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ABSTRACT

As machine learning (ML) algorithms are increasingly used in high-stakes applica-
tions, concerns have arisen that they may be biased against certain social groups.
Although many approaches have been proposed to make ML models fair, they
typically rely on the assumption that data distributions in training and deployment
are identical. Unfortunately, this is commonly violated in practice and a model that
is fair during training may lead to an unexpected outcome during its deployment.
Although the problem of designing robust ML models under dataset shifts has
been widely studied, most existing works focus only on the transfer of accuracy.
In this paper, we study the transfer of both fairness and accuracy under domain
generalization where the data at test time may be sampled from never-before-seen
domains. We first develop theoretical bounds on the unfairness and expected loss
at deployment, and then derive sufficient conditions under which fairness and
accuracy can be perfectly transferred via invariant representation learning. Guided
by this, we design a learning algorithm such that fair ML models learned with
training data still have high fairness and accuracy when deployment environments
change. Experiments on real-world data validate the proposed algorithm. Model
implementation is available at https://github.com/pth1993/FATDM.

1 INTRODUCTION

Machine learning (ML) algorithms trained with real-world data may have inherent bias and exhibit
discrimination against certain social groups. To address the unfairness in ML, existing studies have
proposed many fairness notions and developed approaches to learning models that satisfy these
fairness notions. However, these works are based on an implicit assumption that the data distributions
in training and deployment are the same, so that the fair models learned from training data can
be deployed to make fair decisions on testing data. Unfortunately, this assumption is commonly
violated in real-world applications such as healthcare e.g., it was shown that most US patient data
for training ML models are from CA, MA, and NY, with almost no representation from the other 47
states (Kaushal et al., 2020). Because of the distribution shifts between training and deployment, a
model that is accurate and fair during training may behave in an unexpected way and induce poor
performance during deployment. Therefore, it is critical to account for distribution shifts and learn
fair models that are robust to potential changes in deployment environments.

The problem of learning models under distribution shifts has been extensively studied in the literature
and is typically referred to as domain adaptation/generalization, where the goal is to learn models
on source domain(s) that can be generalized to a different (but related) target domain. Specifically,
domain adaptation requires access to (unlabeled) data from the target domain at training time, and
the learned model can only be used at a specific target domain. In contrast, domain generalization
considers a more general setting when the target domain data are inaccessible during training; instead
it assumes there exists a set of source domains based on which the learned model can be generalized
to an unseen, novel target domain. For both problems, most studies focus only on the generalization
of accuracy across domains without considering fairness, e.g., by theoretically examining the relations
between accuracy at target and source domains (Mansour et al., 2008; 2009; Hoffman et al., 2018;
Zhao et al., 2018; Phung et al., 2021; Deshmukh et al., 2019; Muandet et al., 2013; Blanchard
et al., 2021; Albuquerque et al., 2019; Ye et al., 2021; Sicilia et al., 2021; Shui et al., 2022) or/and
developing practical methods (Albuquerque et al., 2019; Zhao et al., 2020; Li et al., 2018a; Sun &
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Saenko, 2016; Ganin et al., 2016; Ilse et al., 2020; Nguyen et al., 2021). To the best of our knowledge,
only Chen et al. (2022); Singh et al. (2021); Coston et al. (2019); Rezaei et al. (2021); Oneto et al.
(2019); Madras et al. (2018); Schumann et al. (2019); Yoon et al. (2020) considered the transfer
of fairness across domains. However, all of them focused on domain adaptation, and many also
imposed rather strong assumptions on distributional shifts (e.g., covariate shifts (Singh et al., 2021;
Coston et al., 2019; Rezaei et al., 2021), demographic shift (Giguere et al., 2022), prior probability
shift (Biswas & Mukherjee, 2021)) that may be violated in practice. Among them, most focused
on empirically examining how fairness properties are affected under distributional shifts, whereas
theoretical understandings are less studied (Schumann et al., 2019; Yoon et al., 2020). Details and
more related works are in Appendix A.
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Figure 1: An example of domain gener-
alization in healthcare: (fair) ML model
trained with patient data in CA, NY, etc.,
can be deployed in other states by main-
taining high accuracy/fairness.

In this paper, we study the transfer of both fairness and
accuracy in domain generalization via invariant represen-
tation learning, where the data in target domain is unknown
and inaccessible during training. A motivating example
is shown in Figure 1. Specifically, we first establish a new
theoretical framework that develops interpretable bounds
on accuracy/fairness at a target domain under domain gen-
eralization, and then identify sufficient conditions under
which fairness/accuracy can be perfectly transferred to an
unseen target domain. Importantly, our theoretical bounds
are fundamentally different from the existing bounds, com-
pared to which ours are better connected with practical
algorithmic design, i.e., our bounds are aligned with the ob-
jective of adversarial learning-based algorithms, a method
that is widely used in domain generalization.

Inspired by the theoretical findings, we propose Fairness
and Accuracy Transfer by Density Matching (FATDM), a
two-stage learning framework such that the representations and fair model learned with source
domain data can be well-generalized to an unseen target domain. Last, we conduct the experiments
on real-world data; the empirical results show that fair ML models trained with our method still
attain a high accuracy and fairness when deployment environments differ from the training. Our main
contributions and findings are summarized as follows:

• We consider the transfer of both accuracy and fairness in domain generalization. To the best of our
knowledge, this is the first work studying domain generalization with fairness consideration.

• We develop upper bounds for expected loss (Thm. 1) and unfairness (Thm. 3) in target domains.
Notably, our bounds are significantly different from the existing bounds as discussed in Appendix
A. We also develop a lower bound for expected loss (Thm. 2); it indicates an inherent tradeoff of
the existing methods which learn marginal invariant representations for domain generalization.

• We identify sufficient conditions under which fairness and accuracy can be perfectly transferred
from source domains to target domains using invariant representation learning (Thm. 4).

• We propose a two-stage training framework (i.e., based on Thm. 5) that learns models in source
domains (Sec. 4), which can generalize both accuracy and fairness to target domain.

• We conduct experiments on real-world data to validate the effectiveness of the proposed method.

2 PROBLEM FORMULATION

Notations. Let X ,A, and Y denote the space of features, sensitive attribute (distinguishing different
groups, e.g., race/gender), and label, respectively. Let Z be the representation space induced from
X by representation mapping g : X → Z . We use X , A, Y , Z to denote random variables that
take values in X ,A,Y,Z and x, a, y, z the realizations. A domain D is specified by distribution
PD : X ×A× Y → [0, 1] and labeling function fD : X → Y∆, where ∆ is a probability simplex
over Y . Similarly, let hD : Z → Y∆ be a labeling function from representation space for domain D.
Note that fD, hD, g are stochastic functions and fD = hD ◦ g.1 For simplicity, we use PV

D (or PV |U
D )

to denote the induced marginal (or conditional) distributions of variable V (given U ) in domain D.

1The deterministic labeling function is a special case when it follows Dirac delta distribution in ∆.
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Error metric. Consider hypothesis f̂ = ĥ ◦ g : X → Y∆, where ĥ : Z → Y∆ is the hypothesis
directly used in representation space. Denote f̂(x)y as the element on y-th dimension which predicts
the probability that label Y = y given X = x. Then the expected error of f̂ in domain D is defined as
ϵAcc
D (f̂) = ED[L(f̂(X), Y )] for some loss function L : Y∆ ×Y → R+ (e.g., 0-1 loss, cross-entropy

loss). Similarly, define the expected error of ĥ in representation space as ϵAcc
D (ĥ) = ED[L(ĥ(Z), Y )].

Note that most existing works (Albuquerque et al., 2019; Zhao et al., 2018) focus on optimizing
ϵAcc
D (ĥ), while our goal is to attain high accuracy in input space, i.e., low ϵAcc

D (f̂).

Unfairness metric. We focus on group fairness notions (Makhlouf et al., 2021) that require certain
statistical measures to be equalized across different groups; many of them can be formulated as
(conditional) independence statements between random variables f̂(X), A, Y , e.g., demographic
parity (f̂(X) ⊥ A: the likelihood of a positive outcome is the same across different groups) (Dwork
et al., 2012) , equalized odds (f̂(X) ⊥ A|Y : true positive rate (TPR) and false positive rate (FPR)
are the same across different groups), equal opportunity (f̂(X) ⊥ A|Y = 1 when Y = {0, 1}: TPR
is the same across different groups) (Hardt et al., 2016). In the paper, we will present the results
under equalized odds (EO) fairness with binary Y = {0, 1} and A = {0, 1}, while all the results (e.g.,
methods, analysis) can be generalized to multi-class, multi-protected attributes, and other fairness
notions. Given hypothesis f̂ = ĥ ◦ g : X → Y∆, the violation of EO in domain D can be measured

as ϵEOD (f̂) =
∑

y∈Y D
(
P

f̂(X)1|Y=y,A=0
D ||P f̂(X)1|Y=y,A=1

D

)
for some distance metric D(·||·).

Problem setup. Consider a problem of domain generalization where a learning algorithm has access
to data {(xk, ak, yk, dk)}mk=1 sampled from a set of N source domains {DS

i }i∈[N ], where dk is the
domain label and [N ] = {1, · · · , N}. Our goal is to learn a representation mapping g : X → Z and a
fair model ĥ : Z → Y∆ trained on source domains such that the model f̂ = ĥ ◦ g can be generalized
to an unseen target domain DT in terms of both accuracy and fairness. Specifically, we investigate
under what conditions and by what algorithms we can guarantee that attaining high accuracy and
fairness at source domains {DS

i }Ni=1 implies small ϵAccDT (f̂) and ϵEODT (f̂) at unknown target domain.

3 THEORETICAL RESULTS

In this section, we present the results on the transfer of accuracy/fairness under domain generalization
via domain-invariant learning (proofs are shown in Appendix E). We first examine that for any model
ĥ : Z → Y∆ and any representation mapping g : X → Z , how the accuracy/fairness attained at
source domains {DS

i }Ni=1 can be affected when f̂ = ĥ ◦ g is deployed at any target domain DT .
Specifically, we can bound the error and unfairness at any target domain based on source domains.
Before presenting the results, we first introduce the discrepancy measure used for measuring the
dissimilarity between domains.

Discrepancy measure. We adopt Jensen-Shannon (JS) distance (Endres & Schindelin, 2003) to
measure the dissimilarity between two distributions. Formally, JS distance between distributions P
and P ′ is defined as

dJS(P, P
′) :=

√
DJS(P ||P ′),

where DJS(P ||P ′) := 1
2DKL(P ||P+P ′

2 ) + 1
2DKL(P

′||P+P ′

2 ) is JS divergence defined based on
Kullback–Leibler (KL) divergence DKL(·||·). Note that unlike KL divergence, JS divergence is
symmetric and bounded: 0 ≤ DJS(P ||P ′) ≤ 1.

While different discrepancy measures such as H and H∆H divergences (Ben-David et al., 2010) (i.e.,
definitions are given in Appendix A) were used in prior works, we particularly consider JS distance
because (1) it is aligned with training objective for discriminator in generative adversarial networks
(GAN) (Goodfellow et al., 2014), and many existing methods (Ganin et al., 2016; Albuquerque et al.,
2019) for invariant representation learning are built based on GAN framework; (2) H and H∆H
divergences are limited to settings where the labeling functions fD are deterministic (Ben-David
et al., 2010; Albuquerque et al., 2019; Zhao et al., 2018). In contrast, our bounds admit the stochastic
labeling functions. The limitations of other discrepancy measures and existing bounds are discussed
in detail in Appendix A.
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Theorem 1 (Upper bound: accuracy) For any hypothesis ĥ : Z → Y∆, any representation map-
ping g : X → Z , and any loss function L : Y∆ ×Y → R+ that is upper bounded by C, the expected
error of f̂ = ĥ ◦ g : X → Y∆ at any unseen target domain DT is upper bounded:2

ϵAccDT

(
f̂
)
≤ 1

N

N∑
i=1

ϵAccDS
i

(
f̂
)

︸ ︷︷ ︸
term (i)

+
√
2Cmin

i∈[N ]
dJS

(
PX,Y
DT , PX,Y

DS
i

)
︸ ︷︷ ︸

term (ii)

+
√
2C max

i,j∈[N ]
dJS

(
PZ,Y

DS
i

, PZ,Y

DS
j

)
︸ ︷︷ ︸

term (iii)

(1)

The upper bound in Eq. (1) are interpretable and have three terms: term (i) is the averaged error of
source domains in input space; term (ii) is the discrepancy between the target domain and the source
domains in input space; term (iii) is the discrepancy between the source domains in representation
space.3 It provides guidance on learning the proper representation mapping g : X → Z: to ensure
small error at target domain ϵAccDT (f̂), we shall learn representations such that the upper bound of
ϵAccDT (f̂) is minimized. Because term (ii) depends on the unknown target domain DT and it’s evaluated
in input space X × Y , it is fixed and is out of control during training, we can only focus on term
(i) and term (iii), i.e., learn representations Z such that errors at source domains ϵAcc

DS
i
(f̂) and the

discrepancy between source domains in the representation space dJS(P
Z,Y

DS
i

, PZ,Y

DS
j

) are minimized.

Corollary 1.1 ∀i, j, JS distance between PZ,Y

DS
i

and PZ,Y

DS
j

in Eq. (1) can be decomposed:

dJS

(
PZ,Y

DS
i

, PZ,Y

DS
j

)
= dJS

(
PY
DS

i
, PY

DS
j

)
+

√
2Ey∼PY

DS
i,j

[
dJS

(
P

Z|Y
DS

i

, P
Z|Y
DS

j

)2]
where PY

DS
i,j

= 1
2

(
PY
DS

i
+ PY

DS
j

)
.

Our algorithm in Sec. 4 is designed based on above decomposition: because PY
DS

i
solely depends

on source domain DS
i , we learn representations by minimizing dJS(P

Z|Y
DS

i

, P
Z|Y
DS

j

), ∀i, j. Combining

Thm. 1 and Corollary 1.1, to ensure high accuracy at unseen target domain DT , we learn the
representation mapping g and model ĥ such that PZ|Y

DS
i

is invariant across source domains, and

meanwhile f̂ = ĥ ◦ g attains high accuracy at source domains.

