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Abstract. Fatigue is a loss in cognitive or physical performance due to
physiological factors such as insufficient sleep, long work hours, stress,
and physical exertion. It adversely affects the human body and can slow
reaction times, reduce attention, and limit short-term memory. Hence,
there is a need to monitor a person’s state to avoid extreme fatigue con-
ditions that can result in physiological complications. However, tools to
understand and assess fatigue are minimal. This paper primarily focuses
on building an experimental setup that induces cognitive fatigue (CF)
and physical fatigue (PF) through multiple cognitive and physical tasks
while simultaneously recording physiological data. First, we built a proto-
type sensor suit embedded with numerous physiological sensors for easy
use during data collection. Second, participants’ self-reported visual ana-
log scores (VAS) are reported after each task to confirm fatigue induction.
Finally, an evaluation system is built that utilizes machine learning (ML)
models to detect states of CF and PF from sensor data, thus providing an
objective measure. Our methods beat state-of-the-art approaches, where
Random Forest performs the best in detecting PF with an accuracy of
80.5% while correctly predicting the true PF condition 88% of the time.
On the other hand, the long short-term memory (LSTM) recurrent neu-
ral network produces the best results in detecting CF in the subjects
(with 84.1% accuracy, 0.9 recall).

Keywords: fatigue · cognitive fatigue · physical fatigue · multi-modal
sensors · machine learning

1 Introduction

Fatigue is a state of weariness that develops over time and reduces an individual’s
energy, motivation, and concentration. Fatigue can be classified into three types:
Acute fatigue is caused by excessive physical or mental exertion and is alleviated
by rest. Changes in circadian rhythm and daily activities influence Normative
fatigue. In contrast, Chronic fatigue is primarily caused by stress or tension in the
body and is less likely to be relieved by rest alone. While various factors influence
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human fatigue in the real world, factors affecting sleep and the circadian system
have a high potential to contribute to fatigue [23].

Severe or chronic fatigue is usually a symptom of a disease rather than the
result of daily activities. Some conditions, such as Multiple Sclerosis (MS) [24],
Traumatic Brain Injury (TBI) [9], and Parkinson’s Disease (PD) [18], have fatigue
as a significant symptom. Physical and cognitive fatigue are the two types of
fatigue. Physical fatigue (PF) is most commonly caused by excessive physical
activity and is usually associated with a muscle group or a general feeling of fatigue
in the body [12]. Cognitive fatigue (CF), on the other hand, can occur as a result
of intense mental activity, resulting in a loss of cognition with decreased attention
and high-level information processing [28]. In the real world, however, there is no
clear distinction between what causes both types of fatigue. Workers with heavy
machinery, for example, may require both cognitive skills and physical labor to
complete a task that may induce both PF and CF simultaneously.

Researchers have previously attempted to assess both types of fatigue sep-
arately by approaching them differently. One of the most common methods of
studying fatigue is to analyze the participants’ subjective experience by having
them fill out surveys rating their current state of fatigue. Although these meth-
ods have successfully quantified human fatigue, they are frequently prone to
human bias and poor data collection methods. For example, an aviation study
[10] discovered that 70–80 percent of pilots misrepresented their fatigue level.
As a result, relying solely on a subjective measure from the participants may
raise safety concerns. It is where physiological sensors, which provide objective
measures of fatigue, come into play. To study fatigue, data collected from sen-
sors such as electrocardiograms (ECG) [20], electroencephalograms (EEG) [22],
electrodermal activity/galvanic skin response (EDA/GSR) [14], and electromyo-
grams (EMG) [13] have been commonly used.

Fig. 1. Sensor placements on the human body (a) ECG: right shoulder, the left and
the right hip forming Einthoven’s triangle [15] (b) EDA/GSR electrodes on the left
shoulder to record the skin conductivity, (c) EMG electrodes recording muscle twitches
from the right calf, (d) EEG sensor positions in the 10–10 electrode system used by
MUSE. It records data from the TP9, AF7, AF8, and TP10 positions in the system.

