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Abstract

We study algorithms using randomized value functions for exploration in reinforcement learning. This
type of algorithms enjoys appealing empirical performance. We show that when we use 1) a single random
seed in each episode, and 2) a Bernstein-type magnitude of noise, we obtain a worst-case 9] (H % SAT)
regret bound for episodic time-inhomogeneous Markov Decision Process where S is the size of state space,
A is the size of action space, H is the planning horizon and T is the number of interactions. This bound
polynomially improves all existing bounds for algorithms based on randomized value functions, and for
the first time, matches the Q2 (H VSAT ) lower bound up to logarithmic factors. Our result highlights
that randomized exploration can be near-optimal, which was previously achieved only by optimistic
algorithms. To achieve the desired result, we develop 1) a new clipping operation to ensure both the
probability of being optimistic and the probability of being pessimistic are lower bounded by a constant,
and 2) a new recursive formula for the absolute value of estimation errors to analyze the regret.

1 Introduction

This paper concerns learning in tabular Markov Decision Processes (MDP), arguably the most fundamen-
tal model for reinforcement learning (RL). Existing algorithms that achieve the near-optimal minimax

9] (H V SAT) regret bound are based on the principle of Optimism in the face of Uncertainty (OFU),

such as upper confidence bound (UCB) [Azar et al., 2017, Zanette and Brunskill, 2019, Dann et al., 2019,
Zhang et al., 2020c,a].! Here S is the number of states, A is the number of actions, H is the planning
horizon, and T is the total number of interactions between the agent and the environment.

Another broad category is algorithms with randomized exploration such as Thompson Sampling [Osband
et al., 2013, Agrawal and Jia, 2017a, Osband et al., 2014]. These algorithms inject (carefully tuned) random
noise to value function to encourage exploration. UCB-type algorithms enjoy well-established theoretical
guarantees but suffer from difficult implementation since an upper confidence bound is usually infeasible for
many practical models like neural networks. Instead, practitioners prefer randomized exploration such as
noisy networks in Fortunato et al. [2018], and algorithms with randomized exploration have been widely used
in practice [Osband et al., 2017, Chapelle and Li, 2011, Burda et al., 2018, Osband et al., 2018]. However,
how to design randomized exploration algorithms in a principled way and perform randomized exploration
optimally is far from clear. While randomized exploration can have great performance in practice, theoreti-

cally, the best known worst-case regret bound for algorithms with randomized exploration is 9] (H 2SVAT )
[Agrawal et al., 2021], which is far worse than that of the UCB-type algorithms. In this paper, we introduce
a new randomized exploration algorithm and show it enjoys a near-optimal 0 (H VS AT) worst-case regret

bound, thus closing the gap. Our work sheds new light on randomized exploration on both the algorithmic
side and the theoretical side.

*Equal contribution
1This bound is for time-inhomogeneous MDP with each reward bounded by 1 and T is sufficiently large.
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Our Contributions. Our contributions are summarized below:

e We propose a new algorithm, Single Seed Randomization (SSR), which incorporates a crucial algorithmic
idea: using a single random seed for the entire episode, in contrast to previous methods of randomized
exploration which use one seed for each time step. SSR is able to explore more efficiently than previous
methods by avoiding having noise at different time steps canceling with each other. Theoretically, we show,

thanks to this new idea, if one uses a Hoeffding-type magnitude of noise, SSR achieves an 0] (H 15\/SAT )

regret bound, improving upon the best existing result on randomized exploration algorithm [Agrawal et al.,
2021].

o We further design a new Bernstein-type magnitude of noise for our algorithm, and achieve an 9] (H VSAT )

regret bound, resolving an open problem raised in Agrawal et al. [2021]. To our knowledge, this is the first
time that a Bernstein-type bound is used in randomized exploration. More importantly, our upper bound

matches the ) (H VS AT) minimax lower bound up to logarithmic factors.

We note that our goal is not to show randomized exploration is better than optimistic algorithms [Azar
et al., 2017] in the tabular setting. Instead, we aim to provide a solid theoretical understanding of a practically
relevant algorithm. Indeed, understanding randomized exploration itself is an important theoretical research
direction and has attracted much interest in the community [Agrawal and Goyal, 2012, 2017, Agrawal and
Jia, 2017b, Russo, 2019, Zanette et al., 2020, Vaswani et al., 2020, Agrawal et al., 2021, Osband et al., 2013,
2014, 2017, 2018].

Main Challenge and Technical Overview. Besides the aforementioned algorithmic ideas (single ran-
dom seed and Bernstein-type magnitude of noise), we also need additional ideas in analysis to prove the
desired regret bound. The main challenge is that unlike UCB-type algorithms, the estimated value in al-
gorithm with randomized exploration, is not an upper bound of the true optimal value. This leads to the
failure of directly utilizing their analysis, which only need to analyze the one-sided error in estimation. We
instead work on the absolute value of the estimation error, whose analysis is more complicated than that for
the one-sided error in UCB-type algorithms. Working with absolute value forces us to ensure that both the
probability that the estimated value is optimistic and the probability that the estimated value is pessimistic
are lower bounded. However, the clipping strategy in existing algorithm cannot maintain pessimism. To
tackle with this issue, we develop a new clipping method. Below we list our technical contributions.

1. First, we propose a new clipping strategy to constrain the estimated value function (cf. Eqn. (4)).
Previous clipping strategies in [Zanette et al., 2020, Agrawal et al., 2021] are based on uncertainty and can
only maintain optimism. Our clipping strategy directly works on the value function, which is similar to those
used in UCB-type algorithms [Azar et al., 2017, Jin et al., 2018, Zhang et al., 2020c]. Our clipping strategy
can maintain both the optimism and pessimism. In addition, the number of times that the clipping is used
can still be bounded.

2. Second, we prove that the single seed randomization ensures that the estimated value function can
both be optimistic or pessimistic with constant probability at all states and timesteps. This is stronger
than previous randomized exploration algorithms that are only shown to be optimistic at the initial state
with constant probability. With this property, we can then bound the difference between the optimal value
function and estimated value function from both above and below, which results in a bound on its absolute
value. See Section 5.1, Appendix C and Appendix D.

3. Third, we prove a novel recursion argument on the absolute value of the policy estimation error. As
mentioned in [Agrawal et al., 2021], the recursion in UCB-type algorithms can not be directly utilized because
our estimated value function is not a high-probability upper bound of the true optimal value function. With
the bound of absolute value, we are able to prove new recursion formulas and together we can control the
policy estimation error. See Section 5.2 and Appendix E.

4. At last, we bound the sum of variance in a novel manner. In [Azar et al., 2017], the UCB-type
estimation guarantees that the policy estimation error is always positive so the difference of the variance can
be directly bounded. We generalize the argument to the absolute value of the estimation error to bound the
sum of variance. See Section 5.3.1 and Appendix G.



2 Related Work

In this section we review existing provably efficient algorithms for tabular MDP. There is a long list of
sample complexity guarantees for tabular MDP [Kearns and Singh, 2002, Brafman and Tennenholtz, 2003,
Kakade, 2003, Strehl et al., 2006, Strehl and Littman, 2008, Kolter and Ng, 2009, Bartlett and Tewari, 2009,
Jaksch et al., 2010, Szita and Szepesvari, 2010, Lattimore and Hutter, 2012, Osband et al., 2013, Dann and
Brunskill, 2015, Azar et al., 2017, Dann et al., 2017, Osband and Van Roy, 2017, Agrawal and Jia, 2017a, Jin
et al., 2018, Fruit et al., 2018, Talebi and Maillard, 2018, Dann et al., 2019, Dong et al., 2019, Simchowitz
and Jamieson, 2019, Russo, 2019, Zhang and Ji, 2019, Cai et al., 2019, Zhang et al., 2020b, Yang et al., 2020,
Pacchiano et al., 2020, Neu and Pike-Burke, 2020, Zhang et al., 2020a, Wang et al., 2020, Agrawal et al.,
2021, Russo, 2019, Agrawal and Jia, 2017a, Domingues et al., 2021, Menard et al., 2021, Li et al., 2021].
The state-of-the-art methods are based on upper confidence bound (UCB) [Azar et al., 2017, Zanette and
Brunskill, 2019, Dann et al., 2019, Zhang et al., 2020c,a, Menard et al., 2021, Li et al., 2021]. For the setting
considered in this paper where the transition is time-inhomogeneous and the reward is bounded by 1, one

can achieve an O (H vV SAT) in the regime where T is sufficiently large.

Algorithms with randomized exploration have been proved to enjoy favorable regret bounds in bandit
problems [Lai and Robbins, 1985, Agrawal and Goyal, 2012, Kaufmann et al., 2012, Bubeck and Liu, 2014,
Agrawal and Goyal, 2017]. In certain settings, randomized exploration can match the worst-case regret bound
of UCB-based approaches and achieve nearly minimax optimal regret bounds [Jin et al., 2020, Agrawal and
Goyal, 2017]. However, for RL, existing theory for randomized exploration are far from optimal [Agrawal
et al., 2021, Russo, 2019, Agrawal and Jia, 2017a, Xu and Tewari, 2019, Zanette et al., 2020]. For the
setting considered in this paper, the sharpest existing regret bound among algorithms with randomized
exploration is 9] (H 2S\VAT ) proved in [Agrawal et al., 2021]. Our paper closes this gap and thus deepens

our understanding about randomized exploration.

3 Preliminaries

We counsider time-inhomogeneous finite-horizon MDP M = (H,S, A, P, R, s1), where |S| = S and |A| = A
Here, § = {1,...,S} is the finite state space. A = {1,..., A} is the finite action space. H is the length
of an episode. For convenience, we take s; to be the fixed initial state, although a more general initial
distribution will not change the conclusion. P : S x A x [H] — A(S) is the transition function, where if the
agent stays at state s and takes action a at time h, it transits to state s’ with probability P s (s") € [0, 1].
R:S8 x Ax[H] — [0,1] is the reward function, where if the agent stays at s and takes action a at time h,
it will receive reward 7, 5 o € [0,1] such that E[ry s.o] = Rh,s,q-

A deterministic policy for such a MDP is defined as a tuple # = (m1,...,7q), where 7, : S — A. The
associated value function at state s € S and level h € {1,..., H} is recursively defined as

V;Zr (S) = Rh,s,frh(s) + Z Ph,SJl’h(S) (3/) V}f—&-l (S/) .
s'eS

For convenience, we set Vi, , = 0 € RS. The corresponding optimal value function is Vii(s) =
maxren V;' (s), where II is the set of all possible deterministic policies. For a particular algorithm Alg,
let 7% denote the policy that Alg employs during episode k. Then, the regret of running Alg on MDP M for
K episodes is defined as

=

Reg (M, K, Alg) = > (Vi'(s1) = V7" (s1)) - (1)
k=1

Note that the regret, Reg (M, K, Alg), is a random variable due to randomness in state transition and the
algorithm, Alg. In this paper, we show the regret of our proposed algorithm can be upper bounded with
high probability, and the upper bound matches the known lower bound up to logarithmic factors.

To facilitate our later analysis, we introduce some notations for empirical estimation. At episode k, we col-
lect a trajectory (s¥,ak, vk, ... sk ak r%) asspecified in Algorithm 1. Let ny (h,s,a) = 5:11 1{(s},d}) =



Algorithm 1: Single Seed Randomization (SSR)
Input: H,S, A, perturbation type ty € {Ho, Be}

1 for episodes k =1,2,..., K do

2 Sample 2, ~ N (0,1)

3 Define terminal value function @HH’,C =0 e R and VHH,;C =0eR?

4 for time periods h=H,...,1 do

5 Qi (s,0) RZ’M + <]5,’fys’a,7h+1,k> + ot (h,s,a)2k;  // of, (h,s,a) is defined in (5)

and (6).

6 Define Vi, 1. (s) = cliPo(gr—p1) (maxeea Q) 1 (s,a)) for all s € S

7 end

8 | Agent takes actions af = argmax,c 4 @, ;(sF,a) throughout this episode

9 Observe data s’f,a’f, r’f, e s’fg, a’}{, r’f{ and compute Rﬁtla, I:’,’fﬁl and ng41 (h, s,a) for all

(h,s,a) € [H xS x A

10 end

(s,a)} be the number of times action a is taken at state s and time h before episode k, where 1 {-} is the
indicator function. We define

k-1
=1 H(sh,ap) = (S7a)}/r;7,,sﬁl,ail

RF .. = 2
h,s,a ng (h,s,a) +1 ’ (2)
k—1
Pk (s/) _ =1 ]l{(siw aﬁw Slh,+1) = (Saav 5/)} (3)
hs,0 ng (h,s,a) + 1

Then, define empirical MDP based on our observation and estimation before episode k as the tuple
MF = (H,S, A, P* RF, s1). Since ]5,55@ is not a valid distribution over S, for being rigorous, we can imagine
there is an additional virtual absorbing state that every state will transit to with remaining probability.

