

as trainable parameters) and training is more robust, despite
the added flexibility.

Zhao and Akoglu [2021] have developed the first deep one-
class approach to graph-level AD. In their paper, they report
an additional, practical difficulty in graph-level AD which
they call the performance flip issue. In many of their experi-
ments, their trained model (OCGIN) systematically confuses
anomalies with normal samples. The goal of this work is to
overcome both hypersphere collapse and performance flip.

Our model consists of an ensemble of GNNs. One of them
– the reference feature extractor – produces a reference em-
bedding of its input graph. The other GNN feature extractors
produce alternative “latent views” of the graph. The objec-
tive of our approach has a one-class term and a transforma-
tion learning term. The one-class term aims at concentrating
all the latent views within a hyper-sphere in the embedding
space. Transformation learning has the competing objective
to make each view predictive of the reference embedding.
It encourages the latent views to be diverse yet semantically
meaningful. By counteracting the one-class term in this man-
ner, hypersphere collapse can be provably avoided.

The tension that arises from satisfying both aspects of the
objective has further advantages. In particular, it leads to
a harder self-supervision task, which in turn leads to better
anomaly detection performance. When the training objective
is difficult to satisfy, the trained model has to be more sen-
sitive to typical salient features of normal data. New graphs
which do not exhibit these features incur a higher loss and
are then more easily detected as anomalies. Also, the two
loss contributions focus on different notions of distance be-
tween the graph embeddings. The one-class term is based on
Euclidean distances, while the transformation learning loss
is based on angles between embeddings. With the combined
loss as the anomaly score, our method is sensitive to abnormal
embedding configurations both in terms of angles between
the latent views and in terms of Euclidean distances.

In this section, we first introduce OCGTL and then detail
its main ingredients, including self-supervised AD with learn-
able transformations, deep OCC, and feature extraction with
GNNs. We then present the theory behind OCGTL.

3.1 Proposed Method - OCGTL

OCGTL combines the best of OCC and neural transforma-
tion learning. The OCGTL architecture consists of a refer-
ence feature extractor f and K additional feature extractors
fk (k = 1, · · · ,K), which are trained jointly as illustrated
in Fig. 2. Each of the feature extractors is a parameterized
function (e.g. GNN) which takes as input an attributed graph
G = {V, E ,X}, with vertex set V , edges E , and node features
(attributes) X = {xv|v ∈ V} and maps it into an embedding
space Z . These K + 1 feature extractors are trained jointly
on the OCGTL loss, LOCGTL = EG [LOCGTL(G)]. Each graph
in the training data contributes two terms to the loss,

LOCGTL(G) = LOCC(G) + LGTL(G). (1)

The first term, LOCC(G), is a one-class term; it encourages all
the embeddings to be as close as possible to the same point
θ ∈ Z . The second term, LGTL, enforces each GNN’s embed-
dings to be diverse and semantically meaningful representa-
tions of the input graph G.

The two terms are presented in detail below.

The Graph Transformation Learning Term

Neural transformation learning [Qiu et al., 2021] is a self-
supervised training objective for deep AD which has seen
success on time series and tabular data. Here we generalize
the training objective of Qiu et al. [2021] (by dropping their
parameter sharing constraint) and adapt it to graphs.

For a graph G, the loss of graph transformation learning
encourages the embeddings of each GNN, fk(G), to be simi-
lar to the embedding of the reference GNN, f(G), while be-
ing dissimilar from each other. Consequently, each GNN fk
is able to extract graph-level features to produce a different
view of G. The contribution of each graph to the objective is

LGTL(G) = −
K
∑

k=1

log
ck
Ck

(2)

with ck = exp

(

1

τ
sim(fk(G), f(G))

)

,

Ck = ck +
K
∑

l ̸=k

exp

(

1

τ
sim(fk(G), fl(G))

)

,

where τ denotes a temperature parameter. The similar-
ity here is defined as the cosine similarity sim(z, z′) :=
zT z′/∥z∥∥z′∥. Note that the above loss is more general than
the one proposed in Qiu et al. [2021] as it omits a parameter
sharing constraint between transformations. This choice is
inspired by the observation in You et al. [2020] that different
graph categories prefer different types of transformations.

