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Abstract

Batching has a fundamental influence on the effi-
ciency of deep neural network (DNN) execution.
However, for dynamic DNNs, efficient batching
is particularly challenging as the dataflow graph
varies per input instance. As a result, state-of-
the-art frameworks use heuristics that result in
suboptimal batching decisions. Further, batching
puts strict restrictions on memory adjacency and
can lead to high data movement costs. In this pa-
per, we provide an approach for batching dynamic
DNNs based on finite state machines, which en-
ables the automatic discovery of batching policies
specialized for each DNN via reinforcement learn-
ing. Moreover, we find that memory planning that
is aware of the batching policy can save significant
data movement overheads, which is automated by
a PQ tree-based algorithm we introduce. Experi-
mental results show that our framework speeds up
state-of-the-art frameworks by on average 1.15x,
1.39x, and 2.45x for chain-based, tree-based,
and lattice-based DNNs across CPU and GPU.
The framework is open-sourced at https://
github.com/gulang2019/ED-Batch.

1. Introduction

Batching accelerates the training and inference for deep neu-
ral networks (DNN) because (i) it launches fewer kernels
resulting in lower kernel launch and scheduling overhead on
the CPU, and (ii) it better utilizes the hardware by exploit-
ing more parallelism. For static DNNSs, i.e. DNNs whose
dataflow graphs (a.k.a., computation graphs) are identical
across every input instance, batched execution is trivial as
one can batch corresponding operations for each input to-
gether. However, DNNs used to model structured data such
as trees (Tai et al., 2015), grids (Chen et al., 2015), and lat-
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tices (Zhang & Yang, 2018) in applications like natural lan-
guage processing and speech recognition, exhibit dynamism
in the network structure. In other words, the dataflow graph
for these DNNs varies for each input instance. As a result,
batching is a non-trivial problem for these DNNs.

Due to the presence of dynamism, batching for dynamic
DNNSs cannot be done during compilation. As a result, past
works on the efficient execution of dynamic DNNs focused
on two directions: (i) enabling operation-level batching
at runtime (Looks et al., 2017; Neubig et al., 2017a; Zha
et al., 2019), i.e. dynamic batching, and (ii) extracting static
subgraphs (Xu et al., 2018) (e.g., LSTM cells) from the
dataflow graph and optimizing them during compilation (Fe-
gade et al., 2021; Fegade, 2023). Because of strict runtime
constraints, the former approach relies on simple heuristics
to guide batching, leading to suboptimal performance. In
the latter approach, techniques dedicated to certain control
flow patterns or subgraphs are used for optimization, which
is difficult to automate and requires developers with strong
expertise in optimizing new DNN models.

Furthermore, due to the dynamic and runtime nature of
past techniques, past work is unable to optimize inter-tensor
memory layouts during compilation. Past solutions, thus,
either (i) emit gather/scatter operations before and after
each batch (Xu et al., 2018; Neubig et al., 2017a) or (ii)
rely on specially designed and/or hand-optimized kernels
to operate on scattered data in-place (Fegade et al., 2021;
Fegade, 2023), thus precluding the use of highly-optimized
vendor libraries on common hardware.

To address these problems, we propose ED-Batch (Efficient
Dynamic Batching), an efficient automatic batching frame-
work for dynamic neural networks via learned finite state
machines (FSM) and batching-aware memory planning.

For dynamic batching, we exploit the insight that the opti-
mal batching policy for a wide variety of dynamic DNN’s
can be represented by an FSM, where each state represents a
set of possible operator types on the frontier of the dataflow
graph. Unlike the previous algorithms that depend heavily
on aggregated graph statistics to guide batching and result
in highly suboptimal decisions, our FSM approach learns
which decisions are better by examining the entire graph.
We find that using FSMs represents a sweet-spot between
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expressiveness of batching choices (the same choice for
the same state, leveraging the regularity in network topol-
ogy for a given input) and efficiency. Further, we adopt a
reinforcement-learning (RL) algorithm to learn the FSM
from scratch. To guide the training of RL, we design a
reward function inspired by a sufficient condition for the
optimal batching policy.

For the static subgraphs of the dynamic DNN, we take a
general approach to optimize it by memory-efficient batch-
ing. Our key insight is that the memory operations can be
significantly minimized by better planning the inter-tensor
memory layouts after batching, which we perform by using
a novel PQ tree-based (Booth & Lueker, 1976) algorithm
that we have designed.

In summary, this paper makes the following contributions:

* We propose an FSM-based batching algorithm to batch
dynamic DNNs that finds a near-optimal batching policy.

* We design a PQ tree-based algorithm with almost lin-
ear complexity to reduce memory copies introduced by
dynamic batching.

* We compare the performance of ED-Batch with state-
of-the-art dynamic DNNs frameworks on eight work-
loads and achieve on average 1.15x, 1.39x, and 2.45x
speedups for chain-based, tree-based, and lattice-based
networks across CPU and GPU. Our framework is open-
sourced at https://github.com/gulang2019/
ED-Batch.

2. FSM-based Dynamic Batching Algorithm

In this section, we identify the shortcomings of current
batching techniques and then propose a new FSM-based
batching algorithm and an RL approach to learn the FSM.

2.1. Problem Characterization

Dynamic batching was initially proposed in TensorFlow
Fold (Looks et al., 2017) and DyNet (Neubig et al., 2017b)
to enable batched execution of operations for dynamic
DNNS. Specifically, given a mini-batch of input instances,
dataflow graphs are generated for each of the input instances
in the mini-batch and each operation is given a type (indicat-
ing operation class, tensor shape, etc.). Upon execution, the
runtime identifies batching opportunities within the dataflow
graphs by executing operations of the same type together.
To avoid severe runtime overhead, the batching algorithm
cannot have high complexity. However, the problem of
minimizing the number of launched (batched) kernels is
an NP-hard problem with no constant approximation algo-
rithm,' making the batching problem extremely challenging.

"Proved by reducing from the shortest common supersequence
problem (Réihd & Ukkonen, 1981) in Appendix A.1.

Algorithm 1 FSM-based Dynamic Batching

1: Input: Dataflow Graph G, State Encoding Function F,
Batching Policy 7

2: while G.notEmpty() do
3:  nextType = n(F(G))
4:  batch = [v for v in Frontier(G) if v.type is nextType]
5:  Execute batch and remove nodes from G
6: end while
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Figure 1. Example demonstrating suboptimal batching using cur-
rent dynamic batching algorithms.

As a result, the heuristics used for dynamic batching in cur-
rent frameworks often find a suboptimal policy (up to 3.27x
more batches than with our approach (§5.3)).

