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Learning to interpret proofs is an important milepost in the maturity and development of students 
of higher mathematics. A key learning objective in proof-based courses is to discern whether a 
given proof is a valid justification of its underlying claim. In this study, we presented students 
with conditional statements and associated proofs and asked them to determine whether the 
proofs proved the statements and to explain their reasoning. Prior studies have found that 
inexperienced provers often accept the proof of a statement’s converse and reject proofs by 
contraposition, which are both erroneous determinations. Our study contributes to the literature 
by corroborating these findings and suggesting a connection between students’ reading 
comprehension and proof validation behaviors and their beliefs about mathematical proof and 
mathematical knowledge base. 

Keywords: logic and proof, belief about mathematical proof, mathematical knowledge base 

 Learning to interpret proofs is an important milepost in students’ mathematical development 
and maturity. Such development is especially crucial since proof is a structure unique to the field 
of mathematics (Balacheff, 2008; Fawcett, 1938). Though much variability exists in how 
transition-to-proof courses are delivered in the U.S., over 80% of them attend to principles of 
formal logic (David & Zazkis, 2020). Presumably among the many facets of students’ 
development with regard to proof is their ability to correctly discern whether a proof justifies a 
given theorem. While undergraduate students’ comprehension and behaviors have been a focus 
of research in the reading and validation of proofs (e.g., Dawkins & Zazkis, 2021; Selden & 
Selden, 2003), this study aims to provide insights of how students’ beliefs and knowledge about 
proofs might be associated with their reading and validation thereof. Building on the existing 
research (e.g., Dawkins & Roh, 2022), this study explores the accuracy with which students 
validate theorem-proof pairs, the reasons they offer for their decisions, and the similarities and 
differences exhibited by students with different degrees of proof experience. By studying 
similarities and differences between these groups, we address the following research question: 
What differences exist between novice and experienced provers in how they read proofs and 
characterize the relationship between proofs and theorems? 

Theoretical Perspective 
 In this study, we employ the lens of radical constructivism (Glasersfeld, 1988). Under this 
view, knowledge does not objectively reflect reality, rather it is stored in the mind of an 
individual learner who has organized their activity and experience idiosyncratically into 
schemes. As such, we designed our investigations to understand our participants’ schemes 
regarding proofs of theorems in order to build models for their thinking. 
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As a way of organizing and interpreting our findings about students’ schemes regarding 
proof, we introduce the constructs of beliefs about mathematical proof and mathematical 
knowledge base, both of which may differ from student to student. The former refers to general 
notions that students hold regarding the practice of proving or the properties that a proof should 
have. For example, a student might believe that a proof needs to make explicit the structure of 
their proof e.g., direct proof, contrapositive, while another would accept a proof which only 
implies the structure. The latter refers to content-specific knowledge that students accept without 
justification. For example, a student might conceive that the sum of two continuous functions is 
continuous and accept a proof that used this argument as valid. Another student might reject a 
proof which doesn’t justify this claim. In either case, such knowledge is only relevant in proofs 
that pertain to functions and their analysis. 
 Though ideas in one’s mathematical knowledge base do not require justification, students 
were asked on multiple occasions to explain why certain ideas were true. To more fully describe 
their understanding, we rely on warrants (Toulmin, 1958), the reason a prover gives for why 
their evidence is germane to their argument. In particular, we use the warrant-types described by 
Inglis et al. (2007) to make sense of our participants’ knowledge bases.  
 

Research Methodology 
As part of a larger study, we conducted clinical interviews (Clement, 2000) with 

undergraduate students with various levels of proof experience at a large public university in the 
United States from spring 2020 to spring 2022. We recruited eight students who had already 
taken at least two proof-oriented courses by spring 2020. We labeled these participants 
experienced provers. To compare and contrast these provers’ conceptions about proof, in the 
springs of 2021 and 2022, we recruited four students who had not yet taken any proof-oriented 
mathematics courses at the university level, labeling them novice provers. The second author of 
this paper served as the interviewer of all participants while the remaining authors served as 
witnesses. In the discussion of results, we label participants with E or N (indicating their 
experienced or novice prover classification), a number from 1-8, and a pseudonym. 
Each clinical interview lasted between 60 and 120 minutes. Some interviews in the spring of 

2020 were conducted in person in a space other than their regular classroom while the rest of the 
interviews were conducted remotely. To facilitate retrospective analysis, we video- and audio-
recorded all interviews. Participants completed all annotations on tablet computers, allowing us 
to collect digital copies of their work. 
 