Note that unlike our method, many existing works (Phung et al., 2021; Albuquerque et al., 2019;
Ganin et al., 2016) suggest that to ensure high accuracy in domain generalization, representation
mapping g should be learned such that PZ

DS
i

is same across domains, i.e., small dJS(PZ
DS

i
, PZ

DT ).

However, we show that the domain-invariant PZ
DS

i
may adversely increase the error at target domain,

as indicated in the Thm. 2 below.

Theorem 2 (Lower bound: accuracy) Suppose L(f̂(x), y) =
∑

ŷ∈Y f̂(x)ŷL(ŷ, y) where function
L : Y × Y → R+ is lower bounded by c when ŷ ̸= y, and is 0 when ŷ = y. If dJS(PY

DS
i
, PY

DT ) ≥
dJS(P

Z
DS

i
, PZ

DT ), the expected error of f̂ at source and target domains is lower bounded:

1

N

N∑
i=1

ϵAccDS
i
(f̂) + ϵAccDT (f̂) ≥

c

4|Y|N

N∑
i=1

(
dJS(P

Y
DS

i
, PY

DT )− dJS(P
Z
DS

i
, PZ

DT )
)4

. (2)

The above lower bound shows an inherent trade-off of approaches that minimize dJS(P
Z
DS

i
, PZ

DT )

when learning the representations. Specifically, with the domain-invariant PZ
DS

i
, the right hand side

of Eq. (2) may increase, resulting in an increased error at target domain ϵAccDT (f̂).

2The condition on the bounded loss is mild and can be satisfied by many loss functions. For example, cross-
entropy loss can be bounded by modifying the softmax output from

(
p1, p2, · · · , p|Y|

)
to

(
p̂1, p̂2, · · · , p̂|Y|

)
,

where p̂i = pi(1− exp(−C)|Y|) + exp(−C), ∀i ∈ |Y|.
3In fact, a tighter upper bound for the loss at target domain can be established using strong data processing

inequality (Polyanskiy & Wu, 2017), as detailed in Appendix D
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Similar to the loss, the unfairness at target domain can also be upper bounded, as presented in Thm. 3.

Theorem 3 (Upper bound: fairness) Consider a special case where the unfairness measure is
defined as the distance between means of two distributions:

ϵEOD (f̂) =
∑

y∈{0,1}

∣∣∣ED

[
f̂(X)1|Y = y,A = 0

]
− ED

[
f̂(X)1|Y = y,A = 1

]∣∣∣ ,
then the unfairness at any unseen target domain DT is upper bounded:

ϵEODT

(
f̂
)

≤ 1

N

N∑
i=1

ϵEODS
i

(
f̂
)
+

√
2 min
i∈[N ]

∑
y∈{0,1}

∑
a∈{0,1}

dJS

(
P

X|Y=y,A=a

DT , P
X|Y=y,A=a

DS
i

)
+
√
2 max
i,j∈[N ]

∑
y∈{0,1}

∑
a∈{0,1}

dJS

(
P

Z|Y=y,A=a

DS
i

, P
Z|Y=y,A=a

DS
j

)
Similar to Thm. 1, the upper bound in Thm. 3 also has three terms and the second term is out of
control during training because it depends on the unseen target domain and is defined in input space.
Therefore, to maintain fairness at target domain DT , we learn the representation mapping g and
model ĥ such that PZ|Y,A

DS
i

is invariant across source domains, and meanwhile f̂ = ĥ ◦ g attains high
fairness at source domains.

The results above characterize the relations between accuracy/fairness at any target and source
domains under any representation mapping g and model ĥ. Next, we identify conditions under which
the accuracy/fairness attained at sources can be perfectly transferred to a target domain.

Theorem 4 (Sufficient condition for perfect transfer) Consider N source domains {DS
i }Ni=1 and

an unseen target domain DT . Define set Λ = {Dt : Dt =
∑N

i=1 πiD
S
i , {πi} ∈ ∆N−1}.

1. (Transfer of fairness) ∀DT ∈ Λ, if g is the mapping under which P
Z|Y,A
DS

i

is the same across all

source domains, then ϵEO
DS

i
(ĥ) = ϵEODT (ĥ) = ϵEO

DS
i
(f̂) = ϵEODT (f̂), ∀i.

2. (Transfer of accuracy) ∀DT ∈ Λ, if PY
DS

i
is the same and if g is the mapping under which P

Z|Y
DS

i

is the same across all source domains, then ϵAcc
DS

i
(ĥ) = ϵAccDT (ĥ) = ϵAcc

DS
i
(f̂) = ϵAccDT (f̂), ∀i.

Thm. 4 indicates the possibility of attaining the perfect transfer of accuracy/fairness and examples of
such representation mappings are provided. Note that these results are consistent with Thm. 1 and
Thm. 3, which also suggest learning domain-invariant representations PZ|Y

DS
i

and P
Z|Y,A
DS

i

.

4 PROPOSED ALGORITHM

Table 1: Usages of terms in Eq. (3) to guarantee
the fairness and accuracy in target domain.

Loss terms Usages

Lcls Mimimize ϵAcc
DS

i

Lfair Mimimize ϵEO
DS

i

Linv
Minimize dJS

(
P

Z|Y
DS

i

, P
Z|Y
DS

j

)
and dJS

(
P

Z|Y,A
DS

i

, P
Z|Y,A
DS

j

)
Lcls + Lfair + Linv Mimimize ϵAccDT and ϵEODT

The accuracy and fairness upper bounds in Sec. 3
shed light on designing robust ML model that can
preserve high accuracy and fairness on unseen tar-
get domains. Specifically, the model consists of
representation mapping g : X → Z and classi-
fier ĥ : Z → Y such that (1) the prediction errors
and unfairness of f̂ = ĥ ◦ g on source domains
are minimized; and (2) the discrepancy of learned
conditional representations (i.e, PZ|Y

DS
i

and P
Z|Y,A
DS

i

)
among source domains is minimized. That is,

min
g,ĥ

Lcls(g, ĥ) + ωLfair(g, ĥ) + γLinv(g) (3)

where Lcls, Lfair, and Linv are expected losses that penalize incorrect classification, unfairness,
and discrepancy among source domains. Hyper-parameters ω > 0 and γ > 0 control the accuracy-
fairness trade-off and accuracy-invariant representation trade-off, respectively. The usages of these
three losses are summarized in Table 1.
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Adversarial learning framework (Goodfellow et al., 2014). Linv in Eq. (3) can be optimized
directly with adversarial learning. This is because the training objective of the discriminator in GAN
is aligned with our goal of minimizing JS distance between P

Z|Y
DS

i

(or PZ|Y,A
DS

i

) among source domains,
as mentioned in Sec. 3. Specifically, define a set of discriminators K = {ky : y ∈ Y} ∪ {ky,a : y ∈
Y, a ∈ A}; each discriminator ky (resp. ky,a) aims to distinguish whether a sample with label y
(resp. label y and sensitive attribute a) comes from a particular domain (i.e., maximize Linv). The
representation mapping g should be learned to increase the error of discriminators (i.e., minimize
Linv). Therefore, the model and discriminators can be trained simultaneously by playing a two-player
minimax game (i.e., ming maxK Linv(g)). Combine with the objective of minimizing prediction
error and unfairness (i.e., ming,ĥ Lcls(g, ĥ) + ωLfair(g, ĥ)), the overall learning objective is:

min
g,ĥ

max
K

Lcls(g, ĥ) + ωLfair(g, ĥ) + γLinv(g) (4)

However, the above adversarial learning framework for learning domain-invariant representation may
not work well when |Y × A| is large: as the label space and sensitive attribute space get larger, the
number of discriminators to be learned increases and the training can be highly unstable. A naive
solution to tackling this issue is to use one discriminator ∀y ∈ Y , a ∈ A. However, this would result
in the reduced mutual information between representations and label/sensitive attribute, which may
hurt the accuracy. We thus propose another approach to learn the domain-invariant representations.

 

source domain source domain

Figure 2: 1D illustration of domain-invariant rep-
resentation. To transfer accuracy and fairness to
target domains, we need to find representation z

such that P z|y
DS

i

and P
z|y,a
DS

i

are domain-invariant.

Proposed solution to learning invariant rep-
resentations. For any domain D, we have:

P
Z|y
D =

∫
X
P

Z,x|y
D dx =

∫
X
PZ|xP

x|y
D dx

P
Z|y,a
D =

∫
X
P

Z,x|y,a
D dx =

∫
X
PZ|xP

x|y,a
D dx

where PZ|x is domain-independent so we drop
D in subscript. Given any two source do-
mains DS

i and DS
j , in general PX|y

DS
i

̸= P
X|y
DS

j

and P
X|y,a
DS

i

̸= P
X|y,a
DS

j

so that it is non-
trivial to achieve domain-invariant representa-
tions PZ|y

DS
i

= P
Z|y
DS

j

and P
Z|y,a
DS

i

= P
Z|y,a
DS

j

. How-

ever, if there exist invertible functions my
i,j : X → X and my,a

i,j : X → X that can match the density

functions of X from DS
i to DS

j such that PX|y
DS

i

= P
my

i,j(X)|y
DS

j

and P
X|y,a
DS

i

= P
my,a

i,j (X)|y,a
DS

j

, and

if we can find the representation Z such that PZ|x
DS

i

= P
Z|my

i,j(x)

DS
i

and P
Z|x
DS

i

= P
Z|my,a

i,j (x)

DS
i

, then
∀y ∈ Y, a ∈ A, we have:

P
Z|y
DS

i

=

∫
X
PZ|xP

x|y
DS

i

dx =

∫
X
PZ|x′

P
x′|y
DS

j

dx′ = P
Z|y
DS

j

P
Z|y,a
DS

i

=

∫
X
PZ|xP

X|y,a
DS

i

dx =

∫
X
PZ|x′′

P
x′′|y,a
DS

j

dx′′ = P
Z|y,a
DS

j

where x′ = my
i,j(x) and x′′ = my,a

i,j (x). This observation suggests that to minimize the discrepancy
of representation distributions among source domains, we can first find the density mapping functions
my

i,j and my,a
i,j , ∀y, a, i, j, and then minimize the discrepancies between PZ|x, PZ|x′

, and PZ|x′′
,

∀x. This is formally shown in Thm. 5 below.

Theorem 5 If there exist invertible mappings my
i,j and my,a

i,j such that PX|y
DS

i

= P
my

i,j(X)|y
DS

j

and

P
X|y,a
DS

i

= P
my,a

i,j (X)|y,a
DS

j

, ∀y, a, i, j, and if the representation mapping are in the form of g := PZ|x =

N (µ(x), σ2Id), where µ(x) is the function of x and d is the dimension of the representation space

Z , then minimizing dJS

(
P

Z|y
DS

i

, P
Z|y
DS

j

)
and dJS

(
P

Z|y,a
DS

i

, P
Z|y,a
DS

j

)
can be reduced to minimizing∥∥µ(x)− µ

(
my

i,j(x)
)∥∥

2
and

∥∥µ(x)− µ
(
my,a

i,j (x)
)∥∥

2
, respectively.
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Based on Thm. 5, we propose a two-stage learning approach FATDM, as stated below.

Remark 1 (Fairness and Accuracy Transfer by Density Matching (FATDM)) Given the exis-
tence of density matching functions my

i,j and my,a
i,j , and representation mapping g := N (µ(x), σ2Id),

domain-invariant representations can be learned via a two-stage process: (i) finding these mapping
functions my

i,j and my,a
i,j ; (ii) minimizing the mean squared errors between µ(x) and µ

(
my

i,j(x)
)
,

and µ(x) and µ
(
my,a

i,j (x)
)
, ∀i, j ∈ [N ], x ∈ X , y ∈ Y, a ∈ A.

Stage 1: learning mapping functions my
i,j and my,a

i,j across source domains. Many approaches can
be leveraged to estimate my

i,j and my,a
i,j from data. In our study, we adopt StarGAN (Choi et al., 2018)

and CycleGAN (Zhu et al., 2017) as examples; both frameworks are widely used in multi-domain
image-to-image translation and can be leveraged. In our algorithm, we independently train two
translation models DensityMatchY and DensityMatchY,A using StarGAN or CycleGAN, with each
used for learning {my

i,j}y∈Y,i,j∈[N ] and {my,a
i,j }y∈Y,a∈A,i,j∈[N ], respectively.

Stage 1: Finding

Stage 2: Enforcing

source domain source domain

Figure 3: FATDM: two-stage training

Specifically, DensityMatchY (or DensityMatchY,A) con-
sists of a generator G : X × [N ]× [N ] → X and a discrim-
inator D : X → [N ] × {0, 1}. The generator takes in real
image x and a pair of domain labels i, j as input and generates
a fake image; the discriminator aims to predict the domain
label of the image generated by the generator and distinguish
whether it is fake or real. G and D are learned simultaneously
by solving the minimax game, and their loss functions are
specified in Appendix B. When the training is completed,
we obtain two optimal generators from DensityMatchY and
DensityMatchY,A, denoted as GY and GY,A. We shall use
GY (·, i, j) (resp. GY,A(·, i, j)) directly as the density map-
ping function {my

i,j(·)}y∈Y (resp. {my,a
i,j (·)}y∈Y,a∈A).

Stage 2: learning domain-invariant representation. Given
GY and GY,A learned in stage 1, we are ready to learn the invariant representation Z by finding
g : X → Z such that g := N (µ(x), σ2Id) and minimizes the following:

Linv = Ed,d′,d′′∼{DS
i }i∈[N]

[Lmse(µ(X), µ(X ′)) + Lmse(µ(X), µ(X ′′))] (5)

where d, d′, d′′ are domain labels sampled from source domains, X is features sampled from domain
d, X ′ = GY (X, d, d′), X ′′ = GY,A(X, d, d′′), Lmse is mean squared error. The pseudo-code of our
proposed model (FATDM) is in Algorithm 1. The detailed architecture of FATDM is in Appendix B.