Specifically, previous state-of-the-art algorithms use heuris-
tics depending on aggregated graph statistics to guide batch-
ing. The depth-based algorithm in Tensorflow Fold (Looks
et al., 2017) batches operations with the same type at the
same topological depth (the input operation to the net-
work has depth 0). And the agenda-based algorithm in
DyNet (Neubig et al., 2017b) executes operations of the type
with minimal average topological depth iteratively. How-
ever, topological depth cannot always capture the regularity
of the dataflow graph and results in sub-optimal batching
choices. Fig. 1(a) shows a dataflow graph of the tree-based
network, which builds upon the parse tree of a sentence
with three types of operations: internal nodes (1), output
nodes (O), and reduction nodes (R). The ideal batching
policy (red boxes) executes 6 batches, taking all O nodes in
one batch. However, the depth-based algorithm (Fig. 1(b))
executes the O nodes in four batches because they have
different topological depths, resulting in a total of 9 batches.
For the agenda-based algorithm, when it is deciding the next
batch after batching the I nodes as its first batch (Fig. 1(c)),
because the O nodes have a lower average depth (average
depth=(1+1+4+1+1+4+2+3+4)/7 = 1.86) than the |
nodes (average depth = (1 4 2 + 3)/3 = 2), the algorithm
will pick the O nodes for the next batch. As the result, the
agenda-based algorithm executes O nodes in both its 2nd
and 6th batches, resulting in 7 batches total.

2.2. FSM-based Dynamic Batching

To fully overcome the limitation of specific graph statistics,
we found that an FSM-based approach (i) offers the oppor-
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Figure 2. Dynamic Batching Policy by FSM

tunity to specialize for network structure under a rich design
space of potential batching policies and (ii) can generalize
to any number of input instances, as long as they share the
same regularity in topology.

Shown in Algorithm 1, the FSM-based dynamic batching
approach is an iterative process of choosing the operation
type for the next batch. The process differs from the agenda-
based algorithm only in how it computes the next type for
batching (line 3). During each iteration, the next type is
decided by first encoding the current dataflow graph G into
a state S = F(G), and then using a policy 7 to map the
state into an operation type ¢ = 7(.S). Then, the operations
of type t on the frontier of the G form the next batch. After
they are executed, these operations are removed from G and
the next iteration begins.

For the model in Fig. 1(a), an optimal FSM-based batching
policy is shown in Fig. 2(a), where we encode the dataflow
graph by the set of types on the frontier. State S : {I,0}/I,
for example, encodes graphs where types I and O comprise
the frontier, and the policy 7 is to use I as the next type.
Fig. 2(b) shows the batching process. From iterations 1 to
3, the dataflow graph is encoded into Sy = {I, O}, thus the
policy continues to batch nodes of type I = 7(.S2), avoiding
batching the O nodes as past heuristics would do. At the
same time, it is not hard to see that this FSM-based batching
policy can be applied to batch multiple input instances of
different parse trees.

2.3. Using RL to Learn the FSM

As the FSM provides us with the design space for potential
batching policies, we need an algorithm to come up with
the best batching policy specialized for a given network
structure. In ED-Batch, we adopt an RL-based approach
for the design-space-exploration and learn the best FSM
by a reward function inspired by a sufficient condition for
optimal batching.

In RL, an agent learns to maximize the accumulated
reward by exploring the environment. At time ¢, the
environment is encoded into a state S;, and the agent
takes action a; = w(S5;) following the policy 7 and
receives a reward r; = 71(S;a;). After this, the

environment transforms to the next state Sy;1. This
results in a sequence of states, actions, and rewards:
(So, ap, 7o, Sl, A13T 1y ey SN—17 aN—-1,T"N—-1, SN>, where
N is the number of time steps and S is an end state. The
agent aims to maximize the accumulated reward ;7 by
updating the policy 7. For FSM-based dynamic batching,
the environment is the dataflow graph, which is encoded
into states by the encoding function F'. For every iteration,
the agent decides on the type for the next batch, receives a
reward on that decision, and the environment gets updated
according to Algorithm 1. Now we elaborate on the state
encoding, reward design, and training respectively.

We use the following notations. For a dataflow graph G,
G} refers to its status at step ¢, G* refers to the extracted
subgraph of G composed solely of type a operations (as
illustrated in Fig. 2(c)), Frontier(G) refers to the set of
ready-to-execute operations, and Frontier,(G) refers to
the subset of Frontier(G) with type a. Fig. 2(b) annotates
Frontier(Gs), Frontier(GL) and Frontier(G9).

State Encoding: The design of state encoding should carry
enough information to capture the network’s regularity and
yet be as simple as possible to avoid heavy runtime overhead.
In practice, we experimented with three ways of encoding:

* Epase(G) = {v.type|lv € Frontier(G)} is the set of
operation types on the frontier

* Enax(G) = (Ebase(G), argmaz| Frontiery(GQ)|) is
Ebase(G) plus the most common type on the frontier

* Eiort(G) = sort({v.typelv € Frontier(G)},t
|Frontieri(G)]|) is Epgse(G) sorted by the number of
occurrences on the frontier

Empirically, we found that E,,.; was the best among the
three (§5.3).

Reward: We design the reward to minimize the number of
batches. The reward function is defined as

| Frontierq, (Gt
S ap) = —1 “Tap |2 1
r(St a:) o |Frontier(Gy*)] M
where « is a positive hyper parameter and S; = F(G}). The

constant —1 in the reward penalizes every additional batch,
thereby helping us minimize the number of batches.

The second term is inspired by a sufficient condition for op-
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timal batching (Lemma 2.1 below, proof in Appendix A.2)
to prioritize the type such that all operations on the frontier
of the subgraph of this type are ready to execute. For the
tree-based network, this term prioritizes the batching choice
made by the optimal batching policy in Fig. 2(a). For ex-
ample, at iteration 2, this term is % and % for the O and [
node respectively and the I node is given higher priority
for batching. For other networks, like the chained-based
networks (Fig. 7), this sufficient condition continues to hold.

Lemma 2.1 (Sufficient Condition for Optimal Batching). If
|Frontiera, (Gy)|
|Frontier(Gyt)|
sequence starting with a,.

= 1, then there exists a shortest batching

Training: Training is performed for each new net-
work topology (e.g., chain-based network, tree-based net-
work) at compile time. We adopt the tabular-based Q-
learning (Watkins & Dayan, 1992) algorithm to learn the
policy. An N-step bootstrapping mechanism is used to in-
crease the current batching choice’s influence on longer
previous steps. Specifically, the algorithm learns a () func-
tion, which maps each state and action pair to a real number
indicating its score.

