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Abstract

Federated Learning (FL) under distributed con-
cept drift is a largely unexplored area. Although
concept drift is itself a well-studied phenomenon,
it poses particular challenges for FL, because
drifts arise staggered in time and space (across
clients). To the best of our knowledge, this work
is the first to explicitly study data heterogeneity
in both dimensions. We first demonstrate that
prior solutions to drift adaptation that use a single
global model are ill-suited to staggered drifts, ne-
cessitating multiple-model solutions. We identify
the problem of drift adaptation as a time-varying
clustering problem, and we propose two new clus-
tering algorithms for reacting to drifts based on lo-
cal drift detection and hierarchical clustering. Em-
pirical evaluation shows that our solutions achieve
significantly higher accuracy than existing base-
lines, and are comparable to an idealized algo-
rithm with oracle knowledge of the ground-truth
clustering of clients to concepts at each time step.

1 INTRODUCTION

Federated learning (FL) (Konečný et al., 2016; McMahan
et al., 2017) is a popular machine learning (ML) paradigm
that enables collaborative training without sharing raw train-
ing data. FL is crucial in the era of pervasive computing,
where massive IoT and mobile phones continuously gen-
erate relevant ML data that cannot be easily shared due to
privacy and communication constraints. FL also enables
different organizations such as hospitals (Rieke et al., 2020)
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and retail stores (Yang et al., 2019) to jointly obtain valuable
insights while preserving data privacy. FL has become an
important technology in the real world with massive deploy-
ments (500+ million installations on Android devices) as
well as a growing market with many solution providers (Mar-
ketsAndMarkets, 2021).

Existing FL solutions generally assume the training data
comes from a stable underlying distribution, and the train-
ing data in the past is sufficiently similar to the test data
in the future. Unfortunately, this assumption is often vio-
lated in the real world, where the underlying data distribu-
tion is non-stationary and constantly evolves. For instance,
user sentiment and preference change drastically due to
external environments such as the pandemic and macroeco-
nomics (Koh et al., 2021; Garg et al., 2021). Data collected
by cameras are also subject to various data changes such
as unexpected weather and novel objects, which can lead
to significant ML model performance losses (Suprem et al.,
2020; Bhardwaj et al., 2022; Khani et al., 2023).

This concept drift problem (defined in §2.1) has been stud-
ied extensively in a centralized learning environment (Gama
et al., 2014; Tahmasbi et al., 2021; Mallick et al., 2022).
These centralized solutions, however, cannot address the
fundamental challenges of concept drifts in FL where data is
heterogeneous over time and across different clients. When
different clients experience the data drift at different times,
no single global model can perform well for all clients. Sim-
ilarly, when multiple concepts exist simultaneously, no cen-
tralized training decision works well for all clients. Several
recent works have recognized the problem of FL under con-
cept drift and proposed solutions that adapt learning rates or
add regularization terms (Chen et al., 2021; Manias et al.,
2021; Casado et al., 2021; Guo et al., 2021). Although these
solutions perform better than drift-oblivious algorithms such
as FedAvg (McMahan et al., 2017), the solutions still use a
single global model for all clients, and hence fail to address
the aforementioned fundamental challenges of heterogeneity
over time and across clients. Meanwhile, centralized ensem-
ble methods that use multiple models for adapting to drift
also suffer—in response to a localized data drift, a newly
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created global model is trained over a mixture of concepts.
The models in an ensemble are distinguished solely over
time, and do not account for heterogeneity across clients.

In this work, we present the first FL solutions that employ
multiple models to address FL under distributed concept
drift. Our solutions aim to create one model for each new
concept so that all clients under the same concept can train
that model collaboratively, similar to what is done for per-
sonalized or clustered FL (Ghosh et al., 2019, 2020; Man-
sour et al., 2020; Sattler et al., 2020; Duan et al., 2021). We
introduce two new algorithms for model creation and client
clustering so that our solution addresses all the challenges of
distributed concept drift. Our first algorithm, FedDrift-Eager,
is a specialized algorithm that creates models based on drift
detection. FedDrift-Eager is effective if new concepts are
introduced one at a time. Our second algorithm, FedDrift,
is a general algorithm that leverages hierarchical clustering
to adaptively determine the appropriate number of models.
FedDrift isolates drifted clients and conservatively merges
clients via hierarchical clustering, so that FedDrift can effec-
tively handle general cases where an unknown number of
new concepts emerge simultaneously.

We empirically evaluate our solution using four popu-
lar concept drift datasets, and we compare our solution
against state-of-the-art centralized concept drift solutions
(KUE (Cano and Krawczyk, 2020) and DriftSurf (Tahmasbi
et al., 2021)) and a recent FL solution that adapts to concept
drifts (Adaptive-FedAvg (Canonaco et al., 2021)). Our re-
sults show that (i) FedDrift-Eager and FedDrift consistently
achieve much higher and more stable model accuracy than
existing baselines (average accuracy 93% vs. 90% for the
best baselines, across six dataset/drift combinations); (ii)
FedDrift performs much better than FedDrift-Eager when
multiple new concepts are introduced at the same time; and
(iii) our solution achieves a similar model accuracy as Oracle
(94% accuracy), an idealized algorithm that knows the tim-
ing and distribution of concept drifts. On the real-world drift
in the FMoW dataset (Koh et al., 2021), FedDrift achieves
64% accuracy vs. 58% accuracy for the best baselines. We
make our source code and datasets publicly available to
facilitate further research on this problem.2

2 BACKGROUND AND MOTIVATION

2.1 Problem Setup

We consider a FL setting with P clients, assumed to be
stateful and participating at each round, and a central server
that coordinates training across the clients. Training data are
decentralized and arriving over time. The data at each client
c = 1, . . . , P and each time t = 1, 2, . . . are sampled from
a distribution (concept) P(t)

c (x, y). We consider that data
may be non-IID in two dimensions, varying across clients

2https://github.com/microsoft/FedDrift

and across time. We say that there is a concept drift at time
t and at client c if P(t)

c ̸= P(t−1)
c (the standard definition

of drift with respect to a single node (Gama et al., 2014)).
Under distributed concept drift, the time of change-points
as well as the source or target distributions can differ across
clients.

We seek a solution for adaptation to concept drift, generally
involving any change in P(x, y). In contrast, by decom-
posing the joint distribution P(x, y) = P(x)P(y|x) =
P(y)P(x|y), we distinguish from the special cases where
P(y|x) is invariant (called covariate shift or virtual drift
(Shimodaira, 2000; Tsymbal, 2004; Kairouz et al., 2021))
and P(x|y) is invariant (called label shift or target shift
(Zhang et al., 2013; Azizzadenesheli et al., 2019)). (The
datasets we consider in our evaluation (§5) contain general
concept drifts with changes in the conditional distributions,
with the exception of the FMoW dataset where the concept
drift is specifically label shift.)

A single-model solution is to learn a single global model h
(which is a function of time but is notationally suppressed)
that is used for inference at all clients. The objective is
to minimize over all time t,

∑P
c=1 E(x,y)∼P(t)

c
[ℓ(h(x), y)],

where ℓ is the loss function. However, the optimal single
model may not be well-suited in the presence of concept
drifts. While the optimal single model can perform well
under cases like covariate shift in which the feature-to-label
mapping P(y|x) is fixed (although achieving fast conver-
gence still requires a specialized strategy; e.g., FedProx (Li
et al., 2020)), lower loss can often be obtained under the lat-
ter case by using specialized models for different concepts.

The multiple-model option is to learn a set of global models
{hm} for m ∈ [M ] concepts, and a time-varying cluster-
ing of clients. We denote the cluster identities by one-hot
vectors w

(t)
c , where w

(t)
c,m = 1 when the client c at time t

uses model hm for inference; we denote h
w

(t)
c

to represent

the unique model hm where w
(t)
c,m = 1. The objective is to

minimize over all time t,
∑P

c=1 E(x,y)∼P(t)
c
[ℓ(h

w
(t)
c
(x), y)].

2.2 Motivation

The prior work on drift adaptation in FL only consider
restrictive settings such as (i) drifts occurring simultane-
ously in time (e.g., Figure 1(left)), where a centralized ap-
proach works well (Canonaco et al., 2021), or (ii) drifts
with only minor deviations from a majority concept (e.g.,
Figure 1(right)), where updates from drifting clients are
suppressed and the minority concept goes unlearned (Chen
et al., 2021; Manias et al., 2021). Our work is the first to ex-
plicitly study the more general settings arising in distributed
drifts, with heterogeneous data across clients and over time.

Consider the distributed drift pattern depicted in Figure 2.
This is representative of an emerging trend (e.g., a breaking
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Figure 1: Simplistic drifts studied in prior work. (left) Simul-
taneous timing. (right) One majority concept.
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Figure 2: Distributed drift
pattern (2 concepts).
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Figure 3: Distributed drift
pattern (4 concepts).

Figure 4: Class distribution over time in FMoW. The data
drift viewed globally (left) is small relative to the localized
data drift for Africa (right).

news event) that effects different clients at different times
(e.g., due to their lag in learning of the news). For example,
consider a next word prediction app in the period when “war”
emerges as the popular next word after “Ukraine” or “slap”
emerges after “Will Smith”. Even for this simple case of
a single staggered transition between two concepts, prior
work results in significant accuracy loss. In particular, their
use of a single global model (and at best a single global drift
detection test) results in poor accuracy during the transition
period (time steps 4–8 in Figure 2, see Figure 5(left) in §5).

We also consider more challenging cases, as depicted in
Figure 3, where multiple concepts emerge at the same time
and concept drifts may be recurring (a.k.a. periodic).

To demonstrate the challenge of distributed drift in real-
world data, we consider the Functional Map of the World
(FMoW) dataset adapted from the WILDS benchmark
(Christie et al., 2018; Koh et al., 2021). The task is to
classify the building type or land use from a satellite im-
age, where images are over five major geographical regions
(Africa, Americas, Asia, Europe, and Oceania) and across
16 years. Class distribution changes over time due to hu-
man activity and environmental processes. For the 10 most
common classes, Figure 4 shows how the class distribu-
tion in Africa changes more rapidly over time, such as a
reduction in places of worship and an increase in single-unit
residential buildings. However, the global class distribution
is relatively slow-changing. Our evaluation shows that the

model trained on the global dataset only achieves 48% ac-
curacy on Africa after the major drift at 2014, compared to
66% on the rest of the world. This real-world example high-
lights the necessity to mitigate data drift differently across
regions, and existing centralized solutions cannot address
this fundamental challenge.

