
ar
X

iv
:2

20
6.

01
88

0v
3

 [c
s.G

T]
 2

0
Ja

n
20

23

Learning in Congestion Games with Bandit Feedback

Qiwen Cui∗

qwcui@cs.washington.edu

Zhihan Xiong∗

zhihanx@cs.washington.edu

Maryam Fazel

mfazel@uw.edu

Simon S. Du

ssdu@cs.washington.edu

Abstract

In this paper, we investigate Nash-regret minimization in congestion games, a class of games with
benign theoretical structure and broad real-world applications. We first propose a centralized algorithm
based on the optimism in the face of uncertainty principle for congestion games with (semi-)bandit
feedback, and obtain finite-sample guarantees. Then we propose a decentralized algorithm via a novel
combination of the Frank-Wolfe method and G-optimal design. By exploiting the structure of the conges-
tion game, we show the sample complexity of both algorithms depends only polynomially on the number
of players and the number of facilities, but not the size of the action set, which can be exponentially large
in terms of the number of facilities. We further define a new problem class, Markov congestion games,
which allows us to model the non-stationarity in congestion games. We propose a centralized algorithm
for Markov congestion games, whose sample complexity again has only polynomial dependence on all
relevant problem parameters, but not the size of the action set.

1 Introduction

Nash equilibrium (NE) is a widely adopted concept in game theory community, used to describe the behavior
of multi-agent systems with selfish players [Roughgarden, 2010]. At the Nash equilibrium, no player has the
incentive to change its own strategy unilaterally, which implies it is a steady state of the game dynamics.
For a general-sum game, computing the Nash equilibrium is PPAD-hard [Daskalakis, 2013] and the query
complexity is exponential in the number of players [Rubinstein, 2016]. To help address these issues, a natural
approach is to consider games with special structures. In this paper, we focus on congestion games.

Congestion games are general-sum games with facilities (resources) shared among players [Rosenthal,
1973]. During the game, each player will decide what combination of facilities to utilize, and popular facilities
will become congested, which results in a possibly higher cost on each user. One example of congestion game
is the routing game [Fotakis et al., 2002], where each player needs to travel from a given starting point to a
destination point through some shared routes. These routes are represented as a traffic graph and the facilities
are the edges. Each player will decide her path to go, and the more players use the same edge, the longer
the edge travel time will be. Congestion games also have wide applications in electrical grids [Ibars et al.,
2010], internet routing [Al-Kashoash et al., 2017] and rate allocation [Johari and Tsitsiklis, 2004]. In many
real-world scenarios, players can only have (semi-)bandit feedback, i.e., players know only the payoff of the
facilities they choose. This kind of learning under uncertainty has been widely studied in bandits and in
reinforcement learning for the single-agent setting, while theoretical understanding for the multi-agent case
is still largely missing.

There are two types of algorithms in multi-agent systems, namely centralized algorithms and decentralized
algorithms. For centralized algorithms, there exists a central authority that can control and receive feedback
from all players in the game. As we have global coordination, centralized algorithms usually have favorable
performance. On the other hand, such a central authority may not always be available in practice, and thus
people turn to decentralized algorithms, i.e., each player makes decisions individually and can only observe
her own feedback. However, decentralized algorithms are vulnerable to nonstationarity because each player

∗Equal contribution

1

http://arxiv.org/abs/2206.01880v3
qwcui@cs.washington.edu
zhihanx@cs.washington.edu
mfazel@uw.edu
ssdu@cs.washington.edu

Algorithms Sample complexity Nash regret Decentralized

Nash-VI [Liu et al., 2021] (
∏m

i=1 Ai)F/ǫ
2

√
(
∏m

i=1 Ai)FT No
V-learning [Jin et al., 2021a] AmaxF/ǫ

2 (CCE) NA Yes
IPPG [Leonardos et al., 2021] AmaxmF/ǫ6 NA Yes

IPGA [Ding et al., 2022] A2
maxm

3F 5/ǫ5 mF 4/3
√
AmaxT

4/5 Yes

Nash-UCB I mF 2/ǫ2 F
√
mT No

Nash-UCB II m2F 3/ǫ2 mF 3/2
√
T No

Frank-Wolfe with Exploration I m12F 9/ǫ6 m2F 3/2T 5/6 Yes

Frank-Wolfe with Exploration II m12F 12/ǫ6 m2F 2T 5/6 Yes

Table 1: Comparison of algorithms for congestion games in terms of sample complexity and Nash regret,
where “IPPG” stands for “independent projected policy gradient”, “IPGA” stands for “independent policy
gradient ascent”, “I” represents the setting of semi-bandit feedback and “II” represents the setting of bandit
feedback. Bandit feedback is assumed for algorithms from previous work. Here, Ai is the size of player i’s
action space, m is the number of players, Amax = maxi∈[m] Ai, F is the number of facilities and T is the
number of samples collected. Our algorithms are shaded.

is making decisions in a nonstationary environment as others’ strategies are changing [Zhang et al., 2021a].
In this paper, we will study both centralized and decentralized algorithms in congestion games with bandit
feedback, and we will provide motivating scenarios for both algorithms in Section 1.2.

The main challenge in designing algorithms for m-player congestion games with bandit feedback is the
curse of exponential action set, i.e., the number of actions can be exponential in the number of facilities F
because every subset of facilities can be an action. As a result, an efficient algorithm should have sample
complexity polynomial in m and F and has no dependence on the size of the action space. One closely
related type of general-sum game is the potential game, in which each individual’s payoff changes, resulting
from strategy modification, can be quantified by a common potential function. It is well-known that all con-
gestion games are potential games, and each potential game has an equivalent congestion game formulation
[Monderer and Shapley, 1996]. However, existing algorithms designed for potential games all have sample
complexity scaling at least linearly in the number of actions [Leonardos et al., 2021, Ding et al., 2022], which
is inefficient for congestion games. This motivates the following question:

Can we design provably sample-efficient centralized and decentralized learning algorithms for congestion
games with bandit feedback?

We provide an affirmative answer to this question. To be precise, we use Nash-regret minimization (formally
defined in Section 3) as our objective for learning in congestion games. This regret-like objective commonly
appears in the literature of online learning and reinforcement learning [Orabona, 2019, Ding et al., 2022,
Liu et al., 2021], which focuses on finite-time analysis and accumulative rewards throughout the learning
process instead of the asymptotic behavior. In general, a sublinear Nash regret implies a best-iterate conver-
gence, meaning that the algorithm has reached the approximate Nash equilibrium at least once, while the
converse does not hold.

We highlight our contributions below and compare our results with previous algorithms in Table 1. Our
algorithms are shaded and we prove sublinear Nash regrets for all of them. In Table 1, sample complexity
refers to the number of samples required to reach best-iterate convergence to an ǫ-approximate Nash equi-
librium and the results are obtained by standard online-to-batch conversion as in Section 3.1 of [Jin et al.,
2018].

1.1 Main Novelties and Contributions

1. Centralized algorithm for congestion game. We adapt the principle of optimism in the face
of uncertainty in stochastic bandits to ensure sufficient exploration in congestion games. We begin with
congestion games with semi-bandit feedback, in which each player can observe the reward of every facility
in the action. Instead of estimating the action reward as in stochastic multi-armed bandits, we estimate the
facility rewards directly, which removes the dependence on the size of action space. Furthermore, we consider

2

congestion games with bandit feedback, in which each player can only observe the overall reward. In this
setting, we borrow ideas from linear bandits to estimate the reward function and analyze the algorithm. The
algorithm is provably sample efficient in both cases.
2. Decentralized algorithm for congestion game. Our decentralized algorithm is a Frank-Wolfe
method with exploration, in which each player only observes her own actions and rewards. To efficiently
explore in the congestion game, we utilize G-optimal design allocation for bandit feedback and a specific
distribution for semi-bandit feedback. As a result, the sample complexity does not depend on the number of
actions. In addition, the L1 smoothness parameter of the potential function does not depend on the number
of actions, which is exploited by the Frank-Wolfe method. With the help of these two specific algorithmic
designs for congestion games, we give the first decentralized algorithm for both semi-bandit feedback and
bandit feedback that has no dependence on the size of the action space in congestion games.
3. Centralized algorithm for independent Markov congestion game. We extend the formulation
of congestion game into a Markov setting and propose the independent Markov congestion game (IMCG),
in which each facility has its own internal state and state transition happens independently among all the
facilities. In Section 1.2, we give some examples that fit in this model. By utilizing techniques from factored
MDPs, we extend our centralized algorithms for congestion games to efficiently solve IMCGs, with both
semi-bandit and bandit feedback.

1.2 Motivating Examples

We provide an exmple here to motivate our proposed models. See Section 3 for the formal definition of
(semi-)bandit feedback and (Markov) congestion games and Appendix A for additional examples.

Example 1 (Routing Games). For a routing game, there are multiple players in a traffic graph travelling
from starting points to destination points, and the facilities are the edges (roads). The cost of each edge is
the waiting time, which depends on the number of players using that edge.
• Centralized algorithm for routing games: Imagine each player is using Google Maps to navigate.
Then Google Maps can serve as a center that knows the starting points and the destination points, as well
as the real-time feedback of the waiting time on each edge of all the players. Google Maps itself also has the
incentive to assign paths according to the Nash equilibrium strategy as then each player will find out that
deviating from the navigation has no benefit and thus sticks to the app.
• Decentralized algorithm for routing games: Consider the case where players are still using Google
Maps but due to privacy concerns or limited bandwidth, they only use the offline version, which has access
only to the information of each single user. Then Google Maps needs to use decentralized algorithms so that
it can still assign Nash equilibrium strategy to each user after repeated plays.
• Markov routing games: For Markov routing games, the time cost on each edge will change between
different timesteps, which is a more accurate model of the real-world. For instance, some roads are prone to
car accidents, which will result in an increasing cost on the next timestep, and the chance of accidents also
depends on the number of players using that edge currently. This is modeled by the Markovian facility state
transition in independent Markov congestion games.

2 Related Work

Potential Games. Potential games are general-sum games that admit a common potential function to quan-
tify the changes in individual’s payoff [Monderer and Shapley, 1996]. Algorithmic game theory community
has studied how different dynamics converge to the Nash equilibium, e.g., best response dynamics [Durand,
2018, Swenson et al., 2018] and no-regret dynamics [Heliou et al., 2017, Cheung and Piliouras, 2020], while
usually they provide only asymptotic convergence, with either full information setting or bandit feedback
setting. Recently, reinforcement learning community studied Markov potential games with bandit feedback,
which can be applied to standard potential games. See the Markov Games part below for more details.
Congestion Games. Congestion games are developed in the seminal work [Rosenthal, 1973], and later
Monderer and Shapley [1996] builds a close connection between congestion games and potential games.
Congestion games are divided into atomic and non-atomic congestion games depending on whether each
player is separable. Many papers consider non-atomic congestion games with non-decreasing cost function,

3

which implies a convex potential function [Roughgarden and Tardos, 2004]. We consider the more diffi-
cult atomic congestion game where the potential function can be non-convex. For online non-atomic case,
[Krichene et al., 2015] considers partial information setting while they provide convergence in the sense of
Cesaro means. [Kleinberg et al., 2009, Krichene et al., 2014] show that some no-regret online learning al-
gorithms asymptotically converges to Nash equilibrium. [Chen and Lu, 2015, 2016] are two closely related
works that consider bandit feedback in atomic congestion games and provide non-asymptotic convergence.
However, they still assume a convex potential function and the sample complexity has exponential depen-
dence on the number of facilities, which is far from ideal.
Markov Games. Markov games are widely studied since the seminal work [Shapley, 1953]. Recently, the
topic has received much attention due to advances in reinforcement learning theory. Liu et al. [2021] provides
a centralized algorithm for learning the Nash equilibrium in general-sum Markov games, and [Jin et al.,
2021a, Song et al., 2021] provide decentralized algorithms for learning the (coarse) correlated equilibrium.
One closely related line of research is on Markov potential games [Leonardos et al., 2021, Zhang et al.,
2021b, Fox et al., 2021, Cen et al., 2022, Ding et al., 2022]. However, applying their algorithms to congestion
games leads to explicit dependence on the number of actions, which would be exponentially worse than our
algorithms. See Table 1 for comparisons. Our independent Markov congestion game is motivated by the
state-based potential games studied in Marden [2012] and Macua et al. [2018], and its transition kernel is
closely related to the factored MDPs, for which single agent algorithms are studied in [Osband and Van Roy,
2014, Chen et al., 2020, Xu and Tewari, 2020, Tian et al., 2020, Rosenberg and Mansour, 2021].
Learning in Games. Different from our paper, learning in games in traditional literature of game theory
mainly considers players’ asymptotic behavior [Leslie and Collins, 2005, Cominetti et al., 2010, Coucheney et al.,
2015]. In early literature, Leslie [2004] investigates actor-critic learning and Q-learning algorithms in games
with bandit feedback and their connection to best-response dynamics. Leslie and Collins [2005] proposes
individual Q-learning algorithm and shows that it converges to the NE almost surely in two-player zero-sum
game and Leslie and Collins [2006] studies learning the NE from the perspective of a fictitious play-like
process. Later, Cominetti et al. [2010] considers payoff-based learning rules and shows convergence to NE in
traffic games, while another payoff-based learning model for continuous games is developed in Bervoets et al.
[2020]. Coucheney et al. [2015] derives a new penalty-regulated dynamics and proposes a corresponding learn-
ing algorithms that converges to NE in potential games with bandit feedback. Bravo et al. [2018] proposes
that in monotone games with bandit feedback, as long as all players are using some no-regret learning algo-
rithm, the dynamics will converge to the NE, and an improved analysis of the same derivative-free algorithm
is given in Drusvyatskiy et al. [2022]. In contrast, our learning objective focuses on finite-time cumulative
rewards, which is more widely used in current multi-agent reinforcement learning literature [Ding et al.,
2022, Liu et al., 2021].

3 Preliminaries

General-sum Matrix Games. We consider the model of general-sum matrix games, defined by the tuple
G = ({Ai}mi=1 , R), where m is the number of players, Ai is the action space of player i and R(·|a) is the
reward distribution on [0, rmax]

m with mean r(a). Let A = A1 × · · · × Am be the whole action space and
denote an element as a = (a1, . . . , am) ∈ A. After all players take actions a ∈ A, a reward vector is sampled
r ∼ R(·|a) and player i will receive reward ri ∈ [0, rmax] with mean ri(a). Each player’s objective is to
maximize her own reward.