In addition to the above notations, let O (-),0 () and Q(-) be asymptotic notations ignoring all poly-
logarithmic terms. For distribution D € A® and value function V' € R, let V (D, V) denote the variance of
V' under distribution D, which is defined as V(D,V) = >~ s D(s) (V(s) — (D, V))?. For constant a > 0,
we define the corresponding clipping function as clip,(-) = max{—a,min{a,-}}. Immediately we have
|clip, (2)] < a for any a > 0. We introduce the definitions of other notations when used. In appendix, we
summarize the notations and definitions used in this paper.

4 Main Results

4.1 Algorithm

The main contribution of this paper is that we show algorithm with randomized value functions can achieve
regret that matches the known lower bound 2 (H vV SAT) [Jaksch et al., 2010, Domingues et al., 2021] up

to logarithmic factors in the tabular setting. To facilitate exploration, this type of algorithms uses random
value perturbation instead of deterministic bonus. The algorithm we consider is summarized in Algorithm
1. In our algorithm, SSR, the random perturbation ensures that optimism/pessimism can be obtained with
constant probability in each episode. Moreover, randomized value function has its origin from posterior
sampling for reinforcement learning (Thompson sampling). The randomized perturbation can be interpreted
as approximate sampling from the posterior distribution of the value function on randomized training data
[Russo, 2019].

We first give an overview of SSR. In Algorithm 1, the policy used at episode k is computed using the
empirical MDP, MF = (H,S, A, pk, Rk, s1), which is based on observation and estimation before episode
k. However, instead of directly choosing optimal policy for MP*, we add a small random perturbation when
computing the value of each state and action pair. To be more precise, at each episode k, we first estimate



the reward and transition function for each state s and action a based on (2) and (3). Then, we compute
the value function for state s and action a,

@h,k (87 (1) «— Rz,s,a + <pf]f,s,a7vh+1’k> + O—écy (h’ S, a’) 21@

Here, 2; ~ N(0,1) is a standard Gaussian random variable sampled once every episode. The magnitude of
the perturbation, Ufy depends on how many samples ng(h, s,a) we have observed and how confident we are

on the estimations ]A%,’j)&a and P}’fys,a. We will discuss more about the choice of the magnitude later in this
section.
In order to prevent estimated value function from behaving badly, we add a clipping to the value function:

Vh,k:(s) = Chpz(H—thl) (Tafleaj(Qh,k(&a)) (4)

As our analysis will show, this kind of clipping can bound the value function, maintain optimism and
pessimism and also guarantee that clipping will not happen for a lot of times. The constant 2 (instead of
1) plays a crucial role because it means the value function grows at an additive rate of 2 from h = H to
h = 1. If we do not consider the added noise, then the value function should at most grow 1 at each timestep
because the reward is at most 1. For our clipping technique, if a clip is triggered, there exists a timestep
such that the added noise is more than 1, which is equivalent to a small number of visits (cf. Definition 23
and Lemma 8). As our later analysis will show, the clipping only affects the lower-order term and will not
compromise the long-term performance of the algorithm. Finally, after computing the value function and
clipping, SSR chooses the action ai’ that maximizes @h7k(s§,a) at each time step, h = 1, ..., H, throughout
the episode.

Note that from a Bayesian perspective, when there is no clipping, in Algorithm 1, @,L i follows distribution

— — . . — 2
Qh,k(87 a) | Vh+17k ~ N (Rﬁ,s@ + <Pflf,s,a’ Vh+17k> ’ (Ufy(h” 5, a)) ) .

This resembles posterior sampling because when estimating some parameter * ~ N (0,62) based on
noisy observations 01, ...,0,, ~ N(6,3?), the posterior distribution of §* given {6;}7"_, is 0* | {0}, ~

N (n-li-l Z?:l 0;, nﬁ—jl) Although exact posterior sampling may not be possible in complex reinforcement

learning settings, in SSR, afy(h, s,a) is chosen at scale 5) (1/\/nk(h, s, a)) and therefore can be interpreted

as doing approximate posterior sampling. Moreover, SSR can be viewed as a variant of Randomized Least
Square Value Iteration (RLSVI). The major differences are at the clipping function and a single random
seed used in each episode instead of different random seeds at different tuples (h, s, a). We will discuss more
about the choice of the random seed later in this section. We refer to Osband et al. [2017] and Russo [2019]
for a more detailed discussion on the relationship among RLSVI, posterior sampling and randomized value
function.

In the following paragraphs, we discuss in more details about the three major algorithmic innovations:

Single Random Seed in Each Episode. SSR is similar to the algorithms analyzed in Russo [2019] and
Agrawal et al. [2021]. The major difference is that in the algorithm we propose, we use a single random seed
2k to generate the perturbations for all time steps A = 1,..., H in an episode k.

When using different random seeds in an episode, the algorithm can be optimistic in some time step
while being pessimistic in others. Then, the effects of the perturbations at different time steps will cancel
with each other. As a result, to ensure sufficient exploration, the magnitude of the perturbation has to large.
This issue was also pointed out in Agrawal et al. [2021], Abeille and Lazaric [2017].

A large perturbation magnitude can increase the instability of the algorithm and worsen the algorithm’s
performance. When a single random seed is used, a small perturbation magnitude is enough to guarantee
that the algorithm is optimistic with constant probability in any episode. We are able to show that using a
single random seed can significantly increase the stability of the algorithm and therefore enjoy much smaller
regret. Coincidentally, Vaswani et al. [2020] also uses a similar single randomization in bandit problems to
build a near-optimal randomized exploration algorithm and our work can be treated as its natural extension
to RL problems.



Clipping. To obtain a tight regret bound, the estimated value function needs to be well bounded. In
[Russo, 2019], no clipping is used and the estimated value function is at the order of O(H®/2S), which
results in a suboptimal regret bound. Generally there are two types of clipping methods. The first one is
uncertainty-based, i.e. the value is clipped to H — h 4+ 1 at timestep h whenever the uncertainty is large
[Zanette et al., 2020, Agrawal et al., 2021]. However this type of clipping cannot maintain pessimism which
is critical in our analysis. The other kind of clipping is value-based, mostly in UCB-type algorithms [Jin
et al., 2019]. These algorithms truncate estimated value greater than a certain threshold, i.e. H —h+ 1 at
time step h. The problem here is that the number of clippings cannot be bounded because if the true value
function is close to H — h + 1 at timestep h, the clipping will happen with some constant probability.

Our clipping method leverages both type of clipping methods in the existing literature. Though our
clipping is based on the value function, we show that whenever the clip is triggered, the estimation error
must be large, which implies that the uncertainty at that state is large. This clipping method inherits the
desired properties from both uncertainty-based and value-based clipping, i.e. the optimism/pessimism is
maintained and the number of clippings can be bounded.

Magnitude of Perturbation. A large magnitude of perturbation can encourage exploration, but at the
same time increase instability. In our algorithm, the magnitudes are chosen as the smallest values so that the
algorithm can be optimistic with constant probability. Since the value function can roughly be bounded by

O(H), a naive choice of the perturbation magnitude can be © (H/\/nk(h, s, a)). In this way, by Hoeffding’s

inequality, as long as the random Gaussian variable sampled Zj is bigger than a constant, which happens
with constant probability, the estimated value function will be optimistic. By similar reasoning, we can see
that the estimated value function will also be pessimistic with constant probability.

To make the magnitude even smaller, inspired by [Azar et al., 2017] who showed one can use an (empirical)
Bernstein’s inequality to derive a sharp exploration bonus for UCB-based algorithms, we propose a new
choice of perturbation magnitude based on Bernstein’s inequality. The Bernstein-based perturbation uses
the empirical variance of the value function, which makes it smaller than the Hoeffiding-based one mostly,
but still maintains optimism with constant probability.

In our paper, we study both types of magnitudes. In particular, we show that the regret of SSR based

on Bernstein’s inequality matches the known lower bound 2 (H v SAT). Following are the two choices:

log (2HSAk?) H
ng (h,s,a) +1  ng(h,s,a)+1’

01'?10 (h,s,a) = H (5)

. 16V (P;’f,s,a: Vk,h+1> log (2HSAK?)  65H log (2HS Ak?) log (2H S Ak?) 6)
IBe (h': S, CL) = -+ + ,
ng (h,s,a) +1 ng (h,s,a) +1 ng (h,s,a) +1

where subscript “Ho” represents that the perturbation is based on Hoeffding’s inequality and “Be” rep-
resents Bernstein’s inequality, correspondingly. Here, for proof convenience, P,ii is defined by replacing

s,a
the denominator in P,’f_s)a by max {ny(h, s,a),1}. To clarify, when subscript “ty” is used, which stands for
“type” as a placeholder for “Ho” or “Be”, it means that there is no need to write two copies of expressions
for Hoeffding-based and Bernstein-based noises separately.

Practical Considerations. Here, we explain why randomized exploration is widely used in practice and
why our algorithmic formulation practically has advantage over UCB-type algorithms. In randomized ex-
ploration, there are usually two important components: (1) the algorithm (e.g., Algorithm 1) and (2) the
noise magnitude (o). In practice, the main advantage of randomized exploration lies in the algorithm
component. The generalization from the tabular setting to the function approximation setting is straight-
forward: one can just add a random regularization term in the value estimation step, whose details can
be found in [Osband et al., 2018]. On the other hand, the generalization of optimistic algorithms from the
tabular setting to the function approximation setting is more non-trivial because it often requires an explicit
construction of the confidence set. For the second component, although generalizing our strategy of tuning
noise magnitude to the real-world function approximation setting is indeed not straightforward, it is often
set as a hyper-parameter in practice.



4.2 Regret Analysis

We analyze the regret, defined in (1), of our algorithm SSR using both types of perturbations. Our main
theorems are presented in Theorem 1 and 2. In particular, Theorem 2 shows SSR with Bernstein-based

perturbation can achieve the regret that matches the known lower bound £ (H vV SAT) up to logarithmic
factors. We sketch the proof of Theorem 1 and Theorem 2 in Section 5.

Theorem 1. If the Hoeffding-type noise (5) is used, then for any MDP M = (H,S, A, P,R,s1), with
probability at least 1 — §, Algorithm 1 satisfies

Reg(M, K, SSRio) < O (H1~5\/SAT + H452A) .

In particular, when T > (H?S3A), it holds that Reg(M, K, SSRy,) < O (H1'5\/ SAT).

Theorem 2. If the Bernstein-type noise (6) is used, then when T > Q (H552A), for any MDP M =
(H,S, A, P,R, s1), with probability at least 1 — &, Algorithm 1 satisfies

Reg(M, K, SSRp.) < O (H\/SAT + H452A) .

In particular, if we further have T > Q (HGSBA), it then holds that Reg(M, K, SSRp.) < 9] (Hv SAT).

We give a brief comparison between SSR and other related works. Russo [2019] shows that RLSVI, an
algorithm similar to SSR, can achieve O (H 25615/ AT) regret in expectation over the randomness of MDP

and the algorithm. In [Agrawal et al., 2021], an improved high probability regret bound 9] (H 2SVAT ) is
proposed, which is the sharpest bound for randomized algorithms prior to this work. Our paper closes the
gap between those previous bounds and the lower bound in tabular setting.

We also run numerical simulations to empirically compare SSR and RLSVT in the deep-sea environment,
which is commonly used as a benchmark to test an algorithm’s ability to explore. The results show that SSR
significantly outperforms RLSVT as predicted by our regret analysis. More details about our experiment can
be found in Appendix J.

5 Proof Outline

In this section, we present an proof outline of Theorem 1 and 2. Since their proofs follow the same framework,
we will present an unified outline and explain the individual steps particularly for each case when necessary.
The details of complete proof are deferred to the appendix.

Notation For the ease of exposure, we will use a simplified notations during this sketch. Specifically, let
x = (h,s,a) and o = (h, sk, af).

5.1 Concentration and Optimism/Pessimism

We start by introducing a set of MDPs Mfy as a confidence set such that the empirical MDP M* belongs
to it with high probability, meaning that we have a good estimation of the true MDP. Specifically, with
M' = (H,S,A P R s1), we define

Mty = {00 = (b, 0) | (= o) + (P = PoVi)| < (e}

where y/e¥ (z) = ofi (z) and \/ef, (z) = of ().



