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Abstract

Anomaly detection aims at identifying data points

that show systematic deviations from the major-

ity of data in an unlabeled dataset. A common

assumption is that clean training data (free of

anomalies) is available, which is often violated

in practice. We propose a strategy for training

an anomaly detector in the presence of unlabeled

anomalies that is compatible with a broad class

of models. The idea is to jointly infer binary la-

bels to each datum (normal vs. anomalous) while

updating the model parameters. Inspired by out-

lier exposure (Hendrycks et al., 2018) that con-

siders synthetically created, labeled anomalies,

we thereby use a combination of two losses that

share parameters: one for the normal and one for

the anomalous data. We then iteratively proceed

with block coordinate updates on the parameters

and the most likely (latent) labels. Our exper-

iments with several backbone models on three

image datasets, 30 tabular data sets, and a video

anomaly detection benchmark showed consistent

and significant improvements over the baselines.

1. Introduction

From industrial fault detection to medical image analysis or

financial fraud prevention: Anomaly detection—the task of

automatically identifying anomalous data instances without

being explicitly taught how anomalies may look like—is

critical in industrial and technological applications.

The common approach in deep anomaly detection is to

first train a neural network on a large dataset of “normal”

samples minimizing some loss function (such as a deep one-

class classifier (Ruff et al., 2018)) and to then construct an

anomaly score from the output of the neural network (typi-
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cally based on the training loss). Anomalies are then iden-

tified as data points with larger-than-usual anomaly scores

and obtained by thresholding the score at particular values.

A standard assumption in this approach is that clean training

data are available to teach the model what “normal” samples

look like (Ruff et al., 2021). In reality, this assumption is of-

ten violated: datasets are frequently large and uncurated and

may already contain some of the anomalies one is hoping to

find. For example, a dataset of medical images may already

contain cancer images, or datasets of financial transactions

could already contain unnoticed fraudulent activity. Naively

training an unsupervised anomaly detector on such data may

suffer from degraded performance.

In this paper, we introduce a new unsupervised approach

to training anomaly detectors on a corrupted dataset. Our

approach uses a combination of two coupled losses to ex-

tract learning signals from both normal and anomalous data.

We stress that these losses do not necessarily have a proba-

bilistic interpretation; rather, many recently proposed self-

supervised auxiliary losses can be used (Ruff et al., 2018;

Hendrycks et al., 2019; Qiu et al., 2021; Shenkar & Wolf,

2022). In order to decide which of the two loss functions to

activate for a given datum (normal vs. abnormal), we use a

binary latent variable that we jointly infer while updating the

model parameters. Training the model thus results in a joint

optimization problem over continuous model parameters

and binary variables that we solve using alternating updates.

During testing, we can use threshold only one of the two

loss functions to identify anomalies in constant time.

Our approach can be applied to a variety of anomaly detec-

tion loss functions and data types, as we demonstrate on

tabular, image, and video data. Beyond detection of entire

anomalous images, we also consider the problem of anomaly

segmentation which is concerned with finding anomalous

regions within an image. Compared to established baselines

that either ignore the anomalies or try to iteratively remove

them (Yoon et al., 2021), our approach yields significant

performance improvements in all cases.

The paper is structured as follows. In Section 2, we discuss

related work. In Section 3, we introduce our main algorithm,

including the involved losses and optimization procedure.

Finally, in Section 4, we discuss experiments on both image
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and tabular data and discuss our findings in Section 5 1.

2. Related Work

We divide our related work into methods for deep anomaly

detection, learning on incomplete or contaminated data, and

training anomaly detectors on contaminated data.

Deep anomaly detection. Deep learning has played an

important role in recent advances in anomaly detection. For

example, Ruff et al. (2018) have improved the anomaly de-

tection accuracy of one-class classification (Schölkopf et al.,

2001) by combining it with a deep feature extractor, both in

the unsupervised and the semi-supervised setting (Ruff et al.,

2019). An alternative strategy to combine deep learning with

one-class approaches is to train a one-class SVM on pre-

trained self-supervised features (Sohn et al., 2020). Indeed,

self-supervised learning has influenced deep anomaly detec-

tion in a number of ways: The self-supervised criterion for

training a deep feature extractor can be used directly to score

anomalies (Golan & El-Yaniv, 2018; Bergman & Hoshen,

2020). Using a multi-head RotNet (MHRot), Hendrycks

et al. (2019) improve self-supervised anomaly detection by

solving multiple classification tasks. For general data types

beyond images, anomaly detection using neural transfor-

mations (NTL) (Qiu et al., 2021; 2022) learns the trans-

formations for the self-supervision task and achieves solid

detection accuracy. Schneider et al. (2022) combine NTL

with representation learning for detecting anomalies within

time series. On tabular data, anomaly detection with internal

contrastive learning (ICL) (Shenkar & Wolf, 2022) learns

feature relations as a self-supervised learning task. Other

classes of deep anomaly detection includes autoencoder vari-

ants (Principi et al., 2017; Zhou & Paffenroth, 2017; Chen &

Konukoglu, 2018) and density-based models (Schlegl et al.,

2017; Deecke et al., 2018).

All these approaches assume a training dataset of “normal”

data. However, in many practical scenarios there will be

unlabeled anomalies hidden in the training data. Wang

et al. (2019); Huyan et al. (2021) have shown that anomaly

detection accuracy deteriorates when the training set is con-

taminated. Our work provides a training strategy to deal

with contamination.

Anomaly Detection on contaminated training data. A

common strategy to deal with contaminated training data

is to hope that the contamination ratio is low and that

the anomaly detection method will exercise inlier prior-

ity (Wang et al., 2019). Throughout our paper, we refer

to the strategy of blindly training an anomaly detector as

if the training data was clean as “Blind” training. Yoon

1Code is available at https://github.com/

boschresearch/LatentOE-AD.git

et al. (2021) have proposed a data refinement strategy that

removes potential anomalies from the training data. Their

approach, which we refer to as “Refine”, employs an ensem-

ble of one-class classifiers to iteratively weed out anomalies

and then to continue training on the refined dataset. Simi-

lar data refinement strategy are also combined with latent

SVDD (Görnitz et al., 2014) or autoencoders for anomaly

detection (Xia et al., 2015; Beggel et al., 2019). However,

these methods fail to exploit the insight of outlier exposure

(Hendrycks et al., 2018) that anomalies provide a valuable

training signal. Zhou & Paffenroth (2017) used a robust au-

toencoder for identifying anomalous training data points, but

their approach requires training a new model for identifying

anomalies, which is impractical in most setups. Hendrycks

et al. (2018) propose to artificially contaminate the training

data with samples from a related domain which can then

be considered anomalies. While outlier exposure assumes

labeled anomalies, our work aims at exploiting unlabeled

anomalies in the training data. Notably, Pang et al. (2020)

have used an iterative scheme to detect abnormal frames in

video clips, and Feng et al. (2021) extend it to supervised

video anomaly detection. Our work is more general and pro-

vides a principled way to improve the training strategy of

all approaches mentioned in the paragraph “deep anomaly

detection” when the training data is likely contaminated.