In this paper, we created an experimental setup that includes multiple stan-
dardized cognitive tasks (N-Back tasks [8,17,19]) and a physical task (running
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on a treadmill [16,30]) to induce both CF and PF simultaneously. When the
participants completed each of the assigned tasks, data modalities such as ECG
(for heart rate variability), EMG (for muscle activation), EDA/GSR (for skin
conductivity and emotional arousal), and EEG (for electrical brain signals) were
recorded. We combined multiple physiological data modalities to assess both CF
& PF and correlate objective measures from the sensors with the participants’
self-reported subjective visual analog scores (VAS). The self-reported scores were
analyzed to verify the induction of fatigue in the participants. Finally, several
statistical features were extracted from the collected signals, and machine learn-
ing (ML) models were trained to predict the participant’s fatigue levels. The
significant contributions of the paper are highlighted as follows:

– A novel experimental setup that integrates standardized cognitive and physi-
cal tasks to induce fatigue and record multivariate physiological sensor signals
to analyze the state of fatigue in a subject

– Ablation study to understand what combination of sensors produces the best
results in detecting both cognitive and physical fatigue

– Statistical feature extraction and machine learning models to classify the state
of fatigue from sensor data using different window sizes technique

– A well-accumulated dataset of EEG, EDA/GSR, EMG, and ECG signals
from 32 healthy subjects with their self-reported fatigue states is presented.
To access the dataset, visit [Dataset Link].

The rest of the paper is structured as follows: We present the related work in
Sect. 2. Then, Sect. 3 explains the data collection process followed by data pro-
cessing techniques for different sensor data in Sect. 4. We then describe the exper-
iments and methods we inherited in our project along with the obtained results
in Sect. 5. Finally, we conclude the paper and propose future work in Sect. 6.

2 Related Work

Wearable sensors have been studied for fatigue assessment in occupational
settings, healthcare, sports, and exercise applications. The current literature
emphasizes using wearable systems to collect physiological data from subjects,
laying the groundwork for fatigue quantification using behavioral and physiolog-
ical signal-based methods.

In recent years, studies have attempted to use wearable sensors and addi-
tional modalities to assess fatigue during daily activities [5,6,33]. For example,
Aryal et al. [4] used wearable sensors to record heart rate, skin temperature, and
EEG to assess fatigue in construction workers. In addition, Maman et al. [38] con-
ducted a study that focused on detecting physical fatigue by measuring heart rate
and analyzing body posture during various physical tasks. Similarly, in [2], the
authors presented a new operator-fatigue analysis and classification method based
on heart rate variability (HRV) using low-cost wearable devices that identified
the operator’s alertness/fatigue states. Finally, not being limited to constrained

https://drive.google.com/file/d/1KXbK0tQZ46-jF3SHP13MkRbyOYKA-Tdz/view?usp=sharing
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experimental setups, the authors in [7] collected ECG and Actigraphy data from
free-living environments to assess objective fatigue based on self-reported scores.

Although most studies have focused solely on CF or PF, some researchers have
attempted to study both types of fatigue concurrently. For example, Marcora et al.
[27] discovered that mental fatigue affects exercise tolerance, while Xu et al. [39]
proposed that physical activities affect mental fatigue. Similarly, a single wearable
sensor that measures acceleration and ECG during a self-paced trial run was used
to assess CF and PF by [37]. In addition to wearable sensors, work has been done
to determine CF from visual data such as fMRI scans [21,40].

A review of fatigue sensors [1] found out that motion (MOT), electroen-
cephalogram (EEG), photoplethysmogram (PPG), electrocardiogram (ECG),
galvanic skin response (GSR), electromyogram (EMG), skin temperature (Tsk),
eye movement (EYE), and respiratory (RES) sensors were the most effective.
Among the proposed fatigue quantification approaches, supervised machine
learning models were found to be dominant. This paper expands on previous
research to look into wearable sensors for fatigue assessment. While previous
research has primarily focused on assessing CF or PF separately, our research
combines multiple physiological sensors to assess CF and PF at a larger scale.

Fig. 2. Flow diagram of the tasks performed by a participant.