Define the event ny = {M ke Mﬁy} Then, by applying Hoeffding’s inequality or Bernstein’s inequality,
for both types of perturbation, it is possible to show that
2

P((eh)) = (i g at) < 5

Since the value function is bounded in [0, H], this inequality tells us that the regret incurred by bad estimation
is at most O (H). To be precise, it holds with high probability that

M8

b
Il

1

ZK:]l {(€5)} (vi=vim) (sh < o). (7)

k=1

Then, to better control the estimated value function, we need it to be bounded, which requires us to clip
it. Specifically, we will use two crucial properties of our clipping method. First, if @h’k(s,a) > Qi (s,a),
V(s,a) € S x A, then we have V1 (s) > V*(s),Vs € S. Similarly if @, ,(s,a) < Q}(s,a), V(s,a) € S x A,
then we have Vi, (s) < V;*(s),Vs € S.

In addition, we can prove that whenever a clip is triggered for sﬁ, we have nk(h,s’g,aﬁ) < ay with
ap = 6(H 2). As a result, it is possible to show that the total regret incurred by clipping is at most
0] (H 48 A), which is a lower-order term when 7" is sufficiently large. That is, let £7'y" denote the event that
there is no clipping during episode k. Then, it holds with high probability that?

K
So{ck (e (vl* - v;j,:') (s¥) < O (H524). 8)
k=1

As claimed before, because of the randomness in Gaussian noise, our algorithm SSR will encourage
exploration and it takes effect when there is no clipping and the estimation is not too bad. In other words,
it can be optimistic. However, also because of this randomness, its optimism only holds in a probabilistic
sense. In precise, it is possible to show that

P (Vii(s) > Vii(s),Yh € [H],s €S| Cf,) > Cy, (9)

where the value of constant Cf, depends on the type of noise we choose. Meanwhile, we can also prove a
very similar probabilistic pessimism, which means to have V, i (s) < V;*(s),Vh € [H],s € S with constant
probability. The property of optimism and pessimism will help us upper bound the absolute value of
Vi* (k) — V1 k(s¥), which will be discussed soon.

5.2 Regret Decomposition

Now, given equations (7) and (8), we can see that for each episode k, it only remains to bound 1 {Ck N EC“’”} (Vl* - 1”;) (sh).
Technically, the further defined the good event Gy will help make V', . better-behaved. Its precise definition

will be given in the appendix. Therefore, it is sufficient to bound 1 {Gj} (Vl* — Vf,’;) (s%), which means to
have

Reg (M, K,SSRyy) < Z 1{G} (V;" — V1 Kt Vi — Vi )(sh) + 0 (HYS4). (10)
%,_/
pesmmlsm estimation error

To proceed, we need to define two auxiliary value functions V, , and ﬁh,k, which are obtained by
virtually running policy 7% on some deliberately perturbed MDPs. In particular, they are designed such
that V, , < Vi < Vi holds under the good event Gy.

2Technically, this is not precisely how we bound the regret incurred by clipping, but it aligns better with the intuition.
Full technical details can be found in Appendix.



Pessimism Term Here, as a technical novelty, we bound the pessimism term’s absolute value. Meanwhile,
different from Zanette et al. [2020] and Agrawal et al. [2021], by applying both optimism and pessimism,
we do not resort to an independent copy of the perturbed MDP to bound the pessimism term and give a
conceptually simpler analysis. In particulary, by defining C; = 1/ min {Cho,Cpe}. it is possible to show
that

1400 Via(sh) = Vir(eh)] < 140 0 ([ratsh) = VikGsh)

b -vaeh]).

The full proof is given in Appendix under Lemma 15.

Estimation Error Term The sum of pessimism term and estimation error term can be further bounded
via the techniques of recursion used in Azar et al. [2017]. However, we want to emphasize the difference that
in their algorithm, the estimated value is optimistic with high probability, which makes V', 1 (s¥) — V;*(s¥)
always positive. Instead, since our optimism only holds with constant probability, we use absolute value to
keep the estimation error terms positive. As a result, we show that

‘V1k—V1k’(51) Vlk—Vlk

’Vlk Vi k.( § <e3CZH: (Lo (@h) + M) (12)
h=1

where L denotes some poly-logarithmic term and My, ;, denotes some martingale difference sequence term
at period h, episode k. The full proof is given in Appendix under Lemma 19,

5.3 Combining Different Terms

By combining equations (10), (11) and (12) and applying concentration inequalities to MDP My, x, it is
possible to show that

K H
Reg (M, K,SSRyy) < ¢ 33" 1 {Gy} Lok (af) + O (H\/T n H452A) . (13)

k=1h=1

Then, a final high-probability regret bound can be obtained by summing each individual terms over k, h
separately. It is well-known among literature that

>3\ <0 (vasar), % ﬁ <O (HSA). (14)
nE(Ty,

k=1 h=1 k=1 h=1

Recall the definition of of;, in equation (5). By using these two inequalities, the bound in equation (13) can
be made explicit if we use Hoeffding-type noise. As a result, we have

Reg (M, K, SSRy,) < O (Hl'S\/SAT + H452A) .

5.3.1 Bound on Sum of Variance

Analyses become more involved when Bernstein-type noise is used. Specifically, notice that inequalities in
(14) cannot directly be used to bound >, , V (pfk,vhﬂ_k). Here, we apply some techniques developed in
, k ;

Azar et al. [2017]. However, since the optimism only holds with constant probability, the details for specific
terms are quite different.

For the ease of exposure, we will ignore all constants and define ¥ e =YV (15’2,, Vﬁ), v hik =V (15’,1,, Vi, k).
’ th ’ lh 4
Then, by using Cauchy-Schwartz inequality and equation (14), we can get

U S 1 G) ﬁ( @Wﬁh,k) < ¢6<HSA>§n{gk}(vz,k+m) (15)



Here, note that U ~ _, , o5, (2};). Then, after some steps of algebra, it is possible to show that

H ~ ~ ~
3 1{G) (V;,k + Vh,k) <O (HT + HU) (When T > Q (H?S2A))

1

Mx

x
Il

1h

O(\/HSA (HT + H?U) ) (H\/SAT—i—HlE’\F) (By using equation (15))

Now, we can see that Y, , of,(z}) ~ U < 9] (H V SAT) satisfies this inequality. Finally, by plugging this

result back into equation (13), we can have
Reg (M, K,SSRp.) < O (H\/SAT + H4S2A) :

which matches the known lower bound when T' > € (H6S3 A).

6 Conclusion

We gave a new algorithm with randomized exploration, SSR, for tabular MDP, which enjoys a near-optimal
9] (H V SAT) regret bound in the time-homogeneous model. Previously, near-optimal regret bounds can
only be achieved by optimistic algorithms. Our result also highlights the importance of using a single
random seed for the entire episode and using the variance information in tuning the magnitude of noise (cf.
Bernstein’s inequality).

One important open problem is whether randomized exploration can a achieve a horizon-free regret bound
in the time-homogeneous model where the transition is the same at different levels [Zanette and Brunskill,
2019, Wang et al., 2020, Zhang et al., 2020a]. Another possible future direction is to consider whether
the sub-optimal lower order terms O (H*S?A) can be further improved to relax the current requirement
T > Q(H®S3A) for being near-optimal.
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A Table of Notations

Symbol Meaning
S The state space
A The action space
S Size of state space
A Size of action space
H The length of horizon
K The total number of episodes
T The total number of steps, T = HK
7k The greedy policy generated in Algorithm 1 at episode k
R s.a Expected reward function at (h, s, a)
Prs.a(s) Transition probability
M Underlying true MDP, M = (H,S, A, R, P, s1)
Qk(h,s,a) Zk’ 11{(8h 7ah/) (s,a)}
Ry 4 Estimated reward function, m Z ]l{(sh,ah) (s, a)}rh7g}'7a},
]?ff’s’a (s") Estimated transition kernel, m S {(sh, al, sh ) = (s,a,8)}
Py (s) Estimated transition probability with a shghtly different
) denominator, m S {A(S’“ ap,, shiq) = (s,a,8)}
M* Estimated MDP, M* = (H,S, A, P, R, s1)
v (h, s, a) ot (h,s,a)/log(40k*)
2k Perturbation’s single random source during episode k
from a standard Gaussian, 2, ~ N(0,1)
we, (h, s, a) Noise of type “ty”, w (h,s,a) = ol (h,s,a)z
ng(h,s,a) 77@ (hvsaa)
Et}l,c(h7 s, a) vtky (h,s,a) . o
Mty Perturbed estimated MDP with ty-type noise, M = (H,S, A, P, R + wfy, s1)
%gy Negatively perturbed MDP, Mﬁy = (H,S, A, AfD,AR + wi‘:y, s1)
Mty Positively perturbed MDP, Mfy =(H,S,A,P,R+ @fy, 51)
Vi | Vitk Optimal value function at step h for true MDP M
%X " V,Zr,’; Value function at step h by running policy 7* on true MDP M
@h, & Q-value function obtained by running Algorithm 1
Vi Value function obtained by running policy 7% on M
with a clipping of threshold 2(H — h + 1)
Vi Value function obtained by running policy 7% on M*
’ with a clipping of threshold 2(H — h + 1)
Vi Value function obtained by running policy 7% on Mk
with a clipping of threshold 2(H — h + 1)
Rz,s,a Rh s,a Rh,s,a
P}lf,s,a <Ph,s,a - Ph,s,m Vh*+1>
HY The historical observations and actions till time A in episode k,
{(s{,a{,r{) cj<kand < Hif j <k, elsel < h}
ﬁfl The historical observations and actions till time h and episode k,
plus the randomness in episode k, H U {2}
V(P,V) Variance of V € RS under distribution P € A%, Y o P(s)(V(s) — (P,V))?
Qg 200H? log(2H S Ak?) log(40k*)
ot (h,s,a) Magnitude of perturbation. ty € {Ho, Be}
ty Reserved subscript for denoting perturbation type, ty € {Ho, Be},
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where “Ho” denotes Hoeffding—type and “Be” denotes Bernstein-type

k log(2HS Ak?)
OHo (h787a) HW+ nk(hsa)-‘rl

E (h 16V(Pf | Vini1)log(2HSAK?)  65H log(2HSAk?) log(2HSAK?)
OBe ( ) Sy a) ny (h,s,a)+1 + ng(h,s,a)+1 + nk(h,s,a)+1

% [log(2H S Ak?) H
eHo(h’ &2 a) H ng (h,s,a)+1 + ng (h,s,a)+1

6V(PF Vi, )log(2HSAK?)  9H log(2HSAk?) log(2H S AK?)

ny(h,s,a)+1 ng(h,s,a)+1 ng(h,s,a)+1

er. (h,s,a)

Gy D(1.5)—®(1)

B Good Events

Definition 1. Let M’ = (H,S, A, P', R, s1). We define the following confidence sets for both Bernstein-type
and Hoeffding-type noise

Mfy = {M/ : V(h, S, CI,) ) |(R;L,S,ll - Rh,s,a) + <P};,s,a - Ph,S,tlv V;+1>| S efy (ha S, a)} ) (16)

where the confidence widths are set as

6V (Pl Virer ) log (2HSAR?)

ek (h,s,a) =
Be ( ) Nk (h, S, a) +1 (17)
9H log (2H S Ak?) N log (2H S Ak?)
ng (h,s,a) + 1 ng (h,s,a) +1’
log (2H S Ak?) H
. 1
ho (5, 0) = ng (hys,a) +1  ng(h,s,a)+1 (18)
We also define two events £ and E} as the following:
log (2H S Ak?) 1
- S,a S ) h’ ) 1
& = {‘Rh” Bs. nk(h,s,a)+1+nk(h,s,a)+1 v (h3,0) (19)
N 6V (Pl 00 Vitss ) log RHSAR?)
5,’3 = ‘<Pl]:,s,a - Ph-,S,GJ Vhik+l>‘ g
ng (h,s,a) + 1 (20)
2
8H log (2HS Ak ),V(h sa) b
ng (h,s,a) +1

We have the following lemmas about concentration of events.

