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Abstract

Stochastic gradient Markov Chain Monte Carlo

(SGMCMC) is a scalable algorithm for asymp-

totically exact Bayesian inference in parameter-

rich models, such as Bayesian neural networks.

However, since mixing can be slow in high di-

mensions, practitioners often resort to variational

inference (VI). Unfortunately, VI makes strong as-

sumptions on both the factorization and functional

form of the posterior. To relax these assumptions,

this work proposes a new non-parametric varia-

tional inference scheme that combines ideas from

both SGMCMC and coordinate-ascent VI. The ap-

proach relies on a new Langevin-type algorithm

that operates on a "self-averaged" posterior en-

ergy function, where parts of the latent variables

are averaged over samples from earlier iterations

of the Markov chain. This way, statistical depen-

dencies between coordinates can be broken in a

controlled way, allowing the chain to mix faster.

This scheme can be further modified in a “dropout”

manner, leading to even more scalability. We test

our scheme for ResNet-20 on CIFAR-10, SVHN,

and FMNIST. In all cases, we find improvements

in convergence speed and/or final accuracy com-

pared to SGMCMC and parametric VI.

1. Introduction

There has been much recent interest in deep Bayesian neu-

ral networks (BNN) due to their reliable confidence esti-

mates and generalization properties (Wilson & Izmailov,

2020; Jospin et al., 2020; Cardelli et al., 2019). BNNs

rely on ensemble averages over model parameters typically

obtained from Markov chain Monte Carlo (MCMC) algo-

rithms, which contrasts to regular neural networks that de-

pend on a single set of parameters. The sheer size of these
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models requires scalable MCMC approaches based on in-

expensive stochastic gradients, of which stochastic gradient

Markov chain Monte Carlo (SGMCMC) algorithms are

most widely used (Li et al., 2016; Welling & Teh, 2011; Pat-

terson & Teh, 2013). These algorithms owe their scalability

to approximating gradients via mini-batching.

The main downside of using SGMCMC algorithms is their

slow mixing rate in high dimensions. A less ambitious

goal than sampling from the true high-dimensional posterior

is to approximate the latter by a simpler, typically factor-

ized distribution, as done in variational inference (VI) (Blei

et al., 2017; Zhang et al., 2018). However, classical VI

methods make strong parametric assumptions on the poste-

rior, such as modeling it using product of univariate Gaus-

sian distributions. These distributional assumptions are fre-

quently over-simplistic in high-dimensional models, where

the posterior can be highly multi-modal and possibly heavy-

tailed. Another downside is that the variational approxima-

tion typically underestimates the posterior variance, leading

to poorly calibrated uncertainties and overfitting (Ormerod

& Wand, 2010; Giordano et al., 2015; Zhang et al., 2018).

In this work, we derive a new approximate SGMCMC ap-

proach that takes inspiration from structured VI (Saul &

Jordan, 1996; Wainwright & Jordan, 2008), a version of VI

that maintains selected posterior correlations while breaking

others. While our approach remains a sampling algorithm

resembling SGMCMC, we speed up the mixing time by

systematically breaking pre-specified posterior correlations.

Our approach thus adapts the partial factorization aspect

from structured mean-field VI, but it remains fully non-

parametric and makes no assumptions on the functional

form of the approximate posterior. For this reason, we name

our approach structured SGMCMC.

We start by reviewing the functional view on VI, deriving the

optimal variational distribution for a given posterior subject

to factorization constraints. Our main contribution is then to

show that one can sample from this target distribution by run-

ning SGMCMC on a modified energy function. This energy

function is inspired by the partially-marginalized log joint

distribution as encountered in coordinate-ascent VI (Saul

& Jordan, 1996; Bishop, 2006). We can tractably approxi-

mate the involved expectations by averaging selected latent

variables over samples from the Markov chain. The result-

ing "self-averaged" energy function defines un-normalized
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distribution over the remaining coordinates. We can sample

from this distribution using Langevin dynamics or any other

SGMCMC scheme.