Interview Tasks 
 The tasks for the clinical interviews consisted of a series of theorem-proof pairs. After 
showing a theorem and at least one proof associated with it, we asked a student participant to 
think aloud while reading and interpreting them. When the student had indicated that they had 
sufficiently reviewed the theorem and proof, we asked whether the proof proves the theorem. If 
they determined that the proof did not prove the theorem, we asked if there were other statements 
that it proved. As the student responded to our questions, the interviewer asked follow-up 
questions in tandem to understand the student’s reasoning for their decision. 
 While we asked all student participants the same questions for each theorem-proof pair, these 
pairs were not the same across the three all data collection periods. In spring 2020, we offered 
our experienced provers five different theorems (Theorems 1, 2, 4, 6, and 9 in Figure 1), each of 
which was accompanied by two or three different proofs. In spring 2021, we provided one 
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theorem (labeled Theorem in Figure 1) to two of our novice provers and four associated proofs. 
In spring 2022, we presented the remaining novice provers four different theorems (Theorems 
,ߚ,ߙ  .in Figure 1), each with a single proof of its converse or contrapositive ߜ and ,ߛ
 For all of the theorems in Figure 1 below, we provided students additional information such 
as relevant definitions or supporting theorems which may be needed for their reading of the 
proofs. We informed students that the proofs we provided were mathematically valid, but proofs 
associated with a theorem may not necessarily prove the theorem. 
 

Theorems presented to experienced provers in Spring 2020: 
Theorem 1: If 𝑥𝑥 is a multiple of 6, then 𝑥𝑥 is a multiple of 3.  
(Associated proofs are direct, disproof of converse, and contraposition) 
Theorem 2: If 𝑥𝑥 is a multiple of 2 and a multiple of 7, then 𝑥𝑥 is a multiple of 14.  
(Associated proofs are direct and proof of converse) 
Theorem 4: If 𝐴𝐴𝐵𝐵𝐶𝐶ܦ is a rhombus, then the diagonal 𝐴𝐴𝐶𝐶 forms two congruent isosceles triangles.  
(Associated proofs are direct and disproof of converse) 
Theorem 6: For any line segment 𝐴𝐴𝐵𝐵, if a point ܺ is on the perpendicular bisector of 𝐴𝐴𝐵𝐵, then 𝐴𝐴ܺ = 𝐵𝐵ܺ.  
(Associated proofs prove the converse and prove directly) 
Theorem 9: If ݂ and ݃ are continuous on [𝑎𝑎, ܾ], ݂(𝑎𝑎) = ݃(ܾ), and ݂(ܾ) = ݃(𝑎𝑎), then there is a ܿ in [𝑎𝑎, ܾ] such that ݂(ܿ) = ݃(ܿ).  
(Associated proofs are direct, disproof of converse, and contraposition) 
 

Theorem presented to novice provers in Spring 2021: 
Theorem: For any integer 𝑥𝑥, if 𝑥𝑥 is not a multiple of 3, then 𝑥𝑥ଶ െ 1 is a multiple of 3.  
(Associated proofs are direct, inverse, converse, and contrapositive) 
 

Theorems presented to novice provers in Spring 2022: 
Theorem ߙ: Given a line segment 𝐴𝐴𝐵𝐵, for all points ܺ, if ܺ is on the perpendicular bisector of 𝐴𝐴𝐵𝐵, then 𝐴𝐴ܺ = 𝐵𝐵ܺ. 
(Associated proof proves the converse) 
Theorem ߚ: For any triangle ܻܼܺ, if no two angles are congruent, then the triangle is scalene.  
(Associated proof proves the contrapositive) 
Theorem ߛ: For any integer 𝑥𝑥, if 𝑥𝑥 is a multiple of 4 and a multiple of 21, then 𝑥𝑥 is a multiple of 84.  
(Associated proof proves the converse) 
Theorem ߜ: For any integer 𝑥𝑥, if 𝑥𝑥 is not a multiple of 3, then it cannot be written as the sum of three consecutive integers.  
(Associated proof proves the contrapositive) 

Figure 1. Theorems and types of proofs associated with them 
 

Data Collection and Analysis 
 To facilitate our analysis, we transcribed each interview and created detailed field notes to 
describe how students processed each proof. We analyzed data in hopes of building a theory 
grounded in the available data (Strauss & Corbin, 1998). We first coded each line of each 
transcript by describing student behavior e.g., reviewing given definitions, drawing diagrams, 
deciding on the validity of a proof. We further coded the transcripts to attend to students’ 
reasoning underlying their responses to questions, which revealed five different phenomena 
which we present in more detail shortly. These phenomena gave rise to two ways of categorizing 
students’ conceptions – belief about mathematical proof and mathematical knowledge base. 
 