3 Data Collection

We built an experimental setup around a custom-built wearable t-shirt (Pneu-
mon) (presented in Fig. 5) that was used to record physiological data using the
attached sensors, and a MUSE S headband [29] (as shown in Fig. 6). In Fig. 4,
although additional sensors are connected to the shirt, such as Microphone,
Breathing Band, and Oximeter, we ignored those signals for fatigue detection as
they added negligible value to our analysis in this paper. The suit is made using a
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Fig. 3. System Flow Diagram: Data collection using the sensors attached on the PNEU-
MON t-shirt and MUSE S worn by one of the participants while performing tasks pre-
sented in Fig. 2. Features extracted from the recorded signals were used to train ML
models for detection of state of CF and PF.

stretchable Under Armour shirt [3]. The advantage of using a shirt with embed-
ded sensors is its ease of use during data collection and practical application
during day-to-day use. In addition, the sensors are hidden behind a detachable
covering, so they can easily be removed while washing the shirt. Data from 32
healthy people (18–33 years old, average age 24 years, 28/72% female/male)
were collected in two separate study sessions. In addition, brain EEG data was
collected using a MUSE S headband sensor. Participants were required to wear
the t-shirt and the MUSE headband throughout the experiment.

Fig. 4. Graphical User Interface built for the N-Back tasks with an example image of
a letter during a game round on the right.
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Fig. 5. A prototype of the sensor shirt (inside-out view): Physiological sensors are
embedded in the shirt and remain in contact with the subject’s torso during data
collection using adhesive tapes. Multiple sensory signals are collected using different
combinations of the sensors present. In this paper, we do not use the microphone,
oximeter, and breathing band signals.

The researchers began by taking a baseline reading from the sensors while
the subject stood still for one minute. The experiment aimed to induce CF and
PF while collecting sensory data throughout the process. Next, the participants
were asked to perform multiple sets of N-Back tasks to cause CF, as shown in
Fig. 2. As observed by the participant, the GUI of the N-back game is shown in
Fig. 4. In these tasks, the subject is shown a series of letters, one after the other.
The subject’s goal is to determine whether the current letter matches the letter
presented N steps back. If it does, the subject must perform the specified action
(pressing the space bar on the keyboard). Finally, to induce PF in the subjects,
they were asked to run for 2 min on a treadmill (speed - 5mph, incline - 10%).
Additional data was collected (sensor reading 3 in Fig. 2) after the subjects stood
still for 90 s after completing the physical task.

The study was divided into two sessions on separate days for each participant.
Subjects were asked to come in the morning for one session and in the evening
for another. It eliminated the effect on the data caused by the time of the day.
The tasks performed in both sessions were identical, the only difference being the
order they were completed. The first session followed the flow depicted in Fig. 2,
whereas the second session prioritized the cognitively challenging 2-Back game
before the physical task. It dismisses PF’s reliance on CF and allows us to collect



126 A. Jaiswal et al.

Fig. 6. Electrode placement comparison between MUSE and the international 10–20
system. Top: Commercial MUSE S Headband. Bottom: 10–20 Electrode Placement
System

more robust data for analysis. Each round of 0-back and 2-back tasks lasted
between 80.4 s and 144.3 s, respectively (on average) during the data collection
process.

Participants were asked to complete a brief survey indicating their cur-
rent physical and cognitive fatigue levels following each task. In addition, they
reported visual analog scale (VAS) scores ranging from 1 to 10 for the following
questions:

1. Describe your overall tiredness on a scale of 1–10.
2. How physically fatigued/tired do you feel on a scale of 1–10?
3. How cognitively fatigued do you feel on a scale of 1–10?
4. How sleepy or drowsy do you feel on a scale of 1–10?

Figure 8 depicts the distribution of self-reported VAS scores after each task.
We divided the scores from 1 to 10 into three categories for simplification while
plotting: None (<4), Moderate (≥ 4 and =7), and Extreme (>7). Most partic-
ipants gradually began to feel cognitively fatigued after completing each task.
In fact, after the fourth block, CF appears to be induced in more than 80%
of the subjects (Fig. 8(d)), supporting the hypothesis on which we based our
experimental setup. Similarly, as shown in Fig. 8(c), the physical task was able
to induce at least moderate PF in more than 90% of the subjects (c). Thus,
data collected during the fourth and fifth blocks of the study were considered a
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state for CF in the participants, whereas data collected immediately following
the physical task was considered a PF condition. Of course, there may be some
biases in the subjective scores collected. However, the majority of the scores
recorded from the participants (as shown in Fig. 8) support the hypothesis on
which the whole experiment was based.