Algorithm 1: Fairness and Accuracy Transfer by Density Matching (FATDM)

Input: Training dataset Dtrain from N source domains {DS
i }Ni=1

Output: representation mapping g, classifier ĥ, density matching functions GY , GY,A

1 Procedure Density_Matching(Dtrain)
/* Procedure for training GY is similar but not presented */

2 while training DensityMatchY,A is not end do
3 Sample y ∼ Y , a ∼ A and data batch B = {xk, dk|ak = a, yk = y}|B|

k=1 from Dtrain ;
4 Update GY,A based on the objectives of the minimax game (Appendix B).
5 Procedure Invariant_Representation_Learning(Dtrain, GY , GY,A)
6 while training FATDM is not end do
7 Sample data batch B = {xk, ak, yk, dk}|B|

k=1 from Dtrain ;
8 Sample lists of domain labels {d′i}

|B|
k=1 and {d′′i }

|B|
k=1;

9 Generate sets of artificial images {x′
k}

|B|
k=1 and {x′′

k}
|B|
k=1 by GY and GY,A ;

10 Update g, ĥ by optimizing Eq. (3) with Linv defined in Eq. (5).

Remark 2 (Summary of theoretical results and proposed algorithm) Thm. 1 and Thm. 3 suggest
a way to ensure high accuracy and fairness in target domain: by minimizing the source error ϵAccDs

i
(i.e.,

Lcls in Eq. (3)), the source unfairness ϵEODs
i

(i.e.,Lfair in Eq. (3)), and the discrepancies between source

domains dJS
(
P

Z|Y=y

DS
i

, P
Z|Y=y

DS
j

)
and dJS

(
P

Z|Y=y,A=a

DS
i

, P
Z|Y=y,A=a

DS
j

)
(i.e., Linv in Eq. (3)). The
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common way to optimize Eq. (3) using adversarial learning (Eq. (4)) is not stable when |Y × A| is
large. Thm. 5 states that instead of using adversarial learning, Eq. (3) can be optimized via 2-stage
learning: (i) find mappings my

i,j and my,a
i,j ( Density_Matching in Alg. 1) and (ii) minimize

Eq. (3) with Linv defined in Eq. (5) ( Invariant_Representation_Learning in Alg. 1).

5 EXPERIMENTS

We conduct experiments on MIMIC-CXR database (Johnson et al., 2019), which includes 377,110
chest X-ray images associated with 227,827 imaging studies about 14 diseases performed at the Beth
Israel Deaconess Medical Center. Importantly, these images are linked with MIMIC-IV database
(Johnson et al., 2021) which includes patients’ information such as age, and race; these can serve as
sensitive attributes for measuring the unfairness. Based on MIMIC-CXR and MIMIC-IV data, we
construct two datasets on two diseases:
• Cardiomegaly disease: we first extract all images related to Cardiomegaly disease, and the corre-

sponding labels (i.e., positive/negative) and sensitive attributes (i.e., male/female); then we partition
the data into four domain-specific datasets based on age (i.e., [18, 40), [40, 60), [60, 80), [80, 100)).
We consider age as domain label because it captures the real scenario that there are distribution
shifts across patients with different ages.

• Edema disease: we extract all images related to Edema disease, and corresponding labels (i.e., pos-
itive/negative) and sensitive attributes (i.e., age with ranges [18, 40), [40, 60), [60, 80), [80, 100)).
Unlike Cardiomegaly data, we construct the dataset for each domain by first sampling images from
Edema data followed by θ degree counter-clockwise rotation, where θ ∈ {0◦, 15◦, 30◦, 45◦, 60◦}.
We consider rotation degree as domain label to model the scenario where there is rotational
misalignment among images collected from different devices.

Next, we focus on Cardiomegaly disease and the results for Edema disease are shown in Appendix C.

Baselines. We compare our method (i.e., FATDM-StarGAN and FATDM-CycleGAN) with exist-
ing methods for domain generalization, including empirical risk minimization, domain invariant
representation learning, and distributionally robust optimization, as detailed below.

• Empirical risk minimization (ERM): The baseline that considers all source domains as one domain.
• Domain invariant representation learning: Method that aims to achieve the invariant across source

domains. We experiment with G2DM (Albuquerque et al., 2019), DANN (Ganin et al., 2016), CDANN
(Li et al., 2018c), CORAL (Sun & Saenko, 2016), IRM (Arjovsky et al., 2019). These models focus
on accuracy transfer by enforcing the invariance of distributions PZ

DS
i

or PZ|Y
DS

i

.
• Distributionally robust optimization: Method that learns a model at worst-case distribution to hope

it can generalize well on test data. We experiment with GroupDRO (Sagawa et al., 2019) that
minimizes the worst-case training loss over a set of pre-defined groups through regularization.

• ATDM: A variant of FATDM-StarGAN that solely focuses on accuracy transfer. That is, we only
enforce the invariance of PZ|Y

DS
i

during learning which is similar to Nguyen et al. (2021).

The implementations of these models except G2DM are adapted from DomainBed framework (Gulra-
jani & Lopez-Paz, 2020). For G2DM, we use the author-provided implementation. For all models, we
use ResNet18 (He et al., 2016) as the backbone module of representation mapping g : X → Z; and
fairness constraint Lfair is enforced as a regularization term added to the original objective functions.

Experiment setup. We follow leave-one-out domain setting in which 3 domains are used for training
and the remaining domain serves as the unseen target domain and is used for evaluation. Several
metrics are considered to measure the unfairness and error of each model in target domain, including:
• Error: cross-entropy loss (CE), misclassification rate (MR), AUROC := 1−AUROC, AUPR :=
1−AUPR, F1 := 1−F1, where AUROC, AUPR, F1 are area under receiver operating characteristic
curve, area under precision-recall curve, F1 score, respectively.

• Unfairness: we consider both equalized odds and equal opportunity fairness notion, and adopt
mean distance (MD) and earth mover’s distance (EMD) as distance metric D(·||·).

Fairness and accuracy on target domains. We first compare our method with baselines in terms of
the optimal trade-off (Pareto frontier) between accuracy and fairness on target domains under different
metric pairs. Figure 4 shows the error-unfairness curves (as ω varies from 0 (no fairness constraint) to
10 (strong fairness constraint)), with AUROC and MR as error metric, and equalized odds (measured
under distance metrics MD and EMD) as fairness notion; the results for other error metrics are similar

8
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Figure 4: Fairness-accuracy trade-off (Pareto frontier) of FATDM-StarGAN, FATDM-CycleGAN,
and baseline methods: error-unfairness curves are constructed by varying ω ∈ [0, 10] and the values
of error and unfairness are normalized to [0, 1]. Lower-left points indicate the model has a better
fairness-accuracy trade-off (Pareto optimality).

Figure 5: Prediction performances (AUROC, AUPR, Accuracy, F1) of FATDM-StarGAN on Car-
diomegaly disease data when varying hyper-parameter γ at different levels of fairness constraint ω.

and shown in Appendix C. Our observations are as follows: (1) As expected, there is a trade-off
between fairness and accuracy: for all methods, increasing ω improves fairness but reduces accuracy.
(2) Among all methods, the Pareto frontiers of FATDM-StarGAN and FATDM-CycleGAN are the
bottom leftmost, implying that our method attains a better fairness-accuracy trade-off than baselines.
(3) Although fairness constraint is imposed during training for all methods, the fairness attained at
source domains cannot be well-generalized to the target domain under other methods. These results
validate our theorems and show that enforcing the domain-invariant PZ|Y

DS
i

and P
Z|Y,A
DS

i

when learning
representations ensures the transfer of both accuracy and fairness. It is worth-noting that under this
dataset, the domain-invariant PZ|Y

DS
i

(accuracy transfer) does not imply the domain-invariant PZ|Y,A
DS

i

(fairness transfer). This is because domain DS
i (i.e., age) is correlated with label Y (i.e., has a disease)

and sensitive attribute A (i.e., gender), making the distribution PY,A

DS
i

different across domains.

Impact of density mapping model. To investigate whether the performance gain of our method
is due to the use of any specific density mapping model, we adopt StarGAN and CycleGAN
architectures to learn density mapping functions in our method and compare their performances.
Figure 4 shows that FATDM-StarGAN and CycleGAN achieve similar fairness-accuracy trade-off
at the target domains and both of them outperform the baselines. This result shows that our method is
not limited to any specific density mapping model and is broadly applicable to other architectures.

Impact of invariant representation constraints. We also examine the impact of Linv on the perfor-
mance of FATDM-StarGAN at target domains, where we vary the hyper-parameter γ ∈ [0, 5e2] at
different levels of fairness (i.e., fix ω = 1, 5, 10) and examine how the prediction performances (i.e.,
AUROC, AUPR, accuracy and F1) could change. Figure 5 shows that enforcing domain-invariant
constraint Linv helps transfer the performance from source to target domain, and γ that attains the
highest accuracy at target domain can be different for different levels of fairness. The results also
indicate the fairness-accuracy trade-off, i.e., for any γ, enforcing stronger fairness constraints (large
ω) could hurt prediction performances.

6 CONCLUSION

In this paper, we theoretically and empirically demonstrate how to achieve fair and accurate predic-
tions in unknown testing environments. To the best of our knowledge, our work provides the first
theoretical analysis to understand the efficiency of invariant representation learning in transferring
both fairness and accuracy under domain generalization. In particular, we first propose the upper
bounds of prediction error and unfairness in terms of JS-distance, then design the two-stage learning
method that minimizes these upper bounds by learning domain-invariant representations. Experiments
on the real-world clinical data demonstrate the effectiveness of our study.
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REPRODUCIBILITY STATEMENT

The original chest X-ray images and the corresponding metadata can be downloaded from
PhysioNet (https://physionet.org/content/mimic-cxr-jpg/2.0.0/; https:
//physionet.org/content/mimiciv/2.0/). Codes for data processing and proposed
algorithms are in supplementary materials. Technical details of the proposed algorithms and experi-
mental settings are in Appendix B. Additional experimental results are in Appendix C. Lemmas used
in proofs of the theorems in the main paper are in Appendix D. Complete proofs of the theorems in
the main paper and the corresponding lemmas are in Appendix E.
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A RELATED WORKS

Domain generalization/Domain adaptation: In many real scenarios of machine learning, data
in training phase is sampled from one or many source domains, while in the testing phase, data is
sampled from an unseen target domain. Many works have been proposed to design robust ML models
that can achieve good performances in deployment environment depending on whether they can
access to the target data (domain adaptation) or not (domain generalization). However, most of these
models focus only on transfering accuracy from source to target domains and can be categorized
into five main approaches: (1) data manipulation (Volpi et al., 2018; Qiao et al., 2020; Zhou et al.,
2020; Zhang et al., 2018; Shankar et al., 2018); (2) domain-invariant representation learning (Li et al.,
2018b;a; Ganin & Lempitsky, 2015; Ganin et al., 2016; Phung et al., 2021; Nguyen et al., 2021); (3)
distributional robustness (Krueger et al., 2021; Liu et al., 2021; Koh et al., 2021; Wang et al., 2021;
Sagawa et al., 2019; Hu et al., 2018), (4) gradient operation (Huang et al., 2020; Shi et al., 2021;
Rame et al., 2021; Tian et al., 2022), and (5) self-supervised learning (Carlucci et al., 2019; Kim
et al., 2021; Jeon et al., 2021; Li et al., 2021).

Fairness in Machine Learning: Many fairness notions have been proposed to measure the unfairness
in ML model, and they can be roughly classified into two classes: Individual fairness considers
the equity at the individual-level and it requires that similar individuals should be treated similarly
(Biega et al., 2018; Bechavod et al., 2020; Gupta & Kamble, 2021; Dwork et al., 2012). Group
fairness attains a certain balance in the group-level, where the entire population is first partitioned
into multiple groups and certain statistical measures are equalized across different groups (Hardt
et al., 2016; Zhang et al., 2019; 2020). Various approaches have also been developed to satisfy
these fairness notions, they roughly fall into three categories: (1) Pre-processing: modifying training
dataset to remove bias before learning an ML model (Kamiran & Calders, 2012; Zemel et al., 2013).
(2) In-processing: attain fairness during the training process by imposing certain fairness constraint
or modifying loss function. (Zafar et al., 2019; Agarwal et al., 2018) (3) Post-processing: altering
the output of an existing algorithm to satisfy a fairness constraint after training (Hardt et al., 2016).
However, most of these methods assume the data distributions at training and testing are the same. In
contrast, we study fairness problem under domain generalization in this paper.

Fairness under Domain Adaptation: There are some studies proposed to achieve good fairness
when the testing environment changes but all of them focused on the domain adaptation setting. The
most common adaptation setup is learning under the assumption of covariate shift. For example,
Singh et al. (2021) leveraged a feature selection method in a causal graph describing data to mitigate
fairness violation under covariate shift of distribution in testing data. Coston et al. (2019) proposed
the weighting methods that can give fair prediction under covariate shift between source and target
distribution when access to the sensitive attributes is prohibited. Rezaei et al. (2021) sought fair
decisions by optimizing a worst-case testing performance. Besides convariate shift, there are some
works proposed to handle other types of distribution shift including demographic shift and prior
probability shift. Instead of learning fair model directly, Oneto et al. (2019) and Madras et al. (2018)
find fair representation that can generalize to the new tasks. Aside from empirical studies, Schumann
et al. (2019) and Yoon et al. (2020) developed theoretical frameworks to examine fairness transfer
in domain adaptation setting and then offered modeling approaches to achieve good fairness in the
target domain.

Comparison with existing bounds in the literature: We compare our bounds with most commons
bound in the fields of domain adaptation and domain generalization as follows.

Accuracy bounds in domain adaptation.

• Bounds in Ben-David et al. (2010):

ϵAccDT

(
f̂
)
≤ ϵAccDS

(
f̂
)
+DTV

(
PX
DS ∥ PX

DT

)
+ min

D∈{DS ,DT }
ED [|fDS (X)− fDT (X)|]

This bound is for binary classification problem under domain adaptation. The classification error
in target domain is bounded by the error in source domain, the total variation distance of feature
distribution between source and target domain, and the misalignment of the labeling function
between source and target domain. The limitation of this bound is that (1) it’s only applicable to
settings with zero-one loss function and deterministic labeling function; (2) estimating the total
variation distance is hard in practice and it doesn’t relate the feature and representation spaces.
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This paper also provides another accuracy bound based on H∆H divergence:.

