where there were multi-turns at high frequencies, the shrinking
effect would lead to large errors.

It is also interesting to observe that the model performed worse at
the lowest frequency, 300 Hz, than at 600 Hz. This was due to the fact
that, when the frequency was too low, the cluster centers were too
packed together (Fig. 5A). Therefore, although lower frequencies
worked better than higher frequencies using our model, it should not be
perceived as the lower, the better.

The model completely failed to predict the locations under the Aula
Carolina condition, which was strongly reverberant with
(Fig. 11B). We only simulated five horizontal locations, because only
those five were available in the reverberation database. Here the mean
classification error was between 39.6° and 61.2° and RMS errors ranged
from 63.3° to 78.8°, but more importantly, all angles were classified as
very negative/leftmost angles. All results for experiment II are summa-
rized in Table 2 below.

4. Discussion

4.1. Novelties and applications of the proposed model

In many normal situations and everyday interactions, we find our-
selves in environments where sounds are coming from multiple sources
and locations. Although normal human listeners can localize more than
one sound source concurrently (Zhong and Yost, 2017, Keller and
Takahashi, 2005), this is not the case for the hearing impaired. Further-
more, standard hearing devices and aids, including modern cochlear
implants, do not restore a normal level of sound-source localization for
hearing-impaired listeners (Loiselle et al., 2016). Sound-processing al-
gorithms that can automatically decode sound locations and subse-
quently segregate the sound into different streams according to the lo-
cations would be highly desirable for hearing aids.

In this study, the focus is on the localization of sound sources in the
azimuth. Segregation of sounds would require a more involved process
where each frequency in the listening space is examined. For example,

Fig. 10. Simulation results using a standard GCC-PHAT model. Results were obtained with the same set of human HRTFs used in Fig. 9. The single-source sound was
either a 1-s broadband noise (A) or the female speech (B) same as what was used in Fig. 9A.
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Fig. 11. Experiment II: simulation result with the female speech under room reverberations, Stairway Hall, as a green dot superimposed on the previously derived
model at 655 Hz. Four horizontal locations were selected for the demonstration. Moderate reverberations were added by setting RT60 = 0.83 seconds.

clustering needs to be performed for each frequency in Fig. 4, after
which a “binary mask” can be constructed to remove the unwanted
source. The end result would be a sound localization map for the user of
the hearing aid, and the user can select sounds they wish to remove
from specific locations in their environment. While our simplified
model does not include the segregation and removal of sounds, it does
allow localization of the sound. This is particularly useful for hearing
impaired listeners who are crossing a street and need to know the direc-
tion of a siren contained on a fast-approaching emergency vehicle, as
one example.

Previous studies have investigated other methods of sound source
localization, using more than two microphones. With four microphones
(Keyrouz, 2015, Keyrouz, 2008), one inside and one outside the ear
canal on either side, monaural HRTFs can be derived. Source locations
are determined by finding the best matching HRTFs. Keyrouz and col-
leagues also performed a localization study using binaural microphones
(Keyrouz, 2017, Keyrouz, 2008), in which locations were determined
by matching ITDs and ILDs in a HRTF database over a large frequency
range. Using an unsupervised clustering algorithm, such as the multiple
self-splitting and merging algorithm (Liu, 2007), the center of each

cluster, and therefore the estimated value of scaled HRTF in the corre-
sponding frequency band, can be identified. Reconstructed HRTFs us-
ing the centers across all the frequencies can then be used to search for
the best-matched HRTFs in the CIPIC database to determine the sound
locations.

Additional previous studies have also examined binaural sound
source localization in the field of robotics, where localization is carried
out over a broad frequency range. (Lyon, 1984) used a dynamic spectral
mask based on energy over very short intervals in binaural cross-
correlation. They were able to achieve a rudimentary spectral separa-
tion of small samples but were limited by computational power.
Baumann et al. (2015) focuses on improving the spatial resolution of
the auditory scene analysis by rotating or translating the microphones
(ears) of a robot over time using binaural microphones. They rely on an
algorithm by which instantaneous evidence and prior knowledge are
co-registered over successive movements of the microphones (for exam-
ple, by Recursive Bayesian, Kallman or Particle Filtering approaches).
This approach may be beneficial in improving our model in the future,
providing it does not require a significant increase in computational
power. Finally, (Raspaud et al., 2009) propose a binaural source local-



C
O
R
R
E
C
T
E
D
P
R
O
O
F

J. Orr et al. / Hearing Research xxx (xxxx) 108884 11

Fig. 12. Experiment II. Same as Fig. 11, except that the reverberation type was Aula Carolina and the reverberations were strong.

ization method based on ITDs and ILDs. The two cues, computed from a
two-channel time-frequency representation, are combined in order to
estimate the azimuth of sources in binaural recordings. The maximal
average error for their algorithm ranged from 3.35 to 15.24 degrees,
when localizing a single sound source.