While the resulting posterior approximation can be shown

to have favorable properties (e.g., it can be multi-modal and

it mixes much faster), the original sampling algorithm is not

sufficiently fast for high-dimensional models. Therefore,

we provide a more robust and computationally efficient ap-

proximation to the procedure that allows for interpolation

between regular SGMCMC and our structured SGMCMC

by taking inspiration from dropout techniques. Both meth-

ods are compatible with any Markovian SGMCMC algo-

rithm, including Langevin dynamics and stochastic gradient

Hamiltonian Monte Carlo.

In sum, our contributions are as follows:

• For any differentiable Bayesian model, we specify the

optimal approximate posterior (in KL divergence) subject

to factorization constraints and show that we can sample

from it using a novel self-averaged SGMCMC scheme.

• The new MCMC/VI hybrid allows sampling from a fully

joint posterior, a completely factorized posterior, and any

in-between. It thereby trades approximation quality for

speed.

• We extend this scheme further by making it more scal-

able with a dropout-inspired approximation. This new

scheme has a hyperparameter that enables a smooth in-

terpolation between full SGMCMC and a "mean-field"

version where all posterior correlations are broken.

• We show in both small and large scale experiments that

our method well approximates posterior marginals and

gives improved results over SGMCMC and parametric

VI on Resnet-20 architectures on CIFAR-10, Fashion

MNIST, and SVHN in terms of runtime and/or final

accuracy. Additionally, all code and implementations

have been made publicly available.1

Our paper is structured as follows: Section 2 presents the re-

lated work to our proposal, Section 3 introduces preliminar-

ies regarding the energy function and the stochastic gradient

updates, Sections 4 and 5 derive our proposed methods, Sec-

tion 6 details experiments and their results, and Section 7

contains our concluding thoughts.

2. Related Work

Our work connects both to (stochastic) variational inference

(Bishop, 2006; Hoffman et al., 2013; Hoffman & Blei, 2015;

Wang & Blei, 2013; Tierney et al., 1989; MacKay, 1992;

Bickel & Doksum, 2007; Ranganath et al., 2014; 2013;

Nalisnick et al., 2019; Ambrogioni et al., 2021; Weilbach

1https://github.com/ajboyd2/pytorch_lvi

et al., 2020; Silvestri et al., 2021; Papamakarios et al., 2021;

Liu & Wang, 2016) and scalable MCMC (Welling & Teh,

2011; Robbins & Monro, 1951; Li et al., 2016; Hoffman

& Ma, 2020; Chen et al., 2014; Ma et al., 2017; Heek &

Kalchbrenner, 2019; Leimkuhler et al., 2019; Zhang et al.,

2020; Mandt et al., 2017; Patterson & Teh, 2013). For

space limitations, we focus on the most related work at the

intersection of both topics.

Among the earliest works to hybridize both approaches

was (de Freitas et al., 2001) who constructed a variational

proposal distribution in the Metropolos-Hastings step of

MCMC. An improved approach to that was introduced

in (Habib & Barber, 2018), where by introducing low-

dimensional auxiliary variables they fit a more accurate ap-

proximating distribution. Other related advances to MCMC

methods were proposed by Levy et al. (2017) who developed

a method to train MCMC kernels with NNs, and Wang et al.

(2018); Gong et al. (2018) who leveraged meta learning

schemes in SGMCMC methods.

Most recent work focuses on connections between VI

and stochastic gradient-based MCMC, or between VI and

stochastic gradient descent (SGD). For example, Mandt et al.

(2016; 2017) and Duvenaud et al. (2016) consider SGD as a

type of variational inference, but their approaches did not

attempt to close the gap to exact MCMC. Other works aim

at explicitly interpolating between both methods. Domke

(2017) proposes a divergence bound for hybridizing VI and

MCMC, essentially by running Langevin dynamics on a

tempered evidence lower bound (ELBO). Salimans et al.

(2015) embody MCMC steps into the variational inference

approximation. Ahn et al. (2012) improve stochastic gra-

dient Langevin dynamics by leveraging the central limit

theorem and using the estimated inverse Fisher information

matrix to sample from the approximate posterior distribu-

tion. Rezende & Mohamed (2015) interpreted the path

of an MCMC algorithm as a variational distribution, and

then fitting parameters to tighten a variational bound. Re-

cently, Hoffman & Ma (2020) interpreted (parametric) VI

as approximate Langevin dynamics and showed that both

algorithms have similar transient dynamics.