3. Method

We will start by describing the mathematical foundations

of our method. We will then describe our learning algo-

rithm as a block coordinate descent algorithm, providing

a theoretical convergence guarantee. Finally, we describe

how our approach is applicable in the context of various

state-of-the-art deep anomaly detection methods.

3.1. Problem Formulation

Setup. In this paper, we study the problem of unsuper-

vised (or self-supervised) anomaly detection. We consider a

data set of samples xi; these could either come from a data

distribution of “normal” samples, or could otherwise come

from an unknown corruption process and thus be considered

as “anomalies”. For each datum xi, let yi = 0 if the datum

is normal, and yi = 1 if it is anomalous. We assume that

these binary labels are unobserved, both in our training and

test sets, and have to be inferred from the data.

In contrast to most anomaly detection setups, we assume

that our dataset is corrupted by anomalies. That means, we

assume that a fraction (1−α) of the data is normal, while its

complementary fraction α is anomalous. This corresponds

to a more challenging (but arguably more realistic) anomaly

detection setup since the training data cannot be assumed

to be normal. We treat the assumed contamination ratio α
as a hyperparameter in our approach and denote α0 as the
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ground truth contamination ratio where needed. Note that an

assumed contamination ratio is a common hyperparameter

in many robust algorithms (e.g., Huber, 1992; 2011), and

we test the robustness of our approach w.r.t. this parameter

in Section 4.

Our goal is to train a (deep) anomaly detection classifier

on such corrupted data based on self-supervised or unsuper-

vised training paradigms (see related work). The challenge

thereby is to simultaneously infer the binary labels yi dur-

ing training while optimally exploiting this information for

training an anomaly detection model.

Proposed Approach. We consider two losses. Similar to

most work on deep anomaly detection, we consider a loss

function Lθ
n(x) ≡ Ln(fθ(x)) that we aim to minimize over

“normal” data. The function fθ(x) is used to extract features

from x, typically based on a self-supervised auxiliary task,

see Section 3.4 for examples. When being trained on only

normal data, the trained loss will yield lower values for

normal than for anomalous data so that it can be used to

construct an anomaly score.

In addition, we also consider a second loss for anoma-

lies Lθ
a(x) ≡ La(fθ(x)) (the feature extractor fθ(x) is

shared). Minimizing this loss on only anomalous data will

result in low loss values for anomalies and larger values

for normal data. The anomaly loss is designed to have op-

posite effects as the loss function Lθ
n(x). For example, if

Lθ
n(x) = ||fθ(x)−c||2 as in Deep SVDD (Ruff et al., 2018)

(thus pulling normal data points towards their center), we

define Lθ
a(x) = 1/||fθ(x) − c||2 (pushing abnormal data

away from it) as in (Ruff et al., 2019).

Temporarily assuming that all assignment variables y were

known, consider the joint loss function,

L(θ,y) =
N
∑

i=1

(1− yi)L
θ
n(xi) + yiL

θ
a(xi). (1)

This equation resembles the log-likelihood of a probabilistic

mixture model, but note that Lθ
n(xi) and Lθ

a(xi) are not

necessarily data log-likelihoods; rather, self-supervised aux-

iliary losses can be used and often perform better in practice

(Ruff et al., 2018; Qiu et al., 2021; Nalisnick et al., 2018).

Optimizing Eq. 1 over its parameters θ yields a better

anomaly detector than Lθ
n trained in isolation. By construc-

tion of the anomaly loss Lθ
a, the known anomalies provide

an additional training signal to Lθ
n: due to parameter sharing,

the labeled anomalies teach Lθ
n where not to expect normal

data in feature space. This is the basic idea of Outlier Ex-

posure (Hendrycks et al., 2018), which constructs artificial

labeled anomalies for enhanced detection performance.

Different from Outlier Exposure, we assume that the set

of yi is unobserved, hence latent. We therefore term our

approach of jointly inferring latent assignment variables y

and learning parameters θ as Latent Outlier Exposure (LOE).

We show that it leads to competitive performance on training

data corrupted by outliers.

3.2. Optimization problem

“Hard” Latent Outlier Exposure (LOEH ). In LOE, we

seek to both optimize both losses’ shared parameters θ while

also optimizing the most likely assignment variables yi. Due

to our assumption of having a fixed rate of anomalies α in

the training data, we introduce a constrained set:

Y = {y ∈ {0, 1}N :

N
∑

i=1

yi = αN}. (2)

The set describes a “hard” label assignment; hence the name

“Hard LOE”, which is the default version of our approach.

Section 3.3 describes an extension with “soft” label assign-

ments. Note that we require αN to be an integer.

Since our goal is to use the losses Lθ
n and Lθ

a to identify

and score anomalies, we seek Lθ
n(xi)− Lθ

a(xi) to be large

for anomalies, and Lθ
a(xi)− Lθ

n(xi) to be large for normal

data. Assuming these losses to be optimized over θ, our best

guess to identify anomalies is to minimize Eq. (1) over the

assignment variables y. Combining this with the constraint

(Eq. (2)) yields the following minimization problem:

min
θ

min
y∈Y

L(θ,y). (3)

As follows, we describe an efficient optimization procedure

for the constraint optimization problem.

Block coordinate descent. The constraint discrete opti-

mization problem has an elegant solution.

To this end, we consider a sequence of parameters θt and

labels yt and proceed with alternating updates. To update θ,

we simply fix yt and minimize L(θ,yt) over θ. In practice,

we perform a single gradient step (or stochastic gradient

step, see below), yielding a partial update.

To update y given θt, we minimize the same function subject

to the constraint (Eq. (2)). To this end, we define training

anomaly scores,

Strain
i = Lθ

n(xi)− Lθ
a(xi). (4)

These scores quantify the effect of yi on minimizing Eq. (1).

We rank these scores and assign the (1− α)-quantile of the

associated labels yi to the value 0, and the remainder to the

value 1. This minimizes the loss function subject to the label

constraint. We discuss the sensitivity of our approach to

the assumed rate of anomalies α in our experiments section.

We stress that our testing anomaly scores will be different

(see Section 3.3).
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Algorithm 1 Training process of LOE

Input: Contaminated training set D (α0 anomaly rate)

hyperparamter α
Model: Deep anomaly detector with parameters θ
foreach Epoch do

foreach Mini-batch M do

Calculate the anomaly score Strain
i for xi ∈ M

Estimate the label yi given Strain
i and α

Update the parameters θ by minimizing L(θ,y)
end

end

Assuming that all involved losses are bounded from below,

the block coordinate descent converges to a local optimum

since every update improves the loss.