Roman et al. (2003) construct an estimate for an ideal binary mask
by using a supervised learning approach. The system learns to use
both ITD and ILD cues to assess the degree of interference within a
particular frequency band at a particular time. Time-frequency regions
predicted to be dominated by the target are used to resynthesize the
estimated target signal. However, their algorithm focuses only on
speech segregation and not source localization.

Kraljević et al. (2020) presents a passive three-dimensional sound
source localization (SSL) method that employs a geometric configura-
tion of three soundfield microphones. Two methods for estimating the
angle of arrival (AOA) and time difference of arrival (TDOA) are pro-
posed based on Ambisonics A and B format signals. The closed-form so-
lution for sound source location estimation based on two TDOAs and
three AOAs is derived. The proposed method is evaluated by simula-
tions and physical experiments in an anechoic chamber. While good lo-
calization results were seen in both the 2D and 3D space, this method is
not directly applicable to hearing aid devices due to the reliance on 3

microphones, and the correlation between longer time of observance
and increased accuracy of localization, with requirement of stationary
objects for observance.

Dang et al. (2019) proposes a method to address the multiple
sound source localization problem by associating and fusing the direc-
tion of arrival (DOA) estimates from multiple microphone arrays.
Their solution lies in a multi-dimensional assignment-based data asso-
ciation approach to find the optimal associations of DOA estimates
from the same source. First, in the sense of maximum likelihood, the
data association problem is formulated by finding the most likely par-
tition of the measurement set into the source-originated and false
alarm-originated subsets. Next, by defining the association costs ap-
propriately, the problem of finding the most likely measurement parti-
tion is transformed into a generalized multi-dimensional assignment
problem which can be solved efficiently by a Lagrangian relaxation al-
gorithm. After the optimal associations of DOA estimates across differ-
ent arrays are obtained, the locations of sources can be estimated by
fusing the same source-originated DOA estimates. While this method is
also applicable to the issue we are working to solve, there are a few
setbacks that limit this capability for use in hearing aids: the amount
of processing required for the data association and optimization algo-
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Fig. 13. Experiment II: Classified angles vs. true angles for the two reverberation conditions at various model frequencies. For each frequency, the averaged error,
Mean e, and the RMS error were shown in the figure legends.

Table 2
Experiment II Results.

Experiment II

Frequency (Hz) Reverberation Condition Mean (e) RMS (e)

300 Stairway 39.6° 51.2°

600 Stairway 15.0° 21.5°

1500 Stairway 35.4° 45.6°

3000 Stairway 25.8° 30.7°

300 Aula Carolina 48.8° 63.3°

600 Aula Carolina 39.6° 65.6°

1500 Aula Carolina 61.2° 78.8°

3000 Aula Carolina 55.4° 73.7°

rithms would not be suitable for use in hearing aid devices, due to size
and computational power limitations.

Additionally, there are studies where sound localization under re-
verberant conditions are carried out, showing promising results.
Grumiaux et al. (2022) investigates several studies that utilize deep
learning methods for sound localization under reverberant conditions.
Vecchiotti et al. (2019) proposes a novel approach for sound localiza-
tion, estimating the azimuth of a sound source directly from the raw
waveform. Instead of using hand-crafted features commonly employed
for binaural sound localization, the authors employ convolutional
neural networks (CNNs) to extract specific features from the waveform
that are suitable for localization. This method of localization shows
promise, however, appears to be too computationally dependent for use
in hearing aid applications.

Wang et al. (2019) proposed a method which leverages deep learn-
ing techniques to create a time-frequency mask that highlights the re-
gions in the audio signal containing the speaker's information. This
mask is applied to the audio spectrogram, which transforms the audio
signal into the time-frequency domain. By emphasizing the speaker-
related information, the method enhances the localization accuracy,
particularly in noisy or reverberant environments. However, there are
significant differences between the microphone array-based speaker
localization system and hearing aids. Of importance, hearing aids must
operate in real-time and have limited processing power and energy
constraints that would limit this methods success.