In contrast to all these approaches, our method is inspired

by coordinate ascent variational inference (Bishop, 2006)

but uses Langevin updates to generate samples from the

target distribution that respects an imposed independence

structure.

3. Preliminaries

Variational inference (VI) differs from MCMC in two re-

gards: (1) it imposes a structured (e.g., fully-factorized)

approximation of the posterior for tractability, and (2) it

often makes parametric (e.g., Gaussian) assumptions. Is it
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possible to construct a modified scheme that only relies on

the assumption (1), inheriting the non-parametric nature of

MCMC while breaking posterior correlations in a controlled

manner? We will show how such a scheme can be realized.

We begin by introducing the setup and common nota-

tion. Given data D = {(xi, yi)}i=1,...,N , parameters θ,

a proper prior distribution p(θ), and a likelihood p(D|θ) =
∏N

i=1 p(yi|xi, θ), we represent the Bayesian posterior as a

Boltzmann distribution:

p(θ|D) ∝ exp{−U(θ)};

U(θ) := −
∑

(x,y)∈D

log p(y|x, θ)− log p(θ). (1)

We call U the posterior energy function. Note that the poste-

rior is typically intractable due to the normalizing constant.

Stochastic gradient MCMC (SGMCMC) is a class of scal-

able MCMC algorithms that can produce posterior sam-

ples through gradients on minibatches of data. These algo-

rithms are largely derived from discretized approximations

of continuous-time diffusion processes. Examples of these

algorithms include stochastic gradient Langevin dynamics

(SGLD) (Welling & Teh, 2011), preconditioned SGLD (pS-

GLD) (Li et al., 2016), and stochastic gradient Hamiltonian

Monte Carlo (SGHMC) (Chen et al., 2014).

SGMCMC algorithms use minibatches D̃ from D to produce

an unbiased estimate of the posterior energy function U(θ):

Û(θ; D̃) = −
N

|D̃|

∑

(x,y)∈D̃

log p(y|x, θ)− log p(θ). (2)

These minibatches enable a sequence of samples from the

posterior. For instance, the SGLD update rule is

θ(t+1) = θ(t) −
ϵt
2
∇θÛ(θ(t); D̃t) + ξt, (3)

where ξt ∼ N (0, ϵtI). Similar rules for pSGLD and

SGHMC can be found in the Appendix. All of these update

rules produce a chain of samples up to time step t that ulti-

mately form an empirical distribution p̂(t)(θ|D). Should the

algorithms converge, then limt→∞ p̂(t)(θ|D) = p(θ|D).

4. Structured SGMCMC

SGMCMC methods produce a fully joint posterior distribu-

tion over parameters θ. For models with a large number of

parameters, this can lead to various complications due to the

curse of dimensionality such as slow convergence times and

unexplored posterior modes. A viable solution is to simplify

the sampling task by breaking dependencies in the posterior

distribution, leveraging ideas commonly used in VI.

We begin by reviewing structured variational inference and

present a novel SGMCMC-like algorithm that provides sam-

ples from a factorized approximate posterior. We then prove

that the only stationary distribution of the scheme is a factor-

ized Boltzmann distribution that minimizes KL divergence

to the true posterior, subject to the factorization constraint.

Structured Variational Inference Revisited. We begin

by reviewing structured variational inference (Saul & Jor-

dan, 1996) and formulate it as a non-parametric KL mini-

mization problem. To achieve partial factorization, we must

first partition θ into M > 1 distinct, mutually independent

groups: θ1, . . . , θM . This partitioning structure is assumed

to be known a priori. We will denote the distribution that

respects this partitioning structure as q(θ) =
∏M

i=1 qi(θi).
As common in VI (Zhang et al., 2018), we would like q(θ)
to best approximate the true posterior distribution p(θ|D) in

terms of KL-divergence,

q(θ) = argmin
q

Eθ∼q

[

log
q(θ)

p(θ|D)

]

. (4)