Stochastic optimization. In practice, we perform stochas-

tic gradient descent on Eq. (1) based on mini-batches. For

simplicity and memory efficiency, we impose the label con-

straint Eq. (2) on each mini-batch and optimize θ and y in

the same alternating fashion. The induced bias vanishes for

large mini-batches. In practice, we found that this approach

leads to satisfying results2.

Algorithm 1 summarizes our approach.

3.3. Model extension and anomaly detection

We first discuss an important extension of our approach and

then discuss its usage in anomaly detection.

“Soft” Latent Outlier Exposure (LOES). In practice, the

block coordinate descent procedure can be overconfident in

assigning y, leading to suboptimal training. To overcome

this problem, we also propose a soft anomaly scoring ap-

proach that we term Soft LOE. Soft LOE is very simply

implemented by a modified constraint set:

Y ′ = {y ∈ {0, 0.5}N :

N
∑

i=1

yi = 0.5αN}. (5)

Everything else about the model’s training and testing

scheme remains the same.

The consequence of an identified anomaly yi = 0.5 is

that we minimize an equal combination of both losses,

0.5(Lθ
n(xi) + Lθ

a(xi)). The interpretation is that the al-

gorithm is uncertain about whether to treat xi as a normal

or anomalous data point and treats both cases as equally

likely. A similar weighting scheme has been proposed for

supervised learning in the presence of unlabeled examples

2Note that an exact mini-batch version of the optimization
problem in Eq. (3) would also be possible, requiring memorization
of y for the whole data set.

(Lee & Liu, 2003). In practice, we found the soft scheme to

sometimes outperform the hard one (see Section 4).

Anomaly Detection. In order to use our approach for

finding anomalies in a test set, we could in principle proceed

as we did during training and infer the most likely labels as

described in Section 3.2. However, in practice we may not

want to assume to encounter the same kinds of anomalies

that we encountered during training. Hence, we refrain

from using Lθ
a during testing and score anomalies using

only Lθ
n. Note that due to parameter sharing, training Lθ

a

jointly with Lθ
n has already led to the desired information

transfer between both losses.

Testing is the same for both “soft” LOE (Section 3.2) and

“hard” LOE (Section 3.3). We define our testing anomaly

score in terms of the “normal” loss function,

Stest
i = Lθ

n(xi). (6)

3.4. Example loss functions

As follows, we review several loss functions that are compat-

ible with our approach. We consider three advanced classes

of self-supervised anomaly detection methods. These meth-

ods are i) MHRot (Hendrycks et al., 2019), ii) NTL (Qiu

et al., 2021), and iii) ICL (Shenkar & Wolf, 2022). While no

longer being considered as a competitive baseline, we also

consider deep SVDD for visualization due to its simplicity.

Multi-Head RotNet (MHRot). MHRot (Hendrycks et al.,

2019) learns a multi-head classifier fθ to predict the applied

image transformations including rotation, horizontal shift,

and vertical shift. We denote K combined transformations

as {T1, ..., TK}. The classifier has three softmax heads,

each for a classification task l, modeling the prediction dis-

tribution of a transformed image pl(·|fθ, Tk(x)) (or plk(·|x)
for brevity). Aiming to predict the correct transformations

for normal samples, we maximize the log-likelihoods of the

ground truth label tlk for each transformation and each head;

for anomalies, we make the predictions evenly distributed

by minimizing the cross-entropy from a uniform distribution

U to the prediction distribution, resulting in

Lθ
n(x) := −

∑K

k=1

∑

3

l=1
log plk(t

l
k|x),

Lθ
a(x) :=

∑K

k=1

∑

3

l=1
CE(U , plk(·|x))

Neural Transformation Learning (NTL). Rather than

using hand-crafted transformations, NTL learns K neural

transformations {Tθ,1, ..., Tθ,K} and an encoder fθ parame-

terized by θ from data and uses the learned transformations

to detect anomalies. Each neural transformation generates a

view xk = Tθ,k(x) of sample x. For normal samples, NTL

encourages each transformation to be similar to the origi-

nal sample and to be dissimilar from other transformations.
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To achieve this objective, NTL maximizes the normalized

probability pk = h(xk,x)
/(

h(xk,x) +
∑

l ̸=k h(xk,xl)
)

for each view where h(a,b) = exp(cos(fθ(a), fθ(b))/τ)
measures the similarity of two views 3. For anomalies, we

“flip” the objective for normal samples: the model instead

pulls the transformations close to each other and pushes

them away from the original view, resulting in

Lθ
n(x) := −

K
∑

k=1

log pk, Lθ
a(x) := −

K
∑

k=1

log(1− pk).

Internal Contrastive Learning (ICL). ICL is a state-of-

the-art tabular anomaly detection method (Shenkar & Wolf,

2022). Assuming that the relations between a subset of the

features (table columns) and the complementary subset are

class-dependent, ICL is able to learn an anomaly detector by

discovering the feature relations for a specific class. With

this in mind, ICL learns to maximize the mutual informa-

tion between the two complementary feature subsets, a(x)
and b(x), in the embedding space. The maximization of

the mutual information is equivalent to minimizing a con-

trastive loss Lθ
n(x) := −

∑K

k=1
log pk on normal samples

with pk = h(ak(x), bk(x))
/
∑K

l=1
h(al(x), bk(x)) where

h(a, b) = exp(cos(fθ(a), gθ(b))/τ) measures the similar-

ity of two feature subsets in the embedding space of two

encoders fθ and gθ. For anomalies, we flip the objective as

Lθ
a(x) := −

∑K

k=1
log(1− pk).

4. Experiments

We evaluate our proposed methods and baselines for unsu-

pervised anomaly detection tasks on different data types:

synthetic data, tabular data, images, and videos. The data

are contaminated with different anomaly ratios. Depending

on the data, we study our method in combination with spe-

cific backbone models. MHRot applies only to images and

ICL to tabular data. NTL can be applied to all data types.

We have conducted extensive experiments on image, tabular,

and video data. For instance, we evaluate our methods

on all 30 tabular datasets of Shenkar & Wolf (2022). Our

proposed method sets a new state-of-the-art on most datasets.

In particular, we show that our method gives robust results

even when the contamination ratio is unknown.

4.1. Toy Example

We first analyze the methods in a controlled setup on a syn-

thetic data set. For the sake of visualization, we created a

2D contaminated data set with a three-component Gaussian

mixture. One larger component is used to generate nor-

mal samples, while the two smaller components are used to

generate the anomalies contaminating the data (see Fig. 1).