A general policy π is defined as a vector in ∆(A), the probability simplex over the action space A. A
product policy π = (π1, . . . , πm) is defined as a tuple in ∆(A1)×· · ·×∆(Am), in which a = (a1, . . . , am) ∼ π

represents ai
i.i.d.∼ πi. The value of policy π for player i is V π

i = Ea∼π[ri(a)].
Nash Equilibrium and Nash Regret. Given a general policy π, let π−i be the marginal joint pol-
icy of players 1, . . . , i − 1, i + 1, . . . ,m. Then, the best response of player i under policy π is π†

i =

argmaxµ∈∆(Ai) V
µ,π−i

i and the corresponding value is V
†,π−i

i := V
π†
i ,π−i

i . Our goal is to find the approximate
Nash equilibrium of the matrix game, which is defined below.

Definition 1. A product policy π is an ǫ-approximate Nash equilibrium if maxi(V
†,π−i

i − V π
i) ≤ ǫ.

4

An ǫ-approximate Nash equilibrium can be obtained by achieving a sublinear Nash regret, which is defined
below. See Section 3 in Ding et al. [2022] for a more detailed discussion.

Definition 2. With πk being the policy at k-th episode, the Nash regret after K episodes is define as

Nash-Regret(K) =

K∑

k=1

max
i∈[m]

(
V

†,πk
−i

i − V πk

i

)
.

Remark 1. Here, if we replace maxi∈[m] by
∑m

i=1 in the definition of Nash regret, the single-step Nash regret

at episode k will become the Nikaido-Isoda (NI) function evaluated at πk, which is a popular objective for
equilibrium computation [Nikaidô and Isoda, 1955, Raghunathan et al., 2019]. Replacing maxi∈[m] by

∑m
i=1

will multiply our regret bounds by a factor of m, while our conclusion will not be affected.

Potential Games. A potential game is a general-sum game such that there exists a potential function
Φ : ∆(A) → [0,Φmax] such that for any player i ∈ [m] and policies πi, π

′
i, π−i, it satisfies

Φ(πi, π−i)− Φ(π′
i, π−i) = V

πi,π−i

i − V
π′
i,π−i

i .

We can immediately see that a policy that maximizes the potential function is a Nash equilibrium.
Congestion Games. A congestion game is defined by G = (F , {Ai}mi=1 ,

{
Rf

}
f∈F), where F = [F] is called

the facility set and Rf (·|n) ∈ [0, 1] is the reward distribution for facility f with mean rf (n), where n ∈ [m].
Each action ai ∈ Ai is a subset of F (i.e., ai ⊆ F). Suppose the joint action chosen by all the players is a ∈ A,
then a random reward is sampled rf ∼ Rf(·|nf (a)) for each facility f , where nf (a) =

∑m
i=1 1 {f ∈ ai} is

the number of players using facility f . The reward collected by player i is ri =
∑

f∈ai
rf with mean

ri(a) =
∑

f∈ai
rf (nf (a)) ∈ [0, F].

Connection to Potential Games [Monderer and Shapley, 1996]. As a special class of potential game,

all congestion games have the potential function: Φ(a) =
∑

f∈F
∑nf (a)

i=1 rf (i). To see this, we can easily
verify that Φ(ai, a−i) − Φ(a′i, a−i) = ri(ai, a−i) − ri(a

′
i, a−i) holds. Then, by defining Φ(π) = Ea∼π [Φ(a)],

we can have Φ(πi, π−i)− Φ(π′
i, π−i) = V

πi,π−i

i − V
π′
i,π−i

i .
Types of feedback. There are in general two types of reward feedback for the congestion games, semi-
bandit feedback and bandit feedback, both of which are reasonable under different scenarios. In semi-bandit
feedback, after taking the action, player i will receive reward information rf for each f ∈ ai; in bandit
feedback, after taking the action, player i will only receive the reward ri =

∑
f∈ai

rf with no knowledge

about each rf . In this paper, we will address both of them, with more focus on the bandit feedback, which
can be directly generalized to semi-bandit feedback.

4 Centralized Algorithms for Congestion Games

In this section, we introduce two centralized algorithms for congestion games – one for the semi-bandit
feedback and one for the bandit feedback. We will see that both of them can achieve sublinear Nash regret
with polynomial dependence on both m and F .

4.1 Algorithm for Semi-bandit Feedback

Summarized in Algorithm 1, Nash upper confidence bound (Nash-UCB) for congestion games is developed
based on optimism in the face of uncertainty. In particular, the algorithm estimates the reward matrices
optimistically in line 4, computes its Nash equilibrium policy in line 5 and then follows this policy.

For convenience, we define the empirical counter Nk,f (n) =
∑k

k′=1 1

{
nf(ak′

) = n
}
and ι̃ = 2 log(4(m+

1)K/δ). Then, the reward estimator for f and the bonus term are defined as

r̂k,f (n) =

∑k
k′=1 r

k′,f
1

{
nf (ak′

) = n
}

Nk,f (n) ∨ 1
, bk,ri (a) =

∑

f∈ai

√
ι̃

Nk,f (nf (a)) ∨ 1
, (1)

5

Algorithm 1 Nash-UCB for Congestion Games

1: Input: ǫ, accuracy parameter for Nash equilibrium computation
2: for episode k = 1, . . . ,K do
3: for player i = 1, . . . ,m do

4: Q
k

i (a) ← r̂ki (a) + bk,ri (a) for all a ∈ A
5: πk ← ǫ-Nash(Q

k

1(·), · · · , Q
k

m(·)) (Algorithm 2)
6: Take action a

k ∼ πk and observe reward rk,f

7: Update reward estimators r̂ki and bonus term bk,ri

where rk,f ∈ [0, 1] is the random reward realization of rf (nf (ak)). Naturally, the reward estimator for player
i is r̂ki (a) =

∑
f∈ai

r̂k,f (nf (a)).
Algorithm 1 is motivated by the Nash-VI algorithm in [Liu et al., 2021] plus a deliberate utilization of

the special reward structure in the congestion games. Moreover, notice that a matrix game with reward

functions Q
k

1(·), . . . , Q
k

m(·) forms a potential game (see Lemma 1). As a result, in line 5, we can efficiently
compute the ǫ-approximate Nash equilibrium πk for that matrix game by utilizing Algorithm 2, (see Lemma
2). It is a simple greedy algorithm such that in each round, it modifies one player’s policy whose modification
can increase the potential function most. In addition, Algorithm 2 always outputs a deterministic product
policy.

Algorithm 2 ǫ-approximate Nash Equilibrium for Potential Games

1: Input: ǫ, accuracy parameter; full information potential game ({Ai}mi=1 , {ri}
m
i=1) such that ri ∈ [0, rmax]

for all i ∈ [m]
2: Initialize: π1 = a

1, arbitrary deterministic product policy
3: for round k = 1, . . . ,

⌈
mrmax

ǫ

⌉
do

4: for player i = 1, . . . ,m do
5: ∆i = maxai∈Ai

ri(ai, π
k
−i)− ri(π

k)

6: ak+1
i = argmaxa∈Ai

ri(ai, π
k
−i)− ri(π

k)
7: if maxi∈[m] ∆i ≤ ǫ then

8: return πk

9: j = argmaxi∈[m] ∆i

10: πk+1(j) = ak+1
j , πk+1(i) = πk(i), for all i 6= j

4.2 Algorithm for Bandit Feedback

When the players can only receive bandit feedback, estimating r̂k,f directly for each f ∈ F is no longer
feasible. However, notice that the reward function ri(a) =

∑
f∈ai

rf (nf (a)) can be seen as an inner product

between vectors characterized by action a and reward function rf (·). Therefore, under bandit feedback, we
can treat it as a linear bandit and use ridge regression to build the reward estimator r̃ki and corresponding
bonus term b̃k,r, whose index i is dropped since it is the same for all players. The new algorithm will use
these two terms to replace r̂ki and bk,ri in line 4 of Algorithm 1.

In particular, define θ ∈ [0, 1]d̃ with d̃ = mF to be the vector such that rf (n) = θn+m(f−1). Meanwhile,

for player i ∈ [m], define Ai : A 7→ {0, 1}d̃ to be the vector-valued function such that

[Ai(a)]j = 1
{
j = n+m(f − 1), f ∈ ai, n = nf (a)

}
.

In other words, Ai(a) is a 0-1 vector with element 1 only at indices corresponding to those in θ that
represents rf (n) for f ∈ ai and n = nf(a). Now, with these definitions, the reward function can be written
as ri(a) = 〈Ai(a), θ〉. Then, we build the reward estimator and the bonus term through ridge regression and
corresponding confidence bound, which are defined as the following:

r̃ki (a) =
〈
Ai(a), θ̂

k
〉
, b̃k,r(a) = max

i∈[m]
‖Ai(a)‖(V k)−1

√
β̃k, (2)

6

where θ̂k =
(
V k

)−1 ∑k−1
k′=1

∑m
i=1 Ai(a

k′

)rk
′

i , V k = I +
∑k−1

k′=1

∑m
i=1 Ai(a

k′

)Ai(a
k′

)⊤ and

√
β̃k =

√
d̃ +√

F d̃ log
(
1 + mkF

d̃

)
+ F ι̃. Note that we cannot bound the sum of this bonus terms by directly applying the

elliptical potential lemma. We instead prove its variant in Lemma 4.

4.3 Regret Analysis

The Nash regret bounds for the two versions of Algorithm 1 are formally presented in Theorem 1. The proof
details are deferred to Appendix C.

Theorem 1. Let ǫ = 1/K. For congestion games with semi-bandit feedback, by running Algorithm 1 with
reward estimator and bonus term in (1), with probability at least 1− δ, we can achieve that

Nash-Regret(K) ≤ Õ
(
F
√
mK

)
.

Furthermore, if we only have bandit feedback, then by running Algorithm 1 with reward estimator and bonus
term in (2), with probability at least 1− δ, we can achieve that

Nash-Regret(K) ≤ Õ
(
mF 3/2

√
K
)
.

Remark 2. Since each action is a subset of F , the size of each player’s action space can be 2F . As a result,
directly applying Nash-VI in [Liu et al., 2021] leads to a regret bound exponential in F .

Remark 3. Note that we assume rf ∈ [0, 1], which implies ri ∈ [0, F] for each player i ∈ [m].

5 Decentralized Algorithms for Congestion Games

In this section, we present a decentralized algorithm for congestion games. Due to limited space, we only
introduce the version of bandit feedback as in Section 4.2. The algorithmic details for the semi-bandit
feedback setting are deferred into Appendix D.3. We will show that under both settings, even though each
player can only observe her own actions and rewards, our decentralized algorithm still enjoys sublinear Nash
regret with polynomial dependence on m and F .

We first define the vector-valued function φi : Ai 7→ {0, 1}Fi to be the feature map of player i such that
[φi(ai)]f = 1 {f ∈ ai} for ai ∈ Ai and f ∈ ⋃

ai∈Ai
ai. Here, Fi is the size of

⋃
ai∈Ai

ai ⊆ F and we can
immediately see that Fi ≤ F for any i ∈ [m].

The core idea of our algorithm is that the Nash equilibrium can be found by reaching the stationary points
of the potential function since all congestion games are potential games. Here, the UCB-like algorithms used
in the centralized setting are not applicable because their policy computation requires value functions for
all players (e.g., line 5 of Algorithm 1), which are not available in the decentralized setting. Summarized
in Algorithm 3, the decentralized algorithm is developed based on the Frank-Wolfe method and has the
following three major components.

Gradient Estimator. In line 7, the algorithm builds the estimator ∇̂k
iΦ defined in (4) by using the

τ reward samples collected from line 5. Here, ∇̂k
iΦ estimates the gradient of potential function Φ with

respect to the policy πk
i . Recall that for a congestion game, we have Φ(a) =

∑
f∈F

∑nf (a)
i=1 rf (i) and

Φ(π) = Ea∼π [Φ(a)]. Then we can define ∇iΦ := ∇πi
Φ as a vector of dimension |Ai|. For the component

indexed by some ai ∈ Ai, we can see that Φ(π) = πi(ai)Ea−i∼π−i
[ri(ai, a−i)] + const, where const does not

depend on πi(ai). Therefore, we have

∇iΦ(ai) = Ea−i∼π−i
[ri(ai, a−i)] = Ea−i∼π−i


∑

f∈ai

rf (nf (ai, a−i))


 = 〈φi(ai), θi(π)〉 , (3)

7

Algorithm 3 Frank-Wolfe with Exploration for Congestion Game

1: Input: γ, ν, mixture weights; π1
i , initial policy.

2: Initialize: ρi, the G-optimal design for player i, defined in (5).
3: for episode k = 1, · · · ,K do
4: for round t = 1, · · · , τ do
5: Each player takes action ak,ti ∼ πk

i , observes reward rk,ti .
6: for player i = 1, · · · ,m do
7: Compute ∇̂k

iΦ(ai) by the formula in (4) for all ai ∈ Ai

8: Compute π̃k+1
i ← argmaxπi∈∆(Ai)

〈
πi, ∇̂k

iΦ
〉

9: Update πk+1
i ← (1− γ)(νπ̃k+1

i + (1− ν)πk
i) + γρi

where [θi(π)]f = Ea−i∼π−i

[
rf (nf (a−i) + 1)

]
. Meanwhile, the mean of the t-th reward that player i received

at episode k satisfies

E

[
rk,ti | ak,t

]
= ri(a

k,t) =
∑

f∈ak,t
i

rf (nf (ak,t)) =
〈
φi(a

k,t
i), θk,ti (ak,t−i)

〉
,

where [θk,ti (ak,t−i)]f = rf (nf (ak,t−i) + 1) and its mean is [θi(π
k)]f . Therefore, we can use linear regression to

estimate θi(π
k). In particular, we have θ̂ki (π

k) = 1
τ

∑τ
t=1

(
Σk

i

)−1
φi(a

k,t
i)rk,ti , with the covariance matrix

Σk
i = Eai∼πk

i

[
φi(ai)φi(ai)

⊤]. Then, we have the unbiased gradient estimate

∇̂k
iΦ(ai) =

〈
φi(ai), θ̂

k
i (π

k)
〉
=

1

τ

τ∑

t=1

φi(ai)
⊤ (

Σk
i

)−1
φi(a

k,t
i)rk,ti . (4)

Remark 4. One difference between Algorithm 3 (decentralized) and Algorithm 1 (centralized) is that in
the decentralized algorithm, each player is required to play the same policy for τ times before an update
can be applied. An episode is thus defined for convenience as the time period during which the players’
policies are fixed. We make this artificial design mainly for controlling the variance of the gradient estimator
∇̂k

iΦ(ai). However, we conjecture that with more careful design and analysis, it should be possible to improve
Algorithm 3 so that only one sample is required per episode [Zhang et al., 2020].