Lemma 1. For fized (k,h,s,a), let n = ny (h,s,a). Then, if n > 1, for any fized 6 > 0, we have

A log (2/6 1
P <|Rz,s,a - Rh,s,a| Z Og( / ) + ) g 0.

n+1 n+1

Proof. Let Rh sa = nil > T(hys.a)ir Where T s.a).i ~ Hhn,s,q are 1.i.d. samples. By definition of the MDP,
we have E [r(ms,a)’ ] = Ry 5,4- Then, notice that

- 1 IR 1 =
Rk R T(h,s,a),i = — T(h,s,a)i — —7 2% T(h,s,a),i-
h,s,a n + 1 ; (h7‘7 )7 n ; (hv i )1 n (n + 1) Zz:; (hw ) )v
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Since the reward is assumed to be bounded in [0,1], we have oy 3700 T(hs,) < 77 Then, for fixed
6 > 0, we have

n+1 n+1

log (2/6 1
('Rhsa _Rhas)a| Z Og( / ) + )

” 1 - log (2/6) 1
= n s:a)d R s,a T T T ) s,a),t 2
( ;r(h,.,), h,s, n(n—f—l);r(h”)’ ] +n—|—1
Y 1 log (2/4 1
<P ( — ;T(/hs,a)yi —Rpsal + 1 > 05 :—/1 ) + n -+ 1) (By triangle inequality)
n 1 2 6
<P ( — ;T(h,s,a),i — Rpsa| > 0g2(71/)> (Since n+1 < 2n for n > 1)

(By standard Hoeffding’s inequality)
O

Lemma 2. For fized (k,h,s,a), let n = ny (h,s,a) and V € R® be some non-negative value function such
that V||, < H. Then, if n > 1, for any fized 6 > 0, we have

P(\{PIM Pooor V)| 2 12280 T )s& (21)

n+1 n+1

6V (P, V) 108 (2/9)  spr10g (2/6)
P o — > = <. 22
o (e L L LN T ) DR

Proof. For fixed (h,s,a), we generate n i.i.d. samples of $(4,5,a),i ~ Ph.s,a and consider V (S(n.s,0),s). Then,
by taking ny (h, s,a) = n, we have

<P}If,s,a’ > ZV S(hsa) ( +1 ZV S(hsa) )

The first result in equation (21) can be proved very similarly as Lemma 1 using Hoeffding’s inequality by
simply replacing the upper bound of 1 in reward by H
Then, for second result, we first consider n > 2. For some § > 0, define

2V (P;’fs @ V) log (2/0)  7HI10g(2/8) H
n—1 3(n—1) n+1

b(h,s,a)m =

By noticing that F' (s) < H and applying similar technique in proof of Lemma 1, we have

P (‘< Ailzc,s.,a - Ph,s,tu V>‘ > b(h,s,a),n)

‘> QV( héa,V)IOg(Q/(S) 7H log (2/6)
2 n—1 3(n—1)

<P ‘<P}If5a — Phg.a, V>

<é. (By Lemma 31, the empirical Bernstein’s inequality)

Then, since 3 (n — 1) > n+ 1 when n > 2, we can easily check that

6V (P;fs aﬂv) log (2/6) 8H log (2/6)

b <
(h,s,a);n = n+ 1 n+1
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Finally, since ||V||_, < H, when n = 1, we trivially have

6V (P}’f,s,a, V) log (2/9)  8H log (2/5)
n+1 n+1 ’

6V (f’;’f,s,a, V) log (2/0) 8K 10g (2/9)
h,s,a e >‘ > < 0.
. n+1 n+1

Lemma 3. >~ P ((5,})0) <

Proof. Let n = ny (h,s,a). Then, for some fixed (h,s,a), n > 1 and 6, > 0, by Lemma 1, we have

- log (2/6,, 1
IP |R§éa - Rh.s.a‘ Z Og( / ) + S (5,”.
o o n+1 n+1

Therefore, by taking 6,, = a union bound will give us

1
HSAn?>

> R log (2H S An?) 1 =1 72
ZZP({IRZvS,a—Rh,J,Az 1t gzﬁz?

n=1 h,s,a

Therefore, we have

) L log <2HSAn;C (h, s, a)2> 1
P H h7 ) : h: ) >07 R safR s 2
D s a) 11 (s a) Tl
<™
- 6

Since the MDP is time-inhomogeneous, each (h, s,a) can only be visited at most once during one episode,
which implies ny, (h, s,a) < k. Therefore, we have

log (2HSAny, (h, s,a)) 1 < log (2HS Ak?) 1
ng (h,s,a) +1 ng (hys,a)+1 = \ ng (h,s,a)+1  ng(h,s,a)+1
and thus the proof is complete. O

Lemma 4. Y7 P ((£2)°) < %2~

Proof. This proof will be very similar to proof of Lemma 3. In specific, for fixed (h, s, a), let n = ng (h,s,a) >
1. Then, for any 6,, > 0, since HV,:‘HHOO < H, by Lemma 2, we have

6V (p/f,s,av Vf;k+1) log (2/6,) N 8H log (2/6,,) 5

P [(AE = P i)
hysa S his,ar Vhtl n+1 n+1 -

>

Therefore, by taking 4§, = m and applying a similar union bound argument used in the proof of Lemma

3, we can conclude Y~ P ((£3)°) < "—62. O

We further define the event Cf, = {M ke ./\/lfy} With what we have proved above, it will be straight-

forward to show the following results about ny.
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Lemma 5. 577, P ((Ch.)) = X2, P (M1 ¢ M, ) < 7

Proof. We can easily notice £} NE2 = M* € M&,, which implies M* ¢ Mk, = ()° U (E2)°. The
first result then follows straightforwardly by applying Lemma 3 and Lemma 4. O

Lemma 6. 07, P ((Ch,)") = X, P (Wt ¢ Mb,) < %

Proof. Similarly, for fixed (h,s,a), we generate n i.i.d. samples s, s.4)i ~ Phsa and 7(h5.a)i ~ Zh,s,a for
i = 1,...,n respectively. Define Y, sa)i = "(h,s,0),i T Viry1(5(h,s,a),i) and we have E [Y(hﬁw)?i] = Rp 50+
(Ph,sar Virs1):

By definition of MDP, we know that Y(; ) ; < H. Thus, we can use an argument similar to the proof
of Lemma 1. In specific, let n = ng(h, s, a) and for 4, > 0, we have

P( oy [l @/5,) | H )

B n+l n+tl
=P (‘ (Rﬁ,s,u - Rh,s,a) + <]3,’f,57a — Phrsa Vh*+1>’ > H log (2/6,) I >
<

1
n+1

Z Yv(h,s#a),i —-E [nh&@ﬂ}
=1

n+1 n+1

Then, we can take §,, = m and apply a similar union bound argument in used in the proof of Lemma 3.
As a result, we can obtain

We can also have well-behaved bounds on magnitude of noise and estimated value functions.

Definition 2. We define wg, (h,s,a) = ol (h,s,a)z; and ¢ (h,s,a) = ol (h,s,a)\/log(40k*). We define
the event &' as

&Y = {V(h,s,a), |wfy(h,s,a)| < %ky(h,s,a)} )

2

Lemma 7. lele P ((£X)°) < & regardless the type of noise we choose.

Proof. For any k € [K], by the tail bound of Gaussian distribution,

4
P (|2k| > \/log (4Ok4)) < 2exp <log%0k)> < %

Summing over k € [K],
K K oo 2 7T2
E\C) _ s
;P ((5w) ) - ;P (|zk| > /log (40k4)) <> S
Note that this result does not depend on the type of noise we choose. O

Now, we define the following good events that hold with high probability and will be used throughout
the whole proof.

Definition 3 (Good events Gi). Let Gy oy = {CE, NEX}.
The subscript “ty” will be ignored later since it is clear from the context.

Definition 4. With a; = 200H?log(2H S Ak?) log(40k*), we define events ELFy and EL4™ as

h
gltszk = {nk(hv Sfu aﬁ) > ak} ) gicz?km = m gztflbc (23)
i=1
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We will show that under events £, £ and MF e M¢,, no clipping happens on s

Lemma 8. Assume that £, £/ and M* e MG, hold. Then, regardless the type of noise we choose, it
holds that -
(@ i(shyan)l < 2(H = h+1),

which immediately tells us that no clipping is triggered for any (s¥,af).

Proof. We have that

D (kB Dk Pk i k ko kY5
Qn sy ap) =Ry g or + <Ph,sgﬁa;f7vh+1,k> + vy (B, s, @) 2.

h%

As we have ’Vh+17k| < 2(H —h) by clipping and Rz,shaf € [0, 1], we only need to show that aé"y(h, sk af)z <
1. Under event &%, we have |of (h,sf, af)%| is bounded by v (h, sy, af) = U@(hﬁﬁ,uﬁ)JW.
Note that we have Vi x(s) € [-2H,2H] by clipping for any s € S. Thus, by Lemma 32, we have
\Y (P}]Zsﬁa,V}L+]ﬂk> < 4H? for any (h,s,a).

By taking oy, = 200H?2 log(2H S Ak?) log(40k*) and referring to the definitions of o&,(h, s, a) in Equation
(6), we can check that

Vhe(h, s, af)

=0t (h, s, ai) v/ 1og(40k*)

(o (p:’sﬁ’aﬁ’vkyhﬂ)log(2HSAk2)+65Hlog(2HSAk2) Tog (40K
ni (o) + 1 i (b s i) + 1

2
. \/ log (2H S Ak?) g (405

ni (h,sk,af) +1 .

IN

4H?log (2H S Ak? Hlog (2HSAK? log (2H S Ak?
\/6 og ( Sk)+65 og ( Sk:)+ og (2HS Ak?) Tog(40%7)

(7% ap 677

<\/i4+ 05 + 4/ . <1
—V 200 200H 200H2 —

Thus, we have v&_ (h,s,a) < 1 and we can similarly check that 74, (h,s,a) < 1. As a result, we have

|Qu(sh,af)| < 2(H — h+1),

(Event £ implies ny(h, s¥,ak) > ay)

which completes the proof. O

C Optimism
Let HY¥ denote the history trajectory, which is defined as
Hy={(s],a],r]):j<kand I < Hifj <k, elsel <h}. (24)

We will prove that for both types of noise, V. is optimistic with constant probability under certain condi-
tions.

C.1 Hoeffding-type Noise

Lemma 9. Condition on history ’H';I_l, if Gruo holds and Hoeffding-based noise is applied, then Vh’k 18
optimisitic with constant probability for any h € [H]. Specifically, we have

P (Vihi(s) > Vi (s),Yh € [H],s € S | HE Y, Grnto) > ®(1.9) — B(1) := Chyo.
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Proof. We will show that if 2, > 1, then for all h € [H] and s € S, we have V, x(s) > V;*(s). The proof will
use induction and the argument is true for h = H +1 as Vigi1x(s) = Vi, 1(s) = 0. Suppose the argument
is true for timestep h + 1 and for timestep h we have

Vii(s) =clipy(g_p+1) (I(fgfi(@h,k(& a))

> min {Q(H —h+ 1),max@h’k(s, a)}

@h (s, (s ))}
zmin{(H—h—Fl Azsw*(g)—k

>min {(H — h+1),
) (Bl voms o Vi) + ol (s, m3(5)) 2}
> min {(H —h+1), be srr(s) T <Ph s ()0 Vi, k> +op(h,s W,L(s))ék} (Inductive hypothesis)
> min { (H = B+ 1), R o na ) + (Phacns 9 Vi) }

(Since M* € ME,, inferred by Gi po and 2, > 1)

>min {(H — h+1),Q5(s,m(s))}
=2Vi (s).

Then by induction we have that the optimism is achieved for all h € [H] and s € S simultaneously. Mean-
while, as stated in Definition 2, we have 2, < 4/log (40k*) under event £ and numerically, /log (40k*) > 1.9.

Therefore, the probability that 2; > 1 under &, inferred by Gy, 1o, is at least
®(1.9) — ¢(1)
®(1.9) — ¢(-1.9)

P (2 > 1| Hi ", Grpo) = > ©(1.9) = ©(1) == Cho.

Thus, we can conclude that

P (V’Lk(s) > V}L*(S)7Vh S [H],S es | Hzilvgk,Ho) > C’Ho~

C.2 Bernstein-type Noise

The following proof of optimism applies some techniques used in Zhang et al. [2020a]. We first present a
technical lemma.

Lemma 10. Let f. : A® x RY x R x R = R with f. (p,v,n,L) = -5 (p,v) +max{4\/v(f+”1)L, GSflL} -z
for some constant H > 0 and z € R. Then, f, satisfies

(i) f.(p,v,n, L) is non-decreasing in v (s) for allp € AS, ||v|| <2H, L >0,n>3 and z € [-1.5,1.5]

(“) fz (p,v,n,L) 2 nL_H <pa'U> + (3 V(f_:l)L -+ %) LA fOT’ z € [1,15]

(ii) f.(p,v,n, L) < 25 (p,v) + (3\/w + fﬁ’i) -z for z € [-1.5,—1].

Proof. 1t is obvious that f, (p,v,n, L) is continuous in v (s) and not differentiable at only one point where

4,/ V(T’;Jfl)L = 6ﬁflL. Therefore, to prove statement (i), we only need to show that %&’?’L} > 0. Specifically,

we have

8f2 (p,’U,Tl,L) _ n . S V(p,’l))L 64HL 4p(5) (’U (8) — <p,1)>)L .z
dv(s)  n+l p()+1{4 n+1 Zn+1} VI + 1)V (p,v) L
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(@) n V(p,v)L _ 64HL —8HL

> p(s)+144 > -z
n+1 n+1 n+1 \/(n—I—l)V(p,v)L

(b) n z

> _z

> p(s) (n+1 2)

> 0.