ϵAccDT

(
f̂
)
≤ ϵAccDS

(
f̂
)
+DH∆H

(
PX
DS ∥ PX

DT

)
+ inf

f̂

[
ϵAccDT

(
f̂
)
+ ϵAccDS

(
f̂
)]

where DH∆H
(
PX
DS ∥ PX

DT

)
= sup

f̂1,f̂1

∣∣∣PDS

(
f̂1(X) ̸= f̂2(X)

)
− PDT

(
f̂1(X) ̸= f̂2(X)

)∣∣∣ is the

H∆H divergence. However, it has the same limitations as total variation distance mentioned above.

Accuracy bounds in domain generalization.

• Bounds in Albuquerque et al. (2019):

ϵAccDT

(
f̂
)
≤

N∑
i=1

πiϵ
Acc
DS

i

(
f̂
)
+ max

j,k∈[N ]
DH

(
PX
DS

j
∥ PX

DS
k

)
+DH

(
PX
DS

∗
∥ PX

DT

)
+ min

D∈{DS
∗ ,DT }

ED

[∣∣fDS
∗
(X)− fDT (X)

∣∣]
where DH

(
PX
DS ∥ PX

DT

)
= sup

f̂

∣∣∣PDS

(
f̂(X) = 1

)
− PDT

(
f̂(X) = 1

)∣∣∣ is the H divergence,

PX
DS

∗
= argmin

π
DH

(∑N
i=1 πiP

X
DS

i
∥ PX

DT

)
is the mixture of source domains that is closest to

target domain with respect to H divergence. In this bound, the classification error in target domain
is bounded by the convex combination of errors in source domains, the H divergence between
source domains, the H divergence between target domain and its nearest mixture of source domains,
and the misalignment of the labeling function between mixture source domains and target domain.
Because this bound is constructed based on H divergence, it also has the limitations for the bounds
in domain adaptation (Ben-David et al., 2010) as we mentioned. This bound can be transformed to
the representation space Z by replacing X by Z in its formula. Then, this bound suggests enforcing
invariant constraint of marginal distribution of representation Z across source domains, which has
inherent trade-off as shown in Thm. 2. Because the target domain is unknown during training, the
mixing weights {πi}Ni=1 are not useful for algorithmic design.

• Bounds in Phung et al. (2021):

ϵAccDT

(
f̂
)
≤

N∑
i=1

πiϵ
Acc
DS

i

(
f̂
)
+ Cmax

i∈[N ]
EDS

i

[∥∥∥∥[∣∣∣fDT (X)y − fDS
i
(X)y

∣∣∣]|Y|

y=1

∥∥∥∥
1

]

+
N∑
i=1

N∑
j=1

C
√
2πj

N
d1/2

(
PZ
DT , P

Z
DS

i

)
+

N∑
i=1

N∑
j=1

C
√
2πj

N
d1/2

(
PZ
DS

i
, PZ

DS
j

)

where d1/2

(
PX
DS

i
, PX

DS
j

)
=

√
D1/2

(
PX
DS

i

∥ PX
DS

j

)
is Hellinger distance defined based on

Hellinger divergence D1/2

(
PX
DS

i
∥ PX

DS
j

)
= 2

∫
X

(√
PX
DS

i

−
√
PX
DS

j

)2

dX . This bound re-

lates the feature and representation spaces that the classification error of target domain defined in
feature space is bounded by classification errors of source domains defined in feature space, the
misalignment of labeling function between target and source domains, and the Hellinger distances
between source and target domains and between source domains of marginal distribution of rep-
resentation Z. While this bound is not limited to zero-one loss and the labeling function can be
stochastic, it suggests the alignment of marginal distribution of representation Z across source
domains for generalization. Moreover, estimating Hellinger distance can be hard in practice.

The mismatch between existing bounds and adversarial learning approach for domain generalization.

All existing bounds mentioned above suggest minimizing the distances between representation
distributions across source domains with respect to some discrepancy measures such as H divergence,
total variation distance, and Hellinger distance. Based on these bounds, adversarial learning-based
models are often proposed to minimize these distances. However, there is a misalignment between
the objectives of adversarial learning and the bounds which results in the gap between theoretical
findings and practical algorithms.
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In particular, it has been shown that the objective of the minimax game between the representation
mapping and the discriminator is equivalent to minimizing the JS divergence between representation
distributions across source domains (Goodfellow et al., 2014). However, minimizing JS divergence
does not guarantee the minimization of common distances used in the existing bounds. The details
are as follows.

• H divergence: We show that JS divergence is not the upper bound of H divergence. Con-

sider an example with two distributions P (X) and Q(X) where
{
P (X) = 0 w.p 1/3
P (X) = 1 w.p 2/3

and{
Q(X) = 0 w.p 1/3
Q(X) = 1 w.p 2/3

. By definition, DH(P ∥ Q) ∼ 0.33 > DJS(P ∥ Q) ∼ 0.08.

• Total variation distance: We have DJS(P ∥ Q) ≤ DTV (P ∥ Q) ∀P,Q where DJS and DTV are
JS divergence and total variation distance, respectively. Then, minimizing JS divergence does not
guarantee the minimization of total variation distance.

• Hellinger distance: We have DJS(P ∥ Q) ≤
√
2d1/2(P,Q) ∀P,Q where d1/2 is Hellinger

distance and total variation distance, respectively. Then, minimizing JS divergence does not
guarantee the minimization of Hellinger distance.

Different from the existing bounds, our bounds are based on JS divergence/distance. Then they align
with the adversarial learning approach for domain generalization in general, and with our proposed
method FATDM in particular.

Advantages of our proposed bounds in domain generalization.

In summary, our proposed bounds has several advantages in terms of the following:

• Most existing bounds (Ben-David et al., 2010; Albuquerque et al., 2019) do not relates feature
and representation spaces so it is not clear how performance in input space is affected by the
representations. In contrast, our bounds connect the representation and input spaces; this further
guides us to find representations that lead to good performances in input space.

• Most prior studies adopt H divergence to measure the dissimilarity between domains, which is
limited to deterministic labeling functions and zero-one loss (Ben-David et al., 2010; Albuquerque
et al., 2019). In contrast, our bound is more general and is applicable to settings where domains are
specified by stochastic labeling functions and general loss functions.

• Distant metrics (i.e., total variation distance, H divergence, Hellinger divergence, etc.) used in
existing bounds (Ben-David et al., 2010; Albuquerque et al., 2019; Phung et al., 2021) are hard
to compute in practice. In contrast, our bounds use JS divergence which is aligned with training
objective for discriminator in adversarial learning Goodfellow et al. (2014).

• Existing bounds for domain generalization only imply the alignment of marginal distribution of
feature across source domains (Albuquerque et al., 2019; Phung et al., 2021). As shown in Thm. 2,
methods that learn invariance of marginal distribution have an inherent trade-off and may increase
the lower bound of expected loss. In contrast, our bounds suggest the alignment of label-conditional
distribution of feature across source domains which has been verified to be more effective in
empirical studies (Li et al., 2018b;c; Zhao et al., 2020; Nguyen et al., 2021).

• Regarding the fairness, our work is the first that bounds the unfairness in domain generalization. In
particular, our bounds suggest enforcing the invariant constraint of feature distribution given label
and sensitive attribute across source domains to transfer fairness to the unseen target domain.

B DETAILS OF ALGORITHM FATDM

FATDM consists of density mapping functions my
i,j and my,a

i,j , ∀y ∈ Y, a ∈ A, i, j ∈ [N ] (learned
by two DensityMatch models), feature mapping function g (ResNet18 model), and the clas-
sifier ĥ. In our study, we experiment with two different DensityMatch architectures: Star-
GAN (i.e., in FATDM-StarGAN) and CycleGAN (in FATDM-CycleGAN). We show the details
of FATDM-StarGAN below. For FATDM-CycleGAN, the only difference is we used CycleGAN
as DensityMatch instead of StarGAN. The details of CycleGAN were presented in the original
paper (Zhu et al., 2017).

17



Published as a conference paper at ICLR 2023

For FATDM-StarGAN, each DensityMatchY (or DensityMatchY,A) consists of a generator
G : X × [N ] × [N ] → X and a discriminator D : X → [N ] × {0, 1}. The generator takes in real
image x and a pair of domain labels i, j as input and generates a fake image; the discriminator aims
to predict the domain label of the image generated by the generator and distinguish whether it is fake
or real. G and D are learned simultaneously by solving the following optimizations:

Discriminator’s objective: min LStarGAN
D := −LStarGAN

adv + λclsLStarGAN
cls(real)

Generator’s objective: min LStarGAN
G := LStarGAN

adv + λclsLStarGAN
cls(fake) + λrecLStarGAN

rec (6)

where LStarGAN
adv is the adversarial loss, LStarGAN

cls(fake) , LStarGAN
cls(real) are domain classification loss with respect

to fake and real images respectively, LStarGAN
rec is the reconstruction loss. The specific formulations

of these loss functions are in Choi et al. (2018). λcls and λrec are hyper-parameters that control the
relative importance of domain classification and reconstruction losses, respectively, compared to the
adversarial loss.

In our experiments, input images are resized to (256, 256) and normalized into the range [−1, 1]. The
dimension of representation space Z is set to 512. ω (hyper-parameter that controls accuracy-fairness
trade-off) varies from 0 to 10 with step sizes 0.0002 for ω ∈ [0, 0.002], 0.002 for ω ∈ [0.002, 0.1]
and 0.2 for ω ∈ [0.2, 10], and γ (hyper-parameter that controls accuracy-invariance trade-off) is set
to 0.1 (after hyper-parameter tuning). Models (FATDM and baselines) are implemented by PyTorch
library version 1.11 and is trained on multiple computer nodes (each model instance is trained on a
single node which has 4 CPUs, 8GB of memory, and a single GPU (P100 or V100)). One domain’s
data is used for testing and the other domains’ data is used for training (10% of training data is
used for validation). Each model is trained with 10 epoches and the results are from the epoch
with best performance on the validation set. Figure 6 visualizes the two-stage training process of
FATDM-StarGAN. The detailed architectures of FATDM-StarGAN are shown in Tables 2-5. We
have also provided all code for these models in supplemental material.
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Figure 6: Two-stage training of FATDM-StarGAN. For stage 1, we only show the training process
for DensityMatchY,A (training process for DensityMatchY is similar.)

Table 2: Architecture of StarGAN generators GY and GY,A - Density mapping functions my
i,j and

my,a
i,j ∀y ∈ Y , a ∈ A, i, j ∈ [N ]. This architecture is similar to the one in the original paper Choi

et al. (2018) except for the first convolution layer where number of input channels is 1 (for grayscale
images) and input shape is (h,w, 1 + 2nc). (h,w) is the size of input images, IN is instance
batchnorm, and ReLU is Rectified Linear Unit. N: number of output channels, K: kernel size, S:
stride szie, P: padding size are convolution and deconvolution layers’ hyper-parameters.

Part Input → Output Shape Layer Information

Down-sampling

(h,w, 1 + 2nc) → (h,w, 64) CONV-(N64, K7x7, S1, P3), IN, ReLU

(h,w, 64) →
(
h
2 ,

w
2 , 128

)
CONV-(N128, K4x4, S2, P1), IN, ReLU(

h
2 ,

w
2 , 128

)
→
(
h
4 ,

w
4 , 256

)
CONV-(N256, K4x4, S2, P1), IN, ReLU

Bottleneck

(
h
4 ,

w
4 , 256

)
→
(
h
4 ,

w
4 , 256

)
Residual Block: CONV-(N256, K3x3, S1, P1), IN, ReLU(

h
4 ,

w
4 , 256

)
→
(
h
4 ,

w
4 , 256

)
Residual Block: CONV-(N256, K3x3, S1, P1), IN, ReLU(

h
4 ,

w
4 , 256

)
→
(
h
4 ,

w
4 , 256

)
Residual Block: CONV-(N256, K3x3, S1, P1), IN, ReLU(

h
4 ,

w
4 , 256

)
→
(
h
4 ,

w
4 , 256

)
Residual Block: CONV-(N256, K3x3, S1, P1), IN, ReLU(

h
4 ,

w
4 , 256

)
→
(
h
4 ,

w
4 , 256

)
Residual Block: CONV-(N256, K3x3, S1, P1), IN, ReLU(

h
4 ,

w
4 , 256

)
→
(
h
4 ,

w
4 , 256

)
Residual Block: CONV-(N256, K3x3, S1, P1), IN, ReLU

Up-sampling

(
h
4 ,

w
4 , 256

)
→
(
h
2 ,

w
2 , 128

)
DECONV-(N128, K4x4, S2, P1), IN, ReLU(

h
2 ,

w
2 , 128

)
→ (h,w, 64) DECONV-(N64, K4x4, S2, P1), IN, ReLU

(h,w, 64) → (h,w, 3) CONV-(N3, K7x7, S1, P3), IN, ReLU
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Table 3: Architecture of StarGAN discriminators. This architecture is similar to the one in the original
paper Choi et al. (2018) except for the first convolution layer where number of input channels is 1
(for grayscale images). (h,w) is the size of input images, nd is the number of domains, and Leaky
ReLU is Leaky Rectified Linear Unit. N: number of output channels, K: kernel size, S: stride szie, P:
padding size are convolution layers’ hyper-parameters.

Layer Input → Output Shape Layer Information

Input Layer (h,w, 1) →
(
h
2 ,

w
2 , 64

)
CONV-(N64, K4x4, S2, P1), Leaky ReLU

Hidden Layer
(
h
2 ,

w
2 , 64

)
→
(
h
4 ,

w
4 , 128

)
CONV-(N128, K4x4, S2, P1), Leaky ReLU

Hidden Layer
(
h
4 ,

w
4 , 128

)
→
(
h
8 ,

w
8 , 256

)
CONV-(N256, K4x4, S2, P1), Leaky ReLU

Hidden Layer
(
h
8 ,

w
8 , 256

)
→
(

h
16 ,

w
16 , 512

)
CONV-(N512, K4x4, S2, P1), Leaky ReLU

Hidden Layer
(

h
16 ,

w
16 , 512

)
→
(

h
32 ,

w
32 , 1024

)
CONV-(N1024, K4x4, S2, P1), Leaky ReLU

Hidden Layer
(

h
32 ,

w
32 , 1024

)
→
(

h
64 ,

w
64 , 2048

)
CONV-(N2048, K4x4, S2, P1), Leaky ReLU

Output Layer (Dsrc)
(

h
64 ,

w
64 , 2048

)
→
(

h
64 ,

w
64 , 1

)
CONV-(N1, K3x3, S1, P1)

Output Layer (Dcls)
(

h
64 ,

w
64 , 2048

)
→ (1, 1, nd) CONV-(N(nd), K h

64 × w
64 , S1, P0)

Table 4: Architecture of feature mapping g. This architecture is similar to ResNet18 model He et al.
(2016) except for the first convolution layer where number of input channels is 1 (for grayscale
images) and the last layer where output dimension is nz - dimension of representation space Z . (h,w)
is the size of input images, BN is batchnorm, MaxPool is max pooling, AvePool is average pooling,
and ReLU is Rectified Linear Unit. N: number of output channels, K: kernel size, S: stride szie, P:
padding size are convolution layers’ hyper-parameters.