2.3 Related Work

Concept drift has been studied extensively in the centralized
setting for decades. We refer the reader to the surveys by
Gama et al. (2014) and Lu et al. (2018). As previously
discussed, applying these centralized algorithms to FL is
not well-suited for distributed concept drifts with hetero-
geneous data across time and clients. We demonstrate this
in our experimental evaluation (§5), where we compare
against state-of-the-art algorithms such as KUE (Cano and
Krawczyk, 2020) and DriftSurf (Tahmasbi et al., 2021), and
include concrete examples showing why their performance
is worse when multiple concepts exist simultaneously.

Drift in FL, on the other hand, has so far seen only prelim-
inary study. One line of work considers the setting where
there is one concept in the system to be learned (either like
the example in Figure 1(right) when a minority of clients
drift, or when clients observe the main concept under ran-
dom noise), and seek to speed up the convergence of a
model for that one concept by suppressing clients with het-
erogeneous data via regularization (Guo et al., 2021; Chen
et al., 2021) or drift detection (Manias et al., 2021). When
it comes to adapting to a new concept over time, we are
only aware of two works, and both only consider drifts with
uniform timing (Figure 1(left)). First, Casado et al. (2021)
consider only the covariate shift setting (where the label-
ing P(y|x) is fixed and only P(x) changes) and uses drift
detection to partition data from distinct concepts, in order
to train a single model accurately in the course of revisit-
ing each partition (i.e., rehearsal). Second, Canonaco et al.
(2021) propose Adaptive-FedAvg, in which the server tunes
the learning rate used by all clients based on the variability
across updates, with the goal of reacting fast when drift
occurs while also achieving stable performance in the ab-
sence of drift. We compare against Adaptive-FedAvg in our
evaluation.
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Table 1: Table of Symbols
τ current time (prior time indexed by t)
P # clients (indexed by c)
M # global models (indexed by m)
R # communication rounds per time (by i)
K # local steps per model per round (by j)
S
(t)
c new data arriving at client c at time t

N
(t)
c = |S(t)

c |
B minibatch size
η step size
hm global model m
hc,m local update of hm by client c
w

(t)
c,m is S(t)

c used to update hm?

Our solution to drift in FL (§3, §4) relies on learning mul-
tiple models, which has been studied in prior work on per-
sonalized FL and clustered FL. Clients with similar data
can be grouped into clusters, where each cluster trains its
global model (Ghosh et al., 2019, 2020; Mansour et al.,
2020; Sattler et al., 2020; Briggs et al., 2020; Duan et al.,
2021). As we extend the problem of data heterogeneity in
FL with the dimension of time, we train multiple models
with the algorithm in §3, which is inspired by the prior clus-
tering algorithms IFCA (Ghosh et al., 2020) and HypCluster
(Mansour et al., 2020). This serves as the starting point of
our solution, where our main contribution is the creation of
new clusters as new concepts arrive over time. Our solution
in §4 to handle an unknown number of concepts relies on hi-
erarchical clustering, which has been studied in static FL by
Briggs et al. (2020). In this prior work, it is unclear how to
set the distance threshold at which to stop merging clusters.
In contrast, our approach has the advantage that the stop
merging criterion is identical to the drift detection threshold,
which has an intuitive interpretation of performance loss.

3 MULTIPLE-MODEL TRAINING IN FL

As discussed above, distributed concept drift often means
that multiple concepts are present simultaneously. Hence,
our proposed solution learns multiple global models, where
each model is trained by a cluster of clients for each distinct
concept. In this section, we present Algorithm 1 for multiple-
model training in FL for a given input clustering, which may
vary over time as drifts occur. Then in §4, we will show how
to learn the necessary input clustering, and how new clusters
can be created to adapt to newly appearing concepts.

We define a time step as the granularity at which new data
may arrive at a client. A time step may consist of multiple
communication rounds. The set of data arriving at client
c and time t is denoted by S

(t)
c . The global models being

trained are denoted by hm for m ∈ [M ], where M is the
total number of models at a given time. Each model is
trained by a cluster of clients, where the clustering may vary
over time as concept drifts occur. The cluster identities w(t)

c,m

Algorithm 1 Multiple-model training at time τ

Input: Cluster identities w(t)
c,m

for each round i = 1, 2, . . . , R do
for each client c = 1, 2, . . . , P in parallel do

for each model m = 1, 2, . . . ,M in parallel do
hc,m ← LOCALUPDATE(c, hm, {w(t)

c,m}τt=1)
for each model m = 1, 2, . . . ,M do

hm ←
∑P

c=1 hc,m

∑τ
t=1 w(t)

c,mN(t)
c∑P

c=1

∑τ
t=1 w

(t)
c,mN

(t)
c

LOCALUPDATE(c, hm, {w(t)
c,m}τt=1):

for each local step j = 1, 2, . . . ,K do
b← random minibatch of size B from ∪

t:w
(t)
c,m=1

S
(t)
c

hm ← hm − η∇ℓ(hm; b)
return hm

Algorithm 2 Clustering to the lowest loss

ℓ
(τ)
c,m ← loss of hm on client data S

(τ)
c

w
(τ)
c,m ← 1{m = argminm′ ℓ

(τ)
c,m′}

Run Algorithm 1

(§2.1) indicate whether the data S
(t)
c that arrived at client c

at time t are sampled when computing a local update to the
global model hm. Further, the cluster identity of a client at
a given time indicates which model is used for inference.

Within each time, the training of the global models in Al-
gorithm 1 is equivalent to Federated Averaging (McMahan
et al., 2017), since the aggregation weight of each client
within each cluster is fixed at time τ . So the convergence
of Algorithm 1 can be guaranteed by directly using previ-
ous analyses for Federated Averaging, such as (Li et al.,
2020; Wang and Joshi, 2021). The difference here is that
the objective function that clients are minimizing at time τ
is replaced by the following:

F̃ (τ)
m (hm) =

P∑
c=1

w̃τ
c,mF (τ)

c (hm) (1)

where F
(τ)
c denotes the local objective function on client c,

and the normalized weight is defined as

w̃τ
c,m =

∑τ
t=1 w

(t)
c,mN

(t)
c∑P

c=1

∑τ
t=1 w

(t)
c,mN

(t)
c

. (2)

In the ideal case where each cluster maps to one concept
in the system, each hm is specialized for each concept that
is sampled from a unique data distribution (P(x, y)), and
these hm form a strong solution to our overall objective
in §2.1. This ideal solution is the Oracle algorithm in our
evaluation in §5, and we empirically demonstrate that our
proposed solutions achieve comparable accuracy.
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Note that, as stated, each client c in Algorithm 1 retains its
complete history of both the cluster indicators w(t)

c,m and the
local data arrivals S(t)

c . To reduce this overhead, each client
could instead maintain just a sliding window of the most
recent time steps, as long as the window suffices for the
minibatch sampling in LOCALUPDATE.

Thus, we have separated the problem of concept drift in
FL into two components: (i) determining the time-varying
clustering of clients in response to concept drifts, which is
then used as input for (ii) the multiple-model training in
Algorithm 1. Suppose, hypothetically, that there is a global
model already initialized for each concept up to some mod-
erate accuracy. In this restrictive setting, Algorithm 2 can
be used to determine the cluster identities for each new time
step. Each client tests the global models from the previous
time step over its newly arrived data and chooses to identify
with the model with the best loss (breaking ties randomly).3

This restrictive setting covers time steps involving drifts that
occur between concepts known to the system; e.g., the later
stages of a staggered drift from concept A to concept B after
some clients have already observed concept B (Figure 2).
However, Algorithm 2 does not have any mechanism to
spawn new clusters or determine the number of clusters. In
§4, we will show how to determine the input for Algorithm
1 with clustering algorithms that can spawn clusters over
time to react to drifts to new concepts.

4 CLUSTERING ALGORITHMS

Under concept drift in FL, data are heterogeneous both over
time and across clients. The concept at each time and client
is the ground-truth clustering that we seek to learn. Ideally,
the models trained by each cluster correspond 1-to-1 to the
concepts present in the system. Specifically, we want to
avoid two miss-clustering problems: (P1) spawning mul-
tiple clusters that correspond to a single concept, because
then each model would be trained over only a subset of
the relevant data, not taking full advantage of collaborative
training, and (P2) merging clients corresponding to multiple
concepts into a single cluster (model poisoning).

We present two clustering algorithms for adapting to concept
drift. First, in §4.1 we handle the case where only one new
concept emerges at a time, which includes the example drift
pattern in Figure 2, by incorporating a straightforward drift
detection algorithm. Second, in §4.2 we give a general
algorithm that handles the general case where multiple new
concepts may emerge simultaneously, which includes the
example drift pattern in Figure 3, by incorporating a bottom-
up technique that isolates clients that detect drift (addressing
P2) and iteratively merges clusters corresponding to the
same concept (addressing P1).

3If there are no new data at a particular client, then we say its
cluster identity is carried over from the previous time step so the
model used for inference is well-defined.

Algorithm 3 FedDrift-Eager at time τ

ℓ
(τ)
c,m ← loss of model hm on client data S

(τ)
c

w
(τ)
c,m ← 1{m = argminm′ ℓ

(τ)
c,m′}

if minm ℓ
(τ)
c,m > minm ℓ

(τ−1)
c,m + δ at any client c then

// create one model for all drifted clients
M ←M + 1
Initialize a new global model hM

w
(τ)
c,∗ ← 0; w(τ)

c,M ← 1
Run Algorithm 1

In the rest of this section, we assume that the first time
step starts with one concept and one model, and that our
clustering is run for each time step τ > 1 as new data arrive.

4.1 Special Case: One New Concept at a Time

When a new concept emerges, the clients that observe the
drift should be split off to a new cluster to start training a
new model. Drift detection has been well-studied in the cen-
tralized, non-FL, setting (Gama et al., 2004; Baena-García
et al., 2006; Bifet and Gavaldà, 2007; Harel et al., 2014;
Pesaranghader and Viktor, 2016; Pesaranghader et al., 2018;
Tahmasbi et al., 2021). As we noted in §2.2, for staggered
drifts in FL, trying to apply a drift detection test globally
at the server over the aggregate error results in poor perfor-
mance during the transition period. Instead, in Algorithm 3,
we apply drift detection locally at each client.