3where τ is the temperature and cos(a, b) := aT b/∥a∥∥b∥

For simplicity, the backbone anomaly detector is the deep

one-class classifier (Ruff et al., 2018) with radial basis func-

tions. Setting the contamination ratio to α0 = α = 0.1,

we compare the baselines “Blind” and “Refine” (described

in Section 2, detailed in Appendix B) with the proposed

LOEH and LOES (described in Section 3) and the theoreti-

cally optimal G-truth method (which uses the ground truth

labels). We defer all further training details to Appendix A.

Fig. 1 shows the results (anomaly-score contour lines after

training). With more latent anomaly information exploited

from (a) to (e), the contour lines become increasingly accu-

rate. While (a) “Blind” erroneously treats all anomalies as

normal, (b) “Refine” improves by filtering out some anoma-

lies. (c) LOES and (d) LOEH use the anomalies, resulting

in a clear separation of anomalies and normal data. LOEH

leads to more pronounced boundaries than LOES , but it

is at risk of overfitting, especially when normal samples

are incorrectly detected as anomalies (see our experiments

below). A supervised model with ground-truth labels (“G-

truth”) approximately recovers the true contours.

4.2. Experiments on Image Data

Anomaly detection on images is especially far developed.

We demonstrate LOE’s benefits when applied to two lead-

ing image anomaly detectors as backbone models: MHRot

and NTL. Our experiments are designed to test the hypoth-

esis that LOE can mitigate the performance drop caused

by training on contaminated image data. We experiment

with three image datasets: CIFAR-10, Fashion-MNIST, and

MVTEC (Bergmann et al., 2019). These have been used

in virtually all deep anomaly detection papers published at

top-tier venues (Ruff et al., 2018; Golan & El-Yaniv, 2018;

Hendrycks et al., 2019; Bergman & Hoshen, 2020; Li et al.,

2021), and we adopt these papers’ experimental protocol

here, as detailed below.

Backbone models and baselines. We experiment with

MHRot and NTL. In consistency with previous work

(Hendrycks et al., 2019), we train MHRot on raw images

and NTL on features outputted by an encoder pre-trained

on ImageNet. We use the official code by the respective

authors45. NTL is built upon the final pooling layer of a

pre-trained ResNet152 for CIFAR-10 and F-MNIST (as

suggested in Defard et al. (2021)), and upon the third resid-

ual block of a pre-trained WideResNet50 for MVTEC (as

suggested in Reiss et al. (2021)). Further implementation

details of NTL are in the Appendix C.

Many existing baselines apply either blind updates or a

refinement strategy to specific backbone models (see Sec-

4https://github.com/hendrycks/ss-ood.git
5https://github.com/boschresearch/

NeuTraL-AD.git
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demonstrates that LOE yields the best performance for two

popular backbone models on a comprehensive set of con-

taminated tabular datasets.

Tabular datasets. We study all 30 tabular datasets

used in the empirical analysis of a recent state-of-the-

art paper (Shenkar & Wolf, 2022). These include the

frequently-studied small-scale Arrhythmia and Thyroid

medical datasets, the large-scale cyber intrusion detection

datasets KDD and KDDRev, and multi-dimensional point

datasets from the outlier detection datasets6. We follow the

pre-processing and train-test split of the datasets in Shenkar

& Wolf (2022). To corrupt the training set, we create ar-

tificial anomalies by adding zero-mean Gaussian noise to

anomalies from the test set. We use a large variance for the

additive noise (equal to the empirical variance of the anoma-

lies in the test set) to reduce information leakage from the

test set into the training set.

Backbone models and baselines. We consider two ad-

vanced deep anomaly detection methods for tabular data

described in Section 3.4: NTL and ICL. For NTL, we use

nine transformations and multi-layer perceptrons for neural

transformations and the encoder on all datasets. Further de-

tails are provided in Appendix C. For ICL, we use the code

provided by the authors. We implement the proposed LOE

methods (Section 3) and the “Blind” and “Refine” baselines

(Section 2) with both backbone models.

Results. We report F1-scores for 30 tabular datasets in

Table 3. The results are reported as the mean and standard

derivation of five runs with different model initializations

and random training set split. We set the contamination

ratio α0 = α = 0.1 for all datasets. More detailed results,

including AUCs and the performance degradation over clean

data, are provided in Appendix D (Tables 5 and 6).

LOE outperforms the “Blind” and “Refine” baselines con-

sistently. Remarkably, on some datasets, LOE trained on

contaminated data can achieve better results than on clean

data (as shown in Table 5), suggesting that the latent anoma-

lies provide a positive learning signal. This effect can be

seen when increasing the contamination ratio on the Arrhyth-

mia and Thyroid datasets (Fig. 2 (c) and (d)). Hendrycks

et al. (2018) noticed a similar phenomenon when adding

labeled auxiliary outliers; these known anomalies help the

model learn better region boundaries for normal data. Our

results suggest that even unlabelled anomalies, when prop-

erly inferred, can improve the performance of an anomaly

detector. Overall, we conclude that LOE significantly im-

proves the performance of anomaly detection methods on

contaminated tabular datasets.

6http://odds.cs.stonybrook.edu/

Table 4. AUC (%) for different contamination ratios for a video

frame anomaly detection benchmark proposed in (Pang et al.,

2020). LOES (proposed) achieves state-of-the-art performance.

Method Contamination Ratio

10% 20% 30%∗

(Tudor Ionescu et al., 2017) - - 68.4

(Liu et al., 2018) - - 69.0

(Del Giorno et al., 2016) - - 59.6

(Sugiyama & Borgwardt, 2013) 55.0 56.0 56.3

(Pang et al., 2020) 68.0 70.0 71.7

Blind 85.2±1.0 76.0±2.7 66.6±2.6

Refine 82.7±1.5 74.9±2.4 69.3±0.7

LOEH (ours) 82.3±1.6 59.6±3.8 56.8±9.5

LOES (ours) 86.8±1.2 79.2±1.3 71.5±2.4
∗Default setup in (Pang et al., 2020), corresponding to α0 ≈ 30%.

4.4. Experiments on Video Data

In addition to image and tabular data, we also evaluate our

methods on a video frame anomaly detection benchmark

also studied in (Pang et al., 2020). The goal is to iden-

tify video frames that contain unusual objects or abnormal

events. Experiments show that our methods achieve state-

of-the-art performance on this benchmark.

Video dataset. We study UCSD Peds17, a popular bench-

mark for video anomaly detection. It contains surveillance

videos of a pedestrian walkway. Non-pedestrian and un-

usual behavior is labeled as abnormal. The data set contains

34 training video clips and 36 testing video clips, where all

frames in the training set are normal and about half of the

testing frames are abnormal. We follow the data preprocess-

ing protocol of Pang et al. (2020) for dividing the data into

training and test sets. To realize different contamination

ratios, we randomly remove some abnormal frames from

the training set but the test set is fixed.