The key observation for training is that the policy (i.e. FSM)
is independent of the input instance and the batch size, and
is only dependent on the DNN’s type. This observation
enables us to train on a single batch and generalize to larger
batch sizes of different input instances. During training, the
RL agent repeatedly performs batching on a single dataflow
graph of a batch (size of 32) of randomly sampled inputs.
Empirically, this takes hundreds of trials to converge (§5.3).

During inference, the () table for the network is loaded
by the runtime. At each state .S, the runtime selects the
operation type with the highest ) value for the next batch,
ie. m(S) = argmaz,Q(S,a). This step is done by a
lookup into stored () functions in constant time.

3. Memory-efficient Batching for Static
Subgraphs

3.1. Background and Motivation

In order to invoke a batched tensor operator in a vendor
library, the source and result operands in each batch are
usually required to be contiguous in memory (as per the
vendor library specifications). Current batching frameworks
such as Cavs and DyNet ensure this by performing explicit
memory gather and/or scatter operations, leading to high
data movement. On the other hand, Cortex (Fegade et al.,
2021) relies on specialized, hand-optimized batched kernels
instead of relying on vendor libraries. This approach, how-
ever, is unable to reuse the highly performant optimizations
available as part of vendor libraries.

x4 = x1 a x2; x5 =x3 ax1;
x6= 0(x4); x7= 0(x5); x8= 0(x3);

(a) Original code

Memory
|:| Tmp. buffer

=) Memcpy
=22} Avoided Memcpy

B1:
[x4,x5] = [x1,X3] Gparen [x2,x1]
B2:

[x8,X6,X7] = Opatcn([X3,%4,X5])
(b) Batched code

3 memcpy! 0 memcpy!

(c) Naive vs. Optimal memory allocation

Figure 3. Memory allocation example. «, o represent operators.

In ED-Batch, we take a different approach to fit the memory
layout into the batching policy, where operations in the
source and result operands for batched execution are already
contiguous in memory.

We illustrate the approach by an example. Fig. 3(a) shows
a sample code for a static subgraph and Fig. 3(b) shows
its batched version. In Fig. 3(c), we compare two mem-
ory layouts. On the left, we directly allocate memory ac-
cording to the variable’s label, then two memory gather
for [z1, 23], [x2, x1] and one scatter for [xg, z¢, 27| is per-
formed because they are either not contiguous or aligned in
memory. We say an operand of a batch is aligned in memory
if the order of its operations matches with the one in memory.
Now, consider the memory allocation on the right, which
allocates memory following (z2, 21, T3, Z4, 5, Tg, Te, T7).
Then, every source and result operand of the batched execu-
tion is already contiguous and aligned in memory, saving us
from extra memory copies.

3.2. PQ tree-based memory allocation

To find the ideal layout, we designed an almost linear
complexity memory allocation algorithm based on the PQ
tree (Booth & Lueker, 1976), which is a tree-based struc-
ture used to solve the consecutive one property (Meidanis
et al., 1998) and is previously applied to DNA-related anal-
ysis (Landau et al., 2005) in biology research.

We define the ideal memory layout as a sequence of variables
satisfying two constraints:

¢ Adjacency Constraint: Result and source operands
in every batch should be adjacent in the se-
quence. E.g., {z4,25},{x1,23},{x2, 21} for Bl,
{8, 6,27}, {x3, 24,25} for B2 are adjacent in the
sequence.

* Alignment Constraint: The order of the result and
source operands should be aligned in a batch. E.g. for
Bl,xy < x5 < 11 < 13 < 29 < x7inthe
sequence.

The adjacency constraint is satisfied by the PQ tree algo-
rithm. Given several subsets of a set S, the PQ tree algo-
rithm returns a data structure in linear time called a PQ
tree, representing potential permutations of S such that ele-
ments in each subset are consecutive. Fig. 4(a) shows the
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Figure 4. Example for PQ tree-based algorithm. x1-zg are variables.

Algorithm 2 PQ tree Memory Allocation

1: function BROADCASTCONSTRAINT(tree, B)
2 visited = getSet()
3 for batch in B do
4 if batch in visited then
5: continue
6: end if
7 Q = Queue()
8: Q.push(batch)
9: while not Q.isEmpty() do
10: b = Q.pop();
11: visited.insert(b)
12: cons = ParseConstraints(b)
13: suc, updatedBatches = ApplyConstraints(cons,
tree)
14: if suc is False then
15: B.erase(b)
16: else
17: for b in updatedBatches do
18: Q.push(b)
19: end for
20: end if
21: end while
22:  end for

23: end function

24: function DECIDENODESORDER (tree, BB)

25:  POrder = getUnionFindSet(tree.PNodes) {A union-find
set to decide QNode’s direction. }

26:  QOrder = getUnionFindSet(tree.QNodes) {A union-find
set to decide PNode’s permutation. }

27:  for batch in B do

28: EquivPairs = ParseEquivNodeOrderPair(tree, batch)
29: for EquivPair in EquivPairs do

30: if EquivPasir is a P-node pair then

31: POrder.Union(Equiv Pair)

32: else if EquivPair is a Q-node pair then

33: QOrder.Union(Equiv Pair)

34 end if

35: end for

36: end for

37:  return QOrder, POrder

38: end function

39: function MAIN(X, B = (batcha, ..., batchy,))

40:  {X the variable set, B the batches }

41:  tree = ConstructPQTree(X, B)

42:  BroadcastConstraint(tree, I3)

43:  QOrder, POrder = DecideNodesOrder(tree, BB)
44:  return GetLeafOrder(tree, QOrder, POrder)
45: end function

PQ tree for the example code. The tree has three kinds
of nodes: leaf node, P-node, and Q-node. Leaf nodes

represent the variables; P-nodes have more than two chil-
dren, whose appearance in the sequence is contiguous but
could be permuted; Q-nodes have more than one child,
whose appearance in the sequence follows an order but
could be reversed. A depth-first traversal of the leaf nodes
gives the sequence. For example, there is one P-node and
three Q-nodes in Fig. 4(a). @) indicates the order should
only be (x9,x1,x3,Q3) or (Q3,x3,x1,x2), while P indi-
cates that one permutation of {z¢, z7,zs} appears in the
sequence. The adjacency of {z4, x5} is embedded in Q3,
{xl, 153}, {.’1?2, CL‘l}, {334, T3, I5} in Qg, and {.%‘6, X7, a’,‘g} in
Py. A possible sequence is (z2, 21, T3, T4, L5, Tg, T7,Tg)-

To satisfy the alignment constraint, we annotate each node
on the PQ tree with an order. An annotated PQ tree is
shown in Fig. 4(c), where a direction mark is attached to
every Q-node, indicating its traversal order. As a result,
any leaf node sequence of legal traversal on this annotated
PQ tree indicates a memory allocation order satisfying both
constraints.