To derive a formal solution, we introduce some notation. For

any i ∈ {1, ...,M}, let θ¬i denote the parameters that com-

plement θi, i.e., θ = {θi, θ¬i}. We then define a structured

energy function:

U (S)(θ) =

M
∑

i=1

U
(S)
i (θi), with U

(S)
i (θi) :=

Eθ̃∼qU({θi, θ̃¬i}) := −Eθ̃∼q log p(θi, θ̃¬i,D). (5)

That is, we first define the marginals U
(S)
i (θi), where we

marginalize U(θ) with respect to all q(θ)-factors except

qi(θi), and then sum up these marginals to define U (S)(θ).
A similar partial marginalization procedure is carried out

for conjugate exponential family distributions in coordinate

ascent VI (Bishop, 2006), where the resulting marginals

are used to update the variational distribution in closed

form. Note that in most modern applications, conditional

conjugacy is violated (Zhang et al., 2018; Blei et al., 2017).

We attribute the following theorem to (Saul & Jordan, 1996):

Proposition 4.1. (Saul & Jordan, 1996). The unique

solution to the KL minimization problem given in

Eq. 4 is given by the Boltzmann distribution q(θ) ∝

exp{−
∑M

i=1 U
(S)
i (θi)}. Please refer to Appendix A for

the proof.

While the proposition provides a statement of optimality, at

this point it is unclear how the theoretically optimal distri-

bution can be realized. This will be discussed next.

Approximating the Energy Function. Having a well-

defined energy function U (S) (Equation (5)) should in prin-
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These energy approximations lead to the following update

step for structured dropout variant of SGLD (Sd-SGLD):

θ(t+1) = θ(t) −
ϵt
2
∇θÛ

(Sd)(θ; D̃) + ξt, (10)

where ξt ∼ N (0, ϵtI). The corresponding update rules

for the structured dropout variants for pSGLD (Sd-pSGLD)

and SGHMC (Sd-SGHMC) are defined in the Appendix.

The exact procedure for generating samples of the approx-

imate posterior q̂(t) using structured dropout SGMCMC

(Sd-SGMCMC) can also be found in the Appendix.

An example of this method (specifically Sd-SGLD with

r̃i
iid
∼ Bernoulli(0.5) and K = 4) used on a linear regression

model can be seen in Figure 2(c). Of note, we can see

that the dropout variant largely respects the independence

structure imposed, but maybe not as strictly as the exact

S-SGLD method seen in Figure 2(b). Additionally, the

posterior variance also seems to have shrunk similarly to

S-SGLD when compared against SGLD.

Dropout Analogy. Should r̃i
iid
∼ Bernoulli(ρ), alongside

a structure that factorizes by activation components, then the

method starts to resemble dropout with rate ρ (Srivastava

et al., 2014). The main difference being that instead of

replacing a parameter value with 0 it is replaced with a

sample from the approximate posterior distribution at time t:
q̂(t). While a Bernoulli distribution for r̃ is a natural choice,

there are other distributions that can be chosen as well. For

instance, r̃i
iid
∼ N (0, 1) or r̃i

iid
∼ Beta(α, β) are both viable

and can be seen as analogous to Gaussian and Beta-dropout

respectively (Srivastava et al., 2014; Liu et al., 2019). Our

experiments primarily use Bernoulli distributions.

6. Experiments

Overview In this section we evaluate our proposed ap-

proach on various models and datasets. Section 6.1 inves-

tigates the impact of the variational approximation on the

algorithms’ mixing and autocorrelation times using a fully-

connected network architecture on MNIST (LeCun et al.,

2010). Section 6.2 studies our methods with ResNet-20 (He

et al., 2016) on CIFAR-10 (Krizhevsky et al., 2009), SVHN

(Netzer et al., 2011), and Fashion MNIST (Xiao et al., 2017)

and compares them for their convergence speed and final

accuracy. Our experiments reveal that the chains in our

proposed methods converge faster than SGMCMC (and in

most cases even parametric VI) while achieving comparable

or higher accuracies. Lastly, Section 6.3 investigates the

effects, or lack thereof, that the various partitioning schemes

have when utilizing S-SGLD with feed forward neural net-

works for regression tasks. We also conducted additional

experiments, such as hyperparameter optimization, which

can be found in the Appendix Appendix H.