Part Input → Output Shape Layer Information

Input (h,w, 1) →
(
h
2 ,

w
2 , 64

)
CONV-(N64, K7x7, S2, P3), BN, ReLU, MaxPool

Bottleneck

(
h
2 ,

w
2 , 64

)
→
(
h
4 ,

w
4 , 64

) Residual Block: CONV-(N64, K3x3, S1, P1), BN, ReLU,

CONV-(N64, K3x3, S1, P1), BN(
h
4 ,

w
4 , 64

)
→
(
h
8 ,

w
8 , 128

) Residual Block: CONV-(N128, K3x3, S1, P1), BN, ReLU,

CONV-(N128, K3x3, S1, P1), BN(
h
8 ,

w
8 , 128

)
→
(

h
16 ,

w
16 , 256

) Residual Block: CONV-(N256, K3x3, S1, P1), BN, ReLU,

CONV-(N256, K3x3, S1, P1), BN(
h
16 ,

w
16 , 256

)
→ (1, 1, 512)

Residual Block: CONV-(N512, K3x3, S1, P1), IN, ReLU,

CONV-(N512, K3x3, S1, P1), BN, AvgPool

Output (1, 1, 512) → nz LINEAR-(512, nz)

Table 5: Architecture of classifier ĥ. nz is the dimension of representation space Z .

Layer Input → Output Shape Layer Information

Hidden Layer nz → nz

2 LINEAR-
(
nz,

nz

2

)
, ReLU

Hidden Layer nz

2 → nz

4 LINEAR-
(
nz

2 , nz

4

)
, ReLU

Output Layer nz

4 → 1 LINEAR-
(
nz

4 , 1
)
, Sigmoid
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C ADDITIONAL EXPERIMENTS

Experimental results with all unfairness and error metrics. In this section, we provide more
experimental results about fairness and accuracy under domain generalization. In particular, we
investigate fairness-accuracy trade-off on the two clinical image datasets including Cardiomegaly and
Edema diseases with respect to different fairness criteria (i.e., Equalized Odds, Equal Opportunity),
and unfairness (i.e., MD and EMD) and error (i.e., CE, MR, AUROC, AUPR, F1) measures. Figure 7
(Cardiomegaly disease - Equalized Odds), Figure 8 (Cardiomegaly disease - Equal Opportunity),
Figure 9 (Edema disease - Equalized Odds), and Figure 10 (Edema disease - Equal Opportunity)
show the unfairness-error curves of our models as well as baselines for these two datasets. As we can
see, our model outperforms other baselines in terms of fairness-accuracy trade-off. The curve of our
model is the bottom-leftmost compared to other baselines in all measures showing the clear benefit of
(1) enforcing conditional invariant constraints for accuracy and fairness transfer and (2) using the
two-stage training process to stabilize training compared to adversarial learning approach. We also
quantify our observations by calculating the areas under these unfairness-error curves, in which the
smaller area indicates the better accuracy-fairness trade-off. As shown in Tables 6 and 7, our model
has the smallest areas under the curve and achieves significantly better fairness-accuracy trade-off for
both equalized odd and equal opportunity compared to other methods.

Impact of the number of source domains. Our work focuses on transferring fairness and accuracy
under domain generalization when the target domain data are inaccessible during training. Instead,
it relies on a set of source domains to generalize to an unseen, novel target domain. We investigate
the relationship between the fairness-accuracy trade-off on the target domain and the number of
source domains during training. In particular, we evaluate the performances of FATDM and ERM on
Edema dataset with different numbers of source domains. Similar to the previous experiment, we first
construct the dataset for each domain by rotating images with θ degree, where θ ∈ {0◦, 15◦, 30◦}
when the number of domain is 3, θ ∈ {0◦, 15◦, 30◦, 45◦} when the number of domain is 4, and
θ ∈ {0◦, 15◦, 30◦, 45◦, 60◦} when the number of domain is 5. The number of images per domain
is adapted to ensure the training set size is fixed for the three cases. We follow the leave-one-out
domain setting in which one domain serves as the unseen target domain for evaluation while the rest
domains are for training; the average results across target domains are reported.

Figure 11 shows error-unfairness curves of FATDM and ERM when training with 2, 3, and 4 source
domains. We observe that training with more source domains does not always help the model achieve
better fairness-accuracy trade-off on unseen target domains. In particular, the performances of both
FATDM and ERM are the best when training with 2 source domains and the worst when training with
3 source domains. We conjecture the reason that adding more source domains may help reduce the
discrepancy between source and target domains (term (ii) in Thm. 1 and Thm. 3), but it may make it
more difficult to minimize the source error and unfairness (term (i) in Thm. 1 and Thm. 3) and to
learn invariant representation across the source domains (term (iii) in Thm. 1 and Thm. 3). Thus, our
suggestion in practice is to conduct an ablation study to find the optimal number of source domains.

Simultaneous and sequential training comparison. In all experiments we conducted so far,
the fairness constraint Lfair is optimized simultaneously with the prediction error Lacc and the
domain-invariant constraint Linv for all methods. To investigate whether FATDM still attains a
better accuracy-fairness trade-off when the processes of invariant representation learning and fair
model training are decoupled, we conduct another set of experiments where models (FATDM (i.e.,
FATDM-StarGAN) and baselines G2DM, DANN, CDANN) are learned in a sequential matter: for
each model, we first learn the representation mapping g by optimizing Linv and Lacc; using the
representations generated by the fixed g, we then learn the fair classifier by optimizing Lacc and Lfair.
The models trained based on the above procedure are named FATDM-seq, G2DM-seq, DANN-seq,
and CDANN-seq; and their corresponding error-unfairness curves are shown in Figure 12. The
results show that FATDM-seq still attains the best accuracy-fairness trade-off at target domain
compared to G2DM-seq, DANN-seq, CDANN-seq. Our method is effective no matter whether
Lfair and Linv are optimized simultaneously or sequentially.

The reason that our method consistently outperforms the baselines for both settings is that the
invariant-representation learning in baseline methods only guarantees the transfer of accuracy but
not fairness. Even though a fairness regularizer is imposed to ensure the model is fair at source
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domains (no matter whether invariant representations and fair classifier are trained simultaneously or
sequentially), this fairness cannot be preserved at the target domain due to the potential distributional
shifts. The key to ensuring the transfer of fairness is to learn representations such that P (Z|Y,A) is
domain-invariant; this must be done during the representation learning process. From Thm 3, we
can see that unfairness at target domain ϵEODT can still blow up if PZ|Y,A is different across domains,
regardless of how fair the model is at source domains (i.e., small ϵEO

DS
i

).

Figure 7: Error-unfairness curves with respect to equalized odds of FATDM and baselines on Car-
diomegaly disease dataset.
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Figure 8: Error-unfairness curves with respect to equal opportunity of FATDM and baselines on
Cardiomegaly disease dataset.
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Figure 9: Error-unfairness curves with respect to equalized odds of FATDM and baselines on Edema
disease dataset.
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Figure 10: Error-unfairness curves with respect to equal opportunity of FATDM and baselines on
Edema disease dataset.

25



Published as a conference paper at ICLR 2023

Table 6: Area under the error-unfairness curves (Cardiomegaly disease dataset).

Error - Unfairness
Method

ERM G2DM DANN CDANN CORAL GroupDRO IRM FATDM
E

qu
al

iz
ed

O
dd

s

AUROC - MD 0.5575 0.6093 0.7571 0.7224 0.7239 0.7039 0.6784 0.0935
AUPRC - MD 0.5463 0.6301 0.7730 0.6883 0.7300 0.7152 0.6967 0.0291
CE - MD 0.2861 0.2601 0.4622 0.4232 0.4424 0.3148 0.3370 0.2152
MR - MD 0.6312 0.4906 0.6795 0.6667 0.6683 0.6382 0.5721 0.2439
F1 - MD 0.5901 0.4150 0.6507 0.6547 0.5745 0.5360 0.5025 0.3365
AUROC - EMD 0.7326 0.7106 0.8342 0.7931 0.8075 0.7845 0.7991 0.1099
AUPRC - EMD 0.6901 0.7146 0.8308 0.7577 0.7918 0.7806 0.7945 0.0437
CE - EMD 0.5158 0.4443 0.6143 0.5788 0.5873 0.4911 0.5274 0.3384
MR - EMD 0.7056 0.5795 0.7137 0.6979 0.6902 0.6571 0.6483 0.2045
F1 - EMD 0.6866 0.5328 0.7279 0.7019 0.6515 0.6027 0.6120 0.2888

E
qu

al
O

pp
or

tu
ni

ty

AUROC - MD 0.5128 0.6001 0.6999 0.6686 0.5935 0.6288 0.5910 0.0750
AUPRC - MD 0.5419 0.6718 0.7086 0.7189 0.6423 0.6761 0.6435 0.0262
CE - MD 0.3690 0.4272 0.5094 0.4492 0.3780 0.2737 0.3582 0.2754
MR - MD 0.3203 0.5068 0.5252 0.5512 0.4897 0.4368 0.4173 0.1778
F1 - MD 0.2134 0.4570 0.4608 0.5207 0.4017 0.3561 0.3510 0.2737
AUROC - EMD 0.6119 0.7184 0.7649 0.7517 0.6720 0.7068 0.6780 0.0947
AUPRC - EMD 0.6321 0.7684 0.7718 0.7877 0.6912 0.7335 0.7200 0.0448
CE - EMD 0.5092 0.6093 0.6264 0.6141 0.4737 0.4340 0.4917 0.3070
MR - EMD 0.4619 0.6420 0.6325 0.6532 0.5790 0.5515 0.5298 0.1918
F1 - EMD 0.3876 0.6122 0.5942 0.6496 0.5101 0.4898 0.4889 0.3108

Table 7: Area under the error-unfairness curves (Edema disease dataset).

Error - Unfairness
Method

ERM G2DM DANN CDANN CORAL GroupDRO FATDM

E
qu

al
iz

ed
O

dd
s

AUROC - MD 0.3395 0.2765 0.2972 0.2548 0.3642 0.3627 0.0633
AUPRC - MD 0.2865 0.2446 0.2561 0.2304 0.3052 0.2998 0.0771
CE - MD 0.1096 0.1266 0.1243 0.1192 0.1269 0.1179 0.0341
MR - MD 0.3929 0.3525 0.3509 0.3302 0.4303 0.4240 0.0656
F1 - MD 0.4213 0.3219 0.3527 0.4178 0.4283 0.4189 0.1369
AUROC - EMD 0.4277 0.3813 0.3637 0.3419 0.4419 0.4394 0.2729
AUPRC - EMD 0.3868 0.3588 0.3285 0.3245 0.3958 0.3921 0.3041
CE - EMD 0.2366 0.2401 0.2348 0.2334 0.2447 0.2339 0.1827
MR - MD 0.4592 0.4435 0.4017 0.3904 0.4942 0.4792 0.2802
F1 - MD 0.5186 0.4642 0.4132 0.4827 0.5180 0.5029 0.3855

E
qu

al
O

pp
or

tu
ni

ty

AUROC - MD 0.2488 0.2139 0.2085 0.1806 0.2696 0.2625 0.0218
AUPRC - MD 0.2606 0.2381 0.2297 0.2035 0.2937 0.2874 0.0168
CE - MD 0.1540 0.1839 0.1689 0.1572 0.1487 0.1446 0.0234
MR - MD 0.2967 0.2652 0.2620 0.2516 0.3101 0.2999 0.0468
F1 - MD 0.2848 0.2195 0.2534 0.2613 0.2973 0.2975 0.0502
AUROC - EMD 0.2736 0.2472 0.2449 0.2155 0.2897 0.2841 0.1121
AUPRC - EMD 0.2653 0.2451 0.2429 0.2176 0.2852 0.2812 0.0912
CE - EMD 0.2083 0.2318 0.2355 0.2147 0.2055 0.2003 0.1159
MR - MD 0.3409 0.3162 0.3258 0.3026 0.3442 0.3388 0.1872
F1 - MD 0.3237 0.2756 0.3031 0.3008 0.3215 0.3271 0.1779
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Figure 11: Error-unfairness curves with respect to equalized odds of FATDM and ERM on Edema
disease dataset when training with different numbers of source domains. Names in the figure legend
are in the form of X-Y where X is the model and Y is the number of source domains (e.g., ERM-2
means training ERM on two source domains.)
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(a) Equalized Odds

(b) Equal Opportunity

Figure 12: Fairness-accuracy trade-off (Pareto frontier) of models trained with simultaneous and
sequential (i.e., models with ‘-seq’ suffix) approaches, and FATDM-CycleGAN (i.e., use CycleGAN
instead of StarGAN as density mapping functions) on Cardiomegaly disease dataset: error-unfairness
curves are constructed by varying ω ∈ [0, 10] and the values of error and unfairness are normalized
to [0, 1]. Lower-left points and the smaller area under the curve indicate the model has a better
fairness-accuracy trade-off (Pareto optimality).

D ADDITIONAL RESULTS & LEMMAS

D.1 TIGHTER UPPER BOUND FOR ACCURACY

Corollary 5.1 We can replace term (ii) in Thm. 1 with the following term to attain a tighter upper
bound for accuracy:

√
2Cmin

i∈[N ]

(
dJS

(
PY
DT , P

Y
DS

i

)
+

√
2ηTV Ez∼P

DT
i
(z)

[
dJS

(
P

X|Y
DT , P

X|Y
DT

i

)2])
.

where ηTV = sup
PX

Di
̸=PX

Dj

DTV

(
PZ

Di
,PZ

Dj

)
DTV

(
PX

Di
,PX

Dj

) ≤ 1 is called Dobrushin’s coefficient (Polyanskiy & Wu,

2017).