Results 
 The goal for our research was to characterize the differences between how novice and 
experienced provers understood proofs, theorems, and the relationship between them. We begin 
by discussing their commonalities in order to provide a reference for their differences. We found 
that students’ comprehension and validation of proofs are associated with their beliefs about 
mathematics proof and mathematical knowledge base. Various sub-categories of each construct 
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emerged from our analysis. In particular, we found two different sub-categories of students’ 
beliefs and three sub-categories of their knowledge. Once we identified all students with these 
categories, we compared and contrasted novice and experienced provers. Our findings are 
summarized below (See Table 1). 
 
Table 1. Summary of conceptions about mathematical proof 
Conception Phenomenon Novice Experienced  
Beliefs about 
Mathematical 
Proof 

Valid proofs require logically sequenced arguments. 9 9 
Valid proofs require correct overall structure. × 9 

Mathematical 
Knowledge 
Base 

Arguments rely on empirical evidence. 9 × 
Arguments rely on definitions. × 9 
Arguments rely on logically sound principles. × 9 

 
Summary of Conceptions of Proof of Novice and Experienced Provers 
 Both groups of provers exhibited a belief that valid proofs require correctly sequenced 
arguments, yet only experienced provers believed that proofs must also follow the correct 
structure i.e., assumptions and conclusions are correctly identified. Regarding mathematical 
knowledge base, novice provers primarily argued using empirical evidence while experienced 
provers preferred arguments based on definitions. Lastly, experienced provers alone showed 
consistent sensitivity to logically sound principles. 
 
Beliefs about Mathematical Proof 
 This category pertains to what students generally believe a prover should do when 
formulating a proof or what properties a proof ought to include. Our findings refer specifically to 
the characteristics that students believe contribute to the validity of a proof, or lack thereof. 
Valid proofs require logically sequenced arguments. A logically sequenced argument is 

such that each line in a proof is both justified by the ones that precede it and justifies the ones 
that follow. Put alternately, students attended to the body of the proof without necessarily 
attending to the assumptions and conclusions. In each of the following excerpts, one each from a 
novice and experienced prover, participants discussed why this coherent flow is necessary in a 
valid proof.  
Interviewer: “Can you explain why [this proof doesn’t prove the theorem]?” 
Priya (E4): “Because they’re not justifying their steps. When they don’t justify their steps, 
the steps they’ve omitted don’t indicate that they understand what’s going on. It just 
seems like they’re fudging because they know where they need to go.” 

 
Interviewer: “Can you explain why the proof proves the theorem?” 
Carl (N2): “If 𝑥𝑥 wasn’t on the perpendicular bisector…Therefore, the lines 𝐴𝐴ܺ and 𝐵𝐵ܺ 
would not be equal. Because it is on the perpendicular bisector, triangles 𝐴𝐴ܺܯ and 𝐵𝐵ܺܯ 
would be equal. By the SAS theorem, the triangles would be equal.” 

Priya referred to the desired conclusion as “where they need to go,” thereby acknowledging a 
proof framework, but rejected the arguments used to arrive there. Carl accepted his proof based 
solely on the links between arguments and did not attend to the hypothesis and conclusion. 
Valid proofs require correct overall structure. If the category above pertains to the body 

of a proof, this category pertains to its head and tail, the assumptions and conclusions, 
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respectively. The belief that a proof’s validity depends on its hypotheses and conclusions, and 
the flow from the former to the latter, was prevalent only among experienced provers. 
Interviewer: “Can you explain why [the proof doesn’t prove the theorem]?” 
Nate (E6): “In proof 1.2, your given assumption is actually what we’re trying to prove…This 
statement is what we’re needing at the end of our proof…So they’re starting at the 
opposite end of the proof…This is saying that if 𝑥𝑥 is a multiple of 3, then it’s not a 
multiple of 6, which is not what we’re actually trying to prove.” 