Metrics The primary predictive metric of interest used to

evaluate our proposal is classification accuracy. We take

the average of an ensemble of 100 models. The weights of

every model are sampled from the approximate posterior

of a given method. We report the average of individual

accuracies produced from each sampled model. Addition-

ally, we also monitor the mixing time of the chains of our

methods with both integrated autocorrelation time (IAC)

(Sokal, 1997; Goodman & Weare, 2010) and effective sam-

ple size (ESS) (Geyer, 1992). IAC measures the correlation

between samples in a chain and, in turn, describe the in-

efficiency of a MCMC algorithm. It is an estimate of the

number of iterations, on average, for an independent sample

to be drawn, given a Markov chain. ESS measures how

many independent samples would be equivalent to a chain

of correlated samples. Please refer to Appendix I for more

details on these metrics, as well as other experimental setup

and implementation specifics. Higher ESS and lower IAC

values can be interpreted as a model having better mixing

behavior.

6.1. Dropout Rate & Group Size Investigation

This set of experiments aims to study the effects of the

number of independent parameter groups (or the amount of

allowed posterior correlations) on accuracy and mixing time

when using our proposed methods. We compare pSGLD,

S-pSGLD, and Sd-pSGLD with a Bernoulli(ρ) masking

distribution with dropout rates ρ ∈ {0.1, 0.3, 0.5} on a

fully-connected neural network with 2 hidden layers, with

50 hidden units each, trained and evaluated with MNIST

using the standard train and test split. The model has 42,200

parameters in total. For S-pSGLD and Sd-pSGLD, these

parameters are evenly distributed into M groups where M
ranges from 4 to 42,200. Accuracy, IAC, and ESS are

reported in Figure 4 using 100,000 posterior samples after a

10,000 burn in period. More details on the implementation

of the model regarding training and evaluation can be found

in the Appendix.

As shown in Figure 4(a), for S-pSGLD we observe that as

we increase the number of groups the accuracy drops dra-

matically whereas Sd-pSGLD’s accuracy improves slightly

and then remains fairly stable. In the best case, Sd-pSGLD

achieves an accuracy of 96.3% with 32 groups and dropout

rate of 0.5 which outperforms pSGLD with accuracy of

94.2%. We speculate that the dropout-like behavior is bene-

ficial for regularizing the model (much like normal dropout),

improving accuracy across all dropout rates. Similarly,

a single sample used for the Monte Carlo estimate in S-

SGMCMC may not be enough as the number of groups M
increases; however, increasing the number of samples in this

scenario is infeasible due to S-SGMCMC scaling as O(M).

Figure 3 depicts a histogram that compares the IAC values of
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For better computational efficiency, we proposed Sd-

SGMCMC: a further generalization of S-SGMCMC in-

spired by dropout regularization. This dropout extension

allows interpolating between an SGMCMC algorithm and

its corresponding S-SGMCMC method.

Our experimental results demonstrate that the proposed

methods impose structure over posterior distributions, in-

crease mixing speed of the chains, and result in similar

or better ensemble accuracies compared to SGMCMC and

parametric variational inference. We showed that the pro-

posed approach is compatible with different deep learning

architectures, such as ResNet-20, and tested it on CIFAR-

10, SVHN, and Fashion MNIST. These evaluations have

provided strong empirical evidence for the efficacy of our

approach in terms of convergence speed and final accura-

cies.

Despite its proven capabilities, our proposed methodology

does come with some limitations. Namely, for quick access

our methods require keeping chains of samples on the GPU,

whereas the baseline SGMCMC methods can save samples

to disk. This increases the use of GPU memory and further

limits the length of the chains for large-scale experiments;

however, thinning the chain and reservoir sampling (Wenzel

et al., 2020) could be employed to help combat this.

Additionally, S-SGMCMC scales poorly with respect to

the number of parameter groups. Sd-SGMCMC manages

to break this dependency; however, it still requires slightly

more compute than SGMCMC per sample but is comparable

in wall clock time.
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A. Solution to Structured VI

Proposition 4.1 The unique solution to the KL minimiza-

tion problem given in Eq. 4 is given by the Boltzmann

distribution q(θ) ∝ exp{−
∑M

i=1 U
(S)
i (θi)}.