This result suggests that we can further optimize term (ii) in Thm. 1 by minimizing ηTV . It has
been shown in Shui et al. (2022) that ηTV can be controlled by Lipschitz constant of the feature
mapping g : X → Z when g follows Gaussian distribution. The Lipschitz constant of g, in turn, can
be upper bounded by the Frobenius norm of Jacobian matrix with respect to g (Miyato et al., 2018).
However, in practice, we found that computing Jacobian matrix of g is computationally expensive
when dimension of representation Z is large, and optimizing it together with invariant constraints
does not improve the performances of models in our experiments.

D.2 LEMMAS FOR PROVING THEOREM 1

Lemma 6 Let X be the random variable in domains Di and Dj , and E be an event that PX
Dj

≥ PX
Di

,
then we have: ∫

E

∣∣∣PX
Dj

− PX
Di

∣∣∣ dX =

∫
E

∣∣∣PX
Dj

− PX
Di

∣∣∣ dX =
1

2

∫ ∣∣∣PX
Dj

− PX
Di

∣∣∣ dX
where E is the complement of event E .
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Lemma 7 Let X be the random variable in domains Di and Dj , let f : X → R+ be a non-negative
function bounded by C, then we have:

EDj
[f(X)]− EDi

[f(X)] ≤ C√
2

√
min

(
DKL

(
PX
Di

∥ PX
Dj

)
,DKL

(
PX
Dj

∥ PX
Di

))
where DKL(· ∥ ·) is the KL-divergence between two distributions.

Lemma 8 Suppose loss function L is upper bounded by C and consider a classifier f̂ : X → Y . the
expected classification error of f̂ in domain Dj can be upper bounded by its error in domain Di:

ϵAccDj

(
f̂
)
≤ ϵAccDi

(
f̂
)
+

√
2CdJS

(
PX,Y
Dj

, PX,Y
Di

)
where X,Y are random variables denoting feature and label in domains Di and Dj .

Lemma 9 Consider two distributions PX
Di

and PX
Dj

over X . Let PZ
Di

and PZ
Dj

be the induced
distributions over Z by mapping function g : X → Z , then we have:

dJS(P
X
Di

, PX
Dj

) ≥ dJS(P
Z
Di

, PZ
Dj

)

Lemma 10 (Phung et al., 2021) Consider domain D with joint distribution PX,Y
D and labeling

function fD : X → Y∆ from feature space to label space. Given mapping function g : X → Z
from feature to representation space, we define labeling function hD : Z → Y∆ from representation

space to label space as hD(Z)Y = fD(X)Y ◦ g−1(Z) =

∫
g−1(Z)

fD(X)Y PX
D dX∫

g−1(Z)
PX

D dX
. Similarly, let

f̂ be the hypothesis from feature space, then the corresponding hypothesis ĥ from representation

space under the mapping function g is computed as ĥ(Z)Y =

∫
g−1(Z)

f̂(X)Y PX
D dX∫

g−1(Z)
PX

D dX
. Let ϵAccD (f̂) =

ED

[
L(f̂(X), Y )

]
and ϵAccD (ĥ) = ED

[
L(ĥ(Z), Y )

]
be expected errors defined with respect to feature

space and representation space, respectively. We have:

ϵAccD

(
f̂
)
= ϵAccD

(
ĥ
)

D.3 LEMMAS FOR PROVING COROLLARY 1.1

Lemma 11 Consider two random variables X,Y . Let PX,Y
Di

, PX,Y
Dj

be two joint distributions defined

in domains Di and Dj , respectively. Then, JS-divergence DJS

(
PX,Y
Di

∥ PX,Y
Dj

)
and KL-divergence
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Dj

)
can be decomposed as follows:

DKL

(
PX,Y
Di

∥ PX,Y
Dj

)
= DKL

(
PY
Di

∥ PY
Dj

)
+ EDi

[
DKL

(
P

X|Y
Di

∥ P
X|Y
Dj

)]
DJS

(
PX,Y
Di

∥ PX,Y
Dj

)
≤ DJS

(
PY
Di

∥ PY
Dj

)
+ EDi

[
DJS

(
P

X|Y
Di

∥ P
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D.4 LEMMAS FOR PROVING THEOREM 2

Lemma 12 Under Assumption in Theorem 2, the following holds for any domain D:√
ϵAccD (f̂) =

√
ED[L(f̂(X), Y )] ≥

√
2c

|Y|
dJS(P

Y
D , P Ŷ

D )2, ∀f̂

where Ŷ is the prediction made by randomized predictor f̂ .
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D.5 LEMMAS FOR PROVING THEOREM 3

Definition 13 Given domain Di with binary random variable A denoting the sensitive attribute, the
unfairness measures that evaluate the violation of equalized odd (EO) and equal opportunity (EP)
criteria between sensitive groups of this domain are defined as follows.
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]
.

Lemma 14 Given two domains Di and Dj , under Definition 13, Ry,a
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(
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)

can be bounded by

Ry,a
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as follows.

Ry,a
Dj

(
f̂
)
≤ Ry,a

Di

(
f̂
)
+
√
2dJS

(
P

X|Y=y,A=a
Dj

, P
X|Y=y,A=a
Di

)
∀y, a ∈ {0, 1}

Lemma 15 Given two domains Di and Dj , under Definition 13, the unfairness in domain Dj can
be upper bounded by the unfairness measure in domain Di as follows.
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Lemma 16 Consider domain D with distribution PX,Y
D and labeling function fD : X → Y∆. Given

mapping function g : X → Z from feature to representation space, we define labeling function
hD : Z → Y∆ from representation space to label space as hD(Z)Y = fD(X)Y ◦ g−1(Z) =∫

g−1(Z)
fD(X)Y PX

D dX∫
g−1(Z)

PX
D dX

. Similarly, let f̂ be the hypothesis from feature space, then the corresponding

hypothesis ĥ from representation space under the mapping function g is computed as ĥ(Z)Y =∫
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f̂(X)Y PX
D dX∫
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ĥ
)

D.6 LEMMAS FOR PROVING THEOREM 5

Lemma 17 Consider two domains Di and Dj , if there exist invertible mappings my
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E PROOFS

E.1 PROOFS OF THEOREMS

Proof of Theorem 1. First, we get the upper bound based on the representation space Z . Then,
we relate it with the feature space X . Let DS

∗ ∈ {DS
i }Ni=1 be the source domain that’s nearest to the
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target domain DT . According to Lemma 8, we have upper bound of the expected classification error
for the target domain based on each of the source domain as follows.
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Taking average of upper bounds based on all source domains, we have:
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ĥ
)
+

√
2C

N

N∑
i=1

dJS

(
PZ,Y
DT , PZ,Y

DS
∗

)
+

√
2C

N

N∑
i=1

dJS

(
PZ,Y
DS

∗
, PZ,Y

DS
i

)
(2)

≤ 1

N

N∑
i=1

ϵAccDS
i

(
ĥ
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Here we have
(1)

≤ by using triangle inequality for JS-distance: dJS(P,R) ≤ dJS(P,Q) + dJS(Q,R)

with P,Q, and R = PDT , PDS
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and PDS
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, respectively. We have
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. Similarly, we can obtain the upper bound based

on the feature space X as follows.

ϵAccDT

(
f̂
)
≤ 1

N

N∑
i=1

ϵAccDS
i

(
f̂
)
+
√
2Cmin

i∈[N ]
dJS

(
PX,Y
DT , PX,Y

DS
i

)
+

√
2C max

i,j∈[N ]
dJS

(
PX,Y

DS
i

, PX,Y

DS
j

)
(8)

However, the bounds in Eq. (7) and Eq. (8) are based on either feature space or representation space,
which is not readily to use for practical algorithmic design because the actual objective is to minimize
ϵAccDT

(
f̂
)

in feature space by controlling Z in representation space. According to Lemmas 9 and 10,
we can derive the bound that relates feature and representation spaces as follows.
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Proof of Corollary 1.1.
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Here we have
(1)

≤ by using Lemma 11 to decompose the JS-divergence of the joint distributions and
(2)

≤ by using inequality
√
a+ b ≤

√
a+

√
b.
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This new upper bound, combined with Thm. 1 suggests learning representation Z such that PZ|Y
DS

i

is invariant across source domains, or in another word, Z ⊥ D | Y . This result is consistent with
Thm. 4: when the target domain DT is the mixture of source domains {DS

i }Ni=1, and when PY
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P
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Proof of Corollary 5.1 (tighter upper bound for accuracy). The bound in Eq. (9) is constructed
using Lemma 9. Indeed, we can make this bound tighter using the strong data processing inequality
for JS-divergence (Polyanskiy & Wu, 2017), as stated below.
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total variation distance. ηTV is called the Dobrushin’s coefficient (Polyanskiy & Wu, 2017).

Apply Lemma 11 and this inequality to the second term in the right hand side of Eq. (7) (similar to
the proof of Corollary 1.1), we have:

√
2Cmin

i∈[N ]
dJS

(
PZ,Y
DT , PZ,Y

DS
i

)
≤

√
2Cmin

i∈[N ]

(
dJS

(
PY
DT , P

Y
DS

i

)
+

√
2Ez∼P

DT
i
(z)

[
dJS

(
P

Z|Y
DT , P

Z|Y
DT

i

)2])

≤
√
2Cmin

i∈[N ]

(
dJS

(
PY
DT , P

Y
DS

i

)
+

√
2ηTV Ez∼P

DT
i
(z)

[
dJS

(
P

X|Y
DT , P

X|Y
DT

i

)2])
(10)

Proof of Theorem 2. Consider a source domain DS
i and target domain DT . Because JS-distance

dJS(·, ·) is a distance metric, we have triangle inequality:

dJS(P
Y
DS

i
, PY

DT ) ≤ dJS(P
Y
DS

i
, P Ŷ

DS
i
) + dJS(P

Ŷ
DS

i
, P Ŷ

DT ) + dJS(P
Ŷ
DT , P

Y
DT )

Since X
g−→ Z

ĥ−→ Ŷ , we have dJS(P
Ŷ
DS

i
, P Ŷ

DT ) ≤ dJS(P
Z
DS

i
, PZ

DT ). Using Lemma 12, the

following holds when dJS(P
Y
DS

i
, PY

DT ) ≥ dJS(P
Z
DS

i
, PZ

DT )(
dJS(P

Y
DS

i
, PY

DT )− dJS(P
Z
DS

i
, PZ

DT )
)2

≤
(
dJS(P

Y
DS

i
, P Ŷ

DS
i
) + dJS(P

Ŷ
DT , P

Y
DT )

)2
≤ 2

(
dJS(P

Y
DS

i
, P Ŷ

DS
i
)2 + dJS(P

Ŷ
DT , P

Y
DT )

2
)

≤ 2√
2c
|Y|

(√
ϵAcc
DS

i

(f̂) +

√
ϵAcc
DT (f̂)

)

≤
√

4|Y|
c

(
ϵAcc
DS

i

(f̂) + ϵAcc
DT (f̂)

)
The last inequality is by AM-GM inequality.

Therefore, when dJS(P
Y
DS

i
, PY

DT ) ≥ dJS(P
Z
DS

i
, PZ

DT ), we have

ϵAccDS
i
(f̂) + ϵAccDT (f̂) ≥

c

4|Y|

(
dJS(P

Y
DS

i
, PY

DT )− dJS(P
Z
DS

i
, PZ

DT )
)4

The above holds for any source domain DS
i . Average over all N source domains, we have

1

N

N∑
i=1

ϵAccDS
i
(f̂) + ϵAccDT (f̂) ≥

c

4|Y|N

N∑
i=1

(
dJS(P

Y
DS

i
, PY

DT )− dJS(P
Z
DS

i
, PZ

DT )
)4
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Proof of Theorem 3. The proof is based on Lemmas 15 and 16 and similar to the proof of Thm. 1.

Let DS
∗ ∈ {DS

i }Ni=1 be the source domain nearest to the target domain DT . According to Lemma 15,
we have upper bound of the unfairness measured with respect to the representation space for the
target domain based on each of the source domain. For equal opportunity (EP), we have:

ϵEPDT

(
ĥ
)
≤ ϵEPDS

i

(
ĥ
)
+
√
2
∑

a∈{0,1}

dJS

(
P

Z|Y=1,A=a

DT , P
Z|Y=1,A=a

DS
i

)
Taking average of upper bounds based on all source domains, we have:

ϵEPDT

(
ĥ
)
≤ 1

N

N∑
i=1

ϵEPDS
i

(
ĥ
)
+

√
2

N

N∑
i=1

∑
a∈{0,1}

dJS

(
P

Z|Y=1,A=a

DT , P
Z|Y=1,A=a

DS
i

)

≤ 1

N

N∑
i=1

ϵEPDS
i

(
ĥ
)
+

√
2

N

N∑
i=1

∑
a∈{0,1}

dJS

(
P

Z|Y=1,A=a

DT , P
Z|Y=1,A=a

DS
∗

)

+

√
2

N

N∑
i=1

∑
a∈{0,1}

dJS

(
P

Z|Y=1,A=a

DS
∗

, P
Z|Y=1,A=a

DS
i

)

≤ 1

N

N∑
i=1

ϵEPDS
i

(
ĥ
)
+

√
2min
i∈[N ]

∑
a∈{0,1}

dJS

(
P

Z|Y=1,A=a

DT , P
Z|Y=1,A=a

DS
i

)
+
√
2 max
i,j∈[N ]

∑
a∈{0,1}

dJS

(
P

Z|Y=1,A=a

DS
i

, P
Z|Y=1,A=a

DS
j

)
According to Lemmas 9 and 16. we can relate this bound to the feature space as follows.