There are many drift detection tests in the literature, but the
particular test is not our focus and for simplicity we consider
a test of the following form. A drift is signaled at client c at
time τ with respect to a model hm if the loss of the model
over the newly arrived data, denoted as ℓ(τ)c,m, degrades by a
threshold δ relative to the loss measured at time τ − 1:

ℓ(τ)c,m > ℓ(τ−1)
c,m + δ. (3)

This test checks for any drift that incurs performance degra-
dation with respect to a given model. However, the desired
condition for creating a new model should check only for
concept drifts that correspond to a concept previously unob-
served and ill-suited for all existing models. For other drifts,
such as the later stage of the staggered drift from concept
A to concept B in Figure 2 (after concept B has already
been detected and an appropriate model created), a client
should join an existing cluster (in this case, the cluster for
B). Hence, in Algorithm 3, the drift detection test for model
creation compares against the best performing model:

min
m

ℓ(τ)c,m > min
m

ℓ(τ−1)
c,m + δ. (4)

We note that detection tests that compare across multiple
models have been previously studied in centralized learning
in the context of adapting to recurring drifts (Katakis et al.,
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2010). The clustering in Algorithm 3 (FedDrift-Eager) ap-
plies this multiple-model drift detection test at each client,
and creates a new cluster for all the clients that detect a
new concept; otherwise, each client identifies with the clus-
ter with the best-performing model. This algorithm relies
on the assumption that only one new concept occurs at a
time by assigning the drifted clients to a single cluster. De-
spite this limitation, Algorithm 3 still merits interest as it
experimentally performs well on the non-trivial case of the
staggered drift in Figure 2 that has not been addressed by
the prior work, as shown in §5. However, for the drift in
Figure 3 in which concepts B and C emerge simultaneously
at different clients, this algorithm creates only one cluster
and sub-optimally tries to train a single model for both new
concepts (problem P2 above). Next, we extend this algo-
rithm to address the general case where an unknown number
of new concepts can occur at a time.

4.2 General Case

When drifts to new concepts are detected at multiple clients,
in general we do not know whether the drifts all correspond
to one concept or multiple concepts (or even zero concepts
in the event of false positives in detection). We designed
Algorithm 4 (FedDrift) for clustering in the face of this un-
certainty. For each client that detects drift to a new concept,
Algorithm 4 conservatively isolates the clients to individual
clusters, and then merges clusters corresponding to the same
concept slowly and safely over time by iteratively apply-
ing classical hierarchical agglomerative clustering (Shalev-
Shwartz and Ben-David, 2014).

The generic hierarchical clustering procedure is specified
by a distance function over the set of elements to be clus-
tered and a stopping criterion, and at each step until the
stopping criterion is met, merges the two closest clusters,
where the distance between clusters of multiple elements
is commonly defined to be the maximum distance between
their constituents (known as a max-linkage clustering). In
Algorithm 4, the MERGE subroutine combines two clusters
i and j by averaging their models with weight proportional
to the size of each model’s training dataset (over all clients)
and unifying the cluster identities.

To specify a distance function for hierarchical clustering,
Algorithm 4 first aggregates at the server the loss esti-
mates Lij of the model hi evaluated over a subsample
of the data associated with the cluster for model hj .4

Then the distances between each cluster are initialized as
D(i, j)← max(Lij − Lii, Lji − Ljj , 0).5 Lij − Lii mea-
sures the loss degradation of model hi when evaluated over

4More precisely, at client c, the data clustered to hj are sub-
sampled proportionate to the size of the local dataset relative to
the global dataset for hj ,

∑
t w

(t)
c,jN

(t)
c /

∑
c′
∑

t w
(t)

c′,jN
(t)

c′ .
5We note that D(i, j) is not necessarily a true distance function

as there is no guarantee that it satisfies the triangle inequality.

Algorithm 4 FedDrift at time τ

ℓ
(τ)
c,m ← loss of model hm on client data S

(τ)
c

for each client c = 1, 2, . . . , P in parallel do
if minm ℓ

(τ)
c,m > minm ℓ

(τ−1)
c,m + δ then

Initialize a local model at client c to be added to the
set of global models at τ + 1, and assign client c to
its own cluster

else
w

(τ)
c,m ← 1{m = argminm′ ℓ

(τ)
c,m′}

for each i, j from 1, 2, . . . ,M in parallel do
Lij ← loss of model hi on sample of ∪

c,t:w
(t)
c,j=1

S
(t)
c

Cluster distances D(i, j)← max(Lij−Lii, Lji−Ljj , 0)
while mini̸=j D(i, j) < δ do

MERGE(i, j,D)
Run Algorithm 1

MERGE(i, j,D):

Add a new model hk ←
hi

∑
c,t w

(t)
c,iN

(t)
c +hj

∑
c,t w

(t)
c,jN

(t)
c∑

c,t w
(t)
c,iN

(t)
c +

∑
c,t w

(t)
c,jN

(t)
c

w
(t)
c,k ← w

(t)
c,i + w

(t)
c,j for all c, t

D(k, l) = max(D(i, l), D(j, l)) for all l
Delete models hi, hj

the data associated with hj , relative to the loss over its own
data. We informally interpret this difference as the magni-
tude of drift between the concept associated with hi to the
concept associated with hj , analogous to the drift detection
condition in Eq (3) (although not identical due to the bias
of Lii measuring a model’s accuracy over its own training
data). The term D(i, j) is defined to be symmetric by also
accounting for the magnitude of the drift Lji − Ljj in the
reverse direction from concept j to concept i.

In addition to defining the cluster distances D(i, j), employ-
ing hierarchical clustering also requires setting a stopping
criterion. Typically, that corresponds to specifying either the
desired number of clusters (which in our case is unknown),
or an upper limit on the distance between clusters to stop
merging. By our identification of the cluster distance as a
magnitude of drift, we naturally re-use the drift detection
threshold δ to also represent the tolerance level up to which
clusters can be merged, eliminating one hyperparameter.

In Algorithm 4, both creating new clusters and merging
existing clusters are based on the observed difference of
the models’ accuracy across two samples of data. For the
clustering to accurately distinguish concepts, we assume
that relevant changes in the concepts are manifested in the
degradation of a model’s predictive accuracy, and that the
local sample size is sufficient for statistical significance—
the same assumptions necessary for prior drift detection
tests (Harel et al., 2014; Pesaranghader and Viktor, 2016;
Pesaranghader et al., 2018; Tahmasbi et al., 2021).
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One subtlety to Algorithm 4 is that the hierarchical cluster-
ing is iteratively run at every time step, because the cluster
distances vary with time. A simpler alternative would be to
only try merging newly created clusters of local models after
one time step of training. However, at that one time step,
even models corresponding to the same concept may fail
to merge given the limited sample size and limited number
of training iterations. In other words, while the models are
still warming-up, they may still be separated by a distance
exceeding δ. As the models converge over time, the dis-
tance may drop below δ, which Algorithm 4 accounts for
by iteratively attempting to merge.

The hierarchical clustering strategy of Algorithm 4 allows it
to adaptively determine the appropriate number of clusters
even when an unknown number of new concepts emerge at
a time, but it also incurs additional computational resources
relative to Algorithm 3. Algorithm 4 creates more global
models M , adding to the communication cost of sending
O(MP ) models. Additionally, the hierarchical clustering
adds an O(M2 logM) time complexity at the server at ev-
ery time step (using a heap data structure for finding the
minimum pairwise distance). In Appendix B, we discuss
how we can restrict Algorithm 4 to create fewer overall
models for higher efficiency. Also, similar to Algorithm 1,
each client c could maintain w

(t)
c,m and S

(t)
c for just a sliding

window of the most recent time steps, as long as the window
suffices for Algorithm 4’s subsampling step.

5 EXPERIMENTAL RESULTS

We empirically demonstrate that FedDrift-Eager and FedDrift
are more effective than prior centralized drift adaptation and
achieve high accuracy that is comparable to an oracle al-
gorithm in the presence of distributed concept drifts. Prior
work on FL under drifts is limited to simple cases such as
in Figure 1, as noted in §2.2. Our evaluation covers the syn-
thetic drifts in Figures 2 and 3, which represent more com-
plex scenarios where drifts (i) occur across clients with stag-
gered timing, (ii) correspond to different concept changes
across different clients, and (iii) involve recurring concepts
(e.g., the sequence A–B–C–D–A). We also evaluate on the
real-world drift in the FMoW dataset (§2.2), which shows
gradual concept changes staggered across clients.

The synthetic drift patterns are studied with respect to the
following datasets: SINE (Pesaranghader et al., 2016), CIR-
CLE (Pesaranghader et al., 2016), SEA (Bifet et al., 2010),
and MNIST (LeCun et al., 1998). SINE and CIRCLE each
have 2 defined concepts, and we generate partitions of the
data under the 2-concept staggered drift of Figure 2, while
SEA and MNIST have more defined concepts, and we gen-
erate partitions under both the 2-concept and 4-concept drift
patterns of Figures 2 and 3 for 10 clients and 10 time steps.
For the real drift in FMoW, we evaluate on a subset of the
data including the 10 most common classes, and identify

each of the 5 major regions as one client and each new year
as one time step. Appendix A has further dataset details.

We compare our algorithms FedDrift-Eager and FedDrift
against the following baselines. First, the Oblivious algo-
rithm learns a single model with FedAvg and has no mecha-
nism for drift adaptation. Second, we consider traditional
(non-FL) drift adaptation algorithms applied centrally at
the server on top of FedAvg. Drift adaptation is typically
classified into three categories, and we compare against al-
gorithms representative of each: the drift detection method
DriftSurf (Tahmasbi et al., 2021), two ensemble methods
KUE (Cano and Krawczyk, 2020) and AUE (Brzezinski and
Stefanowski, 2013)6, and a Window method that forgets data
older than one time step (more are reported in Appendix
B). Third, Adaptive-FedAvg (Canonaco et al., 2021) is an
FL algorithm that learns a single model and adapts to drifts
by centrally tuning the learning rate used by all clients as a
function of the variability across updates. Fourth, we com-
pare to static FL clustering algorithms IFCA (Ghosh et al.,
2020) and CFL (Sattler et al., 2020), which we extend to the
time-varying setting by adding a window method (more vari-
ations reported in Appendix B). Fifth, Oracle is an idealized
algorithm that has oracle access to the concept ID at training
time and runs the multiple-model training of Algorithm 1
with the ground-truth clustering.