Finally, Ma et al. (2017) proposes a novel approach to robustly lo-
calize multiple sound sources in environments with reverberation using
a combination of deep neural networks (DNNs) and head movements.
As displayed in our current study, localization of sound sources is a
challenging task in reverberant spaces due to reflections and delays. To

combat this challenge the researchers, leverage binaural audio signals
and integrate head movements to enhance the accuracy of sound source
localization. By employing DNNs, the system is capable of learning
complex spatial features from the binaural inputs. Furthermore, the in-
corporation of head movements allows the system to adaptively update
its source localization estimates as the user moves. However, Hearing
aids require reliable, low-latency, and user-friendly solutions tailored to
their limited processing power, battery life, and diverse real-world lis-
tening scenarios, making the integration of DNNs and head movements
introduced in this study less practical for hearing aids.

While the above-mentioned studies are generally applicable to
sound localization, the complexity of their algorithms and requirements
for storage of large amounts of data indicates a weak point for utiliza-
tion in simple hearing aid devices; an issue we aim to overcome with a
simplified localization model.

In the present study,we present an innovative model as a tool to sys-
tematically evaluate the algorithm developed by Keyrouz and col-
leagues in complex situations, specifically when there are room rever-
berations. The model is much simpler and faster in determining the hor-
izontal location of multiple sound sources, and the performance is
largely invariant to various types of sound (male, female,music, etc.) or
sound elevations.

In summary, there were several highlights of the proposed localiza-
tion algorithm.

First, the model's behavior is highly predictable. While previous
studies have used k-means clustering in ITD/ILD sound source localiza-
tion applications (Kim and Okuno, 2013, Ayllon et al., 2012, Davila-
Chacon et al., 2013), the data points in their feature space were not
confined in the unit circle or form a predictable pattern, which were
unique properties of the normalization procedure implemented by
Keyrouz's approach.

Second, our model resolved a potential issue in the original Keyrouz
methods. As shown in Fig. 4, although there are three clusters at every
model frequency presumably corresponding to the three sound
sources, it is not obvious which one is which. Keyrouz and colleagues
said the same source can be maintained across different frequencies
because the center position did not change much between adjacent fre-
quencies. Even when that assumption holds, it will still take some
“manual efforts” to pair the clusters with their origins, because they
never examined the locational change in a systematical way and did
not present any spiral feature.

The model we presented at various frequencies (Fig. 5) can easily re-
solve this issue. As demonstrated by the two-source example in Fig. 8,
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simply comparing the cluster centers with the model constructed at the
same frequency can quickly and accurately identify the source location
of each data cluster. Our model is even more intriguing in understand-
ing the challenging situation when sound localization is performed un-
der room reverberations.

Third, a major issue in applying some of the previous strategies to
real-life hearing devices is the computational complexity that involves
heavy information processing and machine-learning algorithms. In
Keyrouz's original algorithm, phase normalizations and cluster identifi-
cations will have to be performed separately over a large range of fre-
quencies to reconstruct the HRTFs, which are functions of sound fre-
quencies. Next, their matching algorithm involves self-splitting com-
petitive learning and Bayesian fusion to derive a source location in
both azimuth and elevation, which is not realistic for real-time hearing
devices. Their algorithm would also require the storage of an entire
HRTF database.

In the model we proposed here, a single model frequency (such as
the 655Hz) can be used to predict the location of a sound source, as
long as energy is present at that frequency. This model is also easier to
be stored in a hearing device than a complete HRTF database. Our sim-
ple classification algorithm can determine the locations of multiple
sound sources by mapping the extracted k-means cluster locations to
the spiral model normalized to the unit circle. The model performance
was largely invariant with the type of sound profiles, except at high fre-
quencies where speech's energy is scarce. This is an important feature
because, in real life, sound types can vary all the time. We would not
want an algorithm to change according to the ongoing sound type.

However, one should be careful when choosing the frequency, be-
cause although low frequencies generally create fewer errors than high
frequencies (Fig. 9), we did not propose “the lower, the better”. When
the frequency is too low, the clusters are highly packed in a small area
(Fig. 5A). In fact, under difficult listening conditions, such as room re-
verberations, the best performance was achieved with the 600 Hz
model, because it extends the spiral to almost one full turn. In addition,
if there is not sufficient energy present at a particular frequency, a dif-
ferent frequency should be selected.