 
Interviewer: “What is your top criterion for this to be a valid proof?” 
Heather (E2): “It starts by assuming that the if condition is true.” 

Nate and Heather each attended to how the proof began and ended. Nate rejected the proof 
because it assumed the wrong premise. Heather cited the correct assumption as her top validation 
condition. In each case, the student attended to the ends of the proof rather than the body thereof. 
 
Mathematical Knowledge Base 
 A student’s knowledge base refers to the information that they have at their disposal which 
helps them read, interpret, and formulate proofs. Most relevant to this study is the set of content-
specific tools that students have which allows them to analyze and compare arguments. 
 Arguments rely on empirical evidence.  Under this approach, students cited particular 
examples to substantiate their claims. On several occasions, novice provers used one or more 
particular examples directly before declaring that a theorem was indeed valid. 
Interviewer: “Can you explain why [proof 1 proves for any integer 𝑥𝑥, if 𝑥𝑥 is not a multiple of 
3, then 𝑥𝑥ଶ െ 1 is a multiple of 3]?” 

Joaquin (N4): “I didn’t realize that the proof would approach the problem like this…It says 
let 𝑥𝑥 be an integer that is not a multiple of 3…We could pick 8, 7 even…For me 
personally, I experimented with some numbers. For example, I let ݇ equal 1.” 

Joaquin’s acceptance of the theorem stemmed from his ability to satisfy it with several 
spontaneously chosen examples. Though he convinced himself of the validity of the proof 
inductively, we do not necessarily claim that he would have accepted a proof by example. 
Nonetheless, his empirical reasoning was fairly common among novice provers. 
Arguments rely on definitions. Rather than using particular examples, provers in this 

category reasoned arbitrarily i.e., using examples which represent all examples. Put alternately, 
experienced provers reasoned from definitions and properties rather than from examples. 
Interviewer: “Can you explain in your own words what this theorem states?” 
Priya (E4): “Given any integer 𝑥𝑥, if 𝑥𝑥 satisfies the property of being a multiple of 6, meaning 
there is some number that multiplied by 6 gives you 𝑥𝑥,…There is another number that 
when multiplied by 3 gives you 𝑥𝑥.” 

Whereas Joaquin reasoned via empirical evidence, Priya reasoned arbitrarily and directly from 
the definitions. Joaquin’s and Priya’s preferred modes of reasoning were common among other 
novice and experienced provers, respectively. 
Arguments rely on logically sound principles. Provers in this category were adept at 

employing logic, most notably for this study contrapositive equivalence and converse 
independence (CE/CI). Novice provers did not consistently exhibit understanding of CE/CI. 
Nevertheless, the manners in which experienced provers justified these principles varied greatly. 
Interviewer: “Can you explain why [this proves if 𝑥𝑥 is not a multiple of 3, then 𝑥𝑥ଶ െ 1 is a 
multiple of 3]?” (proof proves the converse) 
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Violet (N3): “They’re showing that 𝑥𝑥 is not a multiple of 3 by saying that 𝑥𝑥 equals ݇ times 
3…But it can’t be since in the theorem it says that 𝑥𝑥 is not a multiple of 3…I think it 
[proves the theorem] because they’re showing in their work that 𝑥𝑥 is a multiple of 3, 
because they’re assuming that it’s a multiple of 3.” 

Note that Violet attended to the arguments in the body of the proof but exhibited no sensitivity to 
the overall structure of the proof. 
 Experienced provers, on the whole, reliably recognized CE/CI. Significant differences 
however existed in the way they justify these ideas. For example, some participants took CE/CI 
as given, but did not provide a justification. 
Interviewer: “Why do you think that since this disproves the converse that it does not prove 
the theorem?” 

Priya (E4): “Because the converse is not logically equivalent to the original.” 
I: “What do you mean that they are not equivalent?” 
Priya (E4): “That’s a good question. Like how do I know that two things aren’t logically 
equivalent? I guess at this point, that’s just an inherent fact to me.” 

Provers who reasoned about CE/CI in this fashion perhaps viewed CE/CI as a belief rather than 
knowledge since it is neither requires nor is accompanied by warrant. 
 Other experienced provers were able to warrant CE/CI with concrete examples which were 
specific to a particular context. These contexts were not always overtly mathematical in nature, 
as shown by the excerpt below. 
Interviewer: “You said this proves if ܳ, then ܲ, right? My question is why a proof of if ܳ 
then ܲ is not a proof of if ܲ then ܳ.” 