Shown in Algorithm 2, two passes obtain the order anno-
tation to the PQ tree. The first pass, BROADCASTCONS-
TRIANT, makes the tree structure of each batch’s operands
isomorphic. For B2’s operands, {x3, x4, x5}’s tree struc-
ture is Q2 = (...,x3,Q3 = (x4,25)), and {xg, 7, T8}’s
tree structure is Py = (x¢, 27, xg). After the pass, they have
isomorphic tree structures (Q2 = (..., 23, Q3 = (x4, 25))
and Q5 = (Q4 = (xg,x7), xs)). The second pass, DECIDE-
NODESORDER, derives the equivalent class of node-order
pairs and searches for an annotation for the direction of
Q-nodes and the permutation of P-nodes that is compatible
with the equivalence relationship.

We walk through the algorithm by the example in Fig. 4.
At first, the PQ tree is constructed by the standard algo-
rithm to satisfy the adjacency constraint (Fig. 4(a)). After
that, the BROADCASTCONSTRAINT pass makes the tree-
structure of operands in a batch isomorphic by repeatedly
parsing adjacency constraints (line 12) and broadcasting
them across operands (line 13). For B2, the parsed ad-
jacency constraints are {x3, x4, x5}, {4, 25} for subtree
Q2 = (...,z3,Q3 = (x4,25)), and {x, z7,28} for sub-
tree P; = (a6, x7,28). After that, {x4,25} in the source
operand is broadcast into {xg, 7} for the result operand,
and {xg,x7} is applied to the PQ tree as an adjacency
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Figure 5. Illustration for order decision in Pass2.

constraint®, resulting in the replacement of P; node by
Q5 = (Q4 = (w6,27),28). Now tree structures for B2’s
operands are isomorphic, and the algorithm applies this pro-
cess to other batches in a breadth-first search until no update
on the tree structure happens.

In DECIDENODESORDER (line 24), we assign directions
for the Q-node and permutations for the P-node. We start
by parsing the equivalence relationship (line 28) among
(QNode, direction) pairs or the (P Node, permutation)
pairs from the isomorphic tree structures after the first pass,
e.g. (Q2,¢) <= (Qs3,¢) for Bl, (Q3,) <=
(Qa, ) and (Q2,+) <= (Qs5,—) for B2. After that,
we spread the equivalence relationship across batches with
the support of a union—find data structure. In the algorithm,
a graph carrying the equivalence relationship is constructed
by iteratively UNIONing equivalent relationships among the
node-order pairs (lines 29-35). The nodes are composed
of all P/Q-nodes in the tree, and a directed edge (n, n¢, f)
between nodes 1, and n; with transformation function f
indicates that n4’s order after transformation f should be
the same as n;’s order.

Fig. 5 shows a graph construction process for the example
in Fig. 4. When processing (Q2,<) <= (Qs,—) in
step 1, a (@2, Q5, R) edge is added to the graph, indicating
Q2’s direction is determined by the reverse of 5’s direc-
tion. When processing the (Q2, <) <= (@3, <) in step
3, we first find the decider of their order, i.e. Q5 for ()2 and
Q4 for Q3, and add a (Q4, @5, R) edge. In this way, Q2
and ()3 always have the same order. Finally, as illustrated in
Fig. 5(b), the deciders in the graph (Q5 and @), for the ex-
ample) are assigned with arbitrary directions, which spread
across the graph following the relationship on the edge.

The PQ tree memory allocation algorithm’s time complexity
is given in Lemma 3.1, showing that under certain con-
straints, the PQ tree algorithm scales linearly with the size
of the dataflow graph and the batch size. Empirically, the al-
gorithm runs in tens of milliseconds for common subgraphs

(§5.3).

Lemma 3.1. PQ tree memory allocation algorithm’s time
complexity is O(Zpecpatches|b) maxgebatches |b]), where |.]
counts the operations in a batch.

Currently, PQ tree memory optimization is applied to every

Perform by standard REDUCE step in the Vanilla PQ tree
algorithm to satisfy adjacency constraint by restructuring the tree.

static subgraph at compile time because its execution time
does not fit into the strict runtime constraint for dynamic
DNNs. But the algorithm is applicable to arbitrary dataflow
graphs, as well as the idea of better memory planning for
any batching problems.

Lastly, there may be conflicts across different sub-graphs’
memory layout optimization. When conflict happens be-
tween a producer subgraph and a consumer subgraph, mem-
ory copy kernels are required to arrange the output of the
producer into the layout required by the consumer. We ex-
pect the memory overhead caused by the conflicts will not
be severe since the I/O ops involved in the conflict is a small
portion of the subgraph.

Appendix B provides a detailed explanation of the algo-
rithm.

4. Implementation

The optimizations in ED-Batch are fully automated and im-
plemented as a runtime extension to DyNet in 5k lines of
C++ code. The user can optionally enable the batching opti-
mization by passing a flag when launching the application,
and enable the static subgraph optimization by defining sub-
graphs in DyNet’s language with a few annotations. Before
execution, the RL algorithm learns the batching policy and
ED-Batch optimizes the static subgraph by the approach in
§3. For the RL algorithm, a tuned and fixed set of hyper
parameters is used for training all types of networks. Upon
execution, ED-Batch calls DyNet’s executor for batched
execution, which is supported by vendor libraries.

5. Evaluation
5.1. Experiment Setup

We evaluate our framework against DyNet (Neubig et al.,
2017a) and Cavs (Xu et al., 2018), two state-of-the-art run-
times for dynamic DNNs, which are shown to be an order
of magnitude faster than traditional frameworks like Py-
torch (Paszke et al., 2019) and TensorFlow (Abadi et al.,
2016) (see Appendix D). As noted in Fegade, Chen, Gib-
bons, and Mowry (2021), Cavs’ open-sourced version has
worse performance than DyNet, because certain optimiza-
tions are not included. To make a fair comparison with
Cavs, we use an extended version of DyNet with the main
optimizations in Cavs enabled as a reference for Cavs’ per-
formance (referred to as Cavs DyNet). Namely, the static
subgraphs in the network are pre-defined and batching opti-
mization is applied to them. ED-Batch is implemented on
top of this extended version, with the RL-based dynamic
batching algorithm (Fs,,¢ for state encoding) and mem-
ory optimization on the static subgraphs by PQ Tree. On
the other side, the agenda-based algorithm and the depth-
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Table 1. Models and datasets used in our evaluation

Model Short name | Dataset

A bi-directional LSTM Named | BiLSTM- WikiNER Eng-

Entity Tagger (Huang et al., | Tagger lish  Corpus

2015) (Nothman
etal., 2013)

An LSTM-based encoder- | LSTM- IWSLT 2015

decoder model for neural | NMT En-Vi

machine translation.