One limitation in the present study is that, in order to simplify the
algorithm, it is required to know k a priori, therefore it would not be
ideal for a real-world application where this information is not readily
available. This challenge can be overcome by utilizing the method dis-
cussed by Keyrouz and colleagues where k is automatically determined
using the “self-splitting competitive learning (SSCL)” concept. This ap-
proach uses the powerful cluster classifying algorithm based on One-
Prototype-Take-One Cluster (OPTOC), meaning one cluster in the fea-
ture space is represented by exactly one prototype only (Keyrouz,
2017). Future studies can be improved by attempting to replicate this
approach. There are instances however, where this is no longer an is-
sue, when users only want to know a couple, rather than all sources. Fi-
nally, due to the lack of energy for human speech at high frequencies,
our model is not able to form precise clusters, resulting in limited re-
sults at high frequencies for real life applications.We aim to expand this
study through finding a solution to this challenge.

Regarding the integration-window size used for STFTs, we used 80
ms to create the broadband model so that the data scattering was
largely reduced (Fig. 5A). This window directly relates to the real-time
delay of the hearing device. Of course, there is always a tradeoff be-
tween the data accuracy and time delay. We suggest using 80 ms in the
model creation since it will be performed offline. During the real-time
application, shorter window sizes may be considered to reduce the time
delay.

4.2. Anechoic condition

In experiment I, to study how a cluster's position changes according
to its location in azimuth, an anechoic listening environment with one

or more active sound sources was simulated; the effect of room rever-
berations was ignored. Here, the virtual distance of each sound source
was fixed as 1 m, according to the distance of the CIPIC database. Using
a single broadband noise, the clusters’ center positions followed a spiral
pattern. Because this pattern did not vary significantly with sound type
or elevations, we chose the single-source broadband pattern as our
“model”. Due to changes in ITD and ILD dominance that affects spiral-
ity, the spiral feature varied with frequency.

Note that the identification of the cluster center for a single source
should not be achieved by computing the geometrical mean of all the
data points on the feature space. We are looking for where the data
points are “densest” by running the k-means approach with parameter
“1” that specifies the number of clusters, which will not be affected by
outliers.

After creating the broadband model, we applied the model to two
sound sources with different spatial locations mixed together and tried
to predict the azimuth of the fixed and moving sound sources with only
one frequency. This is done by comparing the positions of the clusters’
centers to the model at the same frequency. Again, the cluster locations
were determined by running the k-means approach with parameter “2”

that specifies the number of clusters. When both source locations were
at 0° elevation, the identifications of both sources matched their predic-
tions using the single-source model (Fig. 7A).

For most of the simulations, we intended to predict sound-source lo-
cations in the frontal hemifield using one elevation value (0°). As can
been seen in Fig. 7 (B and C), changing the elevations to 45° below (the
lowest degree measured in the CIPIC database) and 62° above would
slightly deviate from the 0°model (black circles). However,we consider
those deviations acceptable and prefer not using multiple elevation
models since it was meant to be a simple and fast localization model.

Note that a widely used localization model was the GCC-PHAT
model (Knapp and Carter, 1976, Ollivier et al., 2019). We showed that
although it works generally fine with broadband noise, it would not
perform as well as our spiral model when a short (e.g., 0.15 s) speech
sound was the sound source. This is presumably due to the fact that the
estimation of a single time delay may not be robust enough for a com-
plex daily listening condition when the energy is sparse.

4.3. Reverberation condition

In experiment II, reverberations were added to a single speech sig-
nal. Room impulse responses were obtained from the Aachen Impulse
Response (AIR) database (Jeub, 2019, Jeub and Vary, 2009). AIR con-
tains binaural room impulse responses (BRIR) for different listening en-
vironments, and two environments were used here: Stairway, and Aula
Carolina. We compared the filtered sounds to the model that was previ-
ously found using the CIPIC database.