Mark (E7): “Let’s say I say that if an animal is a blue jay, then it is a bird…This is the 
example I always think of when I have to think of if-then statements.” 

Though not explicitly stated by the student, it can be reasonably presumed that since the 
statement he gave had a false converse, its purpose is to illustrate general converse independence 
through a particular example. Note that while empirical evidence was primarily used by 
experienced provers, this was not exclusively the case. 
 Finally, our participants also justified their knowledge of CE/CI through abstract warrants 
which were not beholden to any particular contexts. Such justifications most often took the form 
of truth tables, subset relationships, and logical manipulations (see Figure 2). 
Mark (E7): “It works from logic that for an implication to be true, either the hypothesis is 
false or the conclusion is true. Since they have the same truth table, we know that the 
statements are going to be equivalent.” (see figure 2, left image) 

 

 
Figure 2: Mark’s truth table and Euler diagram as well as Nate’s syntactic argument 

 
Interviewer: Can you explain why the proof demonstrates [if ܳ, then not ܲ]?” 
Mark (E7): “So it could be the case that 𝑥𝑥 is a multiple of 3 and not a multiple of 6. It could 
be the case the ܳ and we don’t know anything about ܲ. So, what the theorem says is that 
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if I am anything in ܲ, then I will also be in ܳ. But what this shows is that if I’m in ܳ, then 
I might not be in ܲ.” (see Figure 2, middle image) 

 
Interviewer: “How can you tell that the proof of the contrapositive also proves the theorem?” 
Nate (E6): “I think the easiest way would be through logic. The statement is ܲ implies ܳ. 
That’s the same is not ܲ or ܳ. Then, if we do double negation, we get not ܳ implies not 
ܲ. So, these two are exactly the same.” (see Figure 2, right image) 

 
Discussion and Conclusion 

 The goals of this study were to characterize the ways in which undergraduate students 
interpret proof-texts, their relationships to underlying theorems, and to describe the differences 
between novice and experienced provers. Though our tasks were designed to gauge reading 
comprehension through student behaviors, we learned much about their conceptions of proof, 
suggesting that the phenomena are related.  
With regard to beliefs about mathematical proof, both groups of provers asserted that a 

logical linking of ideas should be present in a proof. Our research is thereby consistent with prior 
literature (e.g., Ko & Knuth, 2013; Selden & Selden, 2003; Dawkins & Zazkis, 2021). Similarly, 
we found that students with more mathematical development were more likely to attend to the 
assumptions that are made at the outset of the proof and the overall structure, which is also 
consistent with prior studies (e.g., Heinze & Reiss, 2003; Weber, 2008). Indeed, experienced 
provers validated proofs correctly more often than novice ones, though experienced provers 
make occasional errors. Our findings in this regard support the work of Inglis and Alcock (2012).  
 The results of our study also highlight the different ways in which our participants justify the 
ideas of contrapositive equivalence and converse independence. Our findings are consistent with 
prior literature. In their discussion of modeling arguments, Inglis et al. (2007) discuss the 
warrants used by graduate students of number theory. Though their participants were more 
mathematically developed than ours, parallels exist between our findings and theirs. Inglis et al. 
(2007) do not discuss participants who offer no warrant, but our provers who readily asserted the 
ideas of CE/CI but could give no reason for their validity exhibit what Krupnik et al. (2018) call 
psychological knowledge, a belief that an idea is true which the knower cannot justify. Our 
participants who warranted CE/CI with a single example e.g., the blue jay, parallel what Inglis et 
al. (2007) call the inductive warrant-type, wherein a prover evaluates a conjecture using one or 
more specific examples. Inglis et al. (2007) also describe a structural-intuitive warrant-type, 
wherein a prover uses a mental or visual structure to support a conjecture. This is consistent with 
our experienced provers who used set-theoretic notions and Euler diagrams to justify CE/CI. 
Inglis et al. (2007) describe the deductive warrant-type as reasoning solely from axioms. Since 
our provers who used truth tables and logical manipulations were relying on the base 
relationships between propositions in an implication, their reasoning was consistent with this 
warrant-type. 
 Our findings suggest that students with formal training in proof validate proofs with greater 
reliability but greater attention may be paid to the justification for CE/CI. Ongoing studies are 
testing instructional interventions using set-theoretic activities to effect deeper conceptual 
understanding of proof structures (Dawkins et al., in preparation). 
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