4 Data Processing

4.1 EEG

We used the MUSE S headset to collect EEG signals while the subjects per-
formed different tasks during the experiment. It consists of 4 electrodes (AF7,
AF8, TP9, TP10) that are in contact with other regions of the head, as shown
in Fig. 1(d). EEG signals quantify electrical activity in the brain. These signals
are generally decomposed into five frequency bands: alpha, beta, delta, gamma,
and theta, as shown in Fig. 7, where each band signifies a different state of the
brain. For example, delta waves occur in the frequency range of 0.5 Hz 4 Hz and
are present during deep sleep, while beta waves occur 13 Hz 30 Hz and are asso-
ciated with active thinking. Similarly, other waves are associated with – alpha
waves (8–12 Hz): normal awake conditions, gamma waves (30–80 Hz): sensory
perception integration; and theta waves (4–7 Hz): drowsiness and early stages
of sleep. In addition, 50–60 Hz frequencies were processed beforehand to avoid
power line interference on the signals.

Fig. 7. Raw Amplitude plot of Frequency bands extracted from the electrode at AF7
position (on MUSE) from a sample raw EEG signal from one of the subjects. The
readings were collected during one of the 2-Back tasks undergoing for a little under
3min.
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Fig. 8. Likert plots for survey responses from subjects after each block of tasks (before
taking the sensor readings) as shown in Fig. 2. (a) Initial survey at the start of the
session showing that less to no fatigue was found in most of the participants. (b)
Response after the first 0-Back task and before sensor reading 2 showed a slight increase
in CF for some participants. (c) Response after the treadmill task verifying that PF is
induced in most of the participants. (d) Response after the first 2-Back task indicating
a prominent increase in CF (e) Shows that CF continues to be persistent even during
the easier 0-Back task

The different EEG bands and the raw signals were streamed by the MUSE
SDK using a UDP server and were recorded from all four electrodes in a csv
file. We calculated statistics such as mean, standard deviation, min, max, and
median using the sliding window technique for each band from the respective
electrodes for feature extraction.

4.2 ECG, EDA, and EMG

Physiological sensors were used in the wearable t-shirt, as shown in Fig. 3 to
simultaneously collect ECG, EDA, and EMG signals during the entire experi-
ment. Fatigue can harm the cardiovascular system, endocrine system, and brain.
Therefore, these multi-modal signals help keep track of the subject’s physi-
cal state and can provide quality information on whether the person is feeling
fatigued.

ECG signals show changes in the cardiovascular system by reflecting the
heart’s electrical activity. It contains essential information about the cardiac
pathologies affecting the heart, characterized by five peaks known as fiducial
points, which are represented by the letters P, Q, R, S, and T [34]. Studies
have shown that fatigue affects the body’s cardiovascular response [31]. We used
Einthoven’s triangle approach to record the ECG signals [15]. Eithoven’s triangle
is an imaginary formation of three limb leads in a triangle used in electrocar-
diography, formed by the two shoulders and the pubis. It can be helpful in the
identification of incorrect placement of the sensor leads.

On the other hand, EDA (often referred to as galvanic skin response, or GSR)
reflects the activity of the sympathetic nervous system, which is dependent on
physiological and emotional activation by measuring the skin conductivity of the
body. EDA signals can also be reflective of the intensity of our emotional state.
Therefore, measuring this signal allows us to identify psychological or emotional
arousal episodes. Finally, EMG signals record the change in voltage between
two electrodes during muscle contraction and relaxation. PF has been shown to
affect muscle activity and can lead to reduced muscle activation [36].
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To remove unwanted noise from the ECG signals, we used Pan and Tompkins
QRS detection algorithm [32]. First, we cleaned the signals using a high-pass
Butterworth filter with a fixed cut-off frequency of 0.5 Hz. After this, a notch
filter was applied to the cleaned signal to remove components 50 Hz frequency
and avoid power line interference. Next, RR intervals were extracted using the
R Peaks from the signal and were cleaned by removing the outliers. The missing
values were substituted using the linear interpolation method. Finally, 113 time-
domain and frequency-domain features, including heart rate variability (HRV)
metrics, were extracted to train ML models.