The One-Class Term

One-class classification (OCC) is a popular paradigm for AD
[Noumir et al., 2012]. The idea is to map data into a mini-
mal hypersphere encompassing all normal training data. Data
points outside the boundary are considered anomalous. The
contribution of each graph G to our OCC objective is

LOCC(G) =
K
∑

k=1

∥(fk(G)− θ)∥2 (3)

The loss function penalizes the distance of the graph G to the
center θ which we treat as a trainable parameter. In previous
deep OCC approaches, the center θ has to be a fixed hyperpa-
rameter to avoid trivial solutions to Eqn. (3).

Feature Extraction with GNNs

For graph data, parametrizing the feature extractors f and
f1, · · · , fK by GNNs is advantageous. At each layer l, a

GNN maintains node representation vectors h
(l)
v for each

node v. The representation is computed based on the pre-
vious layer’s representations of v and its neighbors N (v),

h(l)
v

= GNN(l)
(

h(l−1)
v

, h(l−1)
u

| u ∈ N (v)
)

. (4)

Each layer’s node representations are then combined into
layer-specific graph representations,

h
(l)
G = READOUT

(l)
(

h(l)
v

| v ∈ G
)

, (5)

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

2198

which are concatenated into graph-level representations,

hG = CONCAT

(

h
(l)
G | l = 1, ..., L

)

. (6)

This concatenation introduces information from various hier-
archical levels [Xu et al., 2018b] into the graph representa-
tion. Our empirical study in Sec. 4 shows that the choice of
the readout function (which determines how the node repre-
sentations are aggregated into graph representations) is par-
ticularly important to detect anomalies reliably.

Anomaly Scoring with OCGTL

OCGTL is an end-to-end methods for graph-level AD. Dur-
ing training the GNNs are trained on Eqn. (1). During test,
LOCGTL (Eqn. (1)) is used directly as the score function for
detecting anomalous graphs. A low loss on a test sample
means that the graph is likely normal, whereas a high loss is
indicative of an anomaly. One advantage of OCGTL is that its
loss makes it more sensitive to different types of anomalies by
considering both angles between embeddings and Euclidean
distances. In contrast, OCC-based methods typically rely on
the Euclidean distance only.

Another advantage of OCGTL over OCC-based ap-
proaches is that its training is more robust and the AD model
can be more flexible. We prove this next.

3.2 A Theory of OCGTL

A known difficulty for training OCC-based deep anomaly de-
tectors (such as deep SVDD and OCGIN) is hypersphere col-
lapse [Ruff et al., 2018]. Hypersphere collapse is a trivial
optimum of the training objective

L[Ruff et al., 2018](G) = ||f(G)− θ||22 , (7)

which occurs when the feature extractor f maps all inputs ex-
actly into the center θ. The hypersphere then has a radius of
zero, and AD becomes impossible. Ruff et al. [2018] recom-
mend fixing θ and avoiding bias terms for f and show good
results in practice. However, there is no guarantee that a triv-
ial solution can be avoided under any architecture for f . Here
we prove that OCGTL overcomes this.

We first show that our one-class term (Eqn. (3)) is also
prone to hypersphere collapse when all the feature extractors
are constant. However, we then show that this trivial solu-
tion for minimizing Eqn. (3) is not optimal under the OCGTL
loss. Our method provably avoids hypersphere collapse even
when the center θ is a trainable parameter. This result makes
OCGTL the first deep one-class approach where the center
can be trained.

Proposition 1. The constant feature extractors, fk(G) = θ
for all k and all inputs G, minimize LOCC (Eqn. (3)).

Proof. 0 ≤ LOCC is the squared ℓ2 norm of the distance
between the embedding of G and the center θ. Plugging in
fk(G) = θ attains the minimum 0.

In contrast, regularization with transformation learning can
avoid hypersphere collapse. Under the constant encoder, all
the latent views are the same and hence at least as close to
each other as to the reference embedding, leading to LGTL ≥
K logK. However, the transformation learning objective

aims at making the views predictive of the reference em-
beddings, in which case LGTL < K logK. The following
proposition shows that if there is a parameter setting which
achieves this, the constant feature extractors do not minimize
the OCGTL loss which proves that hypersphere collapse can
be avoided.