Backbone models and baselines. In addition to the

“Blind” and “Refine” baselines, we compare to (Pang et al.,

2020) (a ranking-based state-of-the-art method for video

frame anomaly detection already described in Section 2)

and all baselines reported in that paper (Sugiyama & Borg-

wardt, 2013; Liu et al., 2012; Del Giorno et al., 2016; Tu-

dor Ionescu et al., 2017; Liu et al., 2018).

We implement the proposed LOE methods, the “Blind”, and

the “Refine” baselines with NTL as the backbone model.

We use a pre-trained ResNet50 on ImageNet as a feature

extractor, whose output is then sent into an NTL. The feature

extractor and NTL are jointly optimized during training.

Results. We report the results in Table 4. Our soft LOE

method achieves the best performance across different con-

7http://www.svcl.ucsd.edu/projects/

anomaly/dataset.htm
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A. Details on Toy Data Experiments

We generate the toy data with a three-component Gaus-

sian mixture. The normal data is generated from pn =
N (x; [1, 1], 0.07I), and the anomalies are sampled from

pa = N (x; [−0.25, 2.5], 0.03I) +N (x; [−1., 0.5], 0.03I).
There are 90 normal samples and 10 abnormal samples. All

samples are mixed up as the contaminated training set.

To learn a anomaly detector, we used one-class Deep

SVDD (Ruff et al., 2018) to train a one-layer radial ba-

sis function (RBF) network where the Gaussian function is

used as the RBF. The hidden layer contains three neurons

whose centers are fixed at the center of each component and

whose scales are optimized during training. The output of

the RBF net is a linear combination of the outputs of hidden

layers. Here we set the model output to be a 1D scalar, as

the projected data representation of Deep SVDD.

For Deep SVDD configuration, we randomly initialized the

model center (not to be confused with the center of the

Gaussian RBF) and made it learnable during training. We

also added the bias term in the last layer. Although setting a

learnable center and adding bias terms are not recommended

for Deep SVDD (Ruff et al., 2018) due to the all-zero trivial

solution, we found these practices make the model flexible

and converge well and learn a much better anomaly detector

than vice verse, probably because the random initialization

and small learning rate serve as regularization and the model

converges to a local optimum before collapses to the trivial

solution. During training, we used Adam (Kingma & Ba,

2014) stochastic optimizer and set the mini-batch size to be

25. The learning rate is 0.01, and we trained the model for

200 epochs. The decision boundary in Figure 1 plots the

90% fraction of the anomaly scores.

B. Baseline Details

Across all experiments, we employ two baselines that do not

utilize anomalies to help training the models. The baselines

are either completely blind to anomalies, or drop the per-

ceived anomalies’ information. Normally training a model

without recognizing anomalies serves as our first baseline.

Since this baseline doesn’t take any actions to the anomalies

in the contaminated training data and is actually blind to

the anomalies that exist, we name it Blind. Mathematically,

Blind sets yi = 0 in Eq. 1 for all samples.

The second baseline filters out anomalies and refines the

training data: at every mini-batch update, it first ranks the

mini-batch data according to the anomaly scores given cur-

rent detection model, then removes top α most likely anoma-

lous samples from the mini-batch. The remaining samples

performs the model update. We name the second base-

line Refine, which still follows Alg. 1 but removes Lθ
a in

Eq. 1. Both these two baselines take limited actions to the

anomalies. We use them to contrast our proposed methods

and highlight the useful information contained in unseen

anomalies.

C. Implementation Details

We apply NTL to all datasets including both visual datasets

and tabular datasets. Below we provide the implementation

details of NTL on each class of datasets.

NTL on image data NTL is built upon the final pool-

ing layer of a pre-trained ResNet152 on CIFAR-10 and

F-MNIST (as suggested in Defard et al. (2021)), and upon

the third residual block of a pre-trained WideResNet50 on

MVTEC (as suggested in Reiss et al. (2021)). On all im-

age datasets, the pre-trained feature extractors are frozen

during training. We set the number of transformations as

15 and use three linear layers with intermediate 1d batch-

norm layers and ReLU activations for transformations mod-

elling. The hidden sizes of the transformation networks

are [2048, 2048, 2048] on CIFAR-10 and F-MNIST, and

[1024, 1024, 1024] on MVTEC. The encoder is one linear

layer with units of 256 for CIFAR-10 and MVTEC, and is

two linear layers of size [1024, 256] with an intermediate

ReLU activation for F-MNIST. On CIFAR-10, we set mini-

batch size to be 500, learning rate to be 4e-4, 30 training

epochs with Adam optimizer. On F-MNIST, we set mini-

batch size to be 500, learning rate to be 2e-4, 30 training

epochs with Adam optimizer. On MVTEC, we set mini-

batch size to be 40, learning rate to be 2e-4, 30 training

epochs with Adam optimizer. For the “Refine” baseline and

our methods we set the number of warm-up epochs as two

on all image datasets.

NTL on tabular data On all tabular data, we set the num-

ber of transformations to 9, use two fully-connected network

layers for the transformations and four fully-connected net-

work layers for the encoder. The hidden size of layers in the

transformation networks and the encoder is two times the

data dimension for low dimensional data, and 64 for high

dimensional data. The embedding size is two times the data

dimension for low dimensional data, and 32 for high dimen-

sional data. The transformations are either parametrized as

the transformation network directly or a residual connection

of the transformation network and the original sample. We

search the best-performed transformation parameterization

and other hyperparameters based on the performance of the

model trained on clean data. We use Adam optimizer with

a learning rate chosen from [5e − 4, 1e − 3, 2e − 3]. For

the “Refine” baseline and our methods we set the number

of warm-up epochs as two for small datasets and as one for

large datasets.



Latent Outlier Exposure for Anomaly Detection with Contaminated Training Data

NTL on video data Following the suggestions of Pang

et al. (2020), we first extract frame features through a

ResNet50 pretrained on ImageNet. The features are sent to

an NTL with the same backbone model as used on CIFAR-

10 (see NTL on image data) except that 9 transformations

are used. Both the ResNet50 and NTL are updated from end

to end. During training, we use Adam stochastic optimizer

with the batch size set to be 192 and learning rate set 1e-4.

We update the model for 3 epochs and report the results with

three independent runs.