EDA signals were first passed through a low-pass Butterworth signal with a
cut-off frequency 3 Hz. EDA signals can be decomposed into two components:
phasic and tonic [11]. Since the phasic component of the EDA signal is the faster-
changing element of the signal based on physiological changes due to a stimulus,
it was extracted for processing. Skin Conductance Response (SCR) peaks were
extracted as features from the cleaned EDA signals. Similarly, time domain and
frequency domain features were extracted from the EMG signals. Most of the
feature extraction was carried out using the package named Neurokit2 [26] for
all three signals.

5 Experimentation and Results

We extracted 100 statistical features from EEG signals and 169 combined fea-
tures from ECG, EDA, and EMG to train the ML models. Based on the responses
accumulated from the participants (in Fig. 8), data collected in sensor readings
1, 2, and 3 (before the 2-Back tasks in Fig. 2) were labeled as “No CF” condition.
In contrast, the data recorded during the final two readings (4 and 5, i.e., after
the 2-Back rounds) were labeled as “CF” conditions. Similarly, data recorded
right after the physical task (sensor reading 3) was marked as a “PF” condition
when the subjects stood still. Meanwhile, readings 4 and 5 were not considered
for PF analysis.

For training, instead of processing the entire signal for a task as a single input,
we split the time signal into multiple slices based on different window sizes (5 s,
10 s, and 20 s). Each signal slice was labeled the same as the original signal label,
and features were extracted. It also increased the number of input data points to
the ML models during training. However, we also tested the models with entire
signal blocks as inputs. Similarly, during inference, the input signal was broken
down into smaller slices based on the window size chosen during training, and
each slice was classified as one of the classes by the model. Finally, the whole
signal block was classified based on the higher count of the class among the
classified slices. This technique makes the model more robust toward any noise
or outliers in the signals, as noise contained in some slices may not contribute
much to the final classification result.

The entire dataset was randomly split into train (70%, 22 subjects), vali-
dation (15%, five subjects), and test (15%, five subjects) sets. We used strati-
fied sampling while splitting the dataset to prevent dealing with an unbalanced
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Table 1. Detection of Cognitive Fatigue (CF) with EEG Features only

Model Accuracy (Window Size) Avg. Recall

5s 10s 20s Full Block

Log Reg 69.7% 72.6% 71.3% 62.3% 0.76

SVM 73.1% 73.3% 71.7% 69.4% 0.81

RF 72.3% 81.9% 79.1% 76.3% 0.89

LSTM 69.8% 71.8% 73.8% 81.9% 0.82

Table 2. Detection of Cognitive Fatigue (CF) with ECG + EDA + EMG Features

Model Accuracy (Window Size) Avg. Recall

5s 10s 20s Full Block

Log Reg 69.8% 70.1% 67.2% 65.3% 0.69

SVM 71.2% 71.7% 70.8% 70.1% 0.73

RF 74.8% 76.3% 72.1% 70.9% 0.71

LSTM 62.2% 63.7% 68.9% 70.1% 0.69

Table 3. Detection of Physical Fatigue (PF) with ECG + EDA + EMG Features

Model Accuracy (Window Size) Avg. Recall

5s 10s 20s Full Block

Log Reg 72.2% 72.2% 68.2% 62.9% 0.74

SVM 76.1% 79.6% 75.2% 73.1% 0.86

RF 79.9% 80.5% 77.6% 77.2% 0.88

LSTM 64.2% 64.8% 62.7% 68.9% 0.79

Table 4. Detection of Cognitive Fatigue (CF) with EEG + ECG + EDA + EMG
Features

Model Accuracy (Window Size) Avg. Recall

5s 10s 20s Full Block

Log Reg 64.0% 66.9% 66.1% 60.4% 0.69

SVM 70.3% 74.6% 74.5% 70.3% 0.79

RF 67.9% 77.2% 76.8% 74.5% 0.81

LSTM 71.3% 74.2% 74.8% 84.1% 0.90

dataset. In addition, 5-fold cross-validation was performed for each of the mod-
els. Four different ML models: Logistic Regression (Log Reg.), Support Vector
Machines (SVM), Random Forest (RF), and Long Short-Term Memory (LSTM)
recurrent neural network, were used in the analysis. We used multiple combina-
tions of features extracted from the signals to predict fatigue.
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Since EEG signals represent brain activity related to cognitive functions,
initially, only features extracted from the EEG data were used to predict CF, as
shown in Table 1. Similarly, we used features extracted from the physiological
sensors (ECG, EDA, and EMG) to train models that predict both CF and PF,
as presented in Tables 2 and 3. Finally, features from all the data modalities
were combined and normalized for the detection of CF, represented by Table 4.
For results in Table 4, we applied Principal Component Analysis (PCA) [35] to
reduce dimensions to 189 features for the best results from the ML models.