We run our experiments using the FedML framework (He
et al., 2020). At each time step, each client observes a new
batch of training data. For all the experiments on synthetic
datasets, the models trained under each algorithm are fully
connected neural networks with a single hidden layer of
size 2d where d is the number of features. On the FMoW
dataset, each algorithm trains ResNet18 models pretrained
on ImageNet (He et al., 2016). After training for each time
step, we test each algorithm over the batch of data arriving at
the following time step, for all time steps. Each experiment
is run for 5 trials, and we report the mean and the standard
deviation. Additional algorithm details are in Appendix A.

In Table 2, we report the test accuracy averaged across all
clients and all time steps except for the times of drifts (for
synthetic datasets). We omit the times of drift because there
is no chance for a client to adapt to the drift yet, and we
eliminate the noise from beneficial clustering mistakes if by
chance a client were clustered to the model appropriate for
the test data after the drift. (For completeness, Appendix B
shows results averaged over all time steps including drifts.)

Across all the 2-concept datasets under the staggered drift,
we observe that the multiple-model algorithms FedDrift-
Eager and FedDrift outperform the prior centralized solu-
tions. In Figure 5, the accuracy is broken down per time

6By comparing against ensemble methods, we also account
for the factor that multiple-model algorithms have higher capacity
than single-model algorithms. AUE and KUE make predictions using
a weighted vote over 5 and 10 models, respectively.
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Table 2: Average accuracy (%) across all clients and time (over 5 trials)

SINE-2 CIRCLE-2 SEA-2 MNIST-2 SEA-4 MNIST-4 FMoW

Oblivious 52.11 ± 1.79 88.38 ± 0.17 86.46 ± 0.22 87.37 ± 0.16 85.40 ± 0.09 82.95 ± 0.03 58.57 ± 0.07
DriftSurf 84.18 ± 1.40 92.34 ± 0.38 87.20 ± 0.27 93.26 ± 0.52 85.55 ± 0.13 82.97 ± 0.09 58.45 ± 0.19
KUE 86.86 ± 0.17 93.71 ± 0.14 87.25 ± 0.94 90.44 ± 0.44 85.09 ± 0.86 79.89 ± 0.26 33.11 ± 6.09
AUE 86.00 ± 0.95 92.84 ± 0.19 87.48 ± 0.07 92.22 ± 0.05 85.47 ± 0.12 82.07 ± 0.47 54.23 ± 0.14
Window 86.28 ± 0.64 93.72 ± 0.14 87.94 ± 0.10 92.34 ± 0.07 85.72 ± 0.13 81.43 ± 0.44 58.88 ± 0.15
Adaptive-FedAvg 74.10 ± 10.03 86.26 ± 0.00 86.77 ± 0.53 92.18 ± 0.05 85.25 ± 0.27 81.64 ± 0.04 52.82 ± 0.21
IFCA+Window 98.49 ± 0.13 94.31 ± 1.62 88.04 ± 0.17 91.76 ± 0.50 86.17 ± 1.00 81.27 ± 0.43 49.40 ± 0.76
CFL+Window 96.92 ± 1.84 96.04 ± 1.56 87.81 ± 0.32 90.66 ± 0.35 86.06 ± 0.11 80.51 ± 0.72 58.82 ± 0.11

FedDrift-Eager 97.53 ± 0.13 97.82 ± 0.17 87.51 ± 0.88 95.52 ± 0.11 87.61 ± 1.26 90.69 ± 1.20 61.77 ± 0.51
FedDrift 97.43 ± 0.06 97.82 ± 0.19 87.29 ± 0.75 95.48 ± 0.08 88.13 ± 0.76 93.80 ± 0.08 64.84 ± 0.33

Oracle 98.45 ± 0.03 97.84 ± 0.22 87.76 ± 0.98 95.54 ± 0.11 88.79 ± 0.41 94.30 ± 0.08 -
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Figure 5: Accuracy at each time (averaged across clients)
on CIRCLE-2.

step on CIRCLE-2, where we observe that centralized algo-
rithms particularly suffer during the transition period. The
fundamental issue is that when both concepts simultane-
ously exist, no single model can accurately fit for all clients.
Even the ensemble algorithm (KUE) has poor performance
because any new model added is updated by each client,
and during the transition period, there is no model trained
solely over data from the second concept. FedDrift-Eager
and FedDrift learn models specialized for the second concept
immediately after it emerges, and learn to apply the appro-
priate model at each client during the transition, matching
the performance of Oracle.

Another challenge that the 2-concept staggered drift poses
for DriftSurf, KUE, AUE, and Adaptive-FedAvg is that their
adaptation strategies are a function of estimators that, from
the central server’s perspective, are aggregated over some
clients that are drifting and others that are not. It is muddy
whether drift is truly occurring, and even the unsophisticated
window-based algorithm performs slightly better.

The clustering algorithms IFCA and CFL with a window
perform relatively well on the 2-concept staggered drifts
because they can flexibly employ a model specialized for
the second concept during the transition period, but are
overall behind FedDrift and FedDrift-Eager. We observe
IFCA’s success in adapting to drift is dependent on its ran-
dom parameter initialization for its clusters, and works well
particularly for the sharp drift on SINE-2.7 For CFL, we

7The accuracy of IFCA is higher than Oracle in a few cases but

observe that its iterative cluster splitting reacts quickly to
drift, but creates excessive models for a concept over time
without unifying clients under staggered drift. Appendix B
has more details.
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Figure 6: The clustering
learned by FedDrift on
MNIST-4. Each cell indicates
the model ID at each client
and time step, and the back-
ground color indicates the
ground-truth concept.

Regarding the 4-concept
drift, Table 2 shows
that all baselines are ill-
suited, while FedDrift per-
forms close to Oracle,
and that FedDrift-Eager
has intermediate perfor-
mance (due to its false
unification of simulta-
neously emerging con-
cepts). To understand
the performance of Fed-
Drift, see Figure 6. In
the ideal case (Oracle),
there would be exactly
one model for each con-
cept. For FedDrift, at time
3 one new model is cre-
ated for 5 of the 6 clients
that drifted, and one false negative where a drifted client
stays on the original model. With hierarchical clustering ap-
plied at the beginning of time 4, the 3 clusters corresponding
to the green concept are correctly merged, while all clients
on the yellow concept cluster to model 4 which had the
lowest test loss over the new data. Also at time 4, model 6
is created for the new orange concept. Then at time 5, hier-
archical clustering merges models 4 and 5 (due its iterative
application in FedDrift, as the distance decreases after model
4 is further trained). After time 5, FedDrift has a distinct
model for each concept, and no excess models.

One drawback of FedDrift is that it can create more models
compared to FedDrift-Eager, adding to the communication
cost. Appendix B shows that restricting FedDrift to just one
new global model per time step (additional local models are
still permitted) decreases its accuracy by only 0.92% on the
MNIST-4 dataset, while saving communication.

within the standard deviation, which we attribute to randomness in
the model initialization and training.
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Finally, we discuss the drift in the real-world FMoW dataset
where we observe FedDrift has superior performance. The
authors of the WILDS benchmark primarily make note of
the performance loss of a globally trained model on data
from Africa over time (Koh et al., 2021). We observe Fed-
Drift successfully adapts to the local drift, switching the
model applied at Africa at 2014 when there is a significant
increase in single-unit residential buildings in Figure 4 in
§2.2. Instead of creating a new model at 2014, we find
FedDrift joins the cluster for Oceania where a local model
was previously created, and stays at that cluster for 2014
and 2015, before then splitting into a new individual cluster
for 2016 and 2017. We also observe that FedDrift detects
a drift at 2015 for both Europe and the Americas, creating
two more local models that contribute to higher accuracy.

Meanwhile, FedDrift-Eager similarly adapts to the change in
Africa yielding a performance benefit, but it does not adapt
well to the simultaneous drift for Europe and the Americas.
Both FedDrift and FedDrift-Eager outperform the centralized
adaptation baselines which fail to adapt to the drift when
viewed globally (c.f. Figure 4). Finally, the low accuracy
of IFCA is explained by its random initialization of model
parameters for its clusters, in lieu of the pretrained ImageNet
initialization under the rest of the algorithms, and the low
accuracy of KUE is explained by its ineffective random
subspace projections of the data for this task.

6 DISCUSSION

In this work, we present FedDrift-Eager and FedDrift, the
first FL solutions designed to address the challenges of
distributed concept drifts staggered in time and space (across
clients). We empirically confirm the proposed solutions
achieve significantly higher accuracy over existing baselines.
We discuss the assumptions, limitations and future direction
of our work here.

Privacy considerations. The clustering algorithm of Fed-
Drift shares the local model learned by a single client with
all clients, which could raise privacy concerns. For privacy-
sensitive applications, our methods could be combined with
other privacy-preserving techniques, e.g., model perturba-
tion (Kairouz et al., 2021, §4) in future work.

Drift detection methods. For simplicity, we use a basic
drift detection test (Eq (3) in §4) for a change in the loss that
exceeds a given threshold. For production use, it would be
beneficial to use a state-of-the-art detection test that is more
statistically grounded and yields a quantitative statement on
the assumption (§4.2) that the size of local data samples is
large enough for statistical significance when creating and
merging clusters. In particular, tests based on loss degrada-
tion by a proportional threshold (Baena-García et al., 2006;
Barros et al., 2017) rather than an absolute threshold may
be better suited for the multiple-model algorithm (FedDrift),
as different models can have different loss magnitudes. We

leave the exploration of combining various drift detection
tests with our proposed solutions as future work.

Concept drifts and anomalies. We assume all observed
concept drifts should be considered. But in the case of
anomalies, it may be desirable not to react. One line of
related work focuses on adapting only to “true” drifts while
also exhibiting robustness in the presence of anomalies
(Togbe et al., 2021; Sankararaman et al., 2022). Future
work might investigate extending clustering algorithms like
FedDrift to include anomaly detection in order to exclude
outliers in isolated clusters and prevent false merges that
could result in model poisoning.

Clustering algorithm alternatives. A design choice of our
clustering algorithms is that we identify each client with
the best-performing global model at each time step. An
alternative approach is soft-clustering, previously explored
by Li et al. (2021) in the context of static clustering in FL,
in which a client fractionally identifies with multiple global
models and takes the average for inference. We choose to
not use soft-clustering because our preliminary experiments
with soft-clustering show no benefit in performance, while
increasing communication costs for additional local updates.