G-optimal Design. In line 8 and 9, the algorithm performs standard Frank-Wolfe update and mixes
the updated policy with an exploration policy ρi, which is defined as the G-optimal allocation for features
{φi(ai)}ai∈Ai

. To be specific, we have

ρi = argmin
λ∈∆(Ai)

max
ai∈Ai

‖φi(ai)‖2
Ea′

i
∼λ[φi(a′

i)φi(a′
i)

⊤]−1 . (5)

Here ρi guarantees that Σk
i is invertible and the variance of ∇̂k

iΦ(ai) =
〈
φi(ai), θ̂

k
i (π

k)
〉
depends only on

F instead of the size of action space (Lemma 9) because by the famous Kiefer-Wolfowitz theorem, we have

maxai∈Ai
‖φi(ai)‖2

Ea′
i
∼ρi

[φi(a′
i)φi(a′

i)
⊤]−1 = Fi ≤ F [Lattimore and Szepesvári, 2020].

Frank-Wolfe Update. Finally, we emphasize that it is crucial to use Frank-Wolfe update because it is
compatible with L1 norm and we can show that Φ is mF -smooth with respect to the L1 norm (Lemma 11).
In contrast, its smoothness for L2 norm will depend on the size of the action space.

Before the game starts, each player i can compute her ρi based on her own action set Ai. During the
game, all players only have access to their own actions and rewards, which means that Algorithm 3 is fully
decentralized. The Nash regret bound for this algorithm is formally stated in Theorem 2 and the proof
details are given in Appendix D.1 and D.2.

8

Theorem 2. Let T = Kτ . For congestion game with bandit feedback, by running Algorithm 3 with gradient
estimator ∇̂k

iΦ in (4) and exploration distribution ρi in (5), if K ≥ 2F
m , then with probability at least 1− δ,

we have

Nash-Regret(T) :=

K∑

k=1

τ max
i∈[m]

(
V

†,πk
−i

i − V πk

i

)
≤ Õ

(
m2F 2T 5/6 +m3F 3T 2/3

)
.

For congestion game with semi-bandit feedback, by running Algorithm 3 with gradient estimator ∇̃k
iΦ(ai)

and exploration distribution ρ̃i defined in Appendix D.3, if K ≥ 2
√
F

m , then with probability at least 1− δ, we
have

Nash-Regret(T) ≤ Õ
(
m2F 3/2T 5/6 +m3F 2T 2/3

)
.

6 Extension to Independent Markov Congestion Games

In this section, we propose and analyze a Markov extension of the congestion games, called the independent
Markov congestion games (IMCGs).

6.1 Problem Formulation

General-sum Markov Games. A finite-horizon time-inhomogeneous tabular general-sum Markov game
is defined by M = {S, {Ai}mi=1 , H, P,R, s0}, where S is the state space, m is the number of players, Ai

is the action space of player i, A = A1 × · · · × Am is the whole action space, H is the time horizon, s0
is the initial state1, P = (P1, P2, · · · , PH) with Ph ∈ [0, 1]S×A×S as the transition kernel at timestep h,
R = {Rh(·|sh,ah)}Hh=1 with Rh(·|sh,ah) as the reward distribution on [0, rmax]

m with mean rh(sh, ah) ∈
[0, rmax]

m at timestep h ∈ [H]. At timestep h, all players choose their actions simultaneously and a reward
vector is sampled rh ∼ Rh(·|sh,ah), where sh is the current state and ah = (ah,1, ah,2, · · · , ah,m) is the joint
action. Each player i receives reward rh,i and the state transits to sh+1 ∼ Ph(·|sh,ah). The objective for
each player is to maximize her own total reward. We assume that the initial state s1 is fixed.

A (Markov) policy π is a collection of H functions {πh : S 7→ ∆(A)}Hh=1, each of which maps a state to a
distribution over the action space. π is a product policy if πh(· | s) is a product policy for each (h, s) ∈ [H]×S.
The value function and Q-value function of player i at timestep h under policy π are defined as

V
π
h,i(s) = Eπ

[

H
∑

h′=h

rh′,i(sh′ ,ah′) | sh = s

]

, Q
π
h,i(s,a) = Eπ

[

H
∑

h′=h

rh′,i(sh′ ,ah′) | sh = s,ah = a

]

.

The best responses and Nash regret can be defined similarly as those for matrix games. In particular, given
a policy π, player i’s best response policy is π†

h,i(· | s) = argmaxµ∈∆(Ai) V
µ,π−i

h,i (s) and the corresponding

value function is denoted as V
†,π−i

h,i .

Definition 3. With πk being the policy at kth episode, the Nash regret after K episodes is define as

Nash-Regret(K) =

K∑

k=1

max
i∈[m]

(
V

†,πk
−i

1,i − V πk

1,i

)
(s1).

Independent Markov Congestion Game. A general-sum Markov game is an independent Markov
congestion game (IMCG) if there exists a facility set F such that ai ⊆ F for any ai ∈ Ai, a state space

S =
∏

f∈F Sf , a set of facility reward distributions {Rf
h}h∈[H],f∈F such that if the joint action at sh is a, we

have rh,i =
∑

f∈ai
rfh , where r

f
h ∼ Rf

h(·|sh, nf (a)) with support on [0, 1] and mean rfh(sh, n
f (a)), and a set of

transition matrices {P f
h }h∈[H],f∈F such that Ph(s

′|s,a) = ∏
f∈F P f

h (s
′f |sf , nf (a)). In other words, at each

timestep h and state s ∈ S, the players are in a congestion game. Meanwhile, each facility has its own state
and independent state transition, which only depends on its current state and number of players using that
facility. This transition kernel can be viewed as a special case of that in factored MDPs [Szita and Lőrincz,
2009]. The IMCG also admits two types of feedback, semi-bandit feedback and bandit feedback, just like
the congestion game. In this paper, we will consider both types of feedback.

1An episode is defined as running H steps from the initial state s0, which is common for the episodic MDP.

9

6.2 Theoretical Guarantee

Summarized in Algorithm 5, our centralized algorithm for IMCGs is naturally extended from the Nash-
UCB (Algorithm 1) by incorporating transition kernel estimators, corresponding bonus terms and Bellman
backward update. The key idea is to utilize the independent transition structure to remove the dependence
on the exponential size of the state space S =

∏
f∈F Sf . We tackle this issue by adapting technique from

factored MDP [Chen et al., 2020]. The algorithmic details for both types of feedback are deferred into
Appendix E. The Nash regret bounds for the two versions of Algorithm 5 are stated in Theorem 3 and the
proof details are deferred to Appendix F.

Theorem 3. For independent Markov congestion game with semi-bandit feedback, by running the centralized
Algorithm 5, with probability at least 1− δ, we can achieve that

Nash-Regret(K) ≤ Õ


∑

f∈F
FSf

√
mH3T


+ Õ


m2H2F

∑

f 6=f ′

(
SfSf ′

)2


 .

Furthermore, if we only have bandit feedback, then by running Algorithm 5 with reward estimator and
bonus term in (12) and (13), with probability at least 1− δ, we can achieve that

Nash-Regret(K) ≤ Õ



∑

f∈F
FSf

√
m2H3T


 + Õ


m2H2F

∑

f 6=f ′

(
SfSf ′

)2


 .

The regret bound in [Liu et al., 2021] is Õ(
√
H3S2(Πm

i=1Ai)T), where both Ai and S =
∏

f∈F Sf can be
exponential in F . Our bounds have polynomial dependence on all the parameters.

7 Conclusion

In this paper, we study sample-efficient learning in congestion games by utilizing the special reward structure.
We propose both centralized and decentralized algorithms for congestion games with two types of feedback, all
achieving sample complexities only polynomial in the number of facilities. To the best of our knowledge, each
one of them is the first sample-efficient learning algorithm for congestion games in its own setting. We further
define the independent Markov congestion game (IMCG) as a natural extension of the congestion game into
the Markov setting together with a sample-efficient centralized algorithm for both types of feedback.

One promising future direction is to find a sample-efficient decentralized algorithm such that from each
player’s own perspective, the algorithm is still no-regret. In other words, diminishing regret is guaranteed for
the player by running this algorithm even though other players may use policies from different algorithms.
Another important future direction is to find sample-efficient centralized/decentralized algorithms that can
explicitly find an approximate Nash equilibrium policy.

Acknowledgements

We sincerely thank Jing Dong for pointing out a mistake in the initial draft of this paper. This work was
supported in part by NSF TRIPODS II-DMS 2023166, NSF CCF 2007036, NSF IIS 2110170, NSF DMS
2134106, NSF CCF 2212261, NSF IIS 2143493, NSF CCF 2019844.

References

Hayder AA Al-Kashoash, Maryam Hafeez, and Andrew H Kemp. Congestion control for 6lowpan networks:
A game theoretic framework. IEEE internet of things journal, 4(3):760–771, 2017.

Yu Bai and Chi Jin. Provable self-play algorithms for competitive reinforcement learning. In International
conference on machine learning, pages 551–560. PMLR, 2020.

10

Sebastian Bervoets, Mario Bravo, and Mathieu Faure. Learning with minimal information in continuous
games. Theoretical Economics, 15(4):1471–1508, 2020.

Mario Bravo, David Leslie, and Panayotis Mertikopoulos. Bandit learning in concave n-person games.
Advances in Neural Information Processing Systems, 31, 2018.

Shicong Cen, Fan Chen, and Yuejie Chi. Independent natural policy gradient methods for potential games:
Finite-time global convergence with entropy regularization. arXiv preprint arXiv:2204.05466, 2022.

Po-An Chen and Chi-Jen Lu. Playing congestion games with bandit feedbacks. In AAMAS, pages 1721–1722,
2015.

Po-An Chen and Chi-Jen Lu. Generalized mirror descents in congestion games. Artificial Intelligence, 241:
217–243, 2016.

Xiaoyu Chen, Jiachen Hu, Lihong Li, and Liwei Wang. Efficient reinforcement learning in factored mdps
with application to constrained rl. arXiv preprint arXiv:2008.13319, 2020.

Yun Kuen Cheung and Georgios Piliouras. Chaos, extremism and optimism: Volume analysis of learning in
games. Advances in Neural Information Processing Systems, 33:9039–9049, 2020.

Roberto Cominetti, Emerson Melo, and Sylvain Sorin. A payoff-based learning procedure and its application
to traffic games. Games and Economic Behavior, 70(1):71–83, 2010.

Pierre Coucheney, Bruno Gaujal, and Panayotis Mertikopoulos. Penalty-regulated dynamics and robust
learning procedures in games. Mathematics of Operations Research, 40(3):611–633, 2015.

Constantinos Daskalakis. On the complexity of approximating a nash equilibrium. ACM Transactions on
Algorithms (TALG), 9(3):1–35, 2013.

Dongsheng Ding, Chen-Yu Wei, Kaiqing Zhang, and Mihailo R. Jovanović. Independent policy gradient for
large-scale markov potential games: Sharper rates, function approximation, and game-agnostic conver-
gence, 2022.

Dmitriy Drusvyatskiy, Maryam Fazel, and Lillian J Ratliff. Improved rates for derivative free gradient play
in strongly monotone games. In Proc. IEEE Conference on Decision and Control, 2022.

Stéphane Durand. Analysis of Best Response Dynamics in Potential Games. PhD thesis, Université Grenoble
Alpes, 2018.

Dimitris Fotakis, Spyros Kontogiannis, Elias Koutsoupias, Marios Mavronicolas, and Paul Spirakis. The
structure and complexity of nash equilibria for a selfish routing game. In International Colloquium on
Automata, Languages, and Programming, pages 123–134. Springer, 2002.

Roy Fox, Stephen McAleer, Will Overman, and Ioannis Panageas. Independent natural policy gradient
always converges in markov potential games. arXiv preprint arXiv:2110.10614, 2021.

Amélie Heliou, Johanne Cohen, and Panayotis Mertikopoulos. Learning with bandit feedback in potential
games. Advances in Neural Information Processing Systems, 30, 2017.

Christian Ibars, Monica Navarro, and Lorenza Giupponi. Distributed demand management in smart grid
with a congestion game. In 2010 First IEEE International Conference on Smart Grid Communications,
pages 495–500. IEEE, 2010.

Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is q-learning provably efficient?
Advances in neural information processing systems, 31, 2018.

Chi Jin, Qinghua Liu, Yuanhao Wang, and Tiancheng Yu. V-learning–a simple, efficient, decentralized
algorithm for multiagent rl. arXiv preprint arXiv:2110.14555, 2021a.

11

Chi Jin, Qinghua Liu, Yuanhao Wang, and Tiancheng Yu. V-learning – a simple, efficient, decentralized
algorithm for multiagent rl, 2021b.

Ramesh Johari and John N Tsitsiklis. Efficiency loss in a network resource allocation game. Mathematics
of Operations Research, 29(3):407–435, 2004.

Robert Kleinberg, Georgios Piliouras, and Éva Tardos. Multiplicative updates outperform generic no-regret
learning in congestion games. In Proceedings of the forty-first annual ACM symposium on Theory of
computing, pages 533–542, 2009.

Walid Krichene, Benjamin Drighès, and Alexandre Bayen. On the convergence of no-regret learning in selfish
routing. In International Conference on Machine Learning, pages 163–171. PMLR, 2014.

Walid Krichene, Benjamin Drighès, and Alexandre M Bayen. Online learning of nash equilibria in congestion
games. SIAM Journal on Control and Optimization, 53(2):1056–1081, 2015.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Stefanos Leonardos, Will Overman, Ioannis Panageas, and Georgios Piliouras. Global convergence of multi-
agent policy gradient in markov potential games, 2021.

David S Leslie. Reinforcement learning in games. PhD thesis, University of Bristol, 2004.

David S Leslie and Edmund J Collins. Individual q-learning in normal form games. SIAM Journal on Control
and Optimization, 44(2):495–514, 2005.