ϵEPDT

(
f̂
)
= ϵEPDT

(
ĥ
)

≤ 1

N

N∑
i=1

ϵEPDS
i

(
ĥ
)
+

√
2min
i∈[N ]

∑
a∈{0,1}

dJS

(
P

Z|Y=1,A=a

DT , P
Z|Y=1,A=a

DS
i

)
+
√
2 max
i,j∈[N ]

∑
a∈{0,1}

dJS

(
P

Z|Y=1,A=a

DS
i

, P
Z|Y=1,A=a

DS
j

)

≤ 1

N

N∑
i=1

ϵEPDS
i

(
f̂
)
+

√
2min
i∈[N ]

∑
a∈{0,1}

dJS

(
P

X|Y=1,A=a

DT , P
X|Y=1,A=a

DS
i

)
+
√
2 max
i,j∈[N ]

∑
a∈{0,1}

dJS

(
P

Z|Y=1,A=a

DS
i

, P
Z|Y=1,A=a

DS
j

)

Similarly, we got the upper bound for unfairness measure with respect to equalized odds as follows.

ϵEODT

(
f̂
)
≤ 1

N

N∑
i=1

ϵEODS
i

(
f̂
)
+
√
2min
i∈[N ]

∑
y∈{0,1}

∑
a∈{0,1}

dJS

(
P

X|Y=y,A=a

DT , P
X|Y=y,A=a

DS
i

)
+
√
2 max
i,j∈[N ]

∑
y∈{0,1}

∑
a∈{0,1}

dJS

(
P

Z|Y=y,A=a

DS
i

, P
Z|Y=y,A=a

DS
j

)
(11)

Proof of Theorem 4. Consider two source domains, DS
i and DS

j , if PY
DS

i
= PY

DS
j

, we can learn the

mapping function g = Pθ (Z|X) such that PZ|Y
DS

i

= P
Z|Y
DS

j

. Note that this mapping function always

exists. In particular, the trivial solution for Z that satisfies PZ|Y
DS

i

= P
Z|Y
DS

j

is making Z ⊥ Y,D (e.g.,
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Pθ (Z|X) = N (0, I)). Then we have:

ϵAccDS
i

(
ĥ
)
= Ez∼PZ

DS
i

,y∼h
DS

i
(z)

[
L
(
ĥ (Z) , Y

)]
= E

y∼PY

DS
i

,z∼P
Z|Y
DS

i

[
L
(
ĥ (Z) , Y

)]
= E

y∼PY

DS
j

,z∼P
Z|Y
DS

j

[
L
(
ĥ (Z) , Y

)]
= Ez∼PZ

DS
j

,y∼h
DS

j
(z)

[
L
(
ĥ (Z) , Y

)]
= ϵAccDS

j

(
ĥ
)

For unseen target domain DT in Λ, we have:

ϵAccDT

(
ĥ
)
= EDT

[
L
(
ĥ (Z) , Y

)]
=

∫
Z×Y

L
(
ĥ (Z) , Y

)
PY,Z
DT dY dZ

=

∫
Z×Y

L
(
ĥ (Z) , Y

) N∑
i=1

πiP
Y,Z

DS
i

dY dZ

=

N∑
i=1

πi

∫
Z×Y

L
(
ĥ (Z) , Y

)
PY,Z

DS
i

dY dZ

=

N∑
i=1

πiEDS
i

[
L
(
ĥ (Z) , Y

)]
= EDS

i

[
L
(
ĥ (Z) , Y

)]
∀i ∈ [N ]

= ϵAccDS
i

(
ĥ
)

∀i ∈ [N ]

By Lemma 10, we have ϵAccDT

(
ĥ
)
= ϵAcc

DS
i

(
ĥ
)
= ϵAccDT

(
f̂
)
= ϵAcc

DS
i

(
f̂
)

.

For fairness, we only give the proof for equalized odds (EO), we can easily get the similar derivation
for equal opportunity. For any Z that satisfies PZ|Y=y,A=a

DS
i

= P
Z|Y=y,A=a

DS
j

∀y, a ∈ {0, 1}, we have:

ϵEODS
i

(
ĥ
)
=

∑
y∈{0,1}

D
(
P

ĥ(Z)1|Y=y,A=0

DS
i

∥ P
ĥ(Z)1|Y=y,A=1

DS
i

)

=
∑

y∈{0,1}

D
(
P

ĥ(Z)1|Y=y,A=0

DS
j

∥ P
ĥ(Z)1|Y=y,A=1

DS
j

)
= ϵEODS

j

(
ĥ
)

For unseen target domain DT in Λ, we have:

ϵEODT

(
ĥ
)
=

∑
y∈{0,1}

D
(
P

ĥ(Z)1|Y=y,A=0

DT ∥ P
ĥ(Z)1|Y=y,A=1

DT

)

=
∑

y∈{0,1}

D

(
N∑
i=1

πiP
ĥ(Z)1|Y=y,A=0

DS
i

∥
N∑
i=1

πiP
ĥ(Z)1|Y=y,A=1

DS
i

)

=
∑

y∈{0,1}

D
(
P

ĥ(Z)1|Y=y,A=0

DS
i

∥ P
ĥ(Z)1|Y=y,A=1

DS
i

)
∀i ∈ [N ]

= ϵEODS
i

(
ĥ
)

∀i ∈ [N ]
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Similar to the proof of accuracy, Z that satisfies PZ|Y=y,A=a

DS
i

= P
Z|Y=y,A=a

DS
j

∀y, a ∈ {0, 1}, i, j ∈
[N ] always exists. The trivial solution for is Z that satisfies Z ⊥ Y,A,D.

By Lemma 16, we have ϵEODT

(
ĥ
)
= ϵEO

DS
i

(
ĥ
)
= ϵEODT

(
f̂
)
= ϵEO

DS
i

(
f̂
)

.

For equal opportunity (EP), Z only need to satisfy the condition for positive label, i.e., PZ|Y=1,A=a

DS
i

=

P
Z|Y=1,A=a

DS
j

∀a ∈ {0, 1}, i, j ∈ [N ].

Proof of Theorem 5. According to Lemma 17, we have:

DJS

(
P

Z|y
Di

∥ P
Z|y
Dj

)
≤
∫
x

P
x|y
Dj

DJS

(
P

Z|x
Di

∥ P
Z|my

i,j(x)

Di

)
dx (12)

Then, minimizing DJS

(
P

Z|y
Di

∥ P
Z|y
Dj

)
can be achieved by minimizing

DJS

(
PZ|x ∥ PZ|my

i,j(x)
)

∀x ∈ X . We can upper bound DJS

(
PZ|x ∥ PZ|my

i,j(x)
)

as
follows

DJS

(
PZ|x ∥ PZ|my

i,j(x)
)
≤ DTV

(
PZ|x ∥ PZ|my

i,j(x)
)

≤
√
2 d1/2

(
PZ|x, PZ|my

i,j(x)
)

(1)
=

√
2 d1/2

(
N
(
µ(x);σ2Id

)
,N
(
µ
(
my

i,j(x)
)
;σ2Id

))
(13)

where DTV and d1/2 are total variation distance and Hellinger distance between two distributions,

respectively. We have
(1)
= because of our choice for representation mapping g(x) := PZ|x =

N
(
µ(x);σ2Id

)
. According to Devroye et al. (2018), the Hellinger distance between two multivariate

normal distributions over Rd has a closed form as follows

d1/2 (N (µ1; Σ1) ,N (µ2; Σ2))

=

√√√√1− det (Σ1)
1/4

det (Σ2)
1/4

det
(
Σ1+Σ2

2

)1/2 exp

(
−1

8
(µ1 − µ2)

T

(
Σ1 +Σ2

2

)−1

(µ1 + µ2)

)
(14)

where µ1, µ2,Σ1,Σ2 are mean vectors and covariance matrices of the two normal distributions. In
Eq. (14), let µ1 = µ(x), µ2 = µ

(
my

i,j(x)
)
, Σ1 = Σ2 = σ2Id, then we have:

d1/2
(
N
(
µ(x);σ2Id

)
,N
(
µ
(
my

i,j(x)
)
;σ2Id

))
=

√
1− exp

(
− 1

8dσ2

(
µ (x)− µ

(
my

i,j(x)
))T (

µ (x)− µ
(
my

i,j(x)
)))

=

√
1− exp

(
− 1

8dσ2

∥∥µ (x)− µ
(
my

i,j(x)
)∥∥2

2

)
(15)

From Eq. (15), we can see that Helinger distance between two representation distributions PZ|x

and PZ|my
i,j(x) is the function of their means µ (x) and µ

(
my

i,j(x)
)
. Combining this with Eq.

(12) and Eq. (13), we conclude that minimizing dJS

(
P

Z|y
DS

i

, P
Z|y
DS

j

)
can be reduced to minimizing∥∥µ(x)− µ

(
my

i,j(x)
)∥∥

2
which can be implemented as the mean square error between µ(x) and

µ
(
my

i,j(x)
)

in practice. Proof for dJS
(
P

Z|y,a
DS

i

, P
Z|y,a
DS

j

)
is derived in the similar way.
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E.2 PROOFS OF LEMMAS

Proof of Lemma 6. We have:∫
E

∣∣∣PX
Dj

− PX
Di

∣∣∣ dX =

∫
E

(
PX
Dj

− PX
Di

)
dX

=

∫
E∪E

(
PX
Dj

− PX
Di

)
dX −

∫
E

(
PX
Dj

− PX
Di

)
dX

=

∫
E

(
PX
Di

− PX
Dj

)
dX

=

∫
E

∣∣∣PX
Dj

− PX
Di

∣∣∣ dX
=

1

2

∫ ∣∣∣PX
Dj

− PX
Di

∣∣∣ dX
Proof of Lemma 7. We have:

EDj
[f(X)] =

∫
X
f(X)PX

Dj
dX =

∫
X
f(X)PX

Di
dX +

∫
X
f(X)

(
PX
Dj

− PX
Di

)
dX

= EDi
[f(X)] +

∫
X
f(X)

(
PX
Dj

− PX
Di

)
dX

= EDi [f(X)] +

∫
E
f(X)

(
PX
Dj

− PX
Di

)
dX +

∫
E
f(X)

(
PX
Dj

− PX
Di

)
dX

(1)

≤ EDi
[f(X)] +

∫
E
f(X)

(
PX
Dj

− PX
Di

)
dX

(2)

≤ EDi
[f(X)] + C

∫
E

(
PX
Dj

− PX
Di

)
dX

= EDi
[f(X)] + C

∫
E

∣∣∣PX
Dj

− PX
Di

∣∣∣ dX
(3)

≤ EDi
[f(X)] +

C

2

∫ ∣∣∣PX
Dj

− PX
Di

∣∣∣ dX
(4)

≤ EDi
[f(X)] +

C

2

√
2min

(
DKL

(
PX
Di

∥ PX
Dj

)
,DKL

(
PX
Dj

∥ PX
Di

))
= EDi

[f(X)] +
C√
2

√
min

(
DKL

(
PX
Di

∥ PX
Dj

)
,DKL

(
PX
Dj

∥ PX
Di

))
where E is the event that PX

Dj
≥ PX

Di
and E is the complement of E . We have

(1)

≤ because∫
E f(X)

(
PX
Dj

− PX
Di

)
dX ≤ 0;

(2)

≤ because f(X) is non-negative function and is bounded by

C;
(3)

≤ by using Lemma 6;
(4)

≤ by using Pinsker’s inequality between total variation norm and KL-
divergence.

Proof of Lemma 8. Applying Lemma 7 and replacing X by (X,Y ), f by loss function L, Di by
Di,j , we have:

ϵAccDj

(
f̂
)
− EDi,j

[
L(f̂(X), Y )

]
= EDj

[
L(f̂(X), Y )

]
− EDi,j

[
L(f̂(X), Y )

]
≤ C√

2

√
min

(
DKL

(
PX,Y
Dj

∥ PX,Y
Di,j

)
,DKL

(
PX,Y
Di,j

∥ PX,Y
Dj

))
≤ C√

2

√
DKL

(
PX,Y
Dj

∥ PX,Y
Di,j

)
(16)
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Applying Lemma 7 again and replacing X by (X,Y ), f by loss function L, Dj by Di,j , we have:

EDi,j

[
L(f̂(X), Y )

]
− ϵAccDi

(
f̂
)
= EDi,j

[
L(f̂(X), Y )

]
− EDi

[
L(f̂(X), Y )

]
≤ C√

2

√
min

(
DKL

(
PX,Y
Di

∥ PX,Y
Di,j

)
,DKL

(
PX,Y
Di,j

∥ PX,Y
Di

))
≤ C√

2

√
DKL

(
PX,Y
Di

∥ PX,Y
Di,j

)
(17)

Adding Eq. (16) to Eq. (17), we have:

ϵAccDj

(
f̂
)
− ϵAccDi

(
f̂
)
≤ C√

2

(√
DKL

(
PX,Y
Di

∥ PX,Y
Di,j

)
+

√
DKL

(
PX,Y
Dj

∥ PX,Y
Di,j

))
(1)

≤ C√
2

√
2
(
DKL

(
PX,Y
Di

∥ PX,Y
Di,j

)
+DKL

(
PX,Y
Dj

∥ PX,Y
Di,j

))
=

C√
2

√
4DJS

(
PX,Y
Di

∥ PX,Y
Dj

)
=

√
2CdJS

(
PX,Y
Di

, PX,Y
Dj

)

Here we have
(1)

≤ by using Cauchy–Schwarz inequality.