The first three models (Log Reg., SVM, and RF) were trained using the
features extracted from the signals. However, an LSTM model (with 256 hidden
layers) was trained on the raw signals directly as it can process time-series data.
We used the same window-based approach to train the LSTM models, where the
input size for the EEG signals was t x 20× 1 (five frequency bands from each
of the four electrodes). On the other hand, ECG, EDA, and EMG signals were
combined to form t × 3 × 1 inputs. Finally, the LSTM was trained on t × 23
× 1 inputs for all signals combined. Here, “t” represents the number of timesteps
in the signal, which varies based on the window size.

Table 5. Comparison of different models with the state-of-the-art algorithms

Fatigue Type Model Accuracy Avg. Recall Ref.

Physical RF 71.85 0.72 [25]

Physical cCNN + RF 71.40 0.73 [25]

Physical RF (Ours) 80.50 0.88 Table 3

Cognitive RF 64.69 0.65 [25]

Cognitive RF 66.20 0.66 [25]

Cognitive LSTM (Ours) 84.1 0.90 Table 4

The average recall (Avg. Recall) presented in all four tables is the average
recall for the “Fatigue” condition (either cognitive or physical) obtained across
5-fold cross-validation for each model. The best value obtained for each model
among different window sizes was considered. With a CF prediction accuracy
of 81.9%, RF performs the best using only the EEG features in Table 1. We
can see that it correctly predicts CF conditions 89% of the time. Recall is an
essential metric since our primary goal is to detect actual fatigue conditions in
the subjects and avoid false negatives.

Similarly, RF seems to outperform the rest of the models when trained with
features from ECG, EDA, and EMG to detect both CF and PF with respective
accuracies of 76.3% (recall=0.71) and 80.5% (recall=0.88). Also, the window
size of 10s works the best for feature-based models, while the LSTM model
performs the best when provided with the entire block of signal collected. Based
on Table 4, LSTM performs the best when all four modalities are combined and
the whole signal block is provided to the model. Hence, for the detection of CF,



132 A. Jaiswal et al.

feature engineering can be avoided entirely with four modalities combined and
processed directly with an LSTM network.

Finally, there is only one study by Luo et al. [25] that deals with fatigue
detection in human subjects using wearable sensors. Their pilot study looked at
multiple digital data sources on physical activity, vital signs, and other physi-
ological parameters and their relationship to subject-reported non-pathological
physical and mental fatigue in real-world settings. They demonstrated how mul-
timodal digital data could be used to inform, quantify, and augment subjectively
collected non-pathological fatigue measures. Based on the performance of their
methodology with ours in Table 5, we can see that our methods outperform
their approaches in detecting both physical and cognitive fatigue with models
RandomForest (RF) and LSTM, respectively.

6 Conclusion

This paper presents one of the preliminary works that utilizes a unique combina-
tion of physiological (ECG, EDA, EMG) and brain (EEG) sensors to detect CF
and PF simultaneously. The flow of the tasks designed for data collection suc-
cessfully induced CF (> 80% participants) and PF (> 90% participants) based
on the reported subjective VAS scores from the participants. While the Random
Forest classifier performed the best in detecting PF, the success of the LSTM
model in predicting CF eliminates the need for extensive data preprocessing
and feature extraction. Overall, the best models in the system failed to detect
actual PF in less than 12% of the cases (recall=0.88) and CF in less than 10%
(recall=0.90), with promising results. Similarly, our models outperform state-
of-the-art models in detecting cognitive and physical fatigue. Further research
directions will include visual sensor data to analyze facial expressions and gait
movement, which will aid in better prediction of fatigue. Additionally, including
subjects with severe conditions impacted by fatigue can benefit the study in
detecting symptoms related to those diseases.
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