MHRot on image data MHRot (Hendrycks et al., 2019)

applies self-supervised learning on hand-crafted image trans-

formations including rotation, horizontal shift, and vertical

shift. The learner learns to solve three different tasks: one

for predicting rotation (r ∈ R ≡ {0◦,±90◦, 180◦}), one

for predicting vertical shift (sv ∈ Sv ≡ {0 px,±8 px}),

and one for predicting horizontal shift (sh ∈ Sh ≡
{0 px,±8 px}). We define the composition of rotation, ver-

tical shift, and horizontal shift as T ∈ T ≡ {r ◦ sv ◦ sh |
r ∈ R, sv ∈ Sv, sh ∈ Sh}. We also define the head la-

bels t1k = ra, t
2

k = svb , t
3

k = shc for a specific composed

transformation Tk = ra ◦ svb ◦ shc . Overall, there are 36

transformations.

We implement the model on the top of GOAD (Bergman &

Hoshen, 2020), a similar self-supervised anomaly detector.

The backbone model is a WideResNet16-4. Anomaly scores

is used for ranking in the mini-batch in pseudo label assign-

ments. For F-MNIST, we use Lθ
n, the normality training

loss, as the anomaly score. For CIFAR-10, we find that

using a separate anomaly score mentioned in (Bergman &

Hoshen, 2020) leads to much better results than the original

training loss anomaly score.

During training, we set mini-batch size to be 10, learning

rate to be 1e-3 for CIFAR-10 and 1e-4 for F-MNIST, 16

training epochs for CIFAR-10 and 3 training epochs for

F-MNIST with Adam optimizer. We report the results with

3-5 independent runs.

D. Additional Experimental Results

We provide additional results of the experiments on tabular

datasets. We report the F1-scores in Table 5 and the AUCs

in Table 6. The number in the brackets is the average per-

formance difference from the model trained on clean data.

Remarkably, on some datasets, LOE trained on contami-

nated data can achieve better results than on clean data (as

shown in Tables 5 and 6), suggesting that the latent anoma-

lies provide a positive learning signal. Overall, we can see

that LOE improves the performance of anomaly detection

methods on contaminated tabular datasets significantly.
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Table 5. F1-score (%) with standard deviation for anomaly detection on 30 tabular datasets which are from the empirical study of Shenkar

& Wolf (2022). For all experiments, we set the contamination ratio of the training set as 10%. The number in the brackets is the average

performance difference from the model trained on clean data. LOE outperforms the “Blind” and “Refine” baselines.

NTL ICL
Blind Refine LOEH (ours) LOES (ours) Blind Refine LOEH (ours) LOES (ours)

abalone
37.9±13.4 55.2±15.9 42.8±26.9 59.3±12.0 50.9±1.5 54.3±2.9 53.4±5.2 51.7±2.4

(-25.3) (-8.0) (-20.4) (-3.9) (-11.2) (-7.8) (-8.7) (-10.4)

annthyroid
29.7±3.5 42.7±7.1 47.7±11.4 50.3±4.5 29.1±2.2 38.5±2.1 48.7±7.6 43.0±8.8

(-21.6) (-8.6) (-3.6) (-1.0) (-12.0) (-2.6) (+7.6) (+1.9)

arrhythmia
57.6±2.5 59.1±2.1 62.1±2.8 62.7±3.3 53.9±0.7 60.9±2.2 62.4±1.8 63.6±2.1

(-3.0) (-1.5) (+1.5) (+2.1) (-7.6) (-0.6) (+0.9) (+2.1)

breastw
84.0±1.8 93.1±0.9 95.6±0.4 95.3±0.4 92.6±1.1 93.4±1.0 96.0±0.6 95.7±0.6

(-8.4) (+0.7) (+3.2) (+2.9) (-2.4) (-1.6) (+1.0) (+0.7)

cardio
21.8±4.9 45.2±7.9 73.0±7.9 57.8±5.5 50.2±4.5 56.2±3.4 71.1±3.2 62.2±2.7

(-35.0) (-11.6) (+16.2) (+1.0) (-19.5) (-13.5) (+1.4) (-7.5)

ecoli
0.0±0.0 88.9±14.1 100±0.0 100±0.0 17.8±15.1 46.7±25.7 75.6±4.4 75.6±4.4
(-95.6) (-6.7) (+4.4) (+4.4) (-55.5) (-26.6) (+2.3) (+2.3)

forest cover
20.4±4.0 56.2±4.9 61.1±34.9 67.6±30.6 9.2±4.5 8.0±3.6 6.8±3.6 11.1±2.1

(-44.2) (-8.4) (-3.5) (+3.0) (-37.8) (-39.0) (-40.2) (-35.9)

glass
11.1±7.0 15.6±5.4 17.8±5.4 20.0±8.3 8.9±4.4 11.1±0.0 11.1±7.0 8.9±8.3

(-6.7) (-2.2) (+0.0) (+2.2) (-13.3) (-11.1) (-11.1) (-13.3)

ionosphere
89.0±1.5 91.0±2.0 91.0±1.7 91.3±2.2 86.5±1.1 85.9±2.3 85.7±2.8 88.6±0.6

(-3.5) (-1.5) (-1.5) (-1.2) (-5.7) (-6.3) (-6.5) (-3.6)

kdd
95.9±0.0 96.0±1.1 98.1±0.4 98.4±0.1 99.3±0.1 99.4±0.1 99.5±0.0 99.4±0.0

(-2.4) (-2.3) (-0.2) (+0.1) (-0.1) (+0.0) (+0.1) (+0.0)

kddrev
98.4±0.1 98.4±0.2 89.1±1.7 98.6±0.0 97.9±0.5 98.4±0.4 98.8±0.1 98.2±0.4

(+0.2) (+0.2) (-9.1) (+0.4) (-0.9) (-0.4) (+0.0) (-0.6)

letter
36.4±3.6 44.4±3.1 25.4±10.0 45.6±10.6 43.0±2.5 51.2±3.7 54.4±5.6 47.2±4.9

(-11.0) (-3.0) (-22.0) (-1.8) (-15.5) (-7.3) (-4.1) (-11.3)

lympho
53.3±12.5 60.0±8.2 60.0±13.3 73.3±22.6 43.3±8.2 60.0±8.2 80.0±12.5 83.3±10.5

(-20.0) (-13.3) (-13.3) (+0.0) (-40.0) (-23.3) (-3.3) (+0.0)

mammogra.
5.5±2.8 2.6±1.7 3.3±1.6 13.5±3.8 8.8±1.9 11.4±1.9 34.0±20.2 42.8±17.6
(-21.3) (-24.2) (-23.5) (-13.3) (-14.0) (-11.4) (+11.2) (+20.0)

mnist tabular
78.6±0.5 80.3±1.1 71.8±1.8 76.3±2.1 72.1±1.0 80.7±0.7 86.0±0.4 79.2±0.9