N-ary TreeLSTM (Tai et al., | TreeLSTM Penn tree-

2015) bank (Marcus

N-ary TreeGRU TreeGRU etal., 1994)

MV-RNN (Socher et al., 2012) | MV-RNN

An extension to TreeLSTM | TreeLSTM-

that contains two types of in- | 2Type

ternal nodes, each with 50%

probability

A lattice-based LSTM network | LatticeLSTM | Lattices

for Chinese NER (Zhang & generated

Yang, 2018) based on

A lattice-based GRU network | LatticeGRU | Chinese Weibo

for neural machine transla- Dataset

tion (Su et al., 2017)

based algorithm are used for dynamic batching on Vanilla/-
Cavs DyNet. Depending on the workload and configuration,
a better-performing algorithm is chosen for Vanilla/Cavs
DyNet in the evaluation.

We test the framework on 8 workloads, shown in Table 1.
They follow an increase in dynamism, from chains to
trees and graphs. Except for lattice-based networks,
all workloads appeared as benchmarks for past works.
The Chinese Weibo Dataset was retrieved from https:
//github.com/0OYE93/Chinese—-NLP-Corpus/
tree/master/NER/Weibo.

We run our experiments on a Linux server with an Intel Xeon
E2590 CPU (28 physical cores) and an Nvidia V100 GPU.
The machine runs CentOS 7.7, CUDA 11.1, and cuDNN 8.0.
We use DyNet’s latest version (Aug 2022, commit c418b09)
for our evaluation.

5.2. Overall Performance

Fig. 6 compares ED-Batch’s end-to-end inference through-
put against Vanilla/Cavs DyNet. We follow past work to
evaluate different batch sizes (1, 8, 32, 64, 128, 256) and
model sizes (32, 64, 128, 256, 512), which is the size for the
hidden vector length and the embedding size. The through-
put is calculated as the maximum throughput among all
batch size choices. For all cases, ED-Batch outperforms
Vanilla DyNet significantly due to the reduction in graph
construction and runtime overhead by pre-definition of the
static subgraph.

We now discuss the comparison with Cavs DyNet. For the
chain-based models BiLSTM-tagger and LSTM-NMT, ED-
Batch achieved on average 1.20x, 1.11x higher throughput

on CPU and 1.20x, 1.12x on GPU. Because the network
structure is basically made up of chains, both the agenda-
based algorithm and our FSM-based batching algorithm find
the optimal batching policy (shown in Fig.7). On the other
hand, the LSTMCell is 1.54x higher throughput with the
PQ-tree optimization compared to the one with DyNet’s
memory allocation, which explains the improvements.

For the tree-based models, compared to agenda/depth-
based batching heuristics, ED-Batch reduces the number of
batches by 37%. This is because the FSM-based algorithm
executes the output nodes in one batch (Fig. 1). For TreeL-
STM and TreeGRU, ED-Batch achieved on average 1.63x,
1.46x higher throughput on CPU and 1.23x, 1.29x higher
throughput on GPU. ED-Batch’s performance is close to
Cavs DyNet on MVRNN because the execution is bounded
by matrix-matrix multiplications, which can hardly benefit
from extra batch parallelism and the reduction in runtime
overhead.

For the lattice-based models LatticeLSTM and LatticeGRU,
ED-Batch increases DyNet Cavs’s throughput significantly
by 1.32-2.97x on CPU and 2.54-3.71x on GPU, which is
attributed to both better dynamic batching and static sub-
graph optimization. For the lattice-based models’ network
structure in Fig. 8, the FSM-based algorithm prioritizes
the execution of the majority type on the frontier, whereas
the depth/agenda-based algorithms batch the character cell
and word cell more arbitrarily. As a result, the number of
batches is reduced by up to 3.27 times (Fig. 7). For the static
subgraph, the used LSTMCell and GRUCell’s latency is cut
by 34% and 35%, which adds to the higher throughput.

5.3. Analysis

Where does ED-Batch’s speedup come from? Fig. 9
shows a breakdown of the inference pass into construction,
scheduling and execution time. Construction time is the time
to define the dataflow graph. Scheduling time is the time
for dynamic batching analysis. Execution time is the rest,
mainly composed of executing operations. While having
similar construction/scheduling time, ED-Batch speeds up
Cavs DyNet by greatly reducing execution time due to better
batching and fewer kernels for data movement.

Does the algorithm find a good enough batching policy?
Compared to agenda/depth-based batching, our FSM-based
batching uniformly executes fewer batches (Fig. 7). Among
three state encoding choices, Ej,,; is slightly better be-
cause of the stronger expressiveness, finding the optimal
batching policy on BiLSTM-tagger, LSTM-NMT, and Tree-
based models and executing 23% and 44% more batches on
TreeLSTM-2Type and Lattice-Based models.

To demonstrate the efficiency of the reward function, we
measure the number of batches executed by a sufficient-
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Figure 8. Lattice Network for Chinese NER. The input sentence
topology is a chain of character cells with jump links of word cells.
Agenda/depth batching fails to batch the word cells together.

condition-guided heuristic, which selects the type for the
next batch that maximizes the second term in Eq. 1. Fig. 7
shows that this heuristic executes batches paramount to the
best FSM-based algorithm. However, this heuristic has
high runtime overhead. Thus, on the evaluated workloads,
the FSM-based algorithm can be treated as a time-efficient
distiller of this heuristic.

Ablation Study of the Static Subgraph Optimization. In
Table 2, we evaluate ED-Batch’s memory layout optimiza-
tion on the static subgraphs. For all evaluated cases, the
PQ-tree algorithm finds the ideal memory allocation order
(the remaining data transfer is caused by broadcasts that

CP
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Figure 9. Cavs DyNet vs. ED-Batch: Time Decomposition for
model size = 128 and batch size = 64.

Table 2. Batching with DyNet’s memory allocation (left) vs. Batch-
ing with PQ tree-based memory allocation on static subgraphs
(batch size = 8, model size = 64).