Model averaging alternatives. In FedDrift, the initial model
parameters for a cluster after merging is the average of the
constituent models, weighted by the size of each model’s
training dataset. An alternative approach to investigate in
future work is to use weights that incorporate each model’s
loss over a sample of the aggregate dataset (already com-
puted with the Lij’s) so that more accurate models are
weighted higher, analogous to weighted majority voting.

7 CONCLUSION

Federated learning under distributed concept drift is a
largely unexplored area, posing particular challenges be-
cause drifts can arise staggered in time and space (across
clients). This paper presented FedDrift-Eager and FedDrift,
the first algorithms explicitly designed to mitigate these chal-
lenges. Empirical evaluation on a variety of dataset/drift
combinations showed that these algorithms achieve signifi-
cantly higher accuracy than existing baselines, and are com-
parable to an idealized algorithm with oracle knowledge
of the ground-truth clustering. We hope that our solution
spurs further research to this emerging problem, as well as
addressing the privacy implications of clustering clients.
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A DATASETS AND EXPERIMENTAL PARAMETERS

We consider synthetic distributed drifts with respect to the following datasets previously used in the concept drift and
personalized FL literature (Brzezinski and Stefanowski, 2013; Tahmasbi et al., 2021; Briggs et al., 2020; Canonaco et al.,
2021; Manias et al., 2021): SINE and CIRCLE (Pesaranghader et al., 2016) which each have 2 defined concepts, and SEA
(Bifet et al., 2010) and MNIST (LeCun et al., 1998), which have up to 4 concepts. In SINE, the first concept is a decision
boundary of the sine curve x2 < sin(x1) for data points sampled from the unit square, and the second concept reverses
the direction (swapping the labels). In CIRCLE, the two concepts are each decision boundaries of two different circles in
the unit square, representing a smaller concept change than SINE. The first circle is centered at (0.2, 0.5) with radius 0.15
and the second circle is centered at (0.6, 0.5) with radius 0.25. In SEA, each concept corresponds to a shifted hyperplane.
Each point in SEA has three attributes in [0, 10], where the label is determined by x1 + x2 ≤ θj where j corresponds to 4
concepts, θA = 9, θB = 8, θC = 7, θD = 9.5. (The third attribute x3 is not correlated with the label.) In SEA, at every
concept there is noise in the observed labels, where the label is swapped with 10% chance for each data point independently.
In MNIST, concept A corresponds to the original labeling of the hand-drawn digits, and under each other concept, the labels
of two of the digits are swapped (B swaps digits 1 and 2, C swaps digits 3 and 4, and D swaps digits 5 and 6).

For each of the synthetic drift datasets in our experiments, the training data are distributed across 10 clients and arrive
over 10 time steps. The partition of the data at each client and time is a constant 500 number of samples from the concept
corresponding to the concept drift patterns in Figures 2 and 3 in §2.2. In our experimental results, after training at each time
τ we report the test accuracy over the data at τ + 1. For clarification, in reporting the accuracy at the last time step 10, we
test over an 11th sample of data at each client that is from the same concept observed during training at time 10.

We also evaluate on the real-world drift in the Functional Map of the World (FMoW) dataset included in the WILDS
benchmark (Christie et al., 2018; Koh et al., 2021). The learning task is to classify the land use or building type from
satellite images, which has significant practical relevance, “aiding policy and humanitarian efforts in applications such as
deforestation tracking, population density mapping, crop yield prediction, and other economic tracking applications” (Koh
et al., 2021). Each image is RGB and square with a width of 224 pixels. The WILDS benchmark is not explicitly posed
as a drift adaptation problem that we study in this paper, but instead as a drift robustness problem, and so they originally
partitioned the data into train/validation/test splits. For our evaluation, we re-partition the dataset, distributing training
data across 5 clients arriving over 9 time steps, using the metadata annotation of each image by region (Africas, Americas,
Asia, Europe, Oceania) and year. The first 8 years from 2002–2009 have much fewer images collected, which we group
into one time step, and then we treat each year from 2010–2017 as one time step each. The partition of the data at each
client and time step is a subsample of up to 1000 images at the 10 classes that are the most common (counting across all
regions and years). The test data evaluated for the last time step are a disjoint subsample also from the same year 2017 as the
training data. Figure 4 in §2.2 depicts how the data drifts gradually over time, where the development of new infrastructure
is a result of social, political, economic, and environmental factors. Viewed globally, the drift is small. Koh et al. (2021)
write: “intriguingly, a large subpopulation shift across regions only occurs with a combination of time and region shift.”
Further, they call for solutions that “can leverage the structure across both space and time” and also hypothesize a benefit to
“potentially transfer knowledge of other regions with similar economies and infrastructure” which we empirically confirm
where FedDrift clusters Africa and Oceania together for years 2014–2015.

Across all algorithms we evaluate, the algorithms that learn a single model use FedAvg for training, and the clustering
algorithms that learn multiple models use Algorithm 1 in §3 for training (which reduces to FedAvg when there is one cluster).
The training parameters used in our experiments are shown in Table 3. For efficiency of the larger FMoW experiments, we
reduce to 10 rounds and batch size 32—we observe that this suffices by convergence of the training accuracy.

Table 3: Training parameters

Parameter Description Experimental setting Experimental setting
(all synthetic drifts) (FMoW)

R # communication rounds 100 10
K # local steps per model per round 50 50
B minibatch size 50 32
η step size varies varies
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Regarding the learning rate selection, first we discuss all algorithms excluding Adaptive-FedAvg. We searched for learning
rates of the form 10−a for a = 1, 2, 3, 4, for each dataset, and found that η = 10−2 was the best for SINE-2, CIRCLE-2,
SEA-2, and SEA-4, that η = 10−3 was best for MNIST-2 and MNIST-4, and that η = 10−4 was best for FMoW. (This held
for both of the two extremes among our baselines, Oblivious and Oracle, and we apply the same learning rate across all the
algorithms. For FMoW, there is no known Oracle, so we searched only using the Oblivious baseline.) Also note that for
computing the LOCALUPDATE at each client, we use the implementation of Adam in PyTorch with the options weight decay
= 10−3 and amsgrad = True. We treat Adaptive-FedAvg separately, because it uses SGD with its own internal learning rate
scheduler as its mechanism to react to drifts. We found that the initial learning rate of 10−2 was the best for each dataset
with the exception of SINE-2, instead using 10−1. (This higher learning rate explains the high standard deviation in the
reported accuracy of Adaptive-FedAvg on SINE-2.)

Next, we report the selection of the drift detection threshold δ in the algorithms DriftSurf, FedDrift-Eager, and FedDrift. While
the optimal δ is expected to vary across datasets, even for a fixed dataset, different algorithms can peak in performance at
varying δ. The performance of each of these three algorithms for each dataset across δ in the range 0.02, 0.04, . . . , 0.20 is
shown in Figure 7. To not bias towards any one algorithm, the experimental results are reported for each algorithm and
dataset using its best δ. (The δ used for the FedDrift-C variant discussed in Appendix B is identical to that used for FedDrift.)
However, using a fixed δ = 0.04 for FedDrift-Eager and FedDrift makes at most a 1 pp difference in the results reported in
Table 2 (on one trial).

For all other hyperparameters of the algorithms we evaluate, we follow the parameter choices stated in the original papers,
with the following exceptions: for DriftSurf we use r = 3 (which performed better than their suggested r = 4); for CFL we
use γ = 0.1 (for which there is no default, but is shown to be a good setting from Theorem 1 and Figure 3 of their paper
(Sattler et al., 2020) given that the number of distinct concepts at a time is at most 5 across all evaluated datasets); and for
AUE we use K = 5 as the total ensemble size (compared to the K = 10 in their paper they consider over a significantly
longer time horizon). In reporting FMoW results, for training efficiency, we further restrict to a total ensemble size of 4 for
AUE and KUE.

Furthermore, for the FMoW dataset, which has more than one distinct data distribution at the initial time step unlike
the remaining datasets, we use a different initialization of IFCA variants and FedDrift. For IFCA variants, clients initially
self-select among 5 cluster centers instead of being all assigned to a single cluster. For FedDrift, clients are initialized to a
local model each, which can be merged starting at the next time step. (If we instead initialize all clients to a single model
that can later be split, we observed the average test accuracy of FedDrift is 64.46%, or 0.38% worse.)

Finally, regarding the model training in Algorithm 1 at time τ , we apply one optimization for efficiency to only train models
that are currently clustered to. (Although note that any such models are still retained by FedDrift-Eager and FedDrift in order
to react to recurring drifts even if they are not actively being trained.)
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Figure 7: Average accuracy of each drift detection-based algorithm under varying thresholds δ.
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B ADDITIONAL EXPERIMENTAL RESULTS

We present additional experimental results on more baseline algorithms and on variants of our algorithms restricted to
limited memory or communication.

Additional Baseline Algorithms. The additional algorithms presented in this appendix are:

• Four traditional drift adaptation algorithms. AUE-PC is a variation of the ensemble method AUE with the ensemble
weights set per-client. Window-2 is a window method like Window, except that it forgets data older than two time
steps instead of one. Weighted-Linear and Weighted-Exp also forget older data like window methods, but do so more
gradually by down-weighting older data with either linear or exponential decay.

• The FL clustering algorithm CFL (Sattler et al., 2020). In extending the original static algorithm to our time-varying
setting, we also consider a variant CFL-W, in which during training, each client samples only from the window of the
newest data arriving at each time.

• Three variations of the IFCA clustering algorithm (Ghosh et al., 2020) that we considered for extending the original
algorithm to the time-varying setting. First, IFCA(T) is exactly Algorithm 2 in §3, which defines cluster identities for
each client and each time, in order to associate the data within a client that are heterogeneous over time across multiple
clusters. IFCA(T) chooses the cluster identity once per time step (where time steps consist of multiple communication
rounds)—this differs from the original algorithm described by Ghosh et al. (2020), which recomputes the cluster
identity once per round. Second, IFCA does the per-round clustering; more precisely, for each time step τ , the cluster
identity w

(τ)
c,m is recomputed at every round under the same equation used at the beginning of the time step in Algorithm

2. Third, IFCA-W is a variant of IFCA that trains only over the most recent data arrivals at each time, and the cluster
identities of data from previous time steps are forgotten. In general, the IFCA-based algorithms require the number of
clusters as input, which we provide as oracle knowledge—either 2 or 4 depending on the total number of concepts over
time in each dataset. This gives IFCA-based algorithms an advantage over all other algorithms we evaluate, which do
not know the number of clusters a priori. For the initialization of all three variations, at time 1 and round 1, all clients
are assigned to a single cluster, matching the assumption we made for FedDrift and FedDrift-Eager in §4. The exception
to this initialization strategy is on FMoW, where the total number of concepts is not known, and the concept at time 1
across clients is not identical; for this dataset, we instead initialize all IFCA-based algorithms with a total of 5 clusters
(matching the number of regions), and where each client identifies with the best-performing randomly initialized model
(same as the original paper).