Proof of Lemma 9. Note that the JS-divergence DJS

(
PX
Di

∥ PX
Dj

)
can be understood as the

mutual information between a random variable X associated with the mixture distribution PX
Di,j

=

1
2

(
PX
Di

+ PX
Dj

)
and the equiprobable binary random variable T used to switch between PX

Di
and

PX
Dj

to create the mixture distribution PX
Di,j

. In particular, we have:

DJS

(
PX
Di

∥ PX
Dj

)
=

1

2

(
DKL

(
PX
Di

∥ PX
Di,j

)
+DJS

(
PX
Dj

∥ PX
Di,j

))
=

1

2

∫ (
logPX

Di
− logPX

Di,j

)
PX
Di

dX

+
1

2

∫ (
logPX

Dj
− logPX

Di,j

)
PX
Dj

dX

=

(
1

2

∫
log
(
PX
Di

)
PX
Di

dx+
1

2

∫
log
(
PX
Dj

)
PX
Dj

dX

)
−
∫

log
(
PX
Di,j

)
PX
Di,j

dX

= −H(X|T ) +H(X)

= I(X;T )

where H(X) is the entropy of X , H(X|T ) is the entropy of X conditioned on T , and I(X;T ) is
the mutual information between X and T . Similarly, we also have DJS((P

Z
Di

∥ PZ
Dj

)) = I(Z;T ).
Because Z is induced from X by the mapping function h then we have Z ⊥ T | X and the Markov
chain T → X → Z. According to data processing inequality for mutual information (Polyanskiy &
Wu, 2014), we have I(X;T ) ≥ I(Z;T ) which implies DJS((P

X
Di

∥ PX
Dj

)) ≥ DJS((P
Z
Di

∥ PZ
Dj

)).
Taking square root on both sides, we have dJS(P

X
Di

, PX
Dj

) ≥ dJS(P
Z
Di

, PZ
Dj

).
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Proof of Lemma 10. We have:

ϵAccD

(
ĥ
)
= Ez∼PZ

D ,y∼hD(z)

[
L
(
ĥ (Z) , Y

)]
=

|Y|∑
y=1

Ez∼PZ
D

[
L
(
ĥ (Z) , y

)
hD(Z)y

]

=

|Y|∑
y=1

∫
Z
L
(
ĥ (Z) , y

)
hD(Z)yP

Z
DdZ

=

|Y|∑
y=1

∫
Z
L
(
ĥ (Z) , y

) ∫
g−1(Z)

fD(X)yP
X
D dX∫

g−1(Z)
PX
D dX

∫
g−1(Z)

PX
D dXdZ

=

|Y|∑
y=1

∫
Z
L
(
ĥ (Z) , y

)∫
g−1(Z)

fD(X)yP
X
D dXdZ

=

|Y|∑
y=1

∫
Z

∫
g−1(Z)

L
(
ĥ (g(X)) , y

)
fD(X)yP

X
D dXdZ

=

|Y|∑
y=1

∫
Z

∫
X
1
(
X ∈ g−1(Z)

)
L
(
ĥ (Z) , y

)
fD(X)yP

X
D dXdZ

=

|Y|∑
y=1

∫
X

∫
Z
1 (Z = g(X))L

(
ĥ (Z) , y

)
fD(X)yP

X
D dXdZ

=

|Y|∑
y=1

∫
X
L
(
ĥ (g(X)) , y

)
fD(X)yP

X
D dXdZ

=

|Y|∑
y=1

∫
X
L
(
f̂ (X) , y

)
fD(X)yP

X
D dX

= ϵAccD

(
f̂
)

Proof of Lemma 11. We show the decomposition for KL-divergence first and then use the result to
derive the decomposition for JS-divergence. We have:

DKL

(
PX,Y
Di

∥ PX,Y
Dj

)
= EDi

[
logPX,Y

Di
− logPX,Y

Dj

]
= EDi

[
logPY

Di
+ logP

X|Y
Di

]
− EDi

[
logPY

Dj
+ logP

X|Y
Dj

]
= EDi

[
logPY

Di
− logPY

Dj

]
+ EDi

[
logP

X|Y
Di

− logP
X|Y
Dj

]
= EDi

[
logPY

Di
− logPY

Dj

]
+ Ey∼PY

Di

[
E
x∼P

X|y
Di

[
logP

X|Y
Di

− logP
X|Y
Dj

]]
= DKL

(
PY
Di

∥ PY
Dj

)
+ EDi

[
DKL

(
P

X|Y
Di

∥ P
X|Y
Dj

)]
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DJS

(
PX,Y
Di

∥ PX,Y
Dj

)
=

1

2

(
DKL

(
PX,Y
Di

∥ PX,Y
Di,j

))
+

1

2

(
DKL

(
PX,Y
Dj

∥ PX,Y
Di,j

))
=

1

2

(
DKL

(
PY
Di

∥ PY
Di,j

))
+

1

2

(
EDi

[
DKL

(
P

X|Y
Di

∥ P
X|Y
Di,j

)])
+

1

2

(
DKL

(
PY
Dj

∥ PY
Di,j

))
+

1

2

(
EDj

[
DKL

(
P

X|Y
Dj

∥ P
X|Y
Di,j

)])
= DJS

(
PY
Di

∥ PY
Dj

)
+

1

2

(
EDi

[
DKL

(
P

X|Y
Di

∥ P
X|Y
Di,j

)])
+

1

2

(
EDj

[
DKL

(
P

X|Y
Dj

∥ P
X|Y
Di,j

)])
≤ DJS

(
PY
Di

∥ PY
Dj

)
+

1

2

(
EDi

[
DKL

(
P

X|Y
Di

∥ P
X|Y
Di,j

)])
+

1

2

(
EDi

[
DKL

(
P

X|Y
Dj

∥ P
X|Y
Di,j

)])
+

1

2

(
EDj

[
DKL

(
P

X|Y
Dj

∥ P
X|Y
Di,j

)])
+

1

2

(
EDj

[
DKL

(
P

X|Y
Di

∥ P
X|Y
Di,j

)])
= DJS

(
PY
Di

∥ PY
Dj

)
+ EDi

[
DJS

(
P

X|Y
Di

∥ P
X|Y
Dj

)]
+ EDj

[
DJS

(
P

X|Y
Di

∥ P
X|Y
Dj

)]

Proof of Lemma 12.

ED

[
L(f̂(X), Y )

]
= ED

∑
ŷ∈Y

f̂(X)ŷL(ŷ, Y )


(1)

≥ c EX

∑
ŷ∈Y

f̂(X)ŷ Pr(Y ̸= ŷ|X)


(2)
= c EX

[
1− f̂(X)T f(X)

]
(3)

≥ c

2
EX

[∥∥∥f̂(X)− f(X)
∥∥∥2
2

]
(4)

≥ c

2

1

|Y|
EX

[(∥∥∥f̂(X)− f(X)
∥∥∥
1

)2]
(5)

≥ c

2

1

|Y|

(∥∥∥EX

[
f̂(X)− f(X)

]∥∥∥
1

)2
=

c

2

1

|Y|

∥∥∥P Ŷ
D − PY

D

∥∥∥2
1

(6)

≥ 2c

|Y|
DJS

(
PY
D ∥ P Ŷ

D

)2
=

2c

|Y|
· dJS

(
PY
D , P Ŷ

D

)4

Here we have
(1)

≥ is because of the assumption that L(ŷ, y) is lower bounded by c when ŷ ̸= y;
(2)
= is because f̂(X)T 1 = ||f̂(X)||1 = 1;

(3)

≥ is because ||f̂(X)||2 ≤ ||f̂(X)||1 = 1;
(4)

≥ is because

||f̂(X)||2 ≥ 1√
|Y|

||f̂(X)||1;
(5)

≥ is by using Jensen’s inequality;
(6)

≥ is by using JS-divergence lower

bound of total variation distance.
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Proof of Lemma 14. Similar to the proof in Lemma 8, we apply Lemma 7 for Ry,a
Di

and Ry,a
Dj

and

note that f̂(X)y is bounded by 1. Then ∀y, a ∈ {0, 1}, we have:

Ry,a
Dj

− EDi,j

[
f̂(X)y|Y = y,A = a

]
= EDj

[
f̂(X)y|Y = y,A = a

]
− EDi,j

[
f̂(X)y|Y = y,A = a

]
≤ 1√

2

√
min

(
DKL

(
P

X|Y=y,A=a
Di

∥ P
X|Y=y,A=a
Di,j

)
,DKL

(
P

X|Y=y,A=a
Di,j

∥ P
X|Y=y,A=a
Di

))
≤ 1√

2

√
DKL

(
P

X|Y=y,A=a
Dj

∥ P
X|Y=y,A=a
Di,j

)
(18)

EDi,j

[
f̂(X)y|Y = y,A = a

]
−Ry,a

Di

= EDi,j

[
f̂(X)y|Y = y,A = a

]
− EDi

[
f̂(X)y|Y = y,A = a

]
≤ 1√

2

√
min

(
DKL

(
P

X|Y=y,A=a
Dj

∥ P
X|Y=y,A=a
Di,j

)
,DKL

(
P

X|Y=y,A=a
Di,j

∥ P
X|Y=y,A=a
Dj

))
≤ 1√

2

√
DKL

(
P

X|Y=y,A=a
Di

∥ P
X|Y=y,A=a
Di,j

)
(19)

Adding Eq. (18) to Eq. (19), we have:
Ry,a

Dj
−Ry,a

Di

≤ 1√
2

(√
DKL

(
P

X|Y=y,A=a
Di

∥ P
X|Y=y,A=a
Di,j

)
+

√
DKL

(
P

X|Y=y,A=a
Dj

∥ P
X|Y=y,A=a
Di,j

))
≤

√
2dJS

(
P

X|Y=y,A=a
Dj

, P
X|Y=y,A=a
Di,j

)
Proof of Lemma 15. We give the proof for unfairness measure w.r.t. to equal opportunity first and
then use this result to derive the proof for unfairness measure w.r.t. to equalized odd. Without loss of
generality, assign group indices 1, 0 be such that R1,0

Dj

(
f̂
)
≥ R1,1

Dj

(
f̂
)

. Then we have:

ϵEPDj

(
f̂
)
=
∣∣∣R1,0

Dj

(
f̂
)
−R1,1

Dj

(
f̂
)∣∣∣

= R1,0
Dj

(
f̂
)
−R1,1

Dj

(
f̂
)

= R1,0
Dj

(
f̂
)
− EDj

[
f̂(X)1|Y = 1, A = 1

]
= R1,0

Dj

(
f̂
)
+ EDj

[
1− f̂(X)1|Y = 1, A = 1

]
− 1

= R1,0
Dj

(
f̂
)
+R1,1

Dj

(
1 − f̂

)
− 1

where 1 is vector with all 1’s. By Lemma 14, we have:

R1,0
Dj

(
f̂
)
≤ R1,0

Di

(
f̂
)
+
√
2dJS

(
P

X|Y=1,A=0
Dj

, P
X|Y=1,A=0
Di

)
R1,1

Dj

(
1 − f̂

)
≤ R1,1

Di

(
1 − f̂

)
+
√
2dJS

(
P

X|Y=1,A=1
Dj

, P
X|Y=1,A=1
Di

)
Sum above two inequalities and add −1 at both sides, we have,

ϵEPDj

(
f̂
)
= R1,0

Dj

(
f̂
)
+R1,1

Dj

(
1 − f̂

)
− 1

≤ R1,0
Di

(
f̂
)
+R1,1

Di

(
1 − f̂

)
− 1 +

√
2
∑
a=0,1

dJS

(
P

X|Y=1,A=a
Dj

, P
X|Y=1,A=a
Di

)
≤ ϵEPDi

(
f̂
)
+
√
2
∑
a=0,1

dJS

(
P

X|Y=1,A=a
Dj

, P
X|Y=1,A=a
Di

)
(20)
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Similarly, we have:∣∣∣R0,0
Dj

(
f̂
)
−R0,1

Dj

(
f̂
)∣∣∣ ≤ ∣∣∣R0,0

Di

(
f̂
)
−R0,1

Di

(
f̂
)∣∣∣+√

2
∑
a=0,1

dJS

(
P

X|Y=0,A=a
Dj

, P
X|Y=0,A=a
Di

)
(21)

Sum both Eq. (20) and Eq. (21), we have:

ϵEODj

(
f̂
)
≤ ϵEODi

(
f̂
)
+
√
2
∑
y=0,1

∑
a=0,1

dJS

(
P

X|Y=y,A=a
Dj

, P
X|Y=y,A=a
Di

)

Proof of Lemma 16. Similar to the proof of Lemma 10, Ry,a
Di

(
f̂
)
= Ry,a

Di

(
ĥ
)
∀y, a ∈ {0, 1}.

Then, we have:

ϵEODi

(
f̂
)
=
∣∣∣R0,0

Di

(
f̂
)
−R0,1

Di

(
f̂
)∣∣∣+ ∣∣∣R1,0

Di

(
f̂
)
−R1,1

Di

(
f̂
)∣∣∣

=
∣∣∣R0,0

Di

(
ĥ
)
−R0,1

Di

(
ĥ
)∣∣∣+ ∣∣∣R1,0

Di

(
ĥ
)
−R1,1

Di

(
ĥ
)∣∣∣

= ϵEODi

(
ĥ
)

ϵEPDi

(
f̂
)
=
∣∣∣R1,0

Di

(
f̂
)
−R1,1

Di

(
f̂
)∣∣∣

=
∣∣∣R1,0

Di

(
ĥ
)
−R1,1

Di

(
ĥ
)∣∣∣

= ϵEPDi

(
ĥ
)

Proof of Lemma 17. ∀y ∈ Y , we have:

DJS

(
P

Z|y
i ∥ P

Z|y
j

)
(1)
= DJS

(∫
X
PZ|xP

x|y
i dx ∥

∫
X
PZ|my

i,j(x)P
my

i,j(x)|y
j dmy

i,j(x)

)
(2)
= DJS

(∫
X
PZ|xP

x|y
i dx ∥

∫
X
PZ|my

i,j(x)P
my

i,j(x)|y
j dx

)
(3)
= DJS

(∫
X
PZ|xP

x|y
i dx ∥

∫
X
PZ|my

i,j(x)P
x|y
i dx

)
(4)

≤
∫
X
P

x|y
i DJS

(
PZ|x ∥ PZ|my

i,j(x)
)
dx

Here we have
(1)
= is because of law of total probability and Z ⊥ Y |X;

(2)
= is because my

i,j is invertible

function;
(3)
= is because P

x|y
i = P

my
i,j(x)|y

j ∀x ∈ X ;
(4)

≤ is because of joint complexity of JS
divergence. By similar derivation, ∀y ∈ Y, a ∈ A, we have:

DJS

(
P

Z|y,a
i ∥ P

Z|y,a
j

)
≤
∫
X
P

x|y,a
i DJS

(
PZ|x ∥ PZ|my,a

i,j (x)
)
dx

41


	Introduction
	Problem Formulation
	Theoretical Results
	Proposed Algorithm
	Experiments
	Conclusion
	Related Works
	Details of Algorithm FATDM
	Additional Experiments
	Additional Results & Lemmas
	Tighter upper bound for accuracy
	Lemmas for proving Theorem 1
	Lemmas for proving Corollary 1.1
	Lemmas for proving Theorem 2
	Lemmas for proving Theorem 3
	Lemmas for proving Theorem 5

	Proofs
	Proofs of Theorems
	Proofs of Lemmas