Here, The inequality (a) holds because |[v|| < 2H and v is non-negative, which means to have v (s)—(p, v) >
—2H. The inequality (b) above holds because when the condition inside indicator 1 {-} holds, we will have
\/(n +1)V(p,v) L > 16HL. The last inequality holds because we have n > 3 and z < 1.5. Therefore,
f- (p,v,n, L) is non-decreasing in v (s).

Vipu)L 64HL 8HL
i 2 nd holds, we have it <

For the statement (ii), we consider two cases. First, when 4

V(p,v)L .
%,/ (Pv)L which means to have
n+1

V(p,v) L 8HL>’Z< n 7z |V (p,v)L

SfZ (p7v7n7L)'

n+1 n+1 —n+1<p’v>+? n+1

n+1<p,v)+ <3

V(p,v V(p,v . ..
When 4,4/ %I)L < % holds, we have 34/ %I)L < %, which similarly leads to

V(p,v)L 8HL
n+1 n+1

" (p,v) + (3

TL+1 )'ngz(p,’l],n,l/)-

The state (iii) can be shown similarly and thus the proof is complete. O

Lemma 11. Condition on history ’H’;{l, if G.1o holds and Bernstein-based noise is applied, then V. is
optimisitic with constant probability for any h € [H]. Specifically, we have

P (Vi (s) > Vi (s),Vhe [Hl,s €S| Hy ", Grpe) > ®(1.5) — @ (1) := Cge

Proof. Similar to what we have discussed in the proof of Lemma 9, under event &, we have 2;, € [1,1.5]
with probability at least ® (1.5) — ® (1) = Cp.. Then, we will show that Q, , (s,a) > Q} (s,a) for any h
with arbitrary s,a and 2; € [1,1.5]. The proof will use induction. For simplicity, let L = log (EHSAkQ).

For h = H + 1, the inequality holds trivially because both sides are 0. Then, by assuming @}, , . (s,a) >
Qs (s,a) for any (s,a) such that ny(h,s,a) > 3, we have

Qh,k (87 a) = Ri,s,a + <Pilf,s,aavh+l,k> + Ulge (h7 S, a) ’ék

4 (P}Izv,s,avvhH‘l:k) L 64HL
ng (h,s,a) + 1 ng (h,s,a) + 1

© 2k

2 Rh,s,a + <p}lf’3’a,Vh+1,k> + 4J
(Replace Ry .o by Rh..a through applying event & defined in (19))

V (ﬁ}ic,s,a7vh+1’k) L 64HL
ng(h,s,a)+1 "ng(h,s,a)+1

> Rh,s,a + <J5;f,s,a,7h+1,k> + max 4\J

Py e Vh*ﬂ) L e4HL

g) Rhsa+ <]5;lfys7a, Vh*+1> + max 4$ Y (

nig (h,s,a)+1 " ng(h,s,a) +1 R
S P (Phoas Vi) SHL .
= h,s,a < h,s,a’ h+1> Nk (h, S,CI,) T+ 1 + e (h,s, [],) T 1 Zk

(By applying statement (ii) of Lemma 10)
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i 6V (P oo Vit ) SHL
> 5,a Pksaa . i 2 >1
> Rusa+ (PL, Vh+1>+J e RS Wy (o (Since 2 > 1)

> Rhs,a + (Phs,a, Vg1) (By applying event £ defined in (20))
= Q; (S, a) .
Here, the above inequality (a) holds by applying inductive hypothesis and statement (i) in Lemma 10. It is
applicable because when &;* . < 2H. When ng(h,s,a) < 3,

@hk(s, a) > Q7 (s, a) holds trivially because Q5.(s,a) < H by definition. Therefore, the induction is complete.
Now, for arbitrary (k, h,s), set a = argmax,¢ 4 Q) »(s,a) and we have

Vii(s) =clipygr—p41) (gleaj{Qh,k(& a))

> min {2(H —h+ 1),rr1€aj<Qh’k(s,a)}

> min {(H —h+ 1),@h,k(57W;(5))}
>min {(H — h+1),Q} (s, 71(5)) }
th*,k(s)

D Pessimism

Similar to what we have proved in Section C, in this section we will prove that for both types of noise, V, x
is pessimistic with constant probability under certain conditions.

D.1 Hoeffding-type Noise
Lemma 12. Condition on history 7—[’;{1, if Gk 1o holds and Hoeffding-based noise is applied, then V', is
optimisitic with constant probability for any h € [H]. Specifically, we have

P (V;hk(s) < V;(S),Vh S [H],S esS | H’;_;l,gk’Ho) > (1)(19) — (I)(l) := CHo-

Proof. We will show that if 2, < —1, then for all h € [H] and s € S, we have V}, x(s) < V;*(s). The proof will
use induction and the argument is true for h = H 4+ 1 as Vg1 x(s) = Vi, ,(s) = 0. Suppose the argument
is true for timestep h + 1 and we consider timestep h. Set a = argmax,c 4 Q) (s, a).

Vii(s) =clipyg i1y (Qni(s,a))
<max{—2(H —h+1),Q,,(s,a)}
<max {—(H —h+1) Qhksa)}

gmax{ (H—-h+1), hm < Sa,Vh+17k>+Ufy(h,s,a)2k}
<max { (H—h+1),Ry ., <Ph s Vi1, k> + ot (h,s a)zk} (Induction Hypothesis)
<max{—(H —h+1),R} .+ (P, .. Vi) } (Since M* € M}, and 2, < —1)

(
<max{—(H —h+1),Q;(s,a)}
< max {—(H —h+ 1),3162%@,*1(3,@}

<Vii (s)-
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Then by induction we have that the optimism is achieved for all 2 € [H] and s € S simultaneously. By using
argument similar to the proof of Lemma 9, we can see that when 2; < —1, we have V, x(s) < V;*(s) an this
hold simultaneously for any h € [H|, s € S. Furtherm as stated in Definition 2, we have |2;| < /log (40k*)
under event £ and numerically, 1/log (40k*) > 1.9. Therefore, the probability that 2; < —1 under & is at
least

®(1.9) —®(1) B(1.9) — B(1) = Ch.

2 k—1 _
P& < =115 Guo) = B(1.9) — B(-1.9) =

Thus, we can conclude that

P (V}L7k(8) < V;(S),Vh S [H],S IS | H’;{_l,gk’Ho) > CHo-

D.2 Bernstein-type Noise

Lemma 13. Condition on history ’H’f{l, if G 1o holds and Bernstein-based noise is applied, then V. is
pessimistic with constant probability for any h € [H]. Specifically, we have

P (Vi (s) <Vi(s),Vhe [H],s €S| Hy ", Grpe) > Cpe

Proof. Similar to what we have discussed in the proof of Lemma 12, under event £, we have 2, € [-1.5, —1]
with probability at least ® (1.5) —® (1) = Cge. Then, we will show that Q, , (s, a) < @}, (s, a) for any h with
arbitrary s,a and 2, € [—~1.5, —1]. The proof will go by induction. For simplicity, let L = log (2H S Ak?).

For h = H + 1, the inequality holds trivially because both sides are 0. Then, by assuming @hH’k (s,a) <
Qs (s,a) for any (s,a) such that ny(h,s,a) > 3, we have

Qh,k (87 a’) = Rﬁ,s,a + <pllf,s,a7vh+17k> + Ugc (h7 S, Cl) 27‘?

A v (I:)}]Lc,s,a’vh+l,k) L 64HL
ng (h,s,a) +1 +nk(h,s,a)+1

A —
< R}L7s,a + <Ph,s,a7 Vh+17k> -

(Replace Rh,s,a by Ry . through applying event £} defined in (19))

v (P;’f,s,m Vh"+1) L 64HL
nk(hvsaa)+1 7nk(h757a)+1

(a) .
S Rh,s,a + <P}]f7s,a, V'};_l> — max 4

) v (pflf,s,a’ Vill) L 8HL
ng (h,s,a) +1 + ng (hys,a) + 1

< Rh,s,a + <P}lf7s7a7 V};k+l> -

(By applying statement (iii) of Lemma 10)

6V (P’“ I )
<Rhsa+<f%f Vi 1>* e -
— 29 »8,a + ’I'Lk (h/, 87 a) + 1 nk’ (h7 57 a‘) + 1
S Rh,s,a + <Ph,s,u7 VI:+1> (By applylng event 513 deﬁned in <20))

= Q; (s,a).

Here, the above inequality (a) holds by applying inductive hypothesis and statement (i) in Lemma 10. It
is applicable because when & holds, by the clipping function, HVHL,CHOC < 2H. When ng(h,s,a) < 3,

@h‘k(s,a) < @5(s,a) holds trivially because 0 < Q5 (s,a) < H by definition. Therefore, the induction is
complete. _
Now, for arbitrary (k, h,s), set a = argmax, 4 @}, x(s,a) and we have

Vm(s) :Chp2(H7h+1) (ah,k(sva))
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<max{ —2(H —h+1), Qhk(s @)}
<max{—(H —h+1),Q,(s,0)}
gmax{ (H—h+1) Qhksa)}
gmax{ (H—=h+1),0Q5 (s 72(3))}
Vi (s).

E Regret Decomposition

In this section, we prove the multiple lemmas necessary for bounding the regret. The regret is mainly
composed of two terms, the pessimism term and the estimation error term. The pessimism term, Vftk(s’f )—

Vi k(s’f), measures how much regret is due to the value the algorithm uses, V4 .k, 1s smaller than the true
value, V", (s}). The estimation error term, V1 x(s§) — Vi . (s%) measure how much regret is due to the value,

V1.1, does not estimate Tk (51) the true value of the policy 7% accurately.

We first introduce a few definitions key to this section. In this section, we omit & if it is clear from the

context. Let af = ¥ (s¥) unless specified otherwise.

Definition 5. Let P}, = <P,fs = P, V;+1> and RE

h,s,a —

— pk
Rh,s,a - Rh7s7a'

Definition 6 (Mty and V,, ). Given history HESL (defined in equation (24)), P* and RF, we define
wy, (h,s,a) = =L (h,s,a) and V,, ;. be the value function obtained by running policy @ on the MDP
Mfy = (H,S, A, Pk R¥ +ny, sk) plus a magnitude clipping with threshold 2(H — h + 1).

Definition 7 (M

ty

and ?hk) Given history Hi (defined in equation (24)), P* and R*, we define
Eéy (h,s,a) = Al (h,s,a) and ﬁh,k be the value function obtained by running policy ©* on the MDP
ﬁfy = (H,S, A, P* Rk +@fy, s) plus a magnitude clipping with threshold 2(H — h + 1).

Similar to Lemma 8, we can also show that under good event G, and Eﬁf"k, no clipping happens on st for
K}L,k(sz) and ﬁh,k(slli)~

Lemma 14. Under the good event Gy, we have V,, ;. (s) < Vir(s) < ?h,k(s) for allh € [H], s€S.

Proof. This is an immediate result by noticing that under good event Gy, we have wf (h, s, a) < wf (h,s,a) <
wy, (h, s,a) for all h € [H] and s € S. O

>l

Definition 8. Define d} (sn), SZ(sh), EZ(sh), 07 (sn) ,9,(sn), dn(sn) and gh(sh) as

(sn)

n(sn) n(sn) = Vi (sn),
0n(sn) = V(sn) — Vi (sn),
Sk (sn) = Vi (sn) = Vi (sn),
0y (sn) =V (sn) = Vi (sn),
On(sn) = Vil(sn) — Vi (sn),
On(sn) = Va(sn) — Vi (sn)

Definition 9. We denote the history trajectory H, = = H; U{2}. With filtration sets {Hh} , we define

the following sequences:

M, () = T{Gr N ELL" Y [(Prsian s Ont1) — Onta (Sng)] s
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where § € {éﬂ,gﬂ,gw,éﬂ,é, d, g} We will show the sequences are martingales in Lemma 22.

Finally, the regret can be decomposed as

Regret (M, K, SSRyy)

= (v sh) = v (sh)

el
Il
—

1(ck) (Vs = vie(sh)) + S ((€8)) (vrtsh = via(sh))
k=1

™M= T[]~

1 {Cy} < Vi(sh) = Vaie(st) + Vas(sh) — Vi (sh) )

—_3 K . <rk g
pessimism term=—01,,(sf)  estimation error term=4; , (s¥)

]~

+3on((eh)) (viesh - vimish)

(a)

el
Il

1

By Lemma 5 and 6, we know that

2

|y ()] = Er(e) < S (e)) < 5

Therefore, by standard Hoeffding’s inequality, it holds with probability at least 1 — § that

> ien)) <5

(a)<HY 1 ((cfy)c) < %H{ % =0 (H).