David S Leslie and Edmund J Collins. Generalised weakened fictitious play. Games and Economic Behavior,
56(2):285–298, 2006.

Qinghua Liu, Tiancheng Yu, Yu Bai, and Chi Jin. A sharp analysis of model-based reinforcement learning
with self-play. In International Conference on Machine Learning, pages 7001–7010. PMLR, 2021.

Sergio Valcarcel Macua, Javier Zazo, and Santiago Zazo. Learning parametric closed-loop policies for markov
potential games. arXiv preprint arXiv:1802.00899, 2018.

Jason R Marden. State based potential games. Automatica, 48(12):3075–3088, 2012.

Dov Monderer and Lloyd S Shapley. Potential games. Games and economic behavior, 14(1):124–143, 1996.

Hukukane Nikaidô and Kazuo Isoda. Note on non-cooperative convex games. Pacific Journal of Mathematics,
5(S1):807–815, 1955.

Francesco Orabona. A modern introduction to online learning. arXiv preprint arXiv:1912.13213, 2019.

Ian Osband and Benjamin Van Roy. Near-optimal reinforcement learning in factored mdps. In Z. Ghahra-
mani, M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger, editors, Advances in Neural Information
Processing Systems, volume 27. Curran Associates, Inc., 2014.

Arvind Raghunathan, Anoop Cherian, and Devesh Jha. Game theoretic optimization via gradient-based
nikaido-isoda function. In International Conference on Machine Learning, pages 5291–5300. PMLR, 2019.

Aviv Rosenberg and Yishay Mansour. Oracle-efficient regret minimization in factored mdps with unknown
structure. Advances in Neural Information Processing Systems, 34, 2021.

Robert W Rosenthal. A class of games possessing pure-strategy nash equilibria. International Journal of
Game Theory, 2(1):65–67, 1973.

Tim Roughgarden. Algorithmic game theory. Communications of the ACM, 53(7):78–86, 2010.

Tim Roughgarden and Éva Tardos. Bounding the inefficiency of equilibria in nonatomic congestion games.
Games and economic behavior, 47(2):389–403, 2004.

12

Aviad Rubinstein. Settling the complexity of computing approximate two-player nash equilibria. In 2016
IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS), pages 258–265. IEEE, 2016.

Lloyd S Shapley. Stochastic games. Proceedings of the national academy of sciences, 39(10):1095–1100, 1953.

Ziang Song, Song Mei, and Yu Bai. When can we learn general-sum markov games with a large number of
players sample-efficiently? arXiv preprint arXiv:2110.04184, 2021.

Brian Swenson, Ryan Murray, and Soummya Kar. On best-response dynamics in potential games. SIAM
Journal on Control and Optimization, 56(4):2734–2767, 2018.

István Szita and András Lőrincz. Optimistic initialization and greediness lead to polynomial time learning
in factored mdps. In Proceedings of the 26th annual international conference on machine learning, pages
1001–1008, 2009.

Yi Tian, Jian Qian, and Suvrit Sra. Towards minimax optimal reinforcement learning in factored markov
decision processes. Advances in Neural Information Processing Systems, 33:19896–19907, 2020.

Ziping Xu and Ambuj Tewari. Reinforcement learning in factored mdps: Oracle-efficient algorithms and
tighter regret bounds for the non-episodic setting. Advances in Neural Information Processing Systems,
33:18226–18236, 2020.

Kaiqing Zhang, Zhuoran Yang, and Tamer Basar. Multi-agent reinforcement learning: A selective overview
of theories and algorithms. Handbook of Reinforcement Learning and Control, pages 321–384, 2021a.

Mingrui Zhang, Zebang Shen, Aryan Mokhtari, Hamed Hassani, and Amin Karbasi. One sample stochastic
frank-wolfe. In International Conference on Artificial Intelligence and Statistics, pages 4012–4023. PMLR,
2020.

Runyu Zhang, Zhaolin Ren, and Na Li. Gradient play in stochastic games: stationary points, convergence,
and sample complexity. arXiv preprint arXiv:2106.00198, 2021b.

13

Contents

1 Introduction 1
1.1 Main Novelties and Contributions . 2
1.2 Motivating Examples . 3

2 Related Work 3

3 Preliminaries 4

4 Centralized Algorithms for Congestion Games 5
4.1 Algorithm for Semi-bandit Feedback . 5
4.2 Algorithm for Bandit Feedback . 6
4.3 Regret Analysis . 7

5 Decentralized Algorithms for Congestion Games 7

6 Extension to Independent Markov Congestion Games 9
6.1 Problem Formulation . 9
6.2 Theoretical Guarantee . 10

7 Conclusion 10

A Additional Motivating Examples 14

B Compute ǫ-approximate Nash Equilibrium in Potential Games 15

C Analysis for Algorithm 1 16
C.1 Lemmas for Bandit Feedback . 18
C.2 Technical Lemmas . 19

D Analysis for Algorithm 3 20
D.1 Exploration Distribution and Smoothness . 20
D.2 Analysis for Frank Wolfe in Bandit Feedback . 22
D.3 Algorithm and Analysis for Semi-bandit Feedback . 24
D.4 Lemmas for Semi-bandit Feedback . 25

E Algorithms for Independent Markov Congestion Games 26
E.1 Algorithm for Semi-bandit Feedback . 26
E.2 Algorithm for Bandit Feedback . 27

F Analysis for Algorithm 5 28
F.1 Bellman Equations for Genera-sum Markov Games . 28
F.2 Proof of Theorem 3 . 28
F.3 Lemmas for Semi-bandit Feedback . 30
F.4 Additional Lemmas for Bandit Feedback . 32
F.5 Technical Lemmas . 33

A Additional Motivating Examples

In this section, we present two additional motivating examples of our proposed models.

Example 2 (Web Advertisements). Consider a set of websites as the facility set and companies who want
to advertise their products as the players. Due to budget constraints, each company may only choose some
of these websites to put its product ad. For each website, the probability that a user will click on a certain
ad (and then buy the product) depends on how many ads are put on the website. If a website receives too

14

many ads, the probability that a user can see a certain ad will decrease, thus making it congested.2 The
reward each company will receive is measured by the amount of products sold during certain period of time,
which is bandit feedback.

Example 3 (Server Usage). Consider a set of servers in a company as the facility set and server users as
the players. Each user needs to request several servers to finish her computation task and the cost triggered
from each server depends on the number of users requesting that server. Each user will try to minimize the
total cost incurred from the servers she requested. As each user can see the cost from all the servers she
requested, this is semi-bandit feedback.

B Compute ǫ-approximate Nash Equilibrium in Potential Games

In this section, we show that the ǫ-Nash(·) operation in Algorithm 1 can be computed efficiently by using
Algorithm 2.

In particular, we first show that the matrix game with reward functions Q
k

1(·), . . . , Q
k

m(·) used in Al-
gorithm 1 is a potential game in Lemma 1. Then, we show that Algorithm 2 can efficiently compute an
ǫ-approximate Nash equilibrium for potential games and output a product policy as shown in Lemma 2.

Lemma 1. In line 5 of Algorithm 1, the matrix game with reward functions Q
k

1(·), . . . , Q
k

m(·) forms a
potential game for both settings of semi-bandit feedback and bandit feedback.

Proof. In the setting of semi-bandit feedback, since Q
k

i (a) =
∑

f∈ai
(r̂k,f + bk,f,r)(a), the reward functions

Q
k

1(·), . . . , Q
k

m(·) form a congestion game, which we know is a potential game [Monderer and Shapley, 1996].

In the setting of bandit feedback, notice that by defining r̃k,f (i) = θ̂ki+m(f−1) for (i, f) ∈ [m]×F , we can

have r̃ki (a) =
〈
Ai(a), θ̂

k
〉
=

∑
f∈ai

r̃k,f (nf (a)). Therefore, we claim that the desired potential function is

Φk(a) = Φ̃k(a) + b̃k,r(a), where Φ̃k(a) =
∑

f∈F

nf (a)∑

i=1

r̃k,f (i).

To see this, by referring to the definition of potential function in congestion game [Monderer and Shapley,
1996], since r̃ki (a) =

∑
f∈ai

r̃k,f (nf (a)), we have that

Φ̃k(ai, a−i)− Φ̃k(a′i, a−i) = r̃i(ai, a−i)− r̃i(a
′
i, a−i).

As a result, we have

Φk(ai, a−i)− Φk(a′i, a−i)

=
(
r̃i(ai, a−i) + b̃k,r(ai, a−i)

)
−
(
r̃i(a

′
i, a−i) + b̃k,r(a′i, a−i)

)

=Q
k

i (ai, a−i)−Q
k

i (a
′
i, a−i),

which means that Q
k

1(·), . . . , Q
k

m(·) form a potential game.

Lemma 2. Algorithm 2 can output an ǫ-approximate Nash equilibrium.

Proof. Note that if at round k, we have maxi∈[m] ∆i ≤ ǫ, then πk is an ǫ-approximate Nash equilibrium. So

we only need to prove that maxi∈[m] ∆i ≤ ǫ is satisfied at some round k ∈ {1, . . . ,
⌈
mrmax

ǫ

⌉
}.

Suppose the potential game ({Ai}mi=1 , {ri}
m
i=1) is associated with potential function Φ ∈ [0,Φmax]. Set

π∗ = argmaxπ∈
∏

i∈[m] ∆(Ai) Φ(π). Then for any π ∈ ∏
i∈[m] ∆(Ai), we have

Φ(π∗)− Φ(π) =
∑

i∈[m]

(
Φ(π∗

1:i, πi+1:m)− Φ(π∗
1:i−1, πi:m)

)

2Although the website’s intelligent recommendation system may more or less mitigate this effect, it can be considered as a

part of the reward function’s property.

15

=
∑

i∈[m]

(
V

π∗
1:i,πi+1:m

i − V
π∗
1:i−1,πi:m

i

)

≤mrmax.

As a result, we can set Φmax = mrmax. On the other hand, if j = argmaxi∈[m] ∆i for round k, we have

Φ(πk+1)− Φ(πk) =Φ(πk+1
j , πk

−j)− Φ(πk)

=V
πk+1
j ,πk

−j

j − V πk

j

=rj(a
k+1
j , πk

−j)− rj(π
k) (πk is deterministic)

=∆j

=max
i∈[m]

∆i.

So there must exist k ∈ {1, . . . ,
⌈
mrmax

ǫ

⌉
} such that maxi∈[m] ∆i ≤ ǫ, otherwise Φ(πk) increase at least ǫ at

each round, which contradicts Φ ∈ [0,mrmax].

C Analysis for Algorithm 1

Recall that the update rule in Algorithm 1 is Q
k

i (a) = r̂ki (a) + bk,ri (a), where we have

bk,ri (a) =
∑

f∈ai

bk,f,r(a), and bk,f,r(a) =

√
ι̃

Nk,f (nf (a)) ∨ 1
.

For proof convenience, we define auxiliary value functions

Qk

i
(a) = r̂ki (a)− bk,ri (a),

V
k

i = E
a∼πk [Q

k

i (a)] and V k
i = E

a∼πk [Qk

i
(a)].

With these definitions, we now begin to prove Theorem 1.

Proof of Theorem 1. Semi-bandit Feedback. By the update rules in Algorithm 1, in the setting of semi-
bandit feedback, with probability at least 1− δ, simultaneously for all (k, i,a) ∈ [K]× [m]×A, we have

Q
k

i (a)− ri(a) =
∑

f∈ai

[
(r̂k,f − rf)(a) + bk,f,r(a)

]
≥ 0.

The second inequality above is obtained by using standard Hoeffding’s inequality and union bound, Therefore,

we have Q
k

i (a) ≥ ri(a).

Then, since πk is the ǫ-approximate Nash equilibrium policy of Q
k

1 , . . . , Q
k

m, we have

V
k

i = E
a∼πk [Q

k

i (a)] = max
ν∈∆(Ai)

E
a∼(ν,πk

−i)
[Q

k

i (a)]− ǫ

≥ max
ν∈∆(Ai)

E
a∼(ν,πk

−i)
[ri(a)]− ǫ = V

†,πk
−i

i − ǫ.

Meanwhile, by definition of Qk

i
(a) and V k

i , we can similarly show that Qk

i
(a) ≤ ri(a) and V k

i ≤ V πk

i .

Therefore, we can have V
†,πk

−i

i − V πk

i ≤ V
k

i − V k
i + ǫ.

Now, we define Q̃k(a) = maxi∈[m] 2b
k,r
i (a) and Ṽ k = E

a∼πk [Q̃k(a)]. Then, we can notice that

max
i∈[m]

(Q
k

i −Qk

i
)(a) ≤ max

i∈[m]
2bk,ri (a) = Q̃k(a),

16

max
i∈[m]

(V
k

i − V k
i) ≤ E

a∼πk

[
max
i∈[m]

(Q
k

i −Qk

i
)(a)

]
≤ E

a∼πk [Q̃k(a)] = Ṽ k.

We further define Mk = E
a∼πk

[
Q̃k(a)

]
− Q̃k(ak) = Ṽ k − Q̃k(ak). It is not hard to verify that Mk

is a martingale difference sequence with respect to the history from episode 1 to k − 1. Meanwhile, since∣∣bk,r(a)
∣∣ =

∑
f∈F

√
ι̃

Nk,f (nf (a))∨1
≤ F

√
ι̃. Thus, by Azuma-Hoeffding inequality, we have

∑K
k=1 Mk =

Õ
(
F
√
K
)
. Therefore, we have

Nash-Regret(K) =

K∑

k=1

max
i∈[m]

(
V

†,πk
−i

i − V πk

i

)

=

K∑

k=1

min

{
max
i∈[m]

(
V

†,πk
−i

i − V πk

i

)
, F

}
(Since the value is always bounded by F .)

≤
K∑

k=1

min

{
max
i∈[m]

(
V

k

i − V k
i

)
, F

}
+Kǫ

≤
K∑

k=1

min
{
Ṽ k, F

}
+Kǫ

=

K∑

k=1

(
min

{
Q̃k(ak), F

}
+Mk

)
+Kǫ

≤Õ
(
F
√
K
)
+ 2

K∑

k=1

{
max
i∈[m]

bk,ri (ak), F

}
(By taking ǫ = 1/K.)

≤Õ
(
F
√
K
)
+ 2

∑

f∈F

K∑

k=1

√
ι̃

Nk,f (nf (ak)) ∨ 1

≤Õ
(
F
√
mK

)
(By Lemma 6.)