Proposition 2. If there exists a parameter setting such that
LGTL < K logK on the training data, then the constant fea-
ture extractors fk(G) = θ do not minimize the combined loss
LOCGTL (Eqn. (1)).

Proof. For constant feature extractors fk(G) = θ, LOCGTL =
LGTL ≥ K logK, where K is the number of transformations
and K logK is the negative entropy of randomly guessing
the reference embedding. Assume there is a constellation
of the model parameters s.t. LGTL < K logK. Since θ
is trainable, we can set it to be the origin. The loss of the
optimal solution is at least as good as the loss with θ = 0.
Set ϵ = K logK − LGTL. The encoders can be manipu-
lated such that their outputs are rescaled and as a result all
the embeddings have norm ||fk(G)||2 < ϵ/K. As the norm
of the embeddings changes, LGTL remains unchanged since
the cosine similarity is not sensitive to the norm of the em-
beddings. By plugging this into Eqn. (1) we get LOCGTL =
∑

K

k=1 ||fk(G)||2+LGTL < K logK, which is better than the
performance of the best set of constant encoders.

Props. 1 and 2 demonstrate that our method is the first deep
one-class method not prone to hypersphere collapse. The as-
sumption of Prop. 2, that LGTL < K logK can be tested in
practice by training graph transformation learning (GTL) and
evaluating the predictive entropy on the training data. In all
scenarios we worked with LGTL << K logK after training.

3.3 Newly Developed Baselines

The main contribution of our work is OCGTL. To study the
effectiveness of OCGTL we implement the following graph-
level AD methods as ablations. These methods have not been
studied on graphs before, so their implementation is also one
of our contributions that paves the way for future progress.

One-class pooling (OCPool). As a shallow method,
OCPool uses pooling to construct a graph representation:

hG = POOLING (xv | v ∈ G) . (8)

This feature extractor does not have parameters and hence
requires no training. Anomalies can be detected by training
an one-class SVM (OCSVM) [Manevitz and Yousef, 2001]

on these features. This novel approach for graph-level AD
is a simple baseline and achieves solid results in our empir-
ical study (even though it does not use the edge sets E of
the graphs). Another reason for studying OCPool, is that it
helps us understand which pooling function might work best
as readout function (Eqn. (5)) for GNN-based AD methods.

Graph transformation prediction (GTP). GTP is an end-
to-end self-supervised detection method based on transforma-
tion prediction. It trains a classifier f to predict which trans-
formation has been applied to a samples and uses the cross-
entropy loss to score anomalies. We implement GTP with

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

2199

six graph transformations (node dropping, edge adding, edge
dropping, attribute masking, subgraph, and identity transfor-
mation) originally designed in You et al. [2020].

Graph transformation learning (GTL). GTL is an end-
to-end self-supervised detection method using neural trans-
formations [Qiu et al., 2021]. K GNNs, fk for k = 1, · · · ,K
in addition to the reference feature extractor f are trained on
LGTL (Eqn. (2)). The loss is used directly to score anomalies.
While this method works well in practice, it is not sensitive to
the norm of the graph embeddings in Eqn. (2). The normal-
ization step in computing the cosine similarity makes mean
and add pooling equivalent when aggregating the graph rep-
resentations. This may put GTL at a disadvantage compared
to the other methods, which profit from add pooling.

4 Experiments

This section details our empirical study. We benchmark nine
algorithms on nine real-world graph classification datasets
from different domains using various evaluation measures.
First, we describe the datasets and how the AD benchmark
is set up. Second, we present all methods we compare, in-
cluding baselines and their implementation details. Third, the
evaluation results are presented and analyzed. In summary,
OCGTL achieves the best performance on real-world datasets
from various domains and raises the anomaly detection accu-
racy significantly (+11.8% in terms of AUC on average com-
pared to OCGIN of Zhao and Akoglu [2021]). Finally, we
present our findings about preferable design choices that are
also beneficial for other deep methods in graph-level AD.

4.1 Datasets and Experimental Setting

We benchmark nine methods on nine graph classification
datasets that are representative of three domains. In addition
to financial and social networks security, health organizations
need an effective graph-level AD method to examine proteins
(represented as graphs) to monitor the spread and evolution of
diseases. Targeting these application domains, we study three
bioinformatics datasets: DD, PROTEINS, and ENZYMES,
three molecular datasets: NCI1, AIDS, and Mutagenicity, and
three datasets of social networks: IMDB-BINARY, REDDIT-
BINARY, and REDDIT-MULTI-5K. The datasets are made
available by Morris et al. [2020], and the statistics of the
datasets are given in Appendix A.