Latency (ms)

Mem Kernels/Subgraph ~ Memcpy Amount (kB)

Subgraph value ratio value ratio value ratio
GRUCell 0.11/0.07 154 6/2 30 666.0/14.0  47.57
LSTMCell 02/013 152 4/1 4.0 1054.0/16.0  65.88
MVCell 0.08/0.08 096 2/2 10 260.0/260.0 1.0
TreeGRU-Internal ~ 0.24/0.15 1.6 8/2 4.0 552.0/16.0 345
TreeGRU-Leaf 0.09/0.07 14 4/2 20 268.0/8 335
TreeLSTM-Internal  0.19/0.12 1.61 7/3 233 1064.0/22.0 48.36

TreeLSTM-Leaf 0.12/0.09 127 3/1 3.0 396.0/6.0 66.0

cannot be optimized by better memory layout). Compared
to the baseline, ED-Batch reduces the latency of the static
subgraph by up to 1.6x, memory kernels by up to 4x, and
memory transfer amount by up to 66x. This significant re-
duction in memory transfer can be attributed to the better
arrangement of the weight parameters. For example, there
are four gates in the LSTM cell that perform feed-forward
arithmetic y; = W;x; + b;, which are executed in a batch.
The memory arrangement in ED-Batch makes sure the in-
puts, parameters, and intermediate results of batched kernels
are contiguous in the memory, which is not considered by
DyNet’s policy. Since the weight matrix occupies memory
relative to the square of the problem size, this leads to a
huge reduction in memory transfer.

Comparison with a more specialized framework. Cor-
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Table 3. ED-Batch vs. Cortex: Inference Latency (ms).

TreeGRU TreeLSTM
batch size model size Cortex Ours Cortex Ours
10 256 230 227 2244 278

512 5,60 3.04 8500 4.70
20 256 373 3.03 3460 3.52
512 11.70  3.70 19.210 4.82

tex (Fegade et al., 2021) is highly specialized for optimizing
a class of recursive neural networks and it requires the user
to not only express the tensor computation, but also spec-
ify low-level optimizations specific to underlying hardware,
both through TVM’s domain-specific language (Chen et al.,
2018). We compare ED-Batch with Cortex on TreeLSTM
and TreeGRU. To make more of an apples-to-apples com-
parison in terms of user effort in developing the application,
we enabled Cortex’s automated optimizations like lineariza-
tion and auto-batching and used simple policies on optional
user-given (manual) optimizations like kernel fusion and
loop transformation (details in Appendix C). As shown in
Table 3, ED-Batch can speed up Cortex by up to 3.98x.

Table 4. RL Training Time and iterations

Time (s)  Train Iter.
TreeLSTM 0.154 50
TreeGRU 0.141 50
MVRNN 0.254 50
TreeLSTM-2type 2217 1000
BiLSTM-tagger 1.629 50
BiLSTM-tagger-withchar 6.268 50
LatticeLSTM 21.733 1000
LatticeGRU 4911 1000

Compilation  overhead.

The training of the RL
model is empirically effi-

Table 5. Static Subgraph Com-
pile Time

. . Time (ms)
cient. We trained the .RL GRUCSL 15
model for up to 1000 trials LSTMCell 12.95
and stopped early if the MVCell 1.53
number of batches reaches TreeGRU-Internal 10.43

TreeGRU-Leaf 291
the IOWCI‘. bOl,lnd (check TreeLSTM-Internal 29.89
every 50 iterations). The TreeLSTM-Leaf 3.64

most onerous task (see
Table 4) is to train for the lattice-based network. This takes
22 seconds for 1000 iterations to train on a dataflow graph
of 11,626 nodes, and results in 1040 states in the Q-table.
On the static subgraph, the batching policy is obtained by
the grid search and the PQ tree optimization is applied
afterward. Shown in Table 5, it takes tens of milliseconds to
optimize the static subgraph.

6. Related Work and Discussion

There are a variety of frameworks specialized for dynamic
neural network training (Neubig et al., 2017a; Looks et al.,
2017; Xu et al., 2018) and inference (Fegade et al., 2021; Fe-
gade, 2023; Zha et al., 2019; Gao et al., 2018). Concerning

batching for the dynamic neural networks, DyNet (Neubig
et al., 2017a) and TFFold (Looks et al., 2017) laid the sys-
tem and algorithm foundation to support dynamic batching.
However, their batching heuristics are often sub-optimal as
we saw above. Nevertheless, their algorithms have been
used in other frameworks, like Cavs (Xu et al., 2018) and
Acrobat (Fegade, 2023). Apart from batching, another major
direction of optimization is to extract the static information
from the dynamic DNN and optimize them during compile
time. Cavs (Xu et al., 2018) proposed the idea of predefining
the static subgraphs, which was later extended in (Zha et al.,
2019) to batch on different granularities. ED-Batch adopts
this multi-granularity batching idea to perform batching on
both the graph level and the subgraph level. For static sub-
graphs, traditional techniques are used for optimization, like
the kernel fusion in Cavs and Cortex (Fegade et al., 2021),
the AoT compilation (Kwon et al., 2020), and specialized
kernel generation in Acrobat (Fegade, 2023). However,
though with high efficiency, these optimizations can hardly
be automated because either the developer or the user needs
to optimize each subgraph manually. In ED-Batch, fully
automated runtime optimizations are used instead to enable
both efficient execution and generalization.

Considering the scalability of ED-Batch, increasing the ex-
pressiveness of the state encoding would enable our FSM-
based method to accommodate increasingly complex net-
works. Also, the invariance to the feature sizes of the run-
time enables ED-Batch to scale with any hidden vector size.
Lastly, the used RL training/inference algorithm scales lin-
early with the size of the dataflow graph, and moreover this
overhead is hidden by parallel execution of CPU and GPU
at runtime.

7. Conclusion

In ED-Batch, we designed an FSM-based algorithm for
batched execution of dynamic DNNs. Also, we mitigated
the memory copying introduced by batching through a mem-
ory layout optimization based on the PQ-tree algorithm.
The experimental results showed that our approach achieved
significant speedup compared to current frameworks by re-
ducing the number of batches and data movement.
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Appendices

A. Dynamic Batching
A.1. Proof of NPC property

For a directed acyclic graph G(V, E), each node has a type
t € T, we define batch sequence as a sequence of types
s € T*, that can be used iteratively as the next type in
Algorithm 1 to batch the whole dataflow graph. The Batch-
ing problem is to find a batch sequence with the smallest
possible length, denoted as an optimal batching sequence.

Theorem A.1 (NP-hard for Batching). Batching is NP-hard.