Proof. We begin with some preliminaries from the main

text. Given data D = {(xi, yi)}i=1,...,N , parameters θ, a

proper prior distribution p(θ), and a likelihood p(D|θ) =
∏N

i=1 p(yi|xi, θ), suppose we are interested in the corre-

sponding posterior distribution p(θ|D) ∝ p(D|θ)p(θ). A

convenient representation of the posterior is as a Boltzmann

distribution:

p(θ|D) ∝ exp{−U(θ)}, (11)

where U(θ) = −
∑

(x,y)∈D log p(y|x, θ) − log p(θ). U is

typically referred to as the posterior energy function. Note

that the posterior distribution is typically intractable due to

the normalizing constant.

We also write the equation for KL divergence from the main

text:

J(q(θ)) = DKL(q(θ)||p(θ|D)) (12)

≡ Eθ∼q

[

log
q(θ)

p(θ|D)

]

(13)

We then rewrite Eq. 4 as follows:

J(q(θ)) = Eθ∼q [log q(θ)]− Eθ∼q [log p(θ,D)] + C

(14)

=Eθi∼qi [log qi(θi)] +
∑

i ̸=j

Eθj∼qj [log qj(θj)]−

∫

log p(θ,D)qi(θi)dθi
∏

i ̸=j

qj(θj)dθj + C (15)

for some i ∈ {1, . . . ,M} where ¬i := {1, . . . ,M} \ {i}
and C = log p(D). In order to find the optimal distribution

that respects the factorization constraints imposed between

parameter groups, we need to minimize this functional over

q — or rather every qi. This is done by taking the functional

derivative of J with respect to qi, setting it equal to zero,

and solving for qi:

δJ(q(θ))

δqi(θi)
=

∫

log p(θ,D)
∏

i ̸=j

qj(θj)dθj−

1− log qi(θi) := 0 (16)

=⇒ log qi(θi) = Eθ̃
¬i∼q

¬i

[

log p(θi, θ̃¬i,D)
]

− 1 (17)

=⇒ qi(θi) ∝ exp
{

Eθ̃
¬i∼q

¬i

[

log p(θi, θ̃¬i,D)
]}

.

(18)

By defining the energy U
(S)
i (θi) =

−Eθ̃
¬i∼q

¬i

[

log p(θi, θ̃¬i,D)
]

, we realize that by minimiz-

ing the KL-divergence in Eq. 4, the approximate posterior

distribution q =
∏M

i=1 qi takes the form of a Boltzmann

distribution as in Eq. 1 with U (S)(θ) =
∑M

i=1 U
(S)
i (θi).

It remains to be shown that the solution is unique. To this

end, we refer to the convexity of the KL divergence in

function space (Cover et al., 1991). This implies that the

stationary point of the KL is indeed a global optimum and

unique.

B. Deriving U
(S)

With just a slight shift in perspective, it is actually possible to

further generalize U (S) (and consequently S-SGMCMC) to

produce a broader class of approximate sampling algorithms.

This is done by first noting that U (S) can be represented

with a scaled double-expectation:

U (S)(θ) = −
M

Er∼p(S)

[

∑M

i=1 ri

]×

Er∼p(S)Eθ̃∼q

[

log p(rθ + (1− r)θ̃,D)
]

(19)

where p(S)(r) = Cat(r;M−1, . . . ,M−1) and (rθ + (1 −
r)θ̃)i is equal to θi if ri = 1 and θ̃i otherwise for i =
1, . . . ,M . Note that this is constructed in this manner specif-

ically so that U (S) remains differentiable with respect to

θ. Also note that though the denominator appears super-

fluous as Er∼p(S) [
∑M

i=1 ri] = 1, it is necessary for certain

theoretic properties, as seen in Proposition C.1.