For the Stairway, it can be seen that even though the room type had
moderate reverberation ( ), the clusters were close to the
expected clusters from the model, and the best performance was
achieved with the model frequency, 600 Hz. Next, we looked at a

larger room with stronger reverberations , Aula Car-

olina. This listening environment has strong reverberation due to a
high ceiling and architecture of the church. Additionally, the speaker
was very far from the microphones (9.8 ft). Therefore, as it was ex-
pected, the clusters did not fall on the right place in the model. Be-
cause of high reverberation and the distance between listener and
speaker, the vector strength was significantly reduced, and the result-
ing cluster was always close to the center.

In fact, a common observation under reverberant conditions is that
the vector strength of the cluster center is always reduced (Figs. 11 and
12) compared with the anechoic responses. The more reverberations,
the closer the response to (0,0) in the feature space. This phenomenon
reflects the smearing effect of one or more echoes on the original sound
source, making neither ITD nor ILD cue as prominent as before. How-



C
O
R
R
E
C
T
E
D
P
R
O
O
F

14 J. Orr et al. / Hearing Research xxx (xxxx) 108884

Fig. 14. Repeating the broadband model (Fig. 5) with both front and back sound locations. The model's behavior clearly shows that the localization algorithm based
on only one frequency, instead of the entire HRTF, cannot resolve front-back confusions.

ever, the fact that low-frequencies generally performed better than
high-frequency models indicates that ITD remains more resilient than
ILD under reverberations.

In the original study by Keyrouz, 2017), they added simulated
echoes to anechoic sound, and the reverberations interacted with the
original sound signal with a signal-to-noise ratio of 20 dB. They
achieved an averaged angular error around 10° in both azimuth and el-
evation for multiple concurrent sources. In the AIR database (Jeub et
al., 2009, Jeub, 2019) we used, true reverberations in various types of
rooms; was used to quantify the reverberation's strength, which is
the time it takes for the sound to attenuate by 60 dB after its termina-
tion. Therefore, reverberations we created using the AIR database did
not have a constant signal-to-noise ratio. Because our sound stimuli
lasted for a long period of time (more than 10 s), the Aula Carolina con-
dition with would definitely keep evoking overlapping
echoes of reflected signals with an effective signal-to-noise ratio much
lower than 20 dB.

4.4. Localization of moving sound

Roman and Wang (2008) developed a multi-stage algorithm to
track moving sources using binaural input. This algorithm employed a
binaural cross-correlation approach to identify spectral regions that
reliably separated sources, followed by a Hidden Markov Model
(HMM) to identify likely transitions between different configurations

of source location and interference. Similarly, a system developed by
Dietz et al. (2011) uses ITD and ILD cues as well as a measure of in-
stantaneous interaural envelope phase coherence to create a time-
frequency mask that could localize up to five sources in the front field
with a maximum error of less than 5°. The effect of head rotation in
sound localization of static sound sources is also investigated by
Hambrook et al. (2017), which is equivelent to moving sound sources.
This study relies on mobile microphone arrays and is not necessarliy
applicable to binaural hearing aids.

Our algorithm competes well here, with the smallest average error
being 4.5°, and RMS error being 6.4°. Notably their approach also incor-
porated particle filtering to track sound source motion. Our model ad-
dresses moving sounds by constantly updating the listening envri-
onemnt, such that moving sounds are accounted for at near real-time
accuracy with low computational requirements. Since we are only com-
puting a short timeframe but continuously updating it, any moving
sound will experience a small lag in localization time.

4.5. Front-back confusions

As mentioned earlier, front-back confusions are inherent issues
when sound localization only depends on ITD and/or ILD cues. The
only possibility of resolving the issue is to take into account the entire
HRTFs. Therefore, the simplified model presented here inevitably suf-
fers from front-back confusions. In Fig. 14, we repeated the broadband
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model and superimposed sound locations from the back hemisphere
with the frontal hemisphere. It is impossible to distinguish back loca-
tions for any of the model frequencies. Therefore, this model only works
for the frontal field (or the back, in a similar way).

Overall, our present study has the potential of providing sound
source localization for hearing aids, in that it enables the development
of a much simpler and faster algorithm to determine the horizontal lo-
cation of multiple concurrent sound sources. Our results are also on par
with the previous HRTF-based studies that used similar methods but re-
quired more computational power to support a more complex algo-
rithm. Our model takes a simple approach, while providing effective
sound localization performance. The simplicity of our model allows it
to be stored in a hearing device, as we do not require a complete HRTF
database. Additionally, the developed spiral model is almost invariant
to various types of sound (male, female, music, etc.) and sound eleva-
tions.
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