Proof. We prove the NP-hardness by reducing from Short-
est Common Supersequence (SCS). Given an alphabet A, a
set of strings, s1, So, ..., S, in A, the SCS problem finds the
shortest common supersequence for these strings. Treating
each letter in the string as a node, the string is a chain of
nodes, which is a DAG. Therefore, s1, s2, ..., 5, compose a
DAG with many independent chains. Suppose the optimal
batching sequence for this DAG is found, we claim that
it is exactly the common supersequence for these strings.
On one side, every string must appear as a substring in the
optimal batching sequence to complete the batching. On
the other side, if there is a common supersequence shorter
than the optimal batching sequence, this common superse-
quence is also a legal batching sequence. This is because in
Algorithm 1, we greedily batch nodes in the frontier once
their type is equal to the one in the batching sequence. So
it is sufficient for a string to appear as a subsequence to be
fully batched. This yields the contradiction. So the optimal
batching sequence is the common supersequence, indicating
SCS can be solved by Batching with poly time encoding.
So, Batching is NP-hard. O

To our knowledge, there is no constant guaranteed approxi-
mation algorithm for the SCS problem, and hence neither
for Batching.

A.2. Proof of the sufficient condition on batching

| Frontiera, (G¢)|
Lemma A.2. If |Frontier(Gyt)|

shortest batching sequence starting with a.

= 1, then there exists a

Proof. Proof by contradiction. If this is not true, let S be
the set of operations of the first batch whose operation type

is a¢. Then, we must have S C Frontier(G3*). Because

[Frontiera, (Gi)| _ i i
Frontionla™)] = 1, meaning that S is ready to execute

for the first batch. Thus, by moving S to the first batch
committed, we get one of the shortest batching sequences
starting with a;. Contradiction. O

12

is a

This dog.

Figure 10. Example when the FSM approach fails to work well.

A.3. Lower Bound

For a dataflow graph G and type set 7', the lower bound of
kernel launches is given by

|Batching™ (G)| > Sier Depth(Gy). 2)
The heuristic behind the formula is that it requires at least
Depth(G,) steps to fully execute the G;. Because of the
dependency between G.s, the execution requires at least
YierDepth(G:) steps to finish.

A.4. Case the FSM does not cover

There are cases when the FSM cannot find a good policy.
In the fake example in Fig. 10, we concatenate two tree
networks, but the second has the type of Internal node and
Output Node swapped. Here, the FSM in Fig. 2 does not
work well because the first tree requires batching Input node
S2 while the second requires batching the Output node. This
problem can be solved by introducing into the state encoding
phase information such as the portion of nodes committed.

B. PQ tree

In this section, we illustrate the functions used in Algo-
rithm 2 and give the proof of its time complexity.

Detailed Illustration

The supporting functions for BROADCASTCONSTRAINT
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Algorithm 3 Algorithms for functions in BROADCASTCON-
STRAINT
1: function GETSUBTREECONS(0)

2:  root = FindRoot(0)

3:  nodeToLeaves = getNodeToLeaves(root) {A func-
tion maps nodes to leaves in its subtree. Real-
ized by a traversal of the tree on the recursive func-
tion nodeToLeaves(node) = node.isLeaf?{node} :
{nodeToLeaves|child]|child € node.children}}

4:  constraints = getList()

5:  for node in getNodesInSubTree(root) do

6: if node is P-node then

7: cons = Uchildenode.childrennodeT o Leaves(child)

8: constaints.push(cons)

9: else if node is Q-node then

10: for child € node.children do

11: sib = child.nextSibling()

12: cons = U{nodeToLeaves(child),
nodeToLeaves(sib)}

13: constraints.push(cons)

14: end for

15: end if

16:  end for

17:  return constraints

18: end function

19: function PARSECONSTRAINTS (constraints, batch)

20:  wuniformConstraints =
Uoebatch.operands{0.index(z)|z € getSubtreeCons(o)}
{Parse operand-wise consecutive constraint. }

21:  constraints = getList()

22:  for o in batch.operands do

23: {Transform constraint by alignment information. }

24: for cons in uniformConstraint do

25: constraints.append({o[z]|z € cons})

26: end for

27:  end for

28:  return constraints

29: end function

30: function  APPLYCONSTRAINTS(constraints, tree,
updatedOperands)

31:  for cons in constraints do

32: suc = ReduceAndGetChanged(tree,  cons,

updatedOperands)

33: if suc is False then

34: return False

35: end if

36: end for

37:  return True

38: end function

are shown in Algorithm 3. The FINDROOT function is
supported by the BUBBLE method in the vanilla PQ tree
algorithm to search the root for the minimal subtree for a
set of leaf roots. The REDUCEANDGETCHANGED method
is supported as an extension to the REDUCE method in the
vanilla PQ tree algorithm to add a consecutive constraint to
the PQ tree and record the batches whose tree structure gets
changed. It needs to maintain a mapping between the P/Q
node with the batches and updates it when the tree structure
gets updated in the REDUCE step.
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Algorithm 4 ParseEquivNodeOrderPair

function PARSEEQUIVNODEORDERPAIR(tree, batch)

1:
2: Q= getQueue() {Queue on equivalent nodes. }
3:  foriin batch.operands. front().size() do
4: Q.push((o[t]|o € batch.operands))
5:  end for
6:  EquivNodeOrderPairs = getList()
7 Find the root and calculate the leaf count for the subtree of
the first operand.
8:  while True do
9: { A leaf-to-root search performed parallel on operands in
one batch. }
10: nodes = Q.pop()
11: node = nodes. front()
12: if node is P node then
13: EquivClass = {(node,node.referenceRrder)|
node € nodes}
14: EquivNodeOrder Pairs.add((P, EquivClass))
15: else if node is Q node then
16: EquivClass = {(node, getDirection(node,
node.re ferenceOrder))|node € nodes}
17: EquivNodeOrder Pairs.add((Q, EquivClass))
18: end if
19: node.parent.leafCnt = node.parent.leafCnt—
node.lea fCnt
20: if node.parent.leafCnt is 0 then
21: Q.push((node.parent|node € nodes))
22: end if
23: for node in nodes do
24: {Reference Order is used to decide the node order. }
25: node.parent.referenceOrder.append(node)
26: end for
27: if node.isRoot then
28 {Stop Condition: Root Found.}
29: Break.
30: end if
31:  end while
32:  return EquivNodeOrderPairs

33: end function

The PARSEEQUIVNODEORDERPAIR method is given in
Algorithm 4 to parse the equivalent node order pairs on
the isomorphic tree structures for operands in a batch. It is
performed by simultaneous bottom-up traversal for operands
in this batch.