We follow the standard setting of previous work to con-
struct an AD task from a classification dataset [Ruff et al.,
2018; Golan and El-Yaniv, 2018; Zhao and Akoglu, 2021].
A classification dataset with N classes produces N exper-
imental variants. In each experimental variant, one of the
classes is treated as “normal”; the other classes are consid-
ered as anomalies. The training set and validation set only
contain normal samples, while the test set contains a mix of
normal samples and anomalies that have to be detected dur-
ing test time. For each experimental variant, 10% of the nor-
mal class is set aside for the test set, and 10% of each of the
other classes is added to the test set as anomalies. (The re-
sulting fraction of anomalies in the test set is proportional to
the class balance in the original dataset. The remaining 90%
of the normal class is used for training and validation. We use

10-fold cross-validation to estimate the model performance.
In each fold, 10% of the training set is held out for validation.
We train each model three times separately and average the
test results of three runs to get the final test results in each
fold. Training multiple times ensures a fair comparison as it
favors methods that are robust to the random initialization.

Evaluation. Results will be reported in terms of the area
under the ROC curve (AUC) (%), averaged over 10 folds
with standard deviation. We also report the results in terms
of F1-score in Appendix C. In addition, all methods will be
evaluated in terms of their susceptibility to performance flip.

Zhao and Akoglu [2021] coined the term “performance
flip” for AD benchmarks derived from binary classification
datasets. We generalize their definition to multiple classes:

Definition 1. (Performance flip.) A model suffers from per-
formance flip on an anomaly detection benchmark derived
from a classification dataset if it performs worse than ran-
dom on at least one experimental variant.

4.2 Baselines and Implementation Details

Many deep AD approaches that have achieved impressive re-
sults in other domains have not yet been adapted to graph-
level AD. There has been no comprehensive study of various
GNN-based graph-level AD approaches. An additional con-
tribution of our work is that we adapt recent advances in deep
AD to graphs. In our empirical study, we compare OCGTL
both to GNN-based methods and to non-GNN-based meth-
ods, which we outline below.

GNN-based Baselines. Our study includes OCGTL, OC-
GIN [Zhao and Akoglu, 2021] and the self-supervised ap-
proaches graph transformation prediction (GTP) and graph
transformation learning (GTL) described in Sec. 3.3. We use
GIN as the feature extractor for all GNN-based baselines to
compare with OCGIN fairly. In particular, we use 4 GIN lay-
ers, each of which includes a two-layer MLP and graph nor-
malization [Cai et al., 2020]. The dimension of the node rep-
resentations is 32. The readout function of almost all methods
consists of a two-layer MLP and then an add pooling layer. In
GTP, the final prediction is obtained by summing the layer-
wise predictions, and the readout function is composed of an
add pooing layer followed by a linear layer. In GTP, we em-
ploy six hand-crafted transformations. For a fair compari-
son, GTL and OCGTL use six learnable graph transforma-
tions in all experiments. Additional hyperparameter settings
are recorded for reproducibility in Appendix B.

Improved Implementation of OCGIN. With these imple-
mentation details for the GNNs we can significantly improve
the performance of OCGIN over the implementation in Zhao
and Akoglu [2021]. For this reason, our empirical study in-
cludes both OCGIN (the original version with mean pooling
and batch normalization) and OCGIN† (our improved version
with add pooling and graph normalization).