Further, notice that the good event G, = Cf, N &Y and by Lemma 7, we have Y P ((£)) < %2

Therefore, we can similarly address the regret incurred by (£*)° as the bound for term (a). As a result, it

will be sufficient, to only consider 1 {Gi} (Vy*,(s§) — Vi - (s%)) when bounding pessimism and estimation error

terms. That is, with probability at least 1 — 4, it holds that

K ok
Regret (M, K,SSRyy,) < Z]l{gk (‘511@ st)| + 1k(31)
k=1

)+, (25)

Then, we decompose the estimation error term in Section E.2. We decompose the pessimism term in
Section E.1. We combine the decomposition of the pessimism term and the estimation error term in Section

E.1 Pessimism Term

_ 1 1 _ 1 ~ k
Lemma 15. Let C; = max{q)(l.g)i@(l), @(1.5)7@(1)} = a5 am ~ 10.9. Then, for any h,k,s; and the

type of noise we used, under the good event Gy, the following bound holds,

k

gh,k(slﬁ) +

1{Gi} [Fun(sh)] < 1 (G} Cu (

). (20)
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Proof. Let O, be the event that V7, x(s) > V;*(s) simultaneously for all s € S and h € [H]. By Lemma 9
and 11, we know that P (O | Hi ', gk) > min {®(1.9) — &(1), P(1.5) — (1)} = ®(1.5) — ®(1), which means
IP’((’) 3 < C1 regardless the type of noise used.

The definition of Oy implies V¥ <E rh,k | Ok, 7—[’}_{1, Qk]. Meanwhile, notice that

LG} (B [V [ Hi ' Gk] = Vi)
=1{Gi} P (Or | Hi ", Gr) (E [V | On, HE ', Gk] = Vi)
+1{G} P ((O) | 1y ' Gk) (B [V | (O8) 1G] = Vi)
()20

>1{Ge} P (Or | Hi7 " Gk) (B [V | On, HE',Gk) = Vi)

= 1{Gi} (E [V | On, Hi ', Gr] = Vi) S 1{Gk}C1 (B Vi | Hi . Gi] = Vi) -

Here, we have term (a) > 0 since V;, ; < V5x under event Gy, by Lemma 14.
Therefore, we have

1{Ge} (Vi (s5) = Vi(sh)) < 1{Gi} (E [V | Ok, Hi ', Gr] (s5) — Vi(sy))
< 1{Gi} (E [V | O, Hip LGi] (s5) _Kh,lc(sh))
<1{G} C1 (B [Vir | HE " Gi] (sF) — Vix(sh)) - (27)

We can similarly use constant probability pessimism shown in Lemma 12 and 13. In particular, let N be
the event that V7, 5 (s) < Vi*(s) for all s € S and h € [H]. Then, we have

1{Gv} (E Vi | Hi G| — §h7k)
=1{Gi} P (Nu | H} ", Gr) (E Vi | N 7', Gi] _ﬁhk)
+1{Gr} P ((Ne) | 7o', G) (E (Vi | (M) LG - ﬁh,,k)

(b)<o0

<1{Gy}P (Nk | Hlﬁfl,gk) (E [Vh,k \ Nk77'llf.fl,gk] - ﬁhk)

= 1{Gx} (]E Vi | Nk,H’}'{_l,Qk] - ﬁh,k) >1{G.} C4 (E Vi | Hl;[_l,gk] _ﬁh,k) .
Thus, we have
1{Ge} (Vi (s5) = Vi(sy)) = 1{Gx} (]E Vi | Ny B, G (s5) = Va k(Slﬁ))
> 1{Gi} O (B [Vix | HE7Gel (55) = Via(sh) (28)

Since good event Gj, implies V,, , < V;L,k < ?hk by Lemma 14, the RHS of (27) is non-negative and the
RHS of (28) is non-positive. Therefore, we can then conclude

1{G} Vi (s£) = Vis(sh)]
<1{Gx}Ci ((]E Vi | Hi ' G (sh) = V(i) — (E (Vi I iG] (1) 77}“’“(82)))
=1{G.} Cy (ﬁhk Sh -V, k(s ))

<1(gi |5 ).

Sh,k(slﬁ)

27



E.2 Estimation Error Term

We first bound the estimation error of ﬁ, which can be regarded as the optimistic estimate used in UCB-type
algorithms. For convenience, we will ignore notation 1 {Gy} in this section since all statements are proved
under the good event Gy.

Lemma 16. With probability at least 1 — &, for all (k,h, s¥), under the good event Gy it holds that

k

1 {g;j‘km Sh,k(sl%i)
cum 2SH?L
UG ([Pt Rl + P00k D]+ M+ Mt * e )
cum C - H + 1 + C =¥ 1 —rk
+ 1{&NTR (Hl 5h+1 k(sthl)‘ + Tl Oy, k(5h+1) H 5h+1,k(5fa+1) )

H+1+C: |=

vie 1 =7 ¢
5h+1 (Shin)| + Vi 5h+1,k(55+1) + i 5h+1,k(5¢z+1)

+1 {gﬁukm n (5h+1 lc) } (iI’l

where L = log(2HS?AK/4).

).

Proof. Since both V and V™" are obtained by choosing actions based on policy 7% under event G;, we have

ﬂ,k

1 {5wm ghk(slfi)

=1 {&7"} [Van(sh) = Viri(sh)|

=1 {&"" Qh L(s7,ar) — QF k(s’ﬁ,aﬁ)‘ (Since no clipping under 4™ for ?hk(sﬁ))
cum 52 ﬂ'k

=1 {&n Ry sk ak — Bhskar + wy, (h, sy, ap) + <Pk k’a§7vh+1,k> - <P;]f,s’;,a¢;vvh+1,k>’

=L{EN Y R o or — Rt ap + 00 (hys),af) + <P§’Sﬁyaﬁ,7h+17k> - <Ph,sz,a';7Vh”41,k>

k k
(B o = Pt Vi) = (B o = Pt Vi) |

= k
<1 {gcum (‘ sk ak JrRhS ak +wty(h sh,af)’ + <Ph75ﬁ,a§, Vh+1,k — szr+17k’>>
+1{&n" <P}I:,s’§,a;§ — Prst i Vi — V;{k+1>‘
k
=1 {5ﬁukm (’ h,sk ak + Rz,s’;,aﬁ —I—Efy(h,sﬁ,aﬁ) + 5h+1 k(sh+1) + M 5 (s5) )
h,k\°h

+]l{€cum ’<p}1f9 a Phs ¢ alk s Vh+1k V;+1>‘.

For the last term, we use Lemma 33 and then for L = log(2H S?AK/§), with probability at least 1 — §, we
have

AL = "
‘<P}L,bh u Ph s} };,’ Vh-‘rl,k - Vh+1>‘

< Z ‘P;’f,sz,aﬁ(shﬂ) = Py gk ar (3h+1)‘ ’Vh+1,k(8h +1) - V}f+1(8h+1)‘

Shy1E€S
Ph s a (8h+1)L 4], =
< ‘5h+1,k(3h+1)‘
shgjes nk(h, sh,aﬁ) 3ng(h, sfwaﬁ)
L -
= 2P sk gk (Sh+1 On 1,k(Sh+1
Z h,sp, h( + )\/Pmsﬁ}aﬁ(shﬂ)nk(h, SlfL,a'fL) 1k (sn1)

Sh’+1:Ph.s); ak (sh1)nk (h,sf,af)>4LH?
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+ h+1,k(Sht1)

Z 2\/LPh,sf,a2 (Sh+1)nk(h7sﬁ7aﬁ) =

k k)2
ni(h, sy, a
S;;,+15Ph,sﬁ,a’fb(5h+1)nk:(h78ﬁ-,a£)<4LH2 ( »The h)

4SHL
3ng(h, s’,j, a’,j)

1= 4SHL + 2SH*VL
< Py gk (Sh1) 77 ’5h+1,k(5h+1)‘ +
sh+21€$ e H 3nk(h7 SE’ a’}i)
1 K 2SH’L
< L Fnatobon)] + M+ L
= [°h elshen)| + n k(sh)‘ ni(h, s§,af)
1 |=* 1 |en® & 1 |= % 28 H?L
SE Ont1,k(Sht1)| + T Ont1k(She1)| + T ‘5h+1,k(5h+1)‘ +M|§h,,k(s’g)| m
(By triangle inequality)
1+C |z 3 1| g Ci | in 2SH?L
S [Onrrk(Shn) | + 5 [Ontrk(Shin) | + 7 8, k(5h+1)‘ M s rn(hy s, ab)”
(By using Lemma 15)
Combining the above two arguments, we can prove the argument:
T{Ex"} [Onk(sh)
cum 2SH?L
<1 {5 <‘Ph ot + Rh o + W (hy sk, al) |+ M, e ol T MBunob) * i sE ) s;;a;j))
cum H + 1 + Ch |z 1 |en® C ™
+1{&x (Tl Sk (Shon)| + I Shrk(shar)| + }; 5h+1 k(sz+1)’) :
Then, the proof is complete by noticing that E47, = & NEN, . O

Lemma 17. With probability at least 1 — &, for all (k,h,sV), under good event Gy, it holds that

1 {Scum

ﬂ_k
éhk(sfb)‘

cum 2SH?L
<1{&Y (’P’;ysk,ak + Ry okt + wiy (R, s’;,a’;)( + Mg oy + My, >

ng(h, sk, ak)

k(s

cum C =" H + 1 + C T 1 |==
+1 {5h+1,k (Hl 5h+1 k(5h+1) Tl éhH,k(SlZH)’ + H 5h+1,k(5:+1) )
cum Cy |z H+1+4Cy |
+1 {gh,k N (E}iilk:) } <Hl 6h+1 k(shon)| + Tl 5h+1 k(Sthl)‘ 5h+1 k(She1) )
Proof. The proof exactly follows the proof of Lemma 16. O

Lemma 18. With probability at least 1 — &, for all (k,h,s¥), under good event Gy, it holds that

cum <k k
1 {g 6h,k(5h)

h>

cum 28H?L
<1 {&% (lph sk ak —I—RI; sk ak +wty(h sh,ah)‘ +M +M|3h,k(s >

J’_ - @
’ ’ﬁ)| nk(h,s’fb,aﬁ)

)
)

5h+1 k(5h+1)
Proof. The proof exactly follows the proof of Lemma 16. O

k
h k( h)

H+1
H

cum C ="
+ 1 {&4T <Hl 5h+1 k(SlfLH)

v{emn (eh) ) (S

+ &
H

5Z+1 k(8h+1) 5h+1 k(Sthl)

Cy
H

H+1
TTH

k
524-1 5 (Shy1)

5h+1 k(5h+1)
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Lemma 19. With probability at least 1 — &, for all (k,i,s¥), under good event Gy it holds that
e} (e )
H H H
SH?L
(S bk 3 )
h=i h=i h=

%
2,7”Lk(h7sh7ah

S+ (3,4 (s8] + |87 (1)

H

c —nk =" ™
+ 3 Z ﬂ{(gz’til,k) }<5i+1,k(5f+1) + i+17’€(8§+1) + 6i+1’k(8§+1)‘>
h=i+1
H
301 h 1
1 -]1 5C7J.m M s
+h2=:,-( + =) {E00} Mok
h =M _.x =
where My, j; =M 5;1,:(32) M’ﬁhy,(s L C]
T Mgl ¥ Mg | T M sl

k

h, k(Sh) +

Proof. By summing results in Lemma 16, Lemma 17 and Lemma 18, we have
1 {gcum ( gzkk(sl}i) + szk(sl}i) >

<t{ggn (1457 Frennlstin)

+ |wty (h sh,ah ’Jr |wty (h sh,ah |+ |wty (h, sh,alfb)| +

e otetn)} (14%0) ([

6h+1,k~(51}i+1)

3| PE gt + Rt

h

cum 301 < ok

31 {5}£+1,k (1 + H) (6h+1,k(32+1) h+1,k(8;€z+1)‘>
6SH?L
+3¢/ef, (h,sf,af) + Z’wtky(h7 s ak) + W +1 {grum} Mo
h**h

ol 1 +8) (ot |

Here, the inequality (i) above holds because of two reasons. Firstly, under event Gy, we have |wf, (h, sy, a;)| <
|ws; (h, s}, a;)| and

77‘—]‘:

Op1, K(shi)| +

k
+ |7k )

6SH?L
nx(h, Sh’ah)

Ic

)

]]_ {‘S'Lu'm} Mh &

)

+

77}:}1,k(5ﬁ+1)

+ Sthl,k(sferl)

ha ap

k

+

+ 5h+1,k(52+1)

"

=T k
5h+1,k(3§+1) + 5h+1,k(‘9]}€z+1) + éh-&-l,k(slfi—&-l)

k
P s + Rt

= ‘<Pfl7,€,sf;,a]; — P}usﬁ,ai? V;+1> + (RZ,SQ,(III_‘; — Rh,sk at)‘ (By Deﬁnition :))
< /e (h, sk, af). (Under event Gy, M € ME)
Then, the proof is complete by using this recursion from h = ¢ to h = H and utilizing the fact that
(1437 < 3, O
E.3 Combining Estimation and Pessimism Terms

Lemma 20. With probability at least 1 — 6, it holds that

K H

Regret (M, K,SSR;y) <1 {G} 3C, > Z Z (\/ety (h, sk al) + 7 (h, sh,ah)>

k=1 h=t
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+0 (H's*A+ HVT).
Proof. Recall in equation (25), with probability at least 1 — J, we have
Regret (M, K,SSRyy)

sin{gk (|51k )+
<Zﬂ{gk}cl<
:kij:n{gkmé“’“m}()l(

)

>+O( )

1k(31)

k

1k(51) + 31,k(311€)

+ |87 (sF)

)+

(51) + SLI@(SIIC) +

Tk(st)]) + O

)

ﬂ,k

gl,k(slf) + guc(slf) + é?k(slf)

K H K H
SH?
<1{G} 30, (ZZ ehy(hoshal) + 323 b (b sa) + 303 n<h>>

k=1 h=i k=1 h=1 k=1 h=1

+3D (L+ ) T{G N} My + O (H)

Py e} (|| + (o) + 37tsh)])
k=1 h=1
<1{G.} 30,3 ZZ (\/m+7ty(h sh,ah)> +0 (H3SZA+ H\/>)
+5(H>§K:§H:n {(em)}

=1
K H
<1{G}3C1e™ DY (\/efym,sz,a’z) +vfy<h,sz,a';>) +0 (H'S*A+ HVT) .