• A more communication-efficient variant of FedDrift. FedDrift-C is the algorithm referred to in the last paragraph of
§4 that is restricted to introducing one new global model per time step. More details on this algorithm are described
later in this section.

• Sliding window variants of FedDrift-Eager and FedDrift. FedDrift-Eager-W and FedDrift-W are restricted to using only
the most recent time step of data S

(t)
c and cluster identities w(t)

c,m.

• A baseline sliding window variant Oracle-W, which has oracle access to the ground-truth clustering but only uses the
most recent time step of data in training.

In general, we use the -W suffix in the name of an algorithm to indicate a limited memory of a window of one time step.
This memory restriction reduces the number of samples used for training at a time and might reduce the accuracy achievable
under ground-truth clustering (Oracle-W vs. Oracle). Yet, the window is not strictly a drawback: (i) forgetting the older data
builds in a passive adaptation to drift and (ii) in our setting it also guarantees that each client’s training data at a step are all
drawn from the same distribution—this is why we also investigate -W variants when extending the prior static clustering
algorithms CFL and IFCA to our setting when data arrive over time.

Test Accuracy Results. Table 4 (extending Table 2 in §5) shows the test accuracy of all algorithms, averaged across all
clients and time steps, but omitting the times of drifts. As noted in §5, we omit the times of drift when all algorithms suffer
from the performance loss. For completeness, the test accuracy averaged over all time steps including drifts is shown in
Table 5. In this latter table, note that Oracle and Oracle-W suffer a performance loss too at the time of drift. Under the
test-then-train evaluation, Oracle has access to the concept ID of the data at training time but not at test time, where at each
client, the model used for inference corresponds to the observed concept in the most recently arrived training data. Note
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Table 4: Average test accuracy (%) across clients and time, omitting drifts (5 trials)

SINE-2 CIRCLE-2 SEA-2 MNIST-2 SEA-4 MNIST-4 FMoW

Oblivious 52.11 ± 1.79 88.38 ± 0.17 86.46 ± 0.22 87.37 ± 0.16 85.40 ± 0.09 82.95 ± 0.03 58.57 ± 0.07
DriftSurf 84.18 ± 1.40 92.34 ± 0.38 87.20 ± 0.27 93.26 ± 0.52 85.55 ± 0.13 82.97 ± 0.09 58.45 ± 0.19
KUE 86.86 ± 0.17 93.71 ± 0.14 87.25 ± 0.94 90.44 ± 0.44 85.09 ± 0.86 79.89 ± 0.26 33.11 ± 6.09
AUE 86.00 ± 0.95 92.84 ± 0.19 87.48 ± 0.07 92.22 ± 0.05 85.47 ± 0.12 82.07 ± 0.47 54.23 ± 0.14
AUE-PC 88.67 ± 0.73 92.82 ± 0.23 87.55 ± 0.20 92.24 ± 0.03 86.67 ± 0.05 81.84 ± 0.33 54.15 ± 0.10
Window 86.28 ± 0.64 93.72 ± 0.14 87.94 ± 0.10 92.34 ± 0.07 85.72 ± 0.13 81.43 ± 0.44 58.88 ± 0.15
Window-2 85.97 ± 0.94 93.28 ± 0.15 87.62 ± 0.33 92.80 ± 0.44 86.58 ± 0.15 82.22 ± 0.30 59.44 ± 0.23
Weighted-Linear 72.93 ± 2.05 89.87 ± 0.54 87.02 ± 0.46 89.86 ± 0.36 86.42 ± 0.10 82.74 ± 0.04 58.05 ± 0.17
Weighted-Exp 82.52 ± 1.78 92.38 ± 0.32 87.11 ± 0.34 92.52 ± 0.20 86.60 ± 0.07 82.51 ± 0.09 58.49 ± 0.09
Adaptive-FedAvg 74.10 ± 10.03 86.26 ± 0.00 86.77 ± 0.53 92.18 ± 0.05 85.25 ± 0.27 81.64 ± 0.04 52.82 ± 0.21
CFL 57.57 ± 8.87 86.59 ± 3.42 86.46 ± 0.24 86.54 ± 0.43 86.24 ± 0.15 80.97 ± 0.78 57.92 ± 0.32
CFL-W 96.92 ± 1.84 96.04 ± 1.56 87.81 ± 0.32 90.66 ± 0.35 86.06 ± 0.11 80.51 ± 0.72 58.82 ± 0.11
IFCA(T) 98.45 ± 0.03 91.72 ± 5.19 86.46 ± 0.23 87.33 ± 0.15 85.41 ± 0.20 82.90 ± 0.05 47.76 ± 1.98
IFCA 98.46 ± 0.02 92.20 ± 5.32 86.45 ± 0.25 87.55 ± 0.25 85.35 ± 0.09 82.89 ± 0.04 48.17 ± 1.30
IFCA-W 98.49 ± 0.13 94.31 ± 1.62 88.04 ± 0.17 91.76 ± 0.50 86.17 ± 1.00 81.27 ± 0.43 49.40 ± 0.76

FedDrift-Eager 97.53 ± 0.13 97.82 ± 0.17 87.51 ± 0.88 95.52 ± 0.11 87.61 ± 1.26 90.69 ± 1.20 61.77 ± 0.51
FedDrift 97.43 ± 0.06 97.82 ± 0.19 87.29 ± 0.75 95.48 ± 0.08 88.13 ± 0.76 93.80 ± 0.08 64.84 ± 0.33
FedDrift-C 97.91 ± 0.70 97.61 ± 0.19 87.52 ± 0.91 95.45 ± 0.13 88.26 ± 0.80 92.88 ± 0.39 61.86 ± 0.30
FedDrift-Eager-W 97.95 ± 0.67 97.56 ± 0.24 87.32 ± 1.02 93.41 ± 1.14 86.99 ± 0.40 89.59 ± 0.38 61.94 ± 0.38
FedDrift-W 97.86 ± 0.59 97.52 ± 0.22 87.30 ± 1.01 93.85 ± 0.06 88.56 ± 0.39 91.34 ± 0.06 64.22 ± 0.60

Oracle 98.45 ± 0.03 97.84 ± 0.22 87.76 ± 0.98 95.54 ± 0.11 88.79 ± 0.41 94.30 ± 0.08 -
Oracle-W 98.53 ± 0.15 97.81 ± 0.13 87.31 ± 0.75 93.91 ± 0.05 88.41 ± 0.57 91.75 ± 0.05 -

that for the real-world gradual drifts in FMoW, the ground-truth is unknown, so we omit results for Oracle. Furthermore,
because drifts occur gradually and there is no oracle knowledge of their timing, we report identical test accuracy results on
FMoW in Tables 4 and 5, averaging across all clients and time steps.

Based on these tables, we make the following observations on the additional algorithms. The AUE-PC variant of AUE extends
the model weights in the ensemble method to be individualized per-client, based on the performance of each model over
each client’s local data (as opposed to weights chosen based on the aggregate performance at the server). This additional
flexibility leads to only a marginal accuracy improvement over AUE across all datasets. While it is generally valuable for
clients at different stages of a staggered drift to use different models for inference, the more fundamental obstacle is that
each global model trained by AUE-PC is updated by all clients. In the course of the 2-concept staggered drift, all of the
models in the ensemble are trained either over a mixture of data from both concepts or solely from the first concept, and
there is no accurate model available that is a good fit for the second concept.

The Window-2 algorithm and the weighted sampling algorithms Weighted-Linear and Weighted-Exp are techniques for
forgetting older data, but less abruptly compared to Window-1, and in general they all perform similarly. On the sharp drift
of SINE-2, the fastest forgetting algorithm Window performs the best of these. On the other hand, on the 4-concept drift of
MNIST-4 in which the time axis does not well separate different concepts, the slowest forgetting algorithm Weighted-Linear
performs best. Meanwhile, the performance of all four algorithms are close on the SEA datasets, which have greater overlap
between the concepts.

The clustering algorithms CFL and CFL-W start with each client in one cluster, and recursively split clusters over rounds
and over time based on the intra-cluster similarity of their local updates. We observe that the CFL-W variant is the better-
performing of the two on each dataset except MNIST-4 (which is also the only dataset where Oblivious outperforms Window),
and is a consequence of the passive drift adaptation of its sliding window which forgets older data. The performance of
CFL-W is relatively high on SINE-2 and CIRCLE-2. As an example, the clustering learned on SINE-2 is shown in Figure
8. We observe that, for the first 6 time steps, it correctly distinguishes the two concepts by using distinct models. The
disadvantage of the clustering of CFL-W is that it creates excess models for the same concept and does not take full advantage
of collaborative training. At time 5, it is limited to splitting its cluster for model 0 when the green concept occurs, but cannot
merge the drifted clients to the existing cluster created for the green concept at the previous time step. This limitation of
only being able to subdivide existing clusters, but not merge clusters or re-assign clients to existing clusters results in poor
performance on more complex drifts.
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Table 5: Average test accuracy (%) across clients and time, including drifts (5 trials)