Non-GNN-based Baselines. Besides OCPool, we include
four two-stage detection methods proposed by Zhao and
Akoglu [2021]. Two of them use unsupervised graph embed-
ding methods, Graph2Vec (G2V) [Narayanan et al., 2017] or

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

2200

DD PROT ENZY NCI1 AIDS Mutag Rank

B
as

el
in

es
(p

re
v.

w
o
rk

) WLK 50.2±0.3∗ 49.7±0.5∗ 52.1±2.0∗ 49.6±0.4∗ 51.3±0.8∗ 52.3±0.6 8.1±1.7
PK 51.2±2.3∗ 50.8±1.5∗ 51.3±1.2∗ 51.4±1.7∗ 59.5±2.3∗ 52.5±1.6 8.4±1.1

G2V 49.5±2.2∗ 53.2±3.0∗ 52.0±3.9∗ 50.5±0.7∗ 48.4±0.8∗ 50.2±0.7∗ 8.9±1.0
FGSD 66.0±2.3 58.5±1.8∗ 52.7±3.4∗ 55.4±0.7 91.6±3.7 51.3±0.8∗ 5.3±2.9

OCGIN 50.7±1.2∗ 54.2±1.2∗ 62.4±2.7 53.6±1.3∗ 60.8±2.2∗ 59.3±1.4 5.4±1.7
A

b
la

ti
o
n
s

(o
u
rs

)
OCGIN† 61.4±1.6 57.2±2.3 63.5±3.9 62.2±1.3 97.5±2.0 61.5±1.8∗ 2.7±0.9
OCPool 61.1±3.3∗ 61.9±2.1 53.1±2.9∗ 57.0±1.3 97.6±1.4 53.2±0.5∗ 4.3±2.2

GTP 54.2±1.9 61.9±2.9 55.0±2.0∗ 55.3±1.2∗ 77.2±2.9 54.7±1.8∗ 4.8±1.5
GTL 51.7±0.9∗ 56.2±2.5∗ 60.4±1.6 59.8±1.0∗ 67.8±3.3∗ 61.8±1.0 3.8±1.7

ours OCGTL 69.9±2.6 60.7±2.4 65.5±3.8 63.7±1.2 97.5±2.0 65.7±2.1 1.4±0.7
† OCGIN is the original implementation from Zhao and Akoglu [2021], while OCGIN† denotes our improved implementation with the
same GIN architecture choices (add pooling etc.) as OCGTL, GTP, and GTL.

Table 1: Average AUCs (%) with standard deviations of 9 methods on 6 of 9 datasets. (For the remaining 3 datasets, see Tab. 3.)
The performance rank averaged on all nine datasets is provided in the last column. Results marked ∗ perform worse than random
on at least one experimental variant (performance flip). OCGTL outperforms the other methods and has no performance flip.

DD PROT NCI1 AIDS
Outlier class 0 1 0 1 0 1 0 1

OCGIN 26.3±2.7 75.2±3.4 42.5±4.4 65.9±4.5 64.4±2.5 42.9±3.0 26.0±3.9 95.5±2.2
OCGTL (ours) 66.8±4.6 73.0±2.9 63.2±5.4 58.1±6.1 71.2±3.0 56.2±2.5 99.3±0.9 95.7±3.6

Table 2: Average AUCs (%) with standard deviations of OCGIN [Zhao and Akoglu, 2021] and OCGTL (ours) on both experi-
mental variants of four datasets, where the performance flip is observed. The results that are worse than random are marked in
red. OCGIN suffers from performance flip, while OCGTL not.

IMDB-B RDT-B RDT-M

B
as

el
in

es
(p

re
v.

w
o

rk
) WLK 62.0±2.0 50.2±0.2∗ 50.3±0.1∗

PK 53.5±2.0 50.0 50.0
G2V 54.3±1.6 51.5±0.6∗ 50.0±0.2∗

FGSD 57.1±1.8 - -
OCGIN 60.4±2.8 67.1±3.5 62.4±1.3

A
b

la
ti

o
n

s
(o

u
rs

)

OCGIN† 63.7±2.4 74.5±3.4 70.4±1.5
OCPool 56.5±0.8 65.3±2.2 62.4±0.9

GTP 57.6±1.1 64.4±2.2 62.4±1.3
GTL 65.2±1.9 71.6±2.3 67.8±0.9

ours OCGTL 65.1±1.8 77.4±1.9 71.5±1.1
† OCGIN is the original implementation from Zhao and
Akoglu [2021], while OCGIN† denotes our improved version.

Table 3: Average AUCs (%) with standard deviations of nine
methods on three datasets to complement Tab. 1.

FGSD [Verma and Zhang, 2017], to extract graph-level rep-
resentations. The other two of them make use of graph ker-
nels (Weisfeiler-Leman subtree kernel (WLK) [Shervashidze
et al., 2011] or propagation kernel (PK) [Neumann et al.,
2016]), which measure the similarity between graphs. For
all two-stage detection baselines, we use OCSVM (with ν =
0.1) as the downstream outlier detector.