(By using Lemma 15)

(By using Lemma 19)

(By using Lemma 21)

The inequality (i) above holds for two reasons. First, it uses Lemma 22 and 24. Second, by our clipping

-~ —
threshold, we know that < Op i (SH) +0n 1 (sE)| +

5zk<sh>|) <0(#)

Lemma 21 (Lemma 20 in Agrawal et al. [2021]).

Proof. Tt holds that

R CEPE Bl IERIELS

s€S acA h=1
< 200H*SAlog (2HSAK?) log (40K*)

O (H*SA).

IN
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(By our choice of ay)
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F Bounds on Individual Terms

F.1 Bounds on Martingale Difference

Lemma 22. For i € [H]|, the sequences starting from 0 and with difference between two consecutive terms

given by L{G}M . for h =1i,...,H, k = 1,...K are martingales with respect to filtration {ﬁ:}hzi e
k=1,. K

Moreover, for any &' > 0, with probability at least 1 — &', for any i € [H], the following hold,

ZZ (1 + 301) 1{Gr N EL I Mok

k=1 h=t

=0 (BVT).

Proof. We first show the sequence starting from 0 and with difference between two consecutive terms given

h
by 1{Gx N & (1+ %) M@.k

(o)) is a martingale sequence. For any h € {i,..., H} and k € [K],

B 100N & Mg 1

ﬂ_k:

5h+1 k(si+1) 5h+1 k(sh+1)

)-

) | H}L:| - 0
Similarly, we have H{GOERT IM oot | HGOEE Mg o MGERT M, gy HGOERT M,
L{Gr N ET M5, (51 L

5y are martlngale difference sequences. As 1{G; N EC“m}Mh © 1s the sum of several
martingale difference sequences, it is a martingale difference sequence.

WG NE Mg 4| When b= H, 11{Ge O ERM M e ()
h,k h h,k h

—E {]1{gk nEgm (<Ph ol

Next, we bound = 0. When G, holds,

for h < H and any state x,

k

5h+1 k |Vh+1 r) — V}ZT+1(~’C)| = |<Ph+2,m,7r(m)7vh+2 - V}ZT+2> + wfy(h + 1,x,7r(x))|

< (Prizan(o)s [Viee = Viia|) + Jwl (b + 1,2, 7(2))|

By our choice of «ay, when Gy wk (h,s,a)‘ < 'yt'“y(h,s,a) < 1 for all k, h,s,a as shown in Lemma 8.

Then, by expanding (5h+1 i = [Vis1(x) — Vi, (2)| recursively from h + 1 to H, we have

‘n{gk N Ecum}/\/l < 2H~f, (h,s,a) < 2H.

( sp)l
Similarly, we have the bound on 1{G; N 5‘“7”}/\/1',; ” 1{Gx N 5“””}/\/1‘5” G 1{G. N Eg?,g”}/\/l‘gh.k(sﬁ)‘,
]].{gk n 5cum}M (s;”)\ and ]].{gk N gg?km}/\/lw

—h,k(sh,)‘
As a result, ‘]1{gk néEmy (1+ %)h Mg
with probability at least 1 — ¢’, we have

is bounded by 12¢3°1 H. By Azuma-Hoeffding inequality,

<0

ZZ (1 + 1> ]l{gk n gcum}Mh k

=1 h=1

F.2 Bounds on Lower-order Terms

The following two lemmas are standard results in literature and we present their proofs here for completeness.
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Lemma 23.

— nk h sh,ah)+1 -

Proof. Let L =log (2HSAK?). Then, it can be bounded as
XK:XH: log (2H S Ak?) ii
— =\ hsh,ah +1_ Py nkhsh,ah)—Fl

nK(hsa)
:f
V n—l—l

5,Q

nk (h,s,a)
< \F / \/>dx

h,s,a

<2VL Z Vg (hys,a)

h,s,a

< 2L - HSAZnK (h,s,a)

h,s,a

— O (VHSAT).

Lemma 24.
K H

— = hsh,ah)+1

Proof. Let L =log (2HSAK?). Then, it can be bounded as

K H 9 K H
— ng h (h,sF,ak) +1 — ni(h, sy, a5) + 1

h=1

< LHSA- Iglaxlog(nk(h, s,a))

< LHSAlog(T)
= O(HSA).

G Bounds on Sum of Variance

ii\/ log (2HS Ak?) <O(\/M).

(By Cauchy-Schwartz inequality)

(Since Zh,s,a ng (h,s,a) =T)

O

(Since 2N, L <log(N)+1)

When we use the Bernstein-type noise, the regret analysis needs to bound the sum of variance. This proof
applies some techniques developed in Azar et al. [2017]. However, since our optimism only holds with
constant probability instead of deterministically, the details are quite different. For simplicity, we first define

sk _ Dk * * . *
Vh+l,k =V (Ph’sﬁ,aia Vh+1) ) h+1,k — \Y (Ph,sg,a;;vvhﬂ) )

el ~]§ J— — JE—
Vg1 =V (Phﬁﬁ_,ar;;, Vh+1,lc) v Vg =V (Ph,s;g,ag, Vh+1,k) ,
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ok _ ok
h+1,k — v Ph,,s;‘;.,a’fg Vh+1,k )

U . Vz+1,k log (2HSAK?) _ @hﬁklyk log (2HSAK?)
h,k,1 nﬂh,s’,&aﬁ)—l—l 9 h,k,2 nk(h7slfwaz)+1

)

We will first give a full proof of the bound on sum of variance and then present all the auxiliary lemmas in
Section G.1.
Lemma 25. Let Uy, = Up 1 + Up k2. For any 6 > 0, with probability at least 1 — &, when T > Q (H°S%A),
it holds that

:c

ln{gk}Uhk <0(H\/STT)

1

]~

B
Il
—
>
Il

Proof. First, we have

K H-1 X Ho1
log (2HSAK?) ( )
1 Uni < 1 v e
1;1; {Gx} hk—;Z {Gx} le(h F a1 erm
K
log(QHSAKQ) \/—
< *
_;gl{gk r(h, sE,ab) + 1 V2V A+ Vg
(Since v/a + vb < v/2(a + b) for a,b > 0)
K H-1 K H-1
log (2HSAK?)
=v2 ne(h, sk af) + 1 1{Gx} +V
J(z; he1 nk(h, sy, af) + > <kz_:1 — {9 ( ht1,k ht1, k))

(By Cauchy-Schwartz inequality)

H—-1
1 {gk (v;‘,ﬁfl’k + Vh+l,k)> ) (29)

k=1 h=1

< \jé (HSA) (i

where the last inequality above applies Lemma 24.
We will then bound the two sums of variance separately. Specifically, by applying Lemma 26 and Lemma
28, we have with probability at least 1 — §/3,

K H-1
Z Z L{Gk} Vi (30)
k=1 h=1
g J H-1 . K H-1 3 .
=3 Z L{Gk} Vi1 + Z 1{Gx} ( 1k 2V2+1,k>

—1 h=1 k=1 h=1

K H-1
<O(HT + HVT + H> + H*S?A+ HY 3" 1{G} 6711 4( shH)). (31)
k=1 h=1
By similarly applying Lemma 26 and Lemma 29, we have with probability at least 1 — §/3,

K H-1

Z Z 1 {gk}ﬁthrl,k (32)

3 K
>
- ) , (33)

H-1

K
T{G} Vi1 ke + Z

h=1 k=1 h=1

1{Gx} (Vh+1,k - QVZ:LJC)

s

H-1
~ K k
<O(HT+HVT+ H* + H*S?A+ HY > 1{Gr} 651 4(sh11)

k=1 1

>
Il

By combining equations (31) and (33), we have

K H-1

Z Z 1 {gk} (V};H,k + “L/hﬂ,k)

k=1 h=1
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ik

6h+1,k(82+1)

K H-1
<0 (HT +HVT + H*S?A+ HY > 1{G;} (5Zil,k(82+1) +

k=1 h=1

)) NEN

Then, by referring to definitions of \/ek, (h, sf,af) and v, (h, s, al), with probability at least 1 — /3,
we have

K H-1

3 n{gk}( s+ 5Z+1,k<sz+1>)
k=1 h=1
H—-1 ok
< Z Zﬂ {Gk (‘6h+1 k 5h+1)‘ + 5h+1,k(sﬁ+1) ))
h=1 k=

<1 {gk}301€301HZZ (\/ efy (h, sf, af) + v (R, Shaah)> +0 (H5S2A + HQ\f)

k=1 h=
(By referring to the proof of Lemma 20)

_ K H-1
<0 <H552A +HVT + VH3SAT + H)

1{Gx} Uh7k.> (By Lemma 23 and 24)
k=1 h=1

K H-1
0 (HSSQA +H*VSAT + HY Y 1{G} Uhk> : (35)
k=1 h=1
By plugging equation (35) into equation (34), we can have

K H-1 X N

Z Z 1{Gx} (V:H,k + Vh+1,k)

k=1 h=1

N K H-1

<0 <HT + HYVT + H*S?A+ H°S® A+ HVSAT + H* )

1 h=1

1{G.} Uh,k)

H-1

k=
K
<0 <HT + H*VSAT + H'S*A+ H*Y Y " 1{Gi} Uh,k>

k=1 h=1
H-1

K
<HT+H2Z

k=1 h=1

1{Gx} Uh,k) (When T' > Q (H®S2A))
Now, by plugging the above result into equation (29), when T' > Q (H®S2%A), it holds that

>

k=1 h=1

H-1

1{Gx} Ui < | O (HSA <HT+ H2Y " o {Gr} Uh,k>>

k=1 h=1

x

-1

K
<O | HVSAT + H1'5\l DN 1{Gk} Uni
=1

:‘

=1

It is easy to check that the above inequality implies Zk L Z L 1{G Uy < 9] (H V SAT) and thus the
proof is complete. O

G.1 Auxiliary Lemmas
The lemmas used for proving Lemma 25 are presented as the following.

Lemma 26 (Lemma 8 in Azar et al. [2017]). For any § > 0, with probability at least 1 — §, it holds that

K H-1
1(Gy) Vi, <O (HT +H2VT + H3) .

=1 h=1

k
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Lemma 27. For any § > 0, with probability at least 1 — 9§, for any k € [K], h € [H], it holds that

SN 2128 log (2HS?AK/6)
h+1,k = 2 h+1,k n (h,Sﬁ,aE) I
- 3_ 2H7S log (2H S? AK /5)
Vht1e < Vh K+ .
bt * ny (h, sk, af)
Proof. The proof apply some techniques in Zhang et al. [2020a]. Fix some § > 0 and let L = log (2HS?AK/§)
for simplicity. First, by Lemma 30, for some tuple (k, h, s, a, s"), we have
3 2L
P(PF, . (s)>Pygals) + ———
( h.sa( )— 9 h,s, (S)+nk(h,s,a)>
~ 2P s.a(s")L L .
<P Pf,.(5) = Pusals) > S b > 2v/ab for a,b> 0
< ( ,L,w(s) hos.al(S) > i (hs.a) +nk(h,s,a)> (Since a +b > Vab for a,b > )
)
<— .
T HS2AK

Then, a union bound says that its complement holds for any (k, h, s, a, s”) with probability at least 1 — 0.
Thus, we have

2
ok _ Dk / * / Dk *
Vi1 = E Ph,s;»;,a;g(s ) (Vh+1(3 ) — <Ph7s;»;,aﬁa Vh+1>)

s'eS

<> P}’fs} at ( (Vh+1( ) - <Ph,82»aﬁ’v’j+1>)2

s'eS

(Since E [X] is the minimizer of min, E {(X - ;E)Q})

3 2L * / * 2
<) (ﬁw“') ’ n<h>> (Visa ) = (Prspag Vi)

s'eS
3 2H?Slog (2HS?*AK/6)
*Vh+1 K :

ni(h, s¥,ak)

For Vj,11x, we just need to follow a similar argument and thus the proof is complete.