Bandit Feedback. By using Lemma 3, which guarantees optimistic estimation, we can similarly show
that

Nash-Regret(K) ≤
K∑

k=1

Mk +

K∑

k=1

min
{
2b̃k,r(ak), F

}
+Kǫ.

To have an upper bound on Mk here, recall that b̃k,r(a) = maxi∈[m] ‖Ai(a)‖(V k)−1

√
β̃k and

√
β̃K =

Õ
(√

F d̃
)
= Õ (F

√
m). Meanwhile, we have ‖Ai(a)‖(V k)−1 ≤ ‖Ai(a)‖I = ‖Ai(a)‖2 ≤

√
F . Thus, we have

∣∣Mk
∣∣ ≤ Õ

(√
mF 3

)
, which by Azuma-Hoeffding inequality implies

∑K
k=1 Mk = Õ

(√
mF 3K

)
.

Then the sum of the bonus terms can be bounded by using Lemma 4. In particular, with ǫ = 1/K, we
have

Nash-Regret(K) ≤Õ
(√

mF 3K
)
+ 2

K∑

k=1

min

{
max
i∈[m]

∥∥Ai(a
k)
∥∥
(V k)−1

√
β̃k, F

}

≤Õ
(√

mF 3K
)
+ 2

√√√√K
K∑

k=1

min

{
max
i∈[m]

‖Ai(ak)‖2(V k)−1 β̃k, F 2

}

≤Õ
(√

mF 3K
)
+

√√√√Õ (mF 2K)

K∑

k=1

min

{
max
i∈[m]

‖Ai(ak)‖2(V k)−1 , 1

}

(Since β̃k = Õ
(
mF 2

)
.)

17

≤Õ
(√

mF 3K
)
+ Õ

(√
mF 2K ·mF

)
(By Lemma 4.)

≤Õ
(
mF 3/2

√
K
)
.

C.1 Lemmas for Bandit Feedback

The following lemma, as a direct corollary of the confidence bound for least square estimators, shows that
the reward estimation error can be bounded by the reward bonus term.

Lemma 3. With probability at least 1−δ, simultaneously for all (i, k,a), it holds that |(r̃ki −ri)(a)| ≤ b̃k,r(a),
where r̃ki and b̃k,r are defined in (2).

Proof. By construction, we have

|(r̃ki − ri)(a)| =
∣∣∣
〈
Ai(a), θ̂ − θ

〉∣∣∣

≤‖Ai(a)‖(V k)−1

∥∥∥θ̂ − θ
∥∥∥
V k

(i)

≤ ‖Ai(a)‖(V k)−1

(
‖θ‖2 +

√
F log (det(V k)) + F ι̃

)
,

where the inequality (i) above holds because of Theorem 20.5 in Lattimore and Szepesvári [2020] and the
fact that the reward noise is

√
F -subGaussian. Since each element in θ is bounded in [0, 1] by construction,

we have ‖θ‖2 ≤
√
d̃.

Then, by Lemma 4, we have det
(
V k

)
≤

(
1 + mkF

d̃

)d̃

since by construction ‖Ai(a)‖22 ≤ F .

Finally, to make this bound valid for all player i ∈ [m], we only need to take maximization over i ∈ [m].
Therefore, with probability at least 1− δ, we have

|(r̃ki − ri)(a)| ≤ max
i∈[m]

‖Ai(a)‖(V k)−1

√
β̃k = b̃k,r(a),

where

√
β̃k =

√
d̃+

√
F d̃ log

(
1 + mkF

d̃

)
+ F ι̃.

The following is a variant of the famous elliptical potential lemma, which helps bound the sum of re-
ward bonus under bandit feedback. Here, we apply some techniques from the proof of Lemma 19.4 in
Lattimore and Szepesvári [2020].

Lemma 4. Let K,m ≥ 1 be integers. Suppose V k = I +
∑k−1

k′=1

∑m
i=1 A

k′

i

(
Ak′

i

)⊤
, where Ak′

i ∈ R
d and

∥∥∥Ak′

i

∥∥∥
2

2
≤ F . Then, it holds that

det
(
V k

)
≤

(
1 +

mkF

d

)d

, and

K∑

k=1

min

{
max
i∈[m]

∥∥Ak
i

∥∥2
(V k)−1 , 1

}
≤ 2d log

(
1 +

mKF

d

)
.

Proof. For the first upper bound about det
(
V k

)
, we have

det
(
V k

)
=

d∏

j=1

λj (λ1, . . . , λd are eigenvalues of V k)

≤
(
tr
(
V k

)

d

)d

(By AM-GM inequality)

18

=



tr (I) +

∑k−1
k′=1

∑m
i=1

∥∥∥Ak′

i

∥∥∥
2

2

d




d

≤
(
1 +

mkF

d

)d

. (Since
∥∥∥Ak′

i

∥∥∥
2

2
≤ F .)

For the second upper bound. First, we notice that min {1, x} ≤ 2 log(1+x) for any x ≥ 0. Thus, we have

K∑

k=1

min

{
1,max

i∈[m]

∥∥Ak
i

∥∥2
(V k)−1

}
≤ 2

K∑

k=1

log

(
1 + max

i∈[m]

∥∥Ak
i

∥∥2
(V k)−1

)
.

Then, for k ≥ 2, we can notice that

V k =V k−1 +

m∑

i=1

Ak−1
i

(
Ak−1

i

)⊤

=
(
V k−1

)1/2
(
I +

(
V k−1

)−1/2

(
m∑

i=1

Ak−1
i

(
Ak−1

i

)⊤
)
(
V k−1

)−1/2

)
(
V k−1

)1/2

=
(
V k−1

)1/2
(
I +

m∑

i=1

((
V k−1

)−1/2
Ak−1

i

)((
V k−1

)−1/2
Ak−1

i

)⊤
)
(
V k−1

)1/2
.

Therefore, we have

det
(
V k

)
=det

(
V k−1

)
det

(
I +

m∑

i=1

((
V k−1

)−1/2
Ak−1

i

)((
V k−1

)−1/2
Ak−1

i

)⊤
)

≥ det
(
V k−1

)(
1 + max

i∈[m]

∥∥Ak−1
i

∥∥2

(V k−1)−1

)
(By Lemma 5.)

≥
k−1∏

k′=1

(
1 + max

i∈[m]

∥∥∥Ak′

i

∥∥∥
2

(V k′)−1

)
. (Since by definition, V 1 = I.)

As a result, we have

K∑

k=1

min

{
max
i∈[m]

∥∥Ak
i

∥∥2
(V k)−1 , 1

}
≤2

K∑

k=1

log

(
1 + max

i∈[m]

∥∥Ak
i

∥∥2

(V k)−1

)

≤ 2 log
(
det

(
V K+1

))

≤ 2d log

(
1 +

mKF

d

)
.

C.2 Technical Lemmas

Lemma 5. Let y1, . . . , ym ∈ R
d be a set of vectors. Then, it holds that

det

(
I +

m∑

i=1

yiy
⊤
i

)
≥ 1 + max

i∈[m]
‖yi‖22 .

Proof. Since I +
∑m

i=1 yiy
⊤
i � I + yiy

⊤
i for any i ∈ [m], we have det

(
I +

∑m
i=1 yiy

⊤
i

)
≥ det

(
I + yiy

⊤
i

)
for

any i ∈ [m]. That is, we have

det

(
I +

m∑

i=1

yiy
⊤
i

)
≥ max

i∈[m]
det

(
I + yiy

⊤
i

)
= 1 + max

i∈[m]
‖yi‖22 .

The last line above holds because the matrix I + yiy
⊤
i has eigenvalues 1 + ‖yi‖22 and 1.

19

Lemma 6. For any f ∈ F , it holds that

K∑

k=1

√
1

N k,f (nf (ak)) ∨ 1
≤ Õ

(√
mK

)
.

Proof. Here, we have

K∑

k=1

√
1

Nk,f (nf (ak)) ∨ 1
=

m∑

n=0

NK,f (n)∑

ℓ=1

√
1

ℓ

≤2

m∑

n=0

√
NK,f (n) (By standard technique)

≤2

√√√√(m+ 1)

m∑

n=0

NK,f (n)

=Õ
(√

mK
)
.

The last equality above is based on a pigeon-hold principle argument similar to Lemma 20.

D Analysis for Algorithm 3

D.1 Exploration Distribution and Smoothness

We choose the exploration distribution to be the G-optimal design and we have the following properties.

Lemma 7. (Unbiasedness) For any episode k ∈ [K], i ∈ [m] and a ∈ Ai, we have

Ek

[
∇̂k

iΦ(a)
]
= ∇k

iΦ(a),

where Ek[·] is taken over all the randomness before episode k.

Proof. By the definition of ∇̂k
iΦ(a), we have

Ek

[
∇̂k

i Φ(a)
]
=Ek

〈
φi(a), θ̂

k
i (π

k)
〉

=Ek

[
1

τ

τ∑

t=1

φi(a)
⊤[Σk

i]
−1φi(a

k,t
i)rk,ti

]

=Ek

[
φi(a)

⊤[Σk
i]

−1φi(a
k,1
i)rk,1i

]

=Ek

[
φi(a)

⊤[Σk
i]

−1φi(a
k,1
i)φi(a

k,1
i)⊤θk,1i (πk)

]

=
∑

ak
i ∈Ai

πk
i (a

k,1
i)φ⊤

i (a)[Σ
k
i]

−1φi(a
k,1
i)φi(a

k,1
i)⊤θi(π

k)

(ak,1i only depends on πk
i and θk,1i (πk) only depends on πk

−i)

=φ⊤
i (a)[Σ

k
i]

−1




∑

ak
i ∈Ai

πk
i (a

k,1
i)φi(a

k,1
i)φi(a

k,1
i)⊤


 θi(π

k)

=φ⊤
i (ai)θi(π

k)

=∇k
iΦ(a).

20

Lemma 8. For any episode k ∈ [K], i ∈ [m] and a ∈ Ai, we have

∣∣∣φi(a)
⊤[Σk

i]
−1φi(a

k,t
i)rk,ti

∣∣∣ ≤ F 2

γ
.

Proof. As πk
i = (1− γ)(νπ̃k

i + (1− γ)πk−1
i) + γρi, we have

Σk
i =Eai∼πk

i
φi(ai)φi(ai)

⊤ � γEai∼ρi
φi(ai)φi(ai)

⊤,

and ρi is the G-optimal design with respect to φi(·), for any action a ∈ Ai we have

‖φi(a)‖2[Σk
i]

−1 ≤ 1

γ
‖φi(a)‖2[Eai∼ρi

φi(ai)φi(ai)⊤]−1 ≤ F

γ
.

Then for any t ∈ [τ], since |rk,ti | ≤ F , we have

∣∣∣rk,ti φ⊤
i (a)[Σ

k
i]

−1φi(a
k,t
i)

∣∣∣ ≤
∣∣∣rk,ti

∣∣∣ ‖φi(a)‖[Σk
i]

−1

∥∥∥φi(a
k,t
i)

∥∥∥
[Σk

i]
−1

≤ F 2

γ
.

As a result, we have
∣∣∣∇̂k

iΦ(a)
∣∣∣ =

∣∣∣∣∣
1

τ

τ∑

t=1

φi(a)
⊤[Σk

i]
−1φi(a

k,t
i)rk,ti

∣∣∣∣∣ ≤
F 2

γ

Lemma 9. For any episode k ∈ [K], i ∈ [m] and a ∈ Ai, we have

Ek

[(
φi(a)

⊤[Σk
i]

−1φi(a
k,t
i)rk,ti

)2
]
≤ F 3

γ
.

Proof. We first show that for any t ∈ [τ], we have

Ek

[(
φi(a)

⊤[Σk
i]

−1φi(a
k,t
i)rk,ti

)2
]

≤F 2
Ek

[(
φi(a)

⊤[Σk
i]

−1φi(a
k,t
i)

)2
]

≤F 2
Ek

[
φi(a)

⊤[Σk
i]

−1φi(a
k,t
i)φi(a

k,t
i)⊤[Σk

i]
−1φi(a)

⊤
]

=F 2φi(a)
⊤[Σk

i]
−1φi(a)

≤F 3

γ
.

Lemma 10. With probability 1− δ, for all k ∈ [K], i ∈ [m] and a ∈ Ai, we have

∣∣∣∇̂k
iΦ(a)−∇k

iΦ(a)
∣∣∣ ≤ c

√
F 4 log(mK/δ)

γτ
+

cF 3 log(mK/δ)

γτ

Proof. Recall that

∇̂k
iΦ(ai) =

1

τ

τ∑

t=1

φ⊤
i (ai)[Σ

k
i]

−1rk,ti φi(a
k,t
i),

and (ak,ti , rk,ti) are drawn independently at each t ∈ [τ]. Lemma 7 shows that ∇̂k
iΦ(ai) is an unbiased estimate

of ∇k
iΦ(ai) In addition, Lemma 8 shows that φ⊤

i (ai)[Σ
k
i]

−1rk,ti φi(a
k,t
i) is bounded by F 2/γ and Lemma 9

21

shows that its second moment is bounded by F 3/γ. Then by Bernstein’s inequality, for a fixed k ∈ [K],
i ∈ [m] and a ∈ Ai, with probability 1− δ, we have

∣∣∣∇̂k
iΦ(a)−∇k

iΦ(a)
∣∣∣ ≤

√
2F 3 log(2/δ)

γτ
+

3F 2 log(2/δ)

2γτ
.

The argument holds by applying the union bound and the fact that |Ai| ≤ 2F .

Lemma 11. Φ(·) is mF -Lipschitz and mF -smooth with respect to the L1 norm ‖ · ‖1.

Proof. Recall that Φ(π) = Ea∼πΦ(a) and Φ(a) ∈ [0,mF].

Φ(π)− Φ(π′) =Ea∼πΦ(a)− Ea∼π′Φ(a)

=
∑

i∈[m]

Ea1:i−1∼π′
1:i−1,ai:m∼πi:m

Φ(a)− Ea1:i∼π′
1:i,ai+1:m∼πi+1:m

Φ(a)

≤
∑

i∈[m]

‖πi − π′
i‖1 · ‖Φ‖∞

≤mF ‖π − π′‖1 .