The number of iterations specifies how far neighborhood
information can be propagated. By setting the number of iter-
ations to 4, we get a fair comparison to the GNN-based meth-
ods, which all have 4 GNN layers. All other hyperparameters
correspond to the choices in Zhao and Akoglu [2021].

4.3 Experimental Results

Summary. We compare OCGTL with all existing baselines
on nine real-world datasets. The detection results in terms
of average AUC (%) with standard deviation are reported in

Tabs. 1 and 3. The results in terms of F1-score are reported
in Appendix C. We can see that OCGTL achieves competi-
tive results on all datasets and has the best average rank of
1.4. On average over nine datasets, OCGTL outperforms OC-
GIN of Zhao and Akoglu [2021] by 11.8%. We can conclude
that OCGTL raises the detection accuracy in graph-level AD
on various application domains significantly, namely by 9.6%
on the bioinformatics domain, by 17.7% on the molecular do-
main, and by 8% on the social-networks domain.

Moreover, methods with performance flip are marked with
a ∗ in Tab. 1. In Tab. 2 we report the results of OCGIN [Zhao
and Akoglu, 2021] and our method OCGTL on both experi-
mental variants of datasets where the performance flip is ob-
served. We can see that all existing baselines suffer from the
performance flip issue, while OCGTL is the only model with-
out performance flip on any of the datasets.

Ablation Study of Methods. Here we discuss the results in
Tab. 1 from the perspective of an ablation study to understand
if and how the advantages of combing deep OCC and neural
transformation learning complement each other. From results
in Tab. 1, we can see that OCGTL improves over OCGIN†

(with our improved implementation) on 8 of 9 datasets by
adding LGTL as the regularization term and outperforms GTL
on 8 of 9 datasets by utilizing the Euclidean distance for de-
tection. We can conclude, that the two terms in the loss func-
tion of OCGTL complement each other and offer two metrics
for detecting anomalies. As a result, OCGTL consistently
outperforms OCGIN and GTL. This is aligned with our theo-
retical results in Sec. 3.2.

GTP applies hand-crafted graph transformations. Its per-
formance varies across datasets since it is sensitive to the
choice of transformations. Even though it works well on the

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

2201

[Chen et al., 2020] Ting Chen, Simon Kornblith, Moham-
mad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. In ICML,
pages 1597–1607. PMLR, 2020.

[Deecke et al., 2018] Lucas Deecke, Robert Vandermeulen,
Lukas Ruff, Stephan Mandt, and Marius Kloft. Image
anomaly detection with generative adversarial networks.
In ECML and KDD, pages 3–17. Springer, 2018.

[Ding et al., 2019] Kaize Ding, Jundong Li, Rohit
Bhanushali, and Huan Liu. Deep anomaly detection
on attributed networks. In Proceedings of the 2019
SIAM International Conference on Data Mining, pages
594–602. SIAM, 2019.

[Ding et al., 2020] Kaize Ding, Jundong Li, Nitin Agarwal,
and Huan Liu. Inductive anomaly detection on attributed
networks. In IJCAI, pages 1288–1294, 2020.

[Errica et al., 2020] Federico Errica, Marco Podda, Davide
Bacciu, and Alessio Micheli. A fair comparison of graph
neural networks for graph classification. In ICLR, 2020.

[Golan and El-Yaniv, 2018] Izhak Golan and Ran El-Yaniv.
Deep anomaly detection using geometric transformations.
In Neural Information Processing Systems, pages 9781–
9791, 2018.

[Kipf and Welling, 2016] Thomas N Kipf and Max Welling.
Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[Manevitz and Yousef, 2001] Larry M Manevitz and Malik
Yousef. One-class svms for document classification. Jour-
nal of machine Learning research, 2(Dec):139–154, 2001.

[Morris et al., 2020] Christopher Morris, Nils M. Kriege,
Franka Bause, Kristian Kersting, Petra Mutzel, and Mar-
ion Neumann. Tudataset: A collection of benchmark
datasets for learning with graphs. In ICML GRL+ Work-
shop, 2020.