SINE-2 CIRCLE-2 SEA-2 MNIST-2 SEA-4 MNIST-4 FMoW

Oblivious 47.36 ± 1.74 87.15 ± 0.15 86.22 ± 0.21 86.40 ± 0.15 85.16 ± 0.06 81.59 ± 0.02 58.57 ± 0.07
DriftSurf 79.45 ± 1.55 90.98 ± 0.36 86.91 ± 0.27 92.24 ± 0.64 85.19 ± 0.16 81.59 ± 0.05 58.45 ± 0.19
KUE 82.56 ± 0.18 92.45 ± 0.12 87.02 ± 0.92 89.59 ± 0.58 84.81 ± 0.68 77.84 ± 0.30 33.11 ± 6.09
AUE 81.24 ± 1.29 91.60 ± 0.17 87.23 ± 0.07 91.09 ± 0.04 85.09 ± 0.07 79.95 ± 0.63 54.23 ± 0.14
AUE-PC 83.65 ± 0.92 91.58 ± 0.21 87.38 ± 0.18 91.15 ± 0.06 86.30 ± 0.10 79.58 ± 0.47 54.15 ± 0.10
Window 81.77 ± 0.66 92.46 ± 0.12 87.72 ± 0.09 91.58 ± 0.07 85.30 ± 0.09 78.84 ± 0.26 58.88 ± 0.15
Window-2 81.46 ± 0.93 92.00 ± 0.15 87.43 ± 0.38 91.79 ± 0.56 86.18 ± 0.16 79.96 ± 0.49 59.44 ± 0.23
Weighted-Linear 67.34 ± 1.92 88.59 ± 0.52 86.77 ± 0.51 88.74 ± 0.36 86.13 ± 0.13 81.31 ± 0.04 58.05 ± 0.17
Weighted-Exp 76.86 ± 1.82 91.03 ± 0.31 86.91 ± 0.34 91.38 ± 0.20 86.26 ± 0.11 80.91 ± 0.09 58.49 ± 0.09
Adaptive-FedAvg 69.69 ± 10.13 85.60 ± 0.00 86.62 ± 0.50 91.33 ± 0.05 84.95 ± 0.26 79.49 ± 0.04 52.82 ± 0.21
CFL 51.98 ± 8.01 85.33 ± 3.35 86.19 ± 0.29 85.54 ± 0.41 85.95 ± 0.22 79.36 ± 0.94 57.92 ± 0.32
CFL-W 87.65 ± 1.27 94.00 ± 1.32 87.56 ± 0.32 89.73 ± 0.30 85.38 ± 0.14 78.15 ± 1.13 58.82 ± 0.11
IFCA(T) 88.77 ± 0.02 90.06 ± 4.62 86.22 ± 0.22 86.36 ± 0.14 85.10 ± 0.13 81.53 ± 0.05 47.76 ± 1.98
IFCA 88.78 ± 0.02 90.49 ± 4.73 86.21 ± 0.28 86.56 ± 0.21 85.06 ± 0.04 81.51 ± 0.03 48.17 ± 1.30
IFCA-W 88.80 ± 0.12 92.84 ± 1.19 87.84 ± 0.14 90.81 ± 0.67 85.52 ± 0.50 79.17 ± 0.39 49.40 ± 0.76

FedDrift-Eager 87.93 ± 0.12 95.50 ± 0.14 87.01 ± 0.72 93.63 ± 0.10 86.73 ± 0.64 83.99 ± 0.72 61.77 ± 0.51
FedDrift 87.84 ± 0.05 95.50 ± 0.15 86.85 ± 0.60 93.60 ± 0.07 86.95 ± 0.51 85.44 ± 0.08 64.84 ± 0.33
FedDrift-C 88.27 ± 0.61 95.30 ± 0.17 87.04 ± 0.70 93.58 ± 0.13 86.98 ± 0.52 85.30 ± 0.43 61.86 ± 0.30
FedDrift-Eager-W 88.31 ± 0.59 95.23 ± 0.23 86.90 ± 0.91 91.84 ± 0.16 86.50 ± 0.25 81.97 ± 0.21 61.94 ± 0.38
FedDrift-W 88.22 ± 0.52 95.20 ± 0.21 86.95 ± 0.89 91.85 ± 0.06 86.98 ± 0.36 83.14 ± 0.06 64.22 ± 0.60

Oracle 88.76 ± 0.02 95.51 ± 0.18 87.23 ± 0.93 93.65 ± 0.10 86.99 ± 0.40 85.81 ± 0.07 -
Oracle-W 88.83 ± 0.14 95.48 ± 0.11 86.89 ± 0.63 91.91 ± 0.05 86.56 ± 0.70 83.46 ± 0.03 -
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Figure 8: The clustering learned by CFL-W on SINE-2.
Each cell indicates the model ID at each client and time
step, and the background color indicates the ground-
truth concept.
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Figure 9: The clustering learned by FedDrift-Eager on
MNIST-4. Each cell indicates the model ID at each
client and time step, and the background color indicates
the ground-truth concept.

For IFCA, IFCA-W, and IFCA(T), the clustering is pre-initialized with a random model for each concept that can occur over
time for each dataset. In general, we observe that this is not a reliable method for reacting to drift. All the IFCA variants
perform well under the sharp label-swap drift of SINE-2. When the new concept occurs, the drifted clients cluster to the
second model, and the learned clustering matches the ground-truth. On CIRCLE-2, we found that IFCA and IFCA(T) learned
the correct clustering in 2 out of 5 trials, and otherwise used only a single model in the other 3 trials. IFCA-W learned the
correct clustering in 1 out of 5 trials. (Note the high standard deviation in Table 4.) Across the SEA and MNIST datasets,
none of the three algorithms ever used more than a single model (with one exception—on SEA-4, in 1 out of 5 trials, IFCA-W
used a distinct model for the yellow concept). For the SEA and MNIST datasets, we observe that the IFCA and IFCA(T)
degrade to the Oblivious algorithm, and that IFCA-W degrades to the Window algorithm. Note that despite the degenerate
clustering to a single model, matching the Window algorithm, IFCA-W achieves the highest accuracy in Table 4 on SEA-2
(but within the standard deviation of Window) due to randomness in the model initialization. In general, our experimental
protocol fixes the same random seed for each trial across all all algorithms and where all created models within an algorithm
use the same initialization. The IFCA variants are an exception to the rule because its initialization requires distinct random
models. On the FMoW dataset, we observe again that random initialization can sometimes address drift, but unreliably: in 1
out of 5 trials each for all IFCA variants, a separate model is used for the Africa region at later time steps. (However, the
IFCA variants are among the worst performing in our evaluation because their random initialization precludes the pre-trained
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ImageNet initialization we use for other algorithms.) The authors of the original paper on IFCA note that the accuracy of the
clustering is sensitive to the initialization of the models, and propose random restarts to address this issue, but restarts do
not translate well to the time-varying setting we study. In our work, FedDrift-Eager and FedDrift address the initialization
problem by using drift detection to deal with new concepts as they occur and to cultivate new clusters.

For FedDrift-Eager-W and FedDrift-W, restricting to a window has minimal impact on the accuracy for the SEA dataset.
There is a significant loss of accuracy for the MNIST dataset relative to the non-windowed versions, but note that the
same significant loss occurs when going from Oracle to Oracle-W, so this loss is a result of windowing, not specific to our
algorithm. Indeed, the accuracy of FedDrift-W is quite close to Oracle-W.

The communication-efficient FedDrift-C. As noted in §4, one of the drawbacks of FedDrift is that it can create more
models M compared to FedDrift-Eager, adding to the communication cost of sending O(MP ) models. The goal is to only
use a number of global models close or equal to the number of distinct concepts, and while FedDrift can hierarchically merge
created models of the same concept, FedDrift can observe temporary spikes in the number of global models. To mitigate this
cost, we evaluate FedDrift-C, which differs from FedDrift in that, at each time after drift occurs, only one random client that
drifted contributes its local model as a global model. In the case that multiple new concepts occur at a time, only one of the
new concepts will be learned immediately, but clients that are still at an unlearned concept are eligible to detect drift again at
the following time step and get another chance to contribute its local model. Meanwhile, while a concept goes unlearned
globally, drifted clients do not contribute to any of the global models.

For the 4 concepts in MNIST-4, we observed that FedDrift learned a total of 7 global models (later merged down to 4) as
shown in Figure 6 in §5. FedDrift-C more efficiently maintained a maximum of 4 global models across all time, at a penalty
of 0.92% accuracy due to the delayed learning of one of the two simultaneously arising concepts. Meanwhile, FedDrift-Eager
suffers a larger 3.11% penalty after it incorrectly merged the two simultaneous concepts, as shown in Figure 9—model 1 is
initially trained over the green and yellow concepts, and while the clients at the green concept later abandon model 1 and
eventually learn a separate model 2, the green concept training data still poison both model 0 and model 1.

Figure 10: The accuracy-communication trade-off on MNIST-4 for FedDrift-Eager, FedDrift, and FedDrift-C. Each algorithm
is evaluated under various selections of the splitting/merging threshold δ between 0.02 and 0.20, indicated by color. The
vertical axis is the average test accuracy across clients and time, omitting drifts. (1 trial)

We quantify this accuracy-communication trade-off in Figure 10 where we show the average test accuracy and total number
of models sent by FedDrift-Eager, FedDrift, and FedDrift-C under various selections of the drift detection threshold δ.
Increasing the value of δ restricts cluster splitting (increases false negative detections) and promotes cluster merging, which
reduces the number of models and concepts learned (at δ = 1, each algorithm is identical to Oblivious). Empirically, we
confirm that choosing larger settings of δ can trade-off accuracy for efficiency. (Choosing δ too small for FedDrift can also
negatively affect accuracy due to increased false positive detections, but to a lesser degree because the hierarchical clustering
of FedDrift can correct some false positives—see below on Impact of False Positives.) We observe that, generally, using
FedDrift-C over FedDrift preserves most of the accuracy improvement over Oblivious while saving communication—with
one exception at the largest δ = 0.20 where both algorithms are susceptible to false merging, but FedDrift has more total
models added to make the mistake of merging two concepts that FedDrift-C avoids. We also observe that the Pareto front is
mostly configurations of FedDrift and FedDrift-C over FedDrift-Eager. Finally, we observe that all variants of FedDrift are
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Table 6: Accuracy (%) on MNIST-R, omitting drifts

MNIST-R

Oblivious 85.12 ± 1.37
DriftSurf 85.03 ± 1.36
KUE 81.56 ± 1.90
AUE 83.87 ± 1.64
AUE-PC 83.67 ± 1.66
Window 82.37 ± 1.94
Window-2 83.65 ± 1.83
Weighted-Linear 84.87 ± 1.34
Weighted-Exp 84.60 ± 1.44
Adaptive-FedAvg 83.17 ± 1.51
CFL 84.20 ± 1.54
CFL-W 82.24 ± 1.77
IFCA(T) 84.50 ± 1.21
IFCA 84.39 ± 1.45
IFCA-W 85.93 ± 3.35

FedDrift-Eager 89.85 ± 1.49
FedDrift 94.06 ± 0.38
FedDrift-C 92.76 ± 0.56
FedDrift-Eager-W 86.60 ± 2.27
FedDrift-W 90.83 ± 0.17

Oracle 95.03 ± 0.15
Oracle-W 91.66 ± 0.31

Table 7: Accuracy (%) on MNIST-R, including drifts

MNIST-R

Oblivious 83.92 ± 1.23
DriftSurf 83.83 ± 1.21
KUE 79.77 ± 2.03
AUE 81.96 ± 1.03
AUE-PC 81.52 ± 1.43
Window 80.11 ± 1.45
Window-2 81.30 ± 1.58
Weighted-Linear 83.64 ± 1.21
Weighted-Exp 83.39 ± 1.29
Adaptive-FedAvg 81.41 ± 1.24
CFL 83.05 ± 1.37
CFL-W 80.58 ± 1.94
IFCA(T) 83.31 ± 1.11
IFCA 83.29 ± 1.29
IFCA-W 81.65 ± 0.67

FedDrift-Eager 85.26 ± 0.81
FedDrift 86.77 ± 0.76
FedDrift-C 86.65 ± 0.94
FedDrift-Eager-W 81.74 ± 1.60
FedDrift-W 83.70 ± 0.80

Oracle 87.32 ± 0.86
Oracle-W 84.29 ± 0.89

more efficient than ensemble algorithms—relative to Oblivious, FedDrift variants send 2–3x models compared to AUE which
sends 5x—because for ensembles, clients contribute to every model at each communication round, compared to FedDrift
where clients contribute only to the clusters they belong to (the broadcast of all models for clustering in FedDrift is only once
per time step).