Similarly we have ∇πΦ(ai) = Ea−i∼π−i
Φ(ai, a−i). As a result, we have

‖∇πΦ−∇π′Φ‖∞ ≤ mF ‖π − π′‖1 .

Definition 4. (Frank Wolfe Gap) The Frank Wolfe gap of a joint strategy π for Φ(·) is defined as

G(π) = max
π′

〈π′ − π,∇πΦ〉 .

Lemma 12. Suppose the Frank Wolfe gap of π is ǫ. Then π is an ǫ-Nash policy.

Proof. For a fixed player i, suppose player i change her strategy to π′
i.

V
π′
i,π−i

i − V π
i = Φ(π′

i, π−i)− Φ(π)

= 〈π′
i − πi,∇πi

Φ〉
≤ max

π′
〈π′ − π,∇πΦ〉

≤ ǫ.

D.2 Analysis for Frank Wolfe in Bandit Feedback

Theorem 4. Let T = Kτ . For the congestion game with bandit feedback, by running Algorithm 3 with
gradient estimator ∇̂k

iΦ in (4) and exploration distribution ρi in (5), setting parameters ν = F
m

√
K
, γ = F

mK

and τ = K2, if K ≥ 2F
m , then with probability 1− δ, we have

Nash-Regret(T) = τ

K∑

k=1

G(πk) = Õ
(
m2F 2T 5/6 +m3F 3T 2/3

)
.

Proof. Set ∇kΦ = ∇Φ(Πk) ∈ R
A and ∇k

iΦ = ∇kΦ(πi) ∈ R
Ai . As we have Φ(·) is mF -smooth w.r.t. ‖ · ‖1,

we have

Φ(πk+1) ≥Φ(πk) +
〈
∇Φ(πk), πk+1 − πk

〉
− mF

2
‖πk+1 − πk‖21

22

=Φ(πk) + (1 − γ)ν
〈
∇Φ(πk), π̃k+1 − πk

〉
+ γ

〈
∇kΦ, ρ− πk

〉

− mF

2
(2ν2

∥∥π̃k − πk
∥∥2
1
+ 2γ2

∥∥ρ− πk
∥∥2
1
)

≥Φ(πk) + (1 − γ)ν
〈
∇Φ(πk), π̃k+1 − πk

〉
− γ

∥∥∇kΦ
∥∥
∞

∥∥ρ− πk
∥∥
1

− mF

2
(2ν2

∥∥π̃k − πk
∥∥2
1
+ 2γ2

∥∥ρ− πk
∥∥2
1
)

≥Φ(πk) + (1 − γ)ν
〈
∇Φ(πk), π̃k+1 − πk

〉
− 2γm2F − 4m3F (ν2 + γ2). (By Lemma 11.)

Define the true target policy at episode k

π̂k+1
i = argmax

πi

〈
πi,∇iΦ(π

k
i)
〉
,

and the Frank Wolfe gap of joint strategy π

G(π) = max
π′

〈π′ − π,∇Φ(π)〉 .

Then we have

〈
∇Φ(πk), π̃k+1 − πk

〉
=
〈
∇̂kΦ(πk), π̃k+1 − πk

〉
+
〈
∇Φ(πk)− ∇̂kΦ(πk), π̃k+1 − πk

〉

≥
〈
∇̂kΦ(πk), π̂k+1 − πk

〉
+
〈
∇Φ(πk)− ∇̂kΦ(πk), π̃k+1 − πk

〉

=
〈
∇Φ(πk), π̂k+1 − πk

〉
+
〈
∇Φ(πk)− ∇̂kΦ(πk), π̃k+1 − π̂k+1

〉

≥G(πk)− 2m
∥∥∥∇Φ(πk)− ∇̂kΦ(πk)

∥∥∥
∞

≥G(πk)− c

√
m2F 4 log(mK/δ)

γτ
− cmF 3 log(mK/δ)

γτ

Apply it to the previous bound and we have

Φ(πk+1) ≥Φ(πk) + (1 − γ)νG(πk)− c
(1− γ)ν√

γτ

√
m2F 4 log(mK/δ)

− c
(1− γ)ν

γτ
mF 3 log(mK/δ)− γ2m2F − 4m3F (ν2 + γ2).

Summing over k ∈ [K] and we get

K∑

k=1

G(πk) ≤Φ(πK+1)− Φ(π1)

(1− γ)ν
+ c

K√
γτ

√
m2F 4 log(mK/δ) + c

K

γτ
mF 3 log(mK/δ)

+
2m2FKγ

(1− γ)ν
+

4(ν2 + γ2)m3FK

(1− γ)ν
.

Set ν = F
m

√
K
, γ = F

mK , τ = K2 and notice that when K ≥ 2F
m , we have 1− γ ≥ 1

2 . Since Φ(·) is bounded
in [0,mF], we can have

K∑

k=1

G(πk) = Õ
(
m2F 2K1/2 +m3F 3

)
.

Then by Lemma 12, for T = Kτ , we have

Nash-Regret(T) = τ

K∑

k=1

G(πk) = Õ
(
m2F 2T 5/6 +m3F 3T 2/3

)
.

23

D.3 Algorithm and Analysis for Semi-bandit Feedback

In the setting of semi-bandit feedback, we will need a different gradient estimator ∇̃k
iΦ(ai) and a different

exploration distribution ρ̃i to utilize the extra reward information from each chosen facility.
Based on the analysis in Section 5, using (3), we have ∇k

iΦ(ai) =
∑

f∈ai
[θi(π

k)]f , where [θi(π
k)]f =

Ea−i∼πk
−i

[
rf (nf (a−i) + 1)

]
. Meanwhile, in semi-bandit feedback, the mean of t-th reward player i received

for facility f at episode k is rf (nf (ak,ti , ak,t−i)). Therefore, we can use inverse propensity score (IPS) estimator

to estimate [θi(π
k)]f . In particular, we have

[θ̃ki (π
k)]f =

1

τ

τ∑

t=1

[θ̃k,ti (πk)]f , where [θ̃k,ti (πk)]f =
rk,t,f1

{
f ∈ ak,ti

}

Pai∼πk
i
(f ∈ ai)

.

Then, we can naturally have

∇̃k
iΦ(ai) =

∑

f∈ai

[θ̃ki (π
k)]f . (6)

Furthermore, by Lemma 14, we can see that by using ρ̃i computed by Algorithm 4, for all players, we have
Pai∼πk

i
(f ∈ ai) ≥ γ

2F for all f ∈ ⋃
ai∈Ai

ai.
Properties of the IPS estimator are summarized in Lemma 15. By using these properties, we can have

the following lemma.

Lemma 13. With probability 1− δ, for all k ∈ [K], i ∈ [m] and ai ∈ Ai, we have

∣∣∣∇̃k
iΦ(ai)−∇k

iΦ(ai)
∣∣∣ ≤

√
4F 3 log(2mFK/δ)

γτ
+

2F 2 log(2mFK/δ)

γτ
.

Proof. By Lemma 15 and Bernstein’s inequality, simultaneously for all (i, k, f) ∈ [m] × [K] × F , with
probability at least 1− δ, we have

∣∣∣[θ̃ki (πk)]f − [θi(π
k)]f

∣∣∣ ≤
√

4F log (2mFK/δ)

γτ
+

2F log(2mFK/δ)

γτ
.

Since ∇̃k
iΦ(ai) =

∑
f∈ai

[θ̃ki (π
k)]f , by triangle inequality, we have

∣∣∣∇̃k
iΦ(ai)−∇k

iΦ(ai)
∣∣∣ ≤

√
4F 3 log(2mFK/δ)

γτ
+

2F 2 log(2mFK/δ)

γτ
.

With this more refined gradient estimator, we can now have the following theorem.

Theorem 5. Let T = Kτ . For the congestion game with semi-bandit feedback, by running Algorithm 3 with

gradient estimator ∇̃k
iΦ in (6) and exploration distribution ρ̃i in Algorithm 4, setting parameters ν =

√
F

m
√
K
,

γ =
√
F

mK and τ = K2, if K ≥ 2
√
F

m , then with probability 1− δ, we have

Nash-Regret(T) = τ

K∑

k=1

G(πk) = Õ
(
m2F 3/2T 5/6 +m3F 2T 2/3

)
.

Proof. By following the proof of Theorem 4 and applying the concentration inequality in Lemma 13, we can
have

Φ(πk+1) ≥Φ(πk) + (1− γ)νG(πk)− (1 − γ)ν√
γτ

√
4m2F 3 log(2mK/δ)

− 2(1− γ)ν

γτ
mF 2 log(mK/δ)− γ2m2F − 4m3F (ν2 + γ2).

24

Summing over k ∈ [K] and we get

K∑

k=1

G(πk) ≤Φ(πK+1)− Φ(π1)

(1 − γ)ν
+

K√
γτ

√
4m2F 3 log(mK/δ) +

2K

γτ
mF 2 log(mK/δ)

+
2m2FKγ

(1− γ)ν
+

4(ν2 + γ2)m3FK

(1 − γ)ν
.

Set ν =
√
F

m
√
K
, γ =

√
F

mK , τ = K2 and notice that when K ≥ 2
√
F

m , we have 1− γ ≥ 1
2 . Thus, we can have

K∑

k=1

G(πk) = Õ
(
m2F 3/2K1/2 +m3F 2

)
.

Then by Lemma 12, for T = Kτ , we have

Nash-Regret(T) = τ

K∑

k=1

G(πk) = Õ
(
m2F 3/2T 5/6 +m3F 2T 2/3

)
.

D.4 Lemmas for Semi-bandit Feedback

Algorithm 4 Compute Exploration Distribution ρ̃i
1: Input: Ai, player i-th action set
2: Initialize Ãi ← ∅
3: for ai in Ai do
4: if ∃f ∈ ai such that f /∈ ⋃

a′
i∈Ãi

a′i then

5: Ãi ← Ãi ∪ {ai}
6: if Fi =

⋃
a′
i∈Ãi

a′i then

7: break
8: Assign ρ̃i(ai) ← 1

2F for each ai ∈ Ãi

9: Assign remaining probability mass arbitrarily to actions in A \ Ãi

10: return ρ̃i

Lemma 14. Let Fi =
⋃

ai∈Ai
ai. For any player i, if ρ̃i is the output of Algorithm 4 and πk

i contains a
mixture of ρ̃i with weight γ, then we have Pai∼πk

i
(f ∈ ai) ≥ γ

2F for any f ∈ Fi.

Proof. By Algorithm 4, whenever a new action is added into Ãi, it contains facility not appeared in current
Ãi. Then, since there are at most |Fi| ≤ F distinct facilities in the action set Ai, the final Ãi must satisfy

|Ãi| ≤ F . Therefore, ρ̃i is a valid distribution over Ai.
Since πk

i contains a mixture of ρ̃i with weight γ, for any ai ∈ Ai, we have πk
i (ai) ≥ γρ̃i(ai). Thus, we

have

Pai∼πk
i
(f ∈ ai) =

∑

ai∈Ai

πk
i (ai)1 {f ∈ ai}

≥γ
∑

ai∈Ai

ρ̃i(ai)1 {f ∈ ai}

≥γ
∑

ai∈Ãi

ρ̃i(ai)1 {f ∈ ai}

=
γ

2F

∑

ai∈Ãi

1 {f ∈ ai} ≥ γ

2F
.

25

The last inequality above holds since by construction, Ãi contains all facilities contained in Ai.

Lemma 15. If πk
i contains a mixture of ρ̃i given in Algorithm 4 with weight γ. Then, the IPS estimator

[θ̃ki (π
k)]f satisfies

Ek

[
[θ̃k,ti (πk)]f

]
= [θi(π

k)]f , |[θ̃k,ti (πk)]f | ≤
2F

γ
, and Ek

[
[θ̃k,ti (πk)]2f

]
≤ 2F

γ
.

Proof. For the first property, since Ek

[
rk,t,f | ak,t

]
= rf (nf (ak,ti , ak,t−i)) and a

k,t ∼ πk, We have

Ek

[
[θ̃k,ti (πk)]f

]

=E
a∼πk

[
rf (nf (ai, a−i))1 {f ∈ ai}

Pa′
i∼πk

i
(f ∈ a′i)

]

=
1

Pa′
i∼πk

i
(f ∈ a′i)

· Ea−i∼πk
−i

[
Eai∼πk

i

[
rf (nf (ai, a−i))1 {f ∈ ai} | a−i

]]

=
1

Pa′
i∼πk

i
(f ∈ a′i)

· Ea−i∼πk
−i

[
Eai∼πk

i

[
rf (nf (ai, a−i)) | a−i, f ∈ ai

]
Pai∼πk

i
(f ∈ ai | a−i)

]

(i)
=
Pai∼πk

i
(f ∈ ai)

Pa′
i∼πk

i
(f ∈ a′i)

· Ea−i∼πk
−i

[
rf (nf (a−i) + 1)

]

=[θi(π
k)]f .

The equality (i) above holds because Eai∼πk
i

[
rf (nf (ai, a−i)) | a−i, f ∈ ai

]
= rf (nf (a−i)+1) and f ∈ ai does

not depend on a−i.
For the second property, since Pai∼πk

i
(f ∈ ai) ≥ γ

2F by Lemma 14 and rk,t,f ∈ [0, 1], we can immediately

have |[θ̃k,ti (πk)]f | ≤ 2F
γ .

For the third property, we have

Ek

[
[θ̃k,ti (πk)]2f

]
=
E
a∼πk

[
rf (nf (ai, a−i))

2
1 {f ∈ ai}

]

Pa′
i∼πk

i
(f ∈ a′i)

2

≤E
a∼πk [1 {f ∈ ai}]
Pa′

i∼πk
i
(f ∈ a′i)

2

=
Pai∼πk

i
(f ∈ ai)

Pa′
i∼πk

i
(f ∈ a′i)

2

≤2F

γ
.

E Algorithms for Independent Markov Congestion Games

In this section, present missing details of our centralized algorithm for independent Markov congestion games,
which is summarized in Algorithm 5. The proof of its theoretical guarantee is given in Appendix F.