(-6.6) (-4.9) (-13.4) (-8.9) (-10.5) (-1.9) (+3.4) (-3.4)

mulcross
45.5±9.6 58.2±3.5 58.2±6.2 50.1±8.9 70.4±13.4 94.4±6.3 100±0.0 99.9±0.1

(-50.5) (-37.8) (-37.8) (-45.9) (-29.6) (-5.6) (+0.0) (-0.1)

musk
21.0±3.3 98.8±0.4 100±0.0 100±0.0 6.2±3.0 100±0.0 100±0.0 100±0.0

(-79.0) (-1.2) (+0.0) (+0.0) (-93.8) (+0.0) (+0.0) (+0.0)

optdigits
0.2±0.3 1.5±0.3 41.7±45.9 59.1±48.2 0.8±0.5 1.3±1.1 1.2±1.0 0.9±0.5
(-24.7) (-23.4) (+16.8) (+34.2) (-62.4) (-61.9) (-62.0) (-62.3)

pendigits
5.0±2.5 32.6±10.0 79.4±4.7 81.9±4.3 10.3±4.6 30.1±8.5 80.3±6.1 88.6±2.2
(-56.3) (-28.7) (+18.1) (+20.6) (-67.9) (-48.1) (+2.1) (+10.4)

pima
60.3±2.6 61.0±1.9 61.3±2.4 61.0±0.9 58.1±2.9 59.3±1.4 63.0±1.0 60.1±1.4

(-1.2) (-0.5) (-0.2) (-0.5) (-2.2) (-1.0) (+2.7) (-0.2)

satellite
73.6±0.4 74.1±0.3 74.8±0.4 74.7±0.1 72.7±1.3 72.7±0.6 73.6±0.2 73.2±0.6

(-1.0) (-0.5) (+0.2) (+0.1) (-2.1) (-2.1) (-1.2) (-1.6)

satimage
26.8±1.5 86.8±4.0 90.7±1.1 91.0±0.7 7.3±0.6 85.1±1.4 91.3±1.1 91.5±0.9

(-65.2) (-5.2) (-1.3) (-1.0) (-82.0) (-4.2) (+2.0) (+2.2)

seismic
11.9±1.8 11.5±1.0 18.1±0.7 17.1±0.6 14.9±1.4 17.3±2.1 23.6±2.8 24.2±1.4

(-0.6) (-1.0) (+5.6) (+4.6) (-3.0) (-0.6) (+5.7) (+6.3)

shuttle
97.0±0.3 97.0±0.2 97.1±0.2 97.0±0.2 96.6±0.2 96.7±0.1 96.9±0.1 97.0±0.2

(+0.3) (+0.3) (+0.4) (+0.3) (-0.4) (-0.3) (-0.1) (+0.0)

speech
6.9±1.2 8.2±2.1 43.3±5.6 50.8±2.5 0.3±0.7 1.6±1.0 2.0±0.7 0.7±0.8

(-2.6) (-1.3) (+33.8) (+41.3) (-4.1) (-2.8) (-2.4) (-3.7)

thyroid
43.4±5.5 55.1±4.2 82.4±2.7 82.4±2.3 45.8±7.3 71.6±2.4 83.2±2.9 80.9±2.5

(-34.4) (-22.7) (+4.6) (+4.6) (-31.4) (-5.6) (+6.0) (+3.7)

vertebral
22.0±4.5 21.3±4.5 22.7±11.0 25.3±4.0 8.9±3.1 8.9±4.2 7.8±4.2 10.0±2.7

(-8.7) (-9.4) (-8.0) (-5.4) (-7.8) (-7.8) (-8.9) (-6.7)

vowels
36.0±1.8 50.4±8.8 62.8±9.5 48.4±6.6 42.1±9.0 60.4±7.9 81.6±2.9 74.4±8.0

(-40.7) (-26.3) (-13.9) (-28.3) (-37.5) (-19.2) (+2.0) (-5.2)

wbc
25.7±12.3 45.7±15.5 76.2±6.0 69.5±3.8 50.5±5.7 50.5±2.3 61.0±4.7 61.0±1.9

(-39.1) (-19.1) (+11.4) (+4.7) (-8.2) (-8.2) (+2.3) (+2.3)

wine
24.0±18.5 66.0±12.0 90.0±0.0 92.0±4.0 4.0±4.9 10.0±8.9 98.0±4.0 100±0.0

(-68.0) (-26.0) (-2.0) (+0.0) (-86.0) (-80.0) (+8.0) (+10.0)



Latent Outlier Exposure for Anomaly Detection with Contaminated Training Data

Table 6. AUC (%) with standard deviation for anomaly detection on 30 tabular datasets which are from the empirical study of Shenkar &

Wolf (2022). For all experiments, we set the contamination ratio of the training set as 10%. The number in the brackets is the average

performance difference from the model trained on clean data. LOE outperforms the “Blind” and “Refine” baselines.

NTL ICL
Blind Refine LOEH (ours) LOES (ours) Blind Refine LOEH (ours) LOES (ours)

abalone
91.4±1.7 93.3±1.7 93.4±1.0 94.6±1.4 83.1±1.5 91.2±0.8 93.5±1.0 93.6±0.8

(-2.4) (-0.5) (-0.4) (+0.8) (-10.1) (-2.0) (+0.3) (+0.4)

annthyroid
66.1±2.8 78.2±6.6 83.9±7.0 85.9±4.8 65.5±2.3 73.1±2.5 82.4±5.6 76.7±6.8

(-19.1) (-7.0) (-1.3) (+0.7) (-8.7) (-1.1) (+8.2) (+2.5)

arrhythmia
80.5±1.1 82.5±0.8 82.7±1.8 84.8±1.7 75.5±0.3 77.1±0.7 79.2±0.2 78.4±0.8

(-0.7) (+1.3) (+1.5) (+3.6) (-2.3) (-0.7) (+1.4) (+0.6)

breastw
89.5±2.1 96.1±0.8 99.0±0.3 98.2±0.5 97.1±0.8 97.4±0.8 98.7±0.3 98.8±0.4

(-6.8) (-0.2) (+2.7) (+1.9) (-1.0) (-0.7) (+0.6) (+0.7)

cardio
63.5±3.8 76.9±3.8 92.6±3.7 85.3±4.2 80.0±1.4 83.3±0.9 91.1±1.9 87.5±2.1

(-19.7) (-6.3) (+9.4) (+2.1) (-10.0) (-6.7) (+1.1) (-2.5)

ecoli
74.9±8.2 99.6±0.5 100±0.0 100±0.0 80.4±4.2 85.8±1.5 88.5±1.8 89.1±0.8

(-24.9) (-0.2) (+0.2) (+0.2) (-8.8) (-3.4) (-0.7) (-0.1)

forest cover
91.2±2.2 98.6±0.7 97.7±2.7 98.6±2.1 73.0±11.7 77.8±6.7 78.9±3.2 81.7±2.7