[Narayanan et al., 2017] Annamalai Narayanan, Mahinthan
Chandramohan, Rajasekar Venkatesan, Lihui Chen, Yang
Liu, and Shantanu Jaiswal. graph2vec: Learning
distributed representations of graphs. arXiv preprint
arXiv:1707.05005, 2017.

[Neumann et al., 2016] Marion Neumann, Roman Garnett,
Christian Bauckhage, and Kristian Kersting. Propagation
kernels: efficient graph kernels from propagated informa-
tion. Machine Learning, 102(2):209–245, 2016.

[Noumir et al., 2012] Zineb Noumir, Paul Honeine, and Ce-
due Richard. On simple one-class classification methods.
In 2012 IEEE International Symposium on Information
Theory Proceedings, pages 2022–2026. IEEE, 2012.

[Qiu et al., 2021] Chen Qiu, Timo Pfrommer, Marius Kloft,
Stephan Mandt, and Maja Rudolph. Neural transformation
learning for deep anomaly detection beyond images. In
ICML, pages 8703–8714. PMLR, 2021.

[Ruff et al., 2018] Lukas Ruff, Robert Vandermeulen, Nico
Goernitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Alexan-
der Binder, Emmanuel Müller, and Marius Kloft. Deep

one-class classification. In ICML, pages 4393–4402.
PMLR, 2018.

[Ruff et al., 2021] Lukas Ruff, Jacob R Kauffmann,
Robert A Vandermeulen, Grégoire Montavon, Wojciech
Samek, Marius Kloft, Thomas G Dietterich, and Klaus-
Robert Müller. A unifying review of deep and shallow
anomaly detection. Proceedings of the IEEE, 2021.

[Shervashidze et al., 2011] Nino Shervashidze, Pascal
Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and
Karsten M Borgwardt. Weisfeiler-lehman graph kernels.
Journal of Machine Learning Research, 12(9), 2011.

[Sohn et al., 2020] Kihyuk Sohn, Chun-Liang Li, Jinsung
Yoon, Minho Jin, and Tomas Pfister. Learning and eval-
uating representations for deep occ. In ICLR, 2020.

[Verma and Zhang, 2017] Saurabh Verma and Zhi-Li Zhang.
Hunt for the unique, stable, sparse and fast feature learn-
ing on graphs. In Neural Information Processing Systems,
pages 87–97, 2017.

[Xu et al., 2018a] Keyulu Xu, Weihua Hu, Jure Leskovec,
and Stefanie Jegelka. How powerful are graph neural net-
works? In ICLR, 2018.

[Xu et al., 2018b] Keyulu Xu, Chengtao Li, Yonglong Tian,
Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping
knowledge networks. In ICML, pages 5453–5462. PMLR,
2018.

[Yoon et al., 2019] Minji Yoon, Bryan Hooi, Kijung Shin,
and Christos Faloutsos. Fast and accurate anomaly de-
tection in dynamic graphs with a two-pronged approach.
In Knowledge Discovery & Data Mining, pages 647–657,
2019.

[You et al., 2020] Yuning You, Tianlong Chen, Yongduo Sui,
Ting Chen, Zhangyang Wang, and Yang Shen. Graph con-
trastive learning with augmentations. Neural Information
Processing Systems, 33:5812–5823, 2020.

[Zhang et al., 2021] Lily Zhang, Mark Goldstein, and Rajesh
Ranganath. Understanding failures in out-of-distribution
detection with deep generative models. In ICML, pages
12427–12436. PMLR, 2021.

[Zhao and Akoglu, 2021] Lingxiao Zhao and Leman
Akoglu. On using classification datasets to evaluate graph
outlier detection: Peculiar observations and new insights.
Big Data, 2021.

[Zheng et al., 2019] Li Zheng, Zhenpeng Li, Jian Li, Zhao
Li, and Jun Gao. Addgraph: Anomaly detection in dy-
namic graph using attention-based temporal gcn. In IJCAI,
pages 4419–4425, 2019.

[Zong et al., 2018] Bo Zong, Qi Song, Martin Renqiang
Min, Wei Cheng, Cristian Lumezanu, Daeki Cho, and
Haifeng Chen. Deep autoencoding gaussian mixture
model for unsupervised anomaly detection. In ICLR, 2018.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

2203