E.1 Algorithm for Semi-bandit Feedback

Under the semi-bandit feedback, the players can receive reward information from all facilities they choose.
Therefore, we can similarly define

Nk,f
h (sf , n) =

k∑

k′=1

1

{
(sk

′,f
h , nf (ak′

h)) = (sf , n)
}
,

26

Algorithm 5 Nash-VI for IMCGs

1: Input: ǫ, accuracy parameter for Nash equilibrium computation

2: Initialize: V
k

H+1,i(s) = 0 for all (i, k, s) ∈ [m]× [K]× S
3: for episode k = 1, . . . ,K do
4: for step h = H,H − 1, . . . , 1 do
5: for player i = 1, . . . ,m do

6: Q
k

h,i(s,a) ← min
{
(r̂kh,i + P̂

k
hV

k

h+1,i + bkh)(s,a), HF
}
for all (s,a) ∈ S ×A

7: for s ∈ S do
8: πk

h(· | s) ← ǫ-Nash(Q
k

h,1(s, ·), · · · , Q
k

h,m(s, ·))
9: for player i = 1, . . . ,m do

10: V
k

h,i(s) ← E
a∼πk

h
[Q

k

h,i(s,a)]
11: for step h = 1, . . . , H do
12: Take action a

k
h ∼ πk

h(· | skh), observe reward rk,fh and next state skh+1

13: Update reward estimator r̂kh,i, transition estimator P̂ k
h and bonus term bkh

r̂k,fh (sf , n) =

∑k
k′=1 r

k′,f
h 1

{
(sk

′,f
h , nf (ak′

h)) = (sf , n)
}

Nk,f
h (sf , n) ∨ 1

,

P̂ k,f
h (s′f | sf , n) =

∑k
k′=1 1

{
(sk

′,f
h+1, s

k′,f
h , nf(ak′

h)) = (s′f , sf , n)
}

Nk,f
h (sf , n) ∨ 1

.

Then, the estimators for the reward function and transition kernel can be defined as

r̂kh,i(s,a) =
∑

f∈ai

r̂k,fh (sf , nf (a)), P̂ k
h (s

′ | s,a) =
∏

f∈F
P̂ k,f
h (s′f | sf , nf (a)) (7)

Then, with ι = 2 log(4(m + 1)(
∑

f∈F Sf)T/δ), we define the bonus term to be bkh(s,a) = bk,pvh (s,a) +

bk,rh (s,a), which is a sum of transition bonus and reward bonus. In particular, we have

b
k,pv
h (s,a) =

∑

f∈F

√
4H2F 2Sf ι

N
k,f
h (sf , nf (a)) ∨ 1

+
∑

f 6=f ′

√
4H2F 2 (SfSf ′

ι)
2

N
k,f
h (sf , nf (a))Nk,f ′

h (sf ′
, nf ′(a)) ∨ 1

, (8)

b
k,r
h (s,a) =

∑

f∈F

√
ι

N
k,f
h (sf , nf (a)) ∨ 1

. (9)

For convenience, we define (P̂k
hV)(s,a) = Es′∼P̂k

h
(·|s,a) [V (s′)] with value function V : S 7→ R.

Remark 5. Unlike Algorithm 1 for congestion game, here, Q
k

h,1(s, ·), . . . , Q
k

h,m(s, ·) in line 6 of Algorithm 5
in general does not form a potential game. Therefore, we cannot use Algorithm 2 and ǫ-Nash is not always
computationally efficient.

E.2 Algorithm for Bandit Feedback

In bandit feedback scenario, since players’ observation about state transitions remains unaffected, we only
need to modify the reward estimator r̂kh,i defined in (7) and reward bonus term bk,rh (s,a) defined in (9).

Similar to the congestion game with bandit feedback introduced in Section 4.2, for IMCGs, we can also
write its reward function as rh,i(s,a) = 〈Ai(s,a), θh〉, where θh is unknown and Ai(s,a) is a 0-1 vector.

In particular, define θh ∈ [0, 1]d with d = m
∑

f∈F Sf to be the vector such that θh,i = rfh(s
f , n) for some

f ∈ F and (sf , n) ∈ Sf × [m]. Then, we can similarly build estimator r̂kh,i through ridge regression as the
following.3

3For the same reason, we take the regularization parameter in ridge regression to be 1.

27

design matrix: V k
h = I +

k−1∑

k′=1

m∑

i=1

Ai(s
k′

h ,ak′

h)Ai(s
k′

h ,ak′

h)⊤, (10)

θh estimator: θ̂kh =
(
V k
h

)−1
k−1∑

k′=1

m∑

i=1

Ai(s
k′

h ,ak′

h)rk
′

h,i, (11)

reward estimator: r̃kh,i(s,a) =
〈
Ai(s,a), θ̂

k
h

〉
, (12)

reward bonus: b̃k,rh (s,a) = max
i∈[m]

‖Ai(s,a)‖(V k
h)

−1

√
βk, (13)

where
√
βk =

√
d+

√
Fd log

(
1 + mkF

d

)
+ Fι.

F Analysis for Algorithm 5

F.1 Bellman Equations for Genera-sum Markov Games

Before analyzing Algorithm 5, we first give a brief review of the Bellman equations for general-sum Markov
games. These equations are well-known among the literature Bai and Jin [2020], Liu et al. [2021], Jin et al.
[2021b].

Fixed policies. Given a fixed policy π, for any (h, i, s,a) ∈ [H]× [m]× S ×A, it holds that

Qπ
h,i(s,a) = (rh,i + PhV

π
h+1,i)(s,a), V π

h,i = E
a

′∼πh(·|s)
[
Qπ

h,i(s,a
′)
]
, (14)

where V π
H+1,i(s) = 0 for any (i, s) ∈ [m]× S.

Best responses. Given a fixed policy π, define the best response value functions for player i asQ
†,π−i

h,i (s,a) =

maxπi∈∆(Ai) Q
πi,π−i

h,i (s,a) and V
†,π−i

h,i (s) = maxπi∈∆(Ai) V
πi,π−i

h,i (s). Then, for any (h, i, s,a) ∈ [H]× [m]×S×
A, it holds that

Q
†,π−i

h,i (s,a) = (rh,i + PhV
†,π−i

h+1,i)(s,a),

V
†,π−i

h,i (s) = max
ν∈∆(Ai)

E
a

′∼(ν,πh,−i)(·|s)

[
Q

†,π−i

h,i (s,a′)
]
,

(15)

where V
†,π−i

H+1,i(s) = 0 for any (i, s) ∈ [m]× S.

F.2 Proof of Theorem 3

Recall that the update rule in Algorithm 5 is

Q
k

h,i(s,a) ← min
{
(r̂kh,i + P̂

k
hV

k

h+1,i + bkh)(s,a), HF
}
, V

k

h,i(s) ← E
a∼πk

h
[Q

k

h,i(s,a)].

Similar to the proof of Theorem 1, we define auxiliary value functions

Qk

h,i
(s,a) ← max

{
(r̂kh,i + P̂

k
hV

k
h+1,i − bkh)(s,a), 0

}
, V k

h,i(s) ← E
a∼πk

h
[Qk

h,i
(s,a)]. (16)

We now begin to prove the first part of Theorem 3.

Proof of Theorem 3. Step 1. We first consider the setting of semi-bandit feedback. Assume the result in
Lemma 17 holds since it is a high-probability event. Then, for any (k, s) ∈ [K]× S, it holds that

max
i∈[m]

(
V

†,πk
−i

1,i − V πk

1,i

)
(s) ≤ max

i∈[m]

(
V

k

1,i − V k
1,i

)
(s) +Hǫ.

28

By the update rules in Algorithm 5, we can notice the following recursive relations

(Q
k

h,i −Qk

h,i
)(s,a) ≤ min

{
P̂
k
h(V

k

h+1,i − V k
h+1,i)(s,a) + 2bkh(s,a), HF

}
,

(V
k

h,i − V k
h,i)(s) = E

a
′∼πk

h
(·|s)

[
(Q

k

h,i −Qk

h,i
)(s,a′)

]
.

Thus, we define Ṽ k
H+1(s) = 0 for any s ∈ S and Q̃k

h, Ṽ
k
h recursively as

Q̃
k
h(s,a) = min

{
(P̂k

hṼ
k
h+1)(s,a) + 2bkh(s,a), HF

}
, Ṽ

k
h (s) = E

a
′∼πk

h
(·|s)

[
Q̃

k
h(s,a

′)
]
. (17)

Obviously, we have maxi∈[m](V
k

h,i−V k
h,i)(s) ≤ Ṽ k

H+1. Then, by inductively assuming the same relation holds
for h+ 1, we can have

max
i∈[m]

(Q
k

h,i −Qk

h,i
)(s,a) =min

{
max
i∈[m]

P̂
k
h(V

k

h+1,i − V k
h+1,i)(s,a) + 2bkh(s,a), HF

}

≤min
{
(P̂k

hṼ
k
h+1)(s,a) + 2bkh(s,a), HF

}

=Q̃k
h(s,a),

max
i∈[m]

(V
k

h,i − V k
h,i)(s) ≤E

a
′∼πk

h
(·|s)

[
max
i∈[m]

(Q
k

h,i −Qk

h,i
)(s,a′)

]

≤E
a

′∼πk
h
(·|s)

[
Q̃k

h(s,a
′)
]

=Ṽ k
h (s).

Therefore, by induction, for any h ∈ [H], we have

max
i∈[m]

(Q
k

h,i −Qk

h,i
)(s,a) ≤ Q̃k

h(s,a), max
i∈[m]

(V
k

h,i − V k
h,i)(s) ≤ Ṽ k

h (s).

As a result, we have

Nash-Regret(K) =

K∑

k=1

max
i∈[m]

(
V

†,πk
−i

1,i − V πk

1,i

)
(s) ≤

K∑

k=1

Ṽ k
1 (s1) +HKǫ.

Step 2, Semi-bandit Feedback. We define the martingale difference sequences

Mk
h(Q̃) = E

a
′∼πk

h
(·|sk

h
)

[
Q̃k

h(s
k
h,a

′)
]
− Q̃k

h(s
k
h,a

k
h),

Mk
h(Ṽ) = (PhṼ

k
h+1)(s

k
h,a

k
h)− Ṽ k

h+1(s
k
h+1).

It is not hard to check that Mk
h(Q̃) and Mk

h(Ṽ) are both indeed martingale difference sequences with respect
to the history till episode k and time step h.

With these definitions, we can now decompose the regret bound as

Ṽ k
h (s

k
h) =E

a
′∼πk

h
(·|sk

h
)

[
Q̃k

h(s
k
h,a

′)
]

(By (17))

=Mk
h(Q̃) + Q̃k

h(s
k
h,a

k
h)

≤Mk
h(Q̃) + 2bkh(s

k
h,a

k
h) + (P̂k

hṼ
k
h+1)(s

k
h,a

k
h) (By (17))

(i)

≤Mk
h(Q̃) + 3bkh(s

k
h,a

k
h) + (PhṼ

k
h+1)(s

k
h,a

k
h)

=Mk
h(Q̃) +Mk

h(Ṽ) + 3bkh(s
k
h,a

k
h) + Ṽ k

h+1(s
k
h+1)

The above inequality (i) holds by applying Lemma 17 and the fact Ṽ k
h (s) ≤ HF , which comes from the

definition in (17). Then, by unrolling this relation from h = 1 to h = H and noticing Ṽ k
H+1 = 0, we can have

Nash-Regret(K) ≤
K∑

k=1

Ṽ k
1 (s1) +HKǫ

29

≤
K∑

k=1

H∑

h=1

(
Mk

h(Q̃) +Mk
h(Ṽ) + 3bkh(s

k
h,a

k
h)
)
+HKǫ (18)

≤Õ
(
HF

√
T
)
+ 3

K∑

k=1

H∑

h=1

bkh(s
k
h,a

k
h) (By Azuma-Hoeffding inequality and taking ǫ = 1/T .)

≤Õ
(
HF

√
T
)
+ 6HF

∑

f∈F

K∑

k=1

H∑

h=1

(√
Sf ι

Nk,f
h (sk,fh , nf (ak

h)) ∨ 1
+

√
ι

Nk,f
h (sk,fh , nf (ak

h)) ∨ 1

)

+ 6HF
∑

f 6=f ′

SfSf ′

K∑

k=1

H∑

h=1

√√√√ ι2(
Nk,f

h (sk,fh , nf (ak
h))N

k,f ′

h (sk,f
′

h , nf ′(ak,f ′

h))
)
∨ 1

≤Õ
(
HF

√
T
)
+ Õ

(
∑

f∈F
HFSf

√
mHT

)
+ Õ

(
m2H2F

∑

f 6=f ′

(
SfSf ′

)2
)

(By Lemma 20 and 21)

≤Õ
(
∑

f∈F
FSf

√
mH3T

)
+ Õ

(
m2H2F

∑

f 6=f ′

(
SfSf ′

)2
)
.

Step 3, Bandit Feedback. In the setting of bandit feedback, we only modify the reward estimator r̃kh,i
and its corresponding bonus term b̃k,rh . Thus, by going through the proof of Lemma 17, we can notice that
to have the same result for bandit feedback, it suffice to use Lemma 18 to show that the reward estimation
error is bounded by the reward bonus term.

Then, by the inequality (18), we can notice that to achieve the final Nash-regret bound, we only need to

bound the summation
∑K

k=1

∑H
h=1 b̃

k,r
h (skh,a

k
h), which is

K∑

k=1

H∑

h=1

b̃k,rh (skh,a
k
h) ≤

√
βK

K∑

k=1

H∑

h=1

max
i∈[m]

∥∥Ai(s
k
h,a

k
h)
∥∥
(V k

h)
−1 (By definition of b̃k,rh in (13).)

≤
(
√
d+

√
Fd log

(
1 +

mKF

d

)
+ Fι

)
Õ
(
H
√
dFK

)

(By definition of βk and Lemma 19.)

≤Õ
(
d
√
HF 2T

)

=Õ
(
∑

f∈F
mSf

√
HF 2T

)
. (Since d = m

∑
f∈F Sf .)

Therefore, by (18), with ǫ = 1/T , under bandit feedback, we have

Nash-Regret(K)

≤
K∑

k=1

H∑

h=1

(
Mk

h(Q̃) +Mk
h(Ṽ) + 3bkh(s

k
h,a

k
h)
)

≤Õ
(
∑

f∈F
FSf

√
mH3T

)
+ Õ

(
m2H2F

∑

f 6=f ′

(
SfSf ′

)2
)

+

K∑

k=1

H∑

h=1

b̃k,rh (skh,a
k
h)

≤Õ
(
∑

f∈F

(√
mH3F +m

√
HF 2

)
Sf

√
T

)
+ Õ

(
m2H2F

∑

f 6=f ′

(
SfSf ′

)2
)
.