(-7.4) (+0.0) (-0.9) (+0.0) (-22.3) (-17.5) (-16.4) (-13.6)

glass
75.1±4.0 76.6±3.3 77.8±4.8 77.1±4.6 54.7±11.4 66.6±5.7 65.4±12.0 71.5±9.2

(+2.6) (+4.1) (+5.3) (+4.6) (-25.9) (-14.0) (-15.2) (-9.1)

ionosphere
95.6±0.8 96.8±0.8 96.1±1.0 96.8±0.9 92.6±1.1 93.3±1.3 88.7±3.3 93.4±1.0

(-2.3) (-1.1) (-1.8) (-1.1) (-4.9) (-4.2) (-8.8) (-4.1)

kdd
99.7±0.0 99.4±0.2 99.7±0.0 99.7±0.0 99.9±0.0 99.9±0.0 99.9±0.0 99.9±0.0

(-0.2) (-0.5) (-0.2) (-0.2) (+0.0) (+0.0) (+0.0) (+0.0)

kddrev
99.5±0.1 99.4±0.1 96.1±0.9 99.5±0.1 99.5±0.2 99.7±0.1 99.8±0.0 99.6±0.1

(+0.0) (-0.1) (-3.4) (+0.0) (-0.3) (-0.1) (+0.0) (-0.2)

letter
79.8±0.5 83.5±0.8 76.2±6.0 84.3±4.8 82.3±2.9 84.1±2.0 86.2±2.8 83.7±2.0

(-5.0) (-1.3) (-8.6) (-0.5) (-5.4) (-3.6) (-1.5) (-4.0)

lympho
90.8±6.7 93.7±3.2 96.6±1.7 98.1±2.2 94.1±2.0 96.1±1.0 98.9±1.0 98.9±1.1

(-6.3) (-3.4) (-0.5) (+1.0) (-5.3) (-3.3) (-0.5) (-0.5)

mammogra.
68.7±6.2 67.8±2.0 69.2±3.8 78.5±3.2 64.2±4.3 69.7±4.7 80.0±7.7 84.0±4.3

(-13.8) (-14.7) (-13.3) (-4.0) (-14.8) (-9.3) (+1.0) (+5.0)

mnist tabular
96.1±0.2 96.7±0.4 94.7±0.5 96.1±0.4 94.1±0.4 96.4±0.3 97.9±0.1 96.3±0.2

(-1.9) (-1.3) (-3.3) (-1.9) (-3.1) (-0.8) (+0.7) (-0.9)

mulcross
81.7±7.5 91.2±1.4 90.8±4.5 82.6±10.5 93.7±4.4 99.4±0.7 100±0.0 100±0.0

(-17.9) (-8.4) (-8.8) (-17.0) (-6.3) (-0.6) (+0.0) (+0.0)

musk
76.2±2.3 100±0.0 100±0.0 100±0.0 78.8±2.9 100±0.0 100±0.0 100±0.0

(-23.8) (+0.0) (+0.0) (+0.0) (-21.2) (+0.0) (+0.0) (+0.0)

optdigits
31.0±3.7 38.7±3.8 70.9±27.8 72.6±33.6 13.8±4.2 16.3±4.3 15.9±5.1 14.6±3.7

(-53.7) (-46.0) (-13.8) (-12.1) (-83.6) (-81.1) (-81.5) (-82.8)

pendigits
64.0±9.3 85.9±6.6 99.1±0.5 98.9±0.4 77.9±6.8 83.3±4.7 99.2±0.6 99.7±0.1

(-33.1) (-11.2) (+2.0) (+1.8) (-21.3) (-15.9) (+0.0) (+0.5)

pima
59.5±3.4 60.6±2.6 60.8±1.8 60.8±1.0 58.2±3.7 59.0±1.4 64.1±1.5 61.1±1.4

(-2.2) (-1.1) (-0.9) (-0.9) (-2.1) (-1.3) (+3.8) (+0.8)

satellite
80.9±0.4 82.2±0.3 82.6±0.4 82.9±0.3 78.5±1.2 78.3±1.0 79.3±0.9 79.5±1.0

(-1.5) (-0.2) (+0.2) (+0.5) (-6.7) (-6.9) (-5.9) (-5.7)

satimage
92.3±2.1 99.7±0.1 99.7±0.1 99.7±0.1 89.8±1.6 99.6±0.2 99.7±0.1 99.7±0.1

(-7.5) (-0.1) (-0.1) (-0.1) (-9.9) (-0.1) (+0.0) (+0.0)

seismic
51.6±0.5 49.7±2.0 50.3±3.0 55.6±3.8 56.9±2.7 58.4±2.3 68.0±1.9 66.3±1.6

(-1.3) (-3.2) (-2.6) (+2.7) (-6.5) (-5.0) (+4.6) (+2.9)

shuttle
99.7±0.1 99.8±0.1 99.7±0.1 99.7±0.1 99.7±0.1 99.6±0.0 99.7±0.0 99.7±0.1

(+0.1) (+0.2) (+0.1) (+0.1) (-0.3) (-0.4) (-0.3) (-0.3)

speech
48.6±1.2 53.2±1.4 78.8±3.0 85.5±1.6 17.1±1.9 21.8±1.5 24.2±1.3 18.0±1.9

(-13.9) (-9.3) (+16.3) (+23.0) (-41.3) (-36.6) (-34.2) (-40.4)

thyroid
94.3±1.2 96.4±0.3 99.1±0.2 99.3±0.2 96.0±0.9 97.7±0.3 99.4±0.2 99.2±0.3

(-3.9) (-1.8) (+0.9) (+1.1) (-2.4) (-0.7) (+1.0) (+0.8)

vertebral
54.8±4.6 55.3±4.3 47.9±12.0 59.2±9.8 43.3±1.5 50.5±2.7 45.6±5.7 46.8±4.9

(-5.0) (-4.5) (-11.9) (-0.6) (-10.5) (-3.3) (-8.2) (-7.0)

vowels
87.6±2.2 92.6±3.5 96.3±1.9 92.7±2.7 91.0±2.6 95.6±2.0 99.2±0.3 98.3±0.6

(-10.4) (-5.4) (-1.7) (-5.3) (-7.9) (-3.3) (+0.3) (-0.6)

wbc
81.2±7.0 88.5±5.0 94.9±2.2 93.4±2.4 86.3±2.0 86.8±1.1 91.5±1.1 91.0±0.5

(-11.6) (-4.3) (+2.1) (+0.6) (-4.6) (-4.1) (+0.6) (+0.1)

wine
64.3±14.4 93.1±7.7 99.6±0.1 99.8±0.1 49.9±12.6 54.6±8.3 99.7±0.7 100±0.0

(-35.4) (-6.6) (-0.1) (+0.1) (-48.6) (-43.9) (+1.2) (+1.5)