Random Drift Patterns. Throughout this paper, we have considered the 4-concept drift pattern in Figure 3 in §2.2 as
a specific concrete example in order to depict the challenges in distributed concept drift, motivate the design of FedDrift,
and discuss the experimental performance by comparing the learned clustering matrix to the ground-truth. To examine
the performance more generally, we consider a family of datasets MNIST-R with random concept changes. Using the
same four concepts as in MNIST-4, MNIST-R is generated with all clients at the first concept to start, and then each client
independently randomly observes one of the four concepts every two time steps (as opposed to every time step which is not
possible to adapt to). Across 5 random seeds, the average accuracy is shown in Table 6 (and in Table 7 for all time including
drifts). We generally observe the same relative performances of each algorithm as on the previously specified MNIST-4 drift.
The performance of FedDrift is close to that of Oracle, FedDrift-C is close behind, FedDrift-Eager is lower given that it is
likely to have multiple new concepts occurring simultaneously in MNIST-R, and then all prior baselines follow.

Adaptation under Label Shift. In this work, we focus on the general case of concept drift as opposed to special cases
like covariate shift or label shift. All of the synthetic drift datasets studied above involve a change in the decision boundary.
But our solutions are also applicable under specific cases of drift. The real drift in the FMoW dataset is an example of label
shift (defined in §2.1). Here we consider another label shift dataset, MNIST-L-4, in which the drift is synthetically generated
to follow the same distributed drift pattern as MNIST-4 in the ground-truth clustering, but differs in the concept definitions
so that classes are incrementally introduced over time: concept A is only over digits 0/1, concept B is only over digits 2/3,
concept C is only over digits 4/5, and concept D is only over digits 6/7.

Table 8 shows the average accuracy omitting time steps of drift, and Table 9 shows the average accuracy over all time
including drift times. Unlike all previous datasets (including FMoW with label shift), we observe a significant difference
between the two tables. On the metric omitting drifts, FedDrift-Eager and FedDrift attain 99% accuracy comparable to Oracle,
then the IFCA variants attain similarly high accuracy compared to the remaining baselines. However, on the metric including
drifts, we observe Adaptive-FedAvg performs best, and even the Oblivious algorithm outperforms the multiple-model
algorithms like FedDrift, IFCA, and Oracle. The reason is that for the concepts in MNIST-L-4, it is possible for a single
model to fit multiple concepts (different labels) accurately as long as a concept was previously seen at another client. On the
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Table 8: Accuracy (%) on MNIST-L-4, omitting drifts

MNIST-L-4

Oblivious 90.07 ± 0.23
DriftSurf 91.79 ± 0.64
KUE 90.68 ± 1.03
AUE 92.76 ± 1.29
AUE-PC 92.08 ± 1.40
Window 87.28 ± 1.26
Window-2 90.10 ± 0.33
Weighted-Linear 91.13 ± 0.56
Weighted-Exp 91.87 ± 0.31
Adaptive-FedAvg 96.74 ± 0.04
CFL 87.92 ± 1.52
CFL-W 92.00 ± 1.25
IFCA(T) 98.86 ± 1.01
IFCA 99.48 ± 0.34
IFCA-W 99.02 ± 0.62

FedDrift-Eager 99.17 ± 0.09
FedDrift 99.56 ± 0.01
FedDrift-C 97.85 ± 0.86
FedDrift-Eager-W 98.16 ± 0.80
FedDrift-W 99.20 ± 0.02

Oracle 99.65 ± 0.01
Oracle-W 99.29 ± 0.01

Table 9: Accuracy (%) on MNIST-L-4, including drifts

MNIST-L-4

Oblivious 81.60 ± 0.29
DriftSurf 83.48 ± 1.24
KUE 81.44 ± 1.07
AUE 83.58 ± 1.22
AUE-PC 83.08 ± 1.23
Window 77.14 ± 1.30
Window-2 81.34 ± 0.22
Weighted-Linear 82.97 ± 0.66
Weighted-Exp 83.89 ± 0.33
Adaptive-FedAvg 89.44 ± 0.03
CFL 77.08 ± 0.81
CFL-W 81.67 ± 1.59
IFCA(T) 71.99 ± 2.20
IFCA 71.98 ± 2.79
IFCA-W 71.64 ± 2.54

FedDrift-Eager 75.15 ± 1.30
FedDrift 70.69 ± 0.01
FedDrift-C 69.79 ± 0.60
FedDrift-Eager-W 74.94 ± 1.23
FedDrift-W 70.43 ± 0.01

Oracle 70.75 ± 0.01
Oracle-W 70.49 ± 0.01

other hand, the multi-model approach suffers from poor performance at the time of drift as the newly created model has not
seen the labels in the test data. Under the 4-concept drift pattern, the single model learned by Adaptive-FedAvg has high test
accuracy on concepts B (green) and C (yellow) after the first occurrence in the system, while Oracle has low accuracy at the
time of drift by employing a specialized model trained solely on concept A (blue).

0 0 0 2 2 3 3 3 4 4

0 0 0 2 3 3 3 3 4 4

0 0 0 1 3 3 3 3 3 3

0 0 0 2 3 3 3 3 3 3

0 0 0 0 3 3 3 4 3 3

0 0 1 1 0 2 3 3 3 3

0 0 1 0 0 1 3 3 3 4

0 0 0 1 0 1 4 3 3 3

0 0 1 1 0 1 1 0 3 4

0 0 0 2 0 0 1 0 3 3

time

cl
ie
n
ts

(a) FedDrift-Eager

0 0 0 4 4 4 4 4 4 4

0 0 0 6 4 9 8 4 4 4

0 0 0 0 4 4 8 4 4 4

0 0 0 0 4 4 8 4 4 4

0 0 0 5 4 8 4 4 4 4

0 0 3 0 0 4 4 4 4 4

0 0 0 1 0 0 4 4 4 4

0 0 2 1 5 0 8 4 4 4

0 0 1 0 5 5 0 0 4 4

0 0 0 7 0 5 0 0 4 4

time

cl
ie

n
ts

0←[0, 2] 
1←[1, 3]

0←[0, 1] 
4←[4, 6]

5←[5, 7] 0←[0, 5] 
4←[4, 9]

4←[4, 8]

(b) FedDrift

Figure 11: The clustering learned on SINE-2 when δ = 0.01. Each cell indicates the model ID at each client and time step,
and the background color indicates the ground-truth concept.

Impact of False Positives. To demonstrate the application of the hierarchical clustering in FedDrift, in §5 we discussed the
example of the learned clustering for MNIST-4 in Figure 6. Here in Figure 11 we present another example on SINE-2 at
a small δ = 0.01 (corresponding to more aggressive detection) to demonstrate an example of how hierarchical clustering
can be beneficial even in the case of a 2-concept drift in mitigating false positives. At time 3, in both FedDrift-Eager and
FedDrift there are three false positives, where in FedDrift-Eager, the new model 1 is retained but its underlying data forgotten,
while in FedDrift, although initially 3 redundant models are created, they are all merged back with model 0 within 2 time
steps, averaging their parameters and reincorporating their clustered data. The advantage of hierarchical clustering is also
evident at time 4 when 2 false positives and 2 true positives occur together. In FedDrift-Eager, one new model is created for
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all the clients, but this new model is “poisoned” by contributions from the blue concept and does not work well at time 5,
resulting in another drift detection to create model 3 (and forgetting about the data associated with model 2). FedDrift, on
the other hand, creates models solely trained over either the blue and green concepts, and eventually merges all models of
an identical concept, recovering all of the data. While the false positive mitigation demonstrated in this example is not a
significant contributor to the observed higher accuracy of FedDrift in our evaluation because we use higher δ values as noted
in Appendix A, it is relevant when there is greater uncertainty in selecting the threshold hyperparameter.

Test Accuracy Over Time. Finally, in Figure 12, we include plots that we omit from the main paper due to space
constraints. The figure shows the accuracy over time for FedDrift-Eager, FedDrift, and selected baselines representing
drift detection, ensembles, and clustered FL, supplementing Figure 5 in §5. (Note the varying scales of the y-axes.) We
observe the same general trends: (i) the centralized drift adaptation algorithms suffer in performance, particularly during
the transition period when no one model works well across all clients; (ii) CFL can react to the drift early on SINE-2 as
with CIRCLE-2 before, but its performance degrades with excessive further splits; (iii) for the 4-concept drift in SEA-4
and MNIST-4 centralized baselines and CFL never recover in performance with multiple concepts present; and (iv) on
SEA-4 and MNIST-4, FedDrift is close to Oracle except for a gap at time 3 when it uses local models prior to merging, while
FedDrift-Eager lags behind FedDrift when it creates a single model for the 2 simultaneously arising concepts but can slowly
recover with further detections.
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Figure 12: Test accuracy of selected algorithms at each time on SINE-2, SEA-2, MNIST-2, SEA-4, MNIST-4, and FMoW.
Vertical lines represent standard deviations.
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