Lemma 28. For any 6 > 0, with probability at least 1 — 9, it holds that

K H-1 R 3 . _ K
Z Z 1 {Gx} (V;Jrl,k - §VZ+1,1C) <0 (HZ

k=1 h=1 k=1 h=1

H-1

1{Gi} 671 p(sksr) + HVT + H? 52A>

Proof. We begin by applying Lemma 27. Thus, with probability at least 1 — g, we have

Ve 3 wk
1 {gk} ( h+1,k — 2Vh+1,k>

3 4H?Slog (4HS?AK /) (By Lemma 27)

3 * s
1{Gx} (2vh+1,k - 2Vh+1,k> + S (h, sk, ab)

3 3 ~
1{G:} (2V2+1,k ~5 Zi17k> +0 (H?’SQA) (By Lemma 24)

K & 2 ~ . k
<G B, [(v,;l(s/))z— (Vi1 4(s) ] +O(H'S*4)  (Since Vil 4 < Vi)
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H-1
1{G:} Es’~Ph.S§

Mx

| /\

31 [T + O (17524)

ap

=~
Il

1h=1

(Since Vh”:Lk <V, <Handa®—b*=(a+b)(a—Db))
B K H-1
0 (HZ

k=1 h=1

1{Gk} 071 (shr) + HAVT + H352A> (By Lemma 22)

The last line above holds because by Lemma 22, with probability at least 1 — %, we have

K H-1
k k ~
S 1{G} (Bamr, o [T00a(s)] = 0Fhaa(shi)| < O (HVT).
k=1 h=1 o
O
Lemma 29. For any ¢ > 0, w ith probability at least 1 — 9, it hold that
K H-1 . 3 i _ K H-1 "
Z Z 1 {gk} (Vh+1,k - §V2+1,k> S O (HZ 1 {Qk 5h+1,k(52+1) -+ HQ\/T_'_ H352A> )
k=1 h=1 k=1 h=1
Proof. Similarly, we begin by applying Lemma 27 and with probability at least 1 — g, we have
K H-1
= 3 -
Z Z 1{G:} (Vh+1,k - 2vh+1,k>
k=1 h=1
<i’“1 G 35 3t 4H2S log (6HS2AK/S)
T MR\ g iR T g ThtLk 3ng(h, sy, ak)
K H-1 3 3 B
< ; }; 1{G} <2vh+1ﬁ,€ -3 Z+1,k) + 0 (H*S?A) (By Lemma 24)
3o — 2 ko2
=3 Z 1{Gx} (<Ph,s’;,a§a (Vhsrk) > - <Ph,s§,a};7 (Vhﬂ+1,k) >>
k=1 h=1

(a)

+ 1 {gk} (<Plz,s,,,a,;"/;zrj1,k>2 - <Ph,sﬁ,aﬁj>vh+1,k>2) +6 (H382A) '

D

=1 h=1

N W

K H-1
k

(b)
(By definition of variance)

We will bound (a) and (b) separately. For term (a), with probability at least 1 — g, we have

T

-1

(a)

7

_ N
1{G} <Ph,s’;;,a’;;, (Vh+1,k)2 - (Vhﬁfl,k) >

x

1M 11
Ayl

IN

16 (Paop ot

Vigrn — Vh+1 k‘ ’Vh+1 kT Vh+1 k’> (Since a? —b* = (a +b)(a — b))

H-1

<3H Z 1{G:} <Ph,5§’a}kl, k= Vh’fl’kw (Since || Vi1 k. < 2H under Gy)
k=1 h=1
K H-1 " N

<303 S 1{G)} 51k + O (HQ\/T) . (By Lemma 22)
k=1 h=1
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For term (b), with probability at least 1 — g, we have

T

-1

K — & _
1{Gk} <Ph,s;,a§, Vidr + Vh+1,k> <Ph,s;,ag7vh”+1,k - Vh+1,k>

k=1 h=1
K H-1 -
< 3HZ 1{Gx} <Ph,s;7,a;3, — Vh+1,k‘>
k=1 h=1
K H-1 . N
§3Hz 1{Gi} [0ps1 (55 11) +O(H2\/T> . (By Lemma 22)

e
Il

1 h=1
Therefore, in summary, we have with probability at least 1 — §/2,

H-1

K H-1 . 3 . _ K
Z 1{Gx} (Vhﬂ,k - §VZ+11¢> <0 (HZ 1{Gx}

k=1 h=1 k=1 h=1

X
67}:+1,k(51}€1+1)

+ H*VT + H3SQA> .

H Proof of the Main Theorems

In this section, we state and prove our two main theorems.

Theorem 1. If the Hoeffding-type noise is used, then for any MDP M = (H,S, A, P, R, s1), for any § > 0,
with probability at least 1 — &, Algorithm 1 satisfies

Reg(M, K, SSRy,) < O (H“’\/SAT + H4S2A) .
In particular, when T > Q (H?S3A), it holds that Reg(M, K,SSRy,) < O (H1‘5\/ SAT).

Proof. By using the result of Lemma 20, under Hoeffding-type noise, with probability at least 1 — 4, we have
Reg (M, K, SSRHO)

<1{G)}3C,e*" ZZ (y/eHo (h, sk, ak) + . (h, sh,ah)> +0 (H452A + H\/T)

k=1 h=1

K H-1
<601 YN < log(2H SAK?) + il i 1) +0 (H452A+Hﬁ)

prien ng(hys,a) +1  ng(h,s,a

O(H'" /SAT + H*S*A).

Here, the second inequality is from the definitions of \/ef; (h, s¥,aF) and v, (h, sF,af), and the last step is
from Lemma 23 and 24.
O

Theorem 2. For Bernstein-type noise and T > Q (H®S?A), then for any MDP M = (H,S, A, P, R, s,), for
any 6 > 0, with probability at least 1 — §, Algorithm 1 satisfies

Reg(M, K, SSRp.) < O (H\/SAT + H452A) .
In particular, if we further have T > Q (H®S3A), it then holds that Reg(M, K, SSRg.) < O (H\/ SAT).

Proof. Similar to the proof of Theorem 1, under Bernstein-type noise, it holds with probability at least 1 — %
that

Reg (M, K,SSRg.)
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<1{Gy} 30,3 ZZ (\/eBC (h, sk, al) + 5. (h, sh,al,i)) +0 <H452A + H\/T)

k=1 h=i

<0 (Z T (11 (G Upy + (| 82HSAR) A )) + O(H*S? A+ HVT)

k=1 h=1 nk(h,s,a) +1 ° ng(h,s,a) +1

—O(HVSAT + H*S?A),

where the last step is from Lemma 25.

I Technical Lemmas

Lemma 30 (Bennet’s Inequality). Let Zi,...,Z, be i.i.d. random variables bounded in [0,1]. Then, for

any § > 0, we have
P(lzZiE[Z} . \/2Var(Z)10g(2/5) . 10g(2/5)> -
n im1 n n

Lemma 31 (from Maurer and Pontil [ 09)). Let Zy,...,Z, withn > 2 be i.i.d. random variables bounded
in [0, H]. Define Z =+ 3" | Z; and V, = IS (Zi— 2)2. Then, for any § > 0, we have

2V, log (2/8) | Tlog(2/9)
n—1 3(n—1) | —

n
- Z Zi| =
i=1

Lemma 32. Let X be arbitrary random variable bounded in [a,b] for some a,b € R. Then, we have
Var(X) < %.

Lemma 33. For any ¢ > 0, with probability at least 1 — &, it holds for all k, h,s,a, s’ that

. 4Py 5.0(8')(1 — Phs.a(s'))l0g(2HS2AK/5) = 3log(2HS*AK/0)
Py (s =P | < = -
‘ h,s,a(s ) h,s,a(s ) — \/ nk(h, s, a) + 1 T nk(h, S, (L) + 1

Proof. Let §' = and fix (k, h, s,a, s’) such that ng(h,s,a) > 1. Then, we have

5
HS?AK

=

Pl—lf,s,a(sl) - Physsa(sl)

Y

4Py 5.4(s — P s.a(s))10g(2/8) n 3log(2/4")
hsa)+1 ng(h,s,a) + 1

IN
~

pf]:,s,a(s/) - Ph,s,a(s/)

v

4Py sa() (1~ Phaa(s") loa(2/8") | 3loa(2/) - 1)

\/ nkhsa)+1 ng(h,s,a) + 1

IA
~

Pl—lf,s,a(sl) - Physsa(sl)

Y

4Py 5.0(8") (1 = Pps,a(s'))log(2/8) n 2log(2/4")
nkhsa)—&—l ng(h,s,a) + 1

2P s.a(8")(1 = P sa(s"))log(2/0") n log(2/¢")
ng(h, s, a) ng(h, s, a)
(Since n+1 < 2n for n > 1)

IN
~

e N W

pf]:,s,a(s/) - Ph,s,a(s/)

Y

)
<§ = AR (By Lemma 30, the Bennet’s inequality)
Then, the proof is complete by taking a union bound over all possible (k, h, s, a, s’). O
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J Numeric Simulations

In this section, we empirically compare RLSVI Russo [2019], UCBVI Azar et al. [2017] and our algorithm SSR
on the famous deep sea environment, which is a tabular environment frequently used to test an algorithm’s
ability to do efficient exploration Osband et al. [2018, 2017], Tan et al. [2020].

Deep sea, as shown in Figure 1, is a grid-like deterministic environment with N x N cell states, action
space {0,1} and action mask M;; ~ Bernoulli (0.5), (7,7) € S, whose values are sampled when initializing
the environment. At each cell (¢, 7). Action M;; represents going “right”, which leads the agent to the lower
right cell, and 1 — M;; represents going “left”, which leads the agent to the lower left cell. An episode of this
environment will end after N steps. When going “left” or going “right” at the off-diagonal, the agent will
receive 0 reward; when going “right” along the diagonal before reaching the lower right corner, the agent will
receive negative reward —O'T(}l. Finally, when reaching the lower right corner, depending on the environment
initialization, the agent will either receive reward 4+1 or —1. In our experiment, we set this to +1, which
results in an obvious optimal policy “always going right” with total reward 0.99 per episode.

The experiment results are shown in Figure 2.%
From the plots, we can see that in both settings, .
SSR performs significantly better than RLSVI as &
predicted by our theory. Specifically, because of
the instability incurred by the independent random fg
seeds and large perturbation magnitude, RLSVI al-
most never reaches the lower right corner in both
settings and thus incurs linear regret. On the other
hand, SSR obtains a much lower sub-linear regret
because it can explore consistently with the single

random seed. = @
Meanwhile, in both settings, SSR performs com- @

parably with the UCBVI, which is expected since r=-1

both algorithms achieve the minimax lower bound

and our analysis does not indicate that one is better Figure 1: An example deep sea environment with N =

than the other. 8 Osband et al. [2017].

=0 |r=1001/N

r=1

Finally, we also do an ablation study to show that the better performance of SSR over the RLSVI indeed
comes from the single seed randomization instead of smaller noise magnitude. In particular, we run both
algorithms in a deep sea environment with N = 25 and apply the same noise magnitude, whose results
are shown in Figure 3. We can see that although using the same noise magnitude, SSR still significantly
outperforms RLSVI.

3Bonuses for all three algorithms are scaled down from the theoretical values by a factor of 7 x 10* since without
scaling, none of them can learn anything even in the deep sea with N = 5.
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Regret of Different Exploration Algorithms

Deep Sea with N =25 Deep Sea with N = 30
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Figure 2: Empirical evaluation of RLSVI, UCBVI and SSR in deep sea environments with N = 25 and
N = 30. The results are averaged over 10 repeated trials and the shaded area represents the standard
deviation. For simplicity, we use Hoeffding-type bonus for both UCBVI and SSR.

Regret of RLSVI and SSR under Same Noise Magnitude

25004 — RLSVI
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Figure 3: Empirical evaluation of RLSVI and SSR in deep sea environments with N = 25, where both
algorithms use the same noise magnitude.
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