F.3 Lemmas for Semi-bandit Feedback

The following two lemmas shows that our value function estimations are indeed optimistic.

30

Lemma 16. With probability at least 1 − δ, simultaneously for arbitrary value function V ∈ [0, HF]S and

any tuple (k, h, s,a), it holds that |(P̂k
h − Ph)V (s,a)| ≤ bk,pvh (s,a), where bk,pvh (s,a) is defined in (8).

Proof. We define Pf
h to be the operator such that for some value function V f : Sf 7→ R, we have (Pf

hV
f)(s,a) =

Es′f∼Pf

h
(·|sf ,nf (a))

[
V f (s′f)

]
. We also define P̂

k,f
h similarly. Then, by definition of our transition kernel, for

operators Ph and P̂
k
h, it holds that

Ph =
∏

f∈F
P
f
h and P̂

k
h =

∏

f∈F
P̂
k,f
h .

Therefore, by Lemma E.1 in Chen et al. [2020], since ‖V ‖∞ ≤ HF , we have

|(P̂k
h − Ph)V (s,a)| ≤

∑

f∈F

∣∣∣∣∣(P̂
k,f
h − P

f
h)

(
∏

f ′ 6=f

P
f ′

h

)
V (s,a)

∣∣∣∣∣

+ 2HF
∑

f 6=f ′

errpk,f
h (s,a) · errpk,f ′

h (s,a),

(19)

where errpk,f
h (s,a) = ‖P̂ k,f

h (· | sf , nf (a))− P f
h (· | sf , nf (a))‖1.

Now, notice that
(∏

f ′ 6=f P
f ′

h

)
V (s,a) can be seen as some value function from Sf to [0, HF]. Therefore,

by Lemma 12 in Bai and Jin [2020], with probability at least 1− δ
2
, simultaneously for any V and (k, h, s,a),

it holds that ∣∣∣∣∣(P̂
k,f
h − P

f
h)

(
∏

f ′ 6=f

P
f ′

h

)
V (s,a)

∣∣∣∣∣ ≤ 2HF

√
Sf ι

Nk,f
h (sf , nf(a)) ∨ 1

,

where ι = 2 log(4(m+ 1)(
∑

f∈F Sf)T/δ). Meanwhile, by standard Hoeffding’s inequality and union bound,

with probability at least 1− δ
2
, simultaneously for any (k, h, s,a), it holds that

errpk,f
h ≤ Sf

√
ι

Nk,f
h (sf , nf (a)) ∨ 1

.

Finally, by plugging above two concentration inequalities back into (19), we can have

|(P̂k
h − Ph)V (s,a)| ≤ bk,pvh (s,a).

Lemma 17. With probability at least 1− δ, for any (k, h, i, s,a) ∈ [K]× [H]× [m]× S ×A, it holds that

Q
k

h,i(s,a) ≥ Q
†,πk

−i

h,i (s,a)− (H − h)ǫ, Qk

h,i
(s,a) ≤ Qπk

h,i(s,a), (20)

V
k

h,i(s) ≥ V
†,πk

−i

h,i (s)− (H − h+ 1)ǫ, V k
h,i(s) ≤ V πk

h,i (s.), (21)

where Qk

h,k
and V k

h,i are defined in (16).

Proof. The proof is adapted from Liu et al. [2021] and goes by induction from h = H+1 to h = 1. We can see

that inequalities (21) obviously hold when h = H +1 since by definition we have V
k

H+1,i(s) = V k
H+1,i(s) = 0

for any (k, i, s). Now, suppose inequalities (21) hold for h + 1. Then, if we have Q
k

h,i(s,a) = HF , it holds

trivially that Q
k

h,i(s,a) ≥ Q
†,πk

−i

h,i (s,a). Otherwise, by Bellman equations (15) and update rule in Algorithm
5, we have

Q
k

h,i(s,a)−Q
†,πk

−i

h,i (s,a)

=(r̂kh,i − rh,i)(s,a) + (P̂k
hV

k

h+1,i)(s,a)− (PhV
†,πk

−i

h+1,i)(s,a) + bkh(s,a)

31

=(r̂kh,i − rh,i)(s,a)︸ ︷︷ ︸
(A)

+ P̂
k
h(V

k

h+1,i − V
†,πk

−i

h+1,i)(s,a)︸ ︷︷ ︸
(B)

+((P̂k
h − Ph)V

†,πk
−i

h+1,i)(s,a)︸ ︷︷ ︸
(C)

+bkh(s,a).

Now, recall that bkh(s,a) = bk,pvh (s,a) + bk,rh (s,a). By reward definition in congestion game, we have

(r̂kh,i − rh,i)(s,a) =
∑

f∈ai

(r̂k,fh,i (s
f , nf (a))− rfh,i(s

f , nf (a))).

Thus, by using standard Hoefding’s inequality and union bound, we can immediately have |(A)| ≤ bk,rh (s,a).

Then, since V
†,πk

−i

h,i ∈ [0, HF]S , by Lemma 16, we have |(C)| ≤ bk,pvh (s,a). That is, we have (A) + (C) +

bkh(s,a) ≥ 0.

Then, by inductive hypothesis, we know that V
k

h+1,i ≥ V
†,πk

−i

h+1,i − (H − h)ǫ, which implies (B) ≥ 0.

Therefore, we have Q
k

h,i(s,a)−Q
†,πk

−i

h,i (s,a) ≥ −(H − h)ǫ.

For V
k

h,i and V
†,πk

−i

h,i , we notice that in Algorithm 5, πk is computed as the ǫ-approximate Nash equilibrium

of (Q
k

h,1, . . . , Q
k

h,m). Therefore, it holds that

V
k

h,i(s) = E
a∼πk

h
(·|s)

[
Q

k

h,i(s,a)
]
≥ max

ν∈∆(Ai)
E
a

′∼(ν,πk
h,−i

)(·|s)

[
Q

k

h,i(s,a
′)
]
− ǫ.

By Bellman equations (15), we also have

V
†,πk

−i

h,i (s) = max
ν∈∆(Ai)

E
a

′∼(ν,πk
h,−i

)(·|s)

[
Q

†,πk
−i

h,i (s,a′)
]
.

Since Q
k

h,i(s,a)−Q
†,πk

−i

h,i (s,a) ≥ −(H−h)ǫ, we immediately have V
k

h,i(s)−V
†,πk

−i

h,i (s) ≥ −(H−h+1)ǫ. Thus,

by induction, we have that Q
k

h,i(s,a) ≥ Q
†,πk

−i

h,i (s,a)− (H − h)ǫ and V
k

h,i(s) ≥ V
†,πk

−i

h,i (s) − (H − h + 1)ǫ for
all h ∈ [H].

The inequalities for V k
h,i and Qk

h,i
can be proved similarly.

F.4 Additional Lemmas for Bandit Feedback

The following lemma shows that the reward estimation error can be bounded by the reward bonus term.

Lemma 18. With probability at least 1 − δ, simultaneously for all (i, k, h, s,a), it holds that |(r̃kh,i −
rh,i)(s,a)| ≤ b̃k,rh (s,a), where r̃kh,i and b̃k,rh are defined in (12) and (13).

Proof. The proof is extremely similar to Lemma 3. By construction, we have

|(r̃kh,i − rh,i)(s,a)| =
∣∣∣
〈
Ai(s,a), θ̂h − θh

〉∣∣∣

≤‖Ai(s,a)‖(V k
h)

−1

∥∥∥θ̂h − θh

∥∥∥
V k
h

≤‖Ai(s,a)‖(V k
h)

−1

(
‖θh‖2 +

√
F log

(
det(V k

h)
)
+ Fι

)
.

(By Theorem 20.5 in Lattimore and Szepesvári [2020].)

Since each element in θh is bounded in [0, 1] by construction, we have ‖θh‖2 ≤
√
d.

Then, by Lemma 4, we have det
(
V k
h

)
≤

(
1 + mkF

d

)d
since by construction ‖Ai(s,a)‖22 ≤ F .

Finally, to make this bound valid for all player i ∈ [m], we only need to take maximization over i ∈ [m].
Therefore, with probability at least 1− δ, we have

|(r̃kh,i − rh,i)(s,a)| ≤ max
i∈[m]

‖Ai(s,a)‖(V k
h)

−1

√
βk = b̃k,rh (s,a),

where
√
βk =

√
d+

√
Fd log

(
1 + mkF

d

)
+ Fι.

32

The follow lemma bound the sum of reward bonus under bandit feedback.

Lemma 19. For any h ∈ [H], it holds that

K∑

k=1

max
i∈[m]

∥∥Ai(s
k
h,a

k
h)
∥∥
(V k

h)
−1 ≤ Õ

(√
dFK

)
,

where d = m
∑

f∈F Sf .

Proof. First, since V k
h = I +

∑k−1
k′=1

∑m
i=1 Ai(s

k′

h ,ak′

h)Ai(s
k′

h ,ak′

h)⊤, we have V k
h � I and thus

(
V k
h

)−1 � I.
Therefore, we have ∥∥Ai(s

k
h,a

k
h)
∥∥
(V k

h)
−1 ≤

∥∥Ai(s
k
h,a

k
h)
∥∥
I
=

∥∥Ai(s
k
h,a

k
h)
∥∥
2
≤

√
F .

For simplicity, let Ak
h,i = Ai(s

k
h,a

k
h). Then, as a result, we have

K∑

k=1

max
i∈[m]

∥∥Ak
h,i

∥∥
(V k

h)
−1 =

K∑

k=1

min

{
max
i∈[m]

∥∥Ak
h,i

∥∥
(V k

h)
−1 ,

√
F

}

≤

√√√√K

K∑

k=1

min

{
max
i∈[m]

∥∥Ak
h,i

∥∥2

(V k
h)

−1 , F

}

≤

√√√√FK

K∑

k=1

min

{
max
i∈[m]

∥∥Ak
h,i

∥∥2

(V k
h)

−1 , 1

}

≤
√
2FKd log

(
1 +

mKF

d

)
(By Lemma 4.)

= Õ
(√

dFK
)
.

F.5 Technical Lemmas

Lemma 20. For any f ∈ F , it holds that

K∑

k=1

H∑

h=1

√
1

Nk,f
h (sk,fh , nf(ak

h)) ∨ 1
≤ Õ

(√
mHSfT

)
.

Proof. Here, we have

K∑

k=1

H∑

h=1

√
1

Nk,f
h (sk,fh , nf(ak

h)) ∨ 1
=

H∑

h=1

∑

sf∈Sf

m∑

n=0

NK,f

h
(sf ,n)∑

ℓ=1

√
1

ℓ

≤2

H∑

h=1

∑

sf∈Sf

m∑

n=0

√
NK,f

h (sf , n) (By standard technique)

≤2

√√√√(m+ 1)HSf

H∑

h=1

∑

sf∈Sf

m∑

n=0

NK,f
h (sf , n)

=Õ
(√

mHSfT
)
.

The last line above holds because
∑H

h=1

∑
sf∈Sf

∑m
n=0 N

K,f
h (sf , n) = T . This is based on a pigeon-hole

principle argument. In particular, whenever the players take one more action, for any f ∈ F , the count for
some tuple (h, sf , n) will increase exactly by 1.

33

Lemma 21 (Chen et al. [2020]). For any f, f ′ ∈ F and f 6= f ′, it holds that

K∑

k=1

H∑

h=1

√√√√
1(

Nk,f
h (sk,fh , nf (ak

h))N
k,f ′

h (sk,f
′

h , nf ′(ak,f ′

h))
)
∨ 1

≤ Õ
(
m2HSfSf ′

)
.

Proof. We define the joint empirical counter

Nk,f,f ′

h (sf , sf
′

, n, n′) =

k∑

k′=1

1

{
(sk

′,f
h , sk

′,f ′

h , nf (ak′

h), nf ′

(ak′

n)) = (sf , sf
′

, n, n′)
}
.

Obviously, we have N f,f ′

h (sf , sf
′

, n, n′) ≤ min
{
Nk,f

h (sf , n), Nk,f ′

h (sf
′

, n′)
}
, which implies

Nk,f,f ′

h (s, sf
′

, n, n′) ≤
√
Nk,f

h (sf , n)Nk,f ′

h (sf ′ , n′).

Therefore, we have

K∑

k=1

H∑

h=1

√√√√
1(

Nk,f
h (sk,fh , nf (ak

h))N
k,f ′

h (sk,f
′

h , nf ′(ak,f ′

h))
)
∨ 1

≤
K∑

k=1

H∑

h=1

1

Nk,f,f ′

h (sk,fh , sk,f
′

h , nf (ak
h), n

f ′(ak
h)) ∨ 1

=
H∑

h=1

∑

sf∈Sf

∑

sf
′∈Sf′

m∑

n=0

m∑

n′=0

NK,f,f′

h
(sf ,sf

′
,n,n′)∑

ℓ=1

1

ℓ

=Õ
(
m2HSfSf ′

)
.

34

	1 Introduction
	1.1 Main Novelties and Contributions
	1.2 Motivating Examples

	2 Related Work
	3 Preliminaries
	4 Centralized Algorithms for Congestion Games
	4.1 Algorithm for Semi-bandit Feedback
	4.2 Algorithm for Bandit Feedback
	4.3 Regret Analysis

	5 Decentralized Algorithms for Congestion Games
	6 Extension to Independent Markov Congestion Games
	6.1 Problem Formulation
	6.2 Theoretical Guarantee

	7 Conclusion
	A Additional Motivating Examples
	B Compute -approximate Nash Equilibrium in Potential Games
	C Analysis for Algorithm 1
	C.1 Lemmas for Bandit Feedback
	C.2 Technical Lemmas

	D Analysis for Algorithm 3
	D.1 Exploration Distribution and Smoothness
	D.2 Analysis for Frank Wolfe in Bandit Feedback
	D.3 Algorithm and Analysis for Semi-bandit Feedback
	D.4 Lemmas for Semi-bandit Feedback

	E Algorithms for Independent Markov Congestion Games
	E.1 Algorithm for Semi-bandit Feedback
	E.2 Algorithm for Bandit Feedback

	F Analysis for Algorithm 5
	F.1 Bellman Equations for Genera-sum Markov Games
	F.2 Proof of Theorem 3
	F.3 Lemmas for Semi-bandit Feedback
	F.4 Additional Lemmas for Bandit Feedback
	F.5 Technical Lemmas