The methods concerning the Union Find data structure are
listed in Algorithm 5. In this problem, the UnionFindSet
data structure is a set of nodes, and each node has two at-
tributes: (i) parent, the pointer to the node’s parent, or
the decider of its order, and (ii) o, the transformation that
transforms the node’s order (a permutation for P-node or
reverse for Q-node) to its parent’s. Given a node, the FIND
method returns the root node of this node and the node’s
relative order with the root. In FIND method, the equiva-
lence relationship between two node order pairs, i.e. (nodeq,
01), (nodes, 09), is built. The constraint conveyed is that if
node; has order o then node; must have order o o o Lo,
and this is encoded into the data structure by building a
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Algorithm 5 Extended Union-Find set algs

Algorithm 6 Get Memory Allocation Order

1: function GETUNIONFINDSET(nodes)
2 for node in nodes do
3 node.parent = node
4: node.o = I {Identical transformation}
5:  end for
6: end function
7: function FIND(node)
8: o = I {order relative to the root.}
while node.parent is not node do
o = o onode.c
node = node.parent
end while
return node, o
: end function
: function UNION(node:, o1, nodes, 02)
p1, oz = Find(node1)
p2, 04 = Find(node2)
if p1 is not p» then
p1.parent = p2

20 P1.0 = 03 0405 01

21:  elseif oy ‘o2 is 05 ‘o4 then

22: {Compatible. Do nothing. Already equivalent.}
23:  else

24: {Incompatible. }

25: return False

26:  endif

27:  return True

28: end function

relationship between their roots. If their roots are not the
same, an edge connects them with the transformation satis-
fying the information (line 20). If they are the same, then
nodey,nodes’s relative order to the root must satisfy the
constraint (line 21). Otherwise, the equivalence relationship
is not compatible and this relationship is dropped.

Finally, we obtain the memory allocation sequence by a
depth-first traversal satisfying the constraint we found on
the node order (Algorithm 6).

Complexity

Lemma B.1. For the batching problem, PQ tree
memory allocation algorithm’s time complexity is
O (Spatchebatehes|batch| maxi,, ., cparenes |batch|) where
|.| counts the operation in a batch.

Proof. The REDUCE step on a consecutive constraint S
in the PQ tree is O(]S|). Thus, the time complexity for
PQ-tree construction is O(Xpatchebatches|batch|). In the
BROADCASTCONSTRAINT pass, the while-loop body
(lines 10-20) can only perform O(Xpatchcbatches|batchl).
This is because every update on the PQ-tree structure either
transfers a P-node into a Q-node or introduces a new node,
the total times for updates on the tree structure are bounded
by the number of internal nodes for the PQ-tree and are
further bounded by the number of leaf variables. Then, for
the while-loop body, the GETSUBTREECONS method on an
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: function GETLEAFORDER(tree, POrder, QOrder)
: root = tree.root
order = getList()
S = getStack()
S.push(root)
while S.notEmpty() do
{Depth first traversal }
node = S.pop()
9: if node is P node then

1
2
3
4:
5:
6.
7
8

10: p, 0 = POrder.find(node)

11: for child in o (node.children) do
12: GetLeafOrder(child)

13: end for

14: else if node is Q node then

15: p, direction = POrder.find(node)
16: for child in node.children following direction do
17: GetLeafOrder(child)

18: end for

19: else

20: {Leaf Node here}

21: order.append(order)

22: end if

23:  end while

24:  return order

25: end function

operand with k variables needs O(k?) to compute as the
GETNODETOLEAVES method needs to assign each node
with the set of its leaves and the number of nodes is bounded
by k. It is not hard to see the rest of PARSECONSTRAINT
has lower complexity. Thus, for a batch with m variables,
it takes O(mk?) to compute the PARSECONSTRAINT.
For the APPLYCONSTRAINTS step, the REDUCEAND-
GETCHANGED step can be implemented to have the same
complexity as REDUCE, where a bi-direction map is used to
store the relationship between the node and the batch, once
a node is deleted or inserted, a callback is used to update
this table in constant time. Then, APPLY CONSTRAINTS’S
complexity is bounded by the sum of variables in the
constraints, which is also O(ka). In all, for the BROAD-
CASTCONSTRAINT pass, suppose there are n variables,
the time complexity is O(nmk?). Under the batching
setting, each node appears in the result operand of a
batch once and only once, Xpatchebatches|batch|
nm, and k < MaXpatchcbatches |batch).
Thus, the time comlexity is bounded by
O(Zpatchebatehes|batch| maxﬁatchebatches |batchl).

For the DECIDENODESORDER function, PARSEEQUIV-
NODEORDERPAIR on batch requires O(|batch|) time
to traverse the graph. The Union method is
O(a(n)), where «(n) is the extremely slow-growing
inverse Ackermann function. Thus, the time com-
pleXity is O(E\batch\ebatches(|bat6h| + O(a(n))))
O(Z|batch|€bat(zhes(|batChD)~

all,

~
~

In the time complexity of the

PQ
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Table 6. Input Throughput Comparison

Input/s Torch TF DyNet Cavs ED-Batch
CPU 39 37 671 480 1163
GPU 84 26 2723 6243 6736

tree memory allocation algorithm is
2
O(Zpatchebatches|batch| maxy . cpatcnes |0atchl).

C. More on Our Comparison with Cortex

Cortex (Fegade et al., 2021) is highly specialized for op-
timizing the recursive neural network and it requires the
user to express the tensor computation and specify the opti-
mization through TVM’s domain-specific language (Chen
et al., 2018). This framework is fundamentally different
from general frameworks like ED-Batch and DyNet in that
it does not rely on vendor libraries and the user is given a
full chance to optimize computation from the graph level
to the operation level. This gives expert users the chance
to squeeze the performance by specializing the application
to the hardware but is burdensome for common users who
basically want to prototype an application.

The experiment for the comparison between ED-Batch with
Cortex performs on TreeLSTM and TreeGRU. Cortex does
not support the LSTM-NMT model because it has a tensor-
dependent control flow. We did not compare the rest of the
models basically because of the lack of expertise in writing
the schedules in TVM. The optimizations we used in Cor-
tex include the automated linearization and auto-batching.
For the user-given optimizations, we did not perform kernel
fusion and the individual operators were optimized by loop
transformations like loop tiling, loop reorder, and axis bind-
ing. In the end, for the TreeLSTM case it takes us 30 lines
of python code to specify the computations and 105 lines of
TVM schedules to optimize the kernel.

D. Comparison with Torch and TF

As discussed in Cavs (Xu et al., 2018)’s and DyNet (Neu-
big et al., 2017a)’s paper, their frameworks are one to two
orders of magnitude faster than traditional frameworks like
Torch (Paszke et al., 2019) and TensorFlow (Abadi et al.,
2016) across hardware platforms and workloads. We vali-
date this fact by a case study on TreeLSTM across CPU and
GPU (batch size of 256 and model size of 512). As shown
in Table 6, ED-Batch has 29x/37x higher throughput than
Torch/TensorFlow on CPU, and 80x/280x higher throughput
on GPU.
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