By replacing p(S) with a more flexible distribution, we can

further generalize and encapsulate different energy func-

tions to sample from. One such choice is p(Sd)(r; ρ) :∝
∏M

i=1 Bern(ri; ρ)✶(
∑M

i=1 ri > 0) with ρ ∈ (0, 1).3 Substi-

3Other choices of distribution that are well justified include
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tuting p(S) for p(Sd) in Equation (19) yields a new energy

function that we will refer to as U (Sd). We note that this

choice in distribution leads to a dropout-like behavior (Nal-

isnick et al., 2019; Srivastava et al., 2014), where the com-

position of model parameters as rθ+ (1− r)θ̃ leads to each

parameter group θi having a probability of approximately ρ
to be used in a prediction and a (1− ρ) probability of being

replaced by θ̃i from the approximate posterior (in traditional

dropout, θi would instead be replaced with 0). Likewise,

we will denote methods that use this energy function for

sampling as structured dropout SGMCMC (Sd-SGMCMC)

with different variants all sharing the same Sd prefix (e.g.

Sd-SGHMC).

In practice, the double-expectation in U (Sd) is jointly ap-

proximated using a Monte Carlo estimate with K samples.

This leads to Equation (9) in the main paper. We note that by

approximating U (Sd) in this way, computing a gradient no

longer scales on the order of O(M), but rather O(K). This

means that the choice of structure imposed on the posterior

distribution remains independent of computing resources.

As such, configurations with large amounts of parameter

groups are typically only feasible when using Sd-SGMCMC

as S-SGMCMC would use too much memory and/or com-

pute per sample.

C. Limiting Cases for Sd-SGMCMC

Proposition C.1. For a given set of parameters θ par-

titioned into M groups, under minor assumptions (i)

U (Sd) → U as ρ → 1 and (ii) U (Sd) → U (S) as ρ → 0.

Thus, distributions approximated by Sd-SGMCMC lie on

a continuum with those generated by S-SGMCMC at one

extreme and with those from SGMCMC at the other.

Proof. Assume an arbitrary θ, D, n ∈ N, and

that Eθ̃∼q

[

log p(rθ + (1− r)θ̃,D)
]

exists for r ∈ R.

As an aside, this proof assumes that p(Sd)(r; ρ) :∝
∏M

i=1 Bern(ri; ρ)✶(
∑M

i=1 ri > 0) with ρ ∈ (0, 1); how-

ever, the theorem still holds an arbitrary p(Sd) so long as the

mean approaches 1 and variance approaches 0 as n → ∞.

(i) Let r(n) ∼ p(Sd)(ρn) where ∀nρn ∈ (0, 1) and ρn → 1.

It follows that r(n) → {1}M as n → ∞ in distribution

(see Lemma C.2 in Supplement). Due to bounded and finite

any with support over [0, 1]M and with measure 0 over {0}M .
Exploring the effects these distributions have are an interesting
line of future inquiry.

support R, we find the following:

U (Sd)(θ) = −
M

Er∼p(Sd) [
∑M

i=1 ri]
×

∑

r∈R

p(Sd)(r; ρn)Eθ̃∼q

[

log p(rθ + (1− r)θ̃,D)
]

(20)

→ −
M

M

∑

r∈R

✶(∀iri = 1)Eθ̃∼q [log p(θ,D)] as n → ∞

(21)

= − log p(θ,D) = U(θ) (22)

(ii) Let r(n) ∼ p(Sd)(ρn) where ∀nρn ∈ (0, 1) and ρn → 0.

It follows that r(n) → r ∼ Cat(M−1, . . . ,M−1) as n →
∞ in distribution (see Lemma C.3 in Supplement). Due to

bounded and finite support R, we find the following:

U (Sd)(θ) = −
M

Er∼p(Sd) [
∑M

i=1 ri]
×

∑

r∈R

p(Sd)(r; ρn)Eθ̃∼q

[

log p(rθ + (1− r)θ̃,D)
]

(23)

→ −
M

1

∑

r∈R

✶(
∑M

i=1 ri = 1)

M
×

Eθ̃∼q

[

log p(rθ + (1− r)θ̃,D)
]

as n → ∞ (24)

= −
M
∑

i=1

Eθ̃∼q[log p([θi, θ̃¬i,D)] = U (S)(θ) (25)

For both Lemmas C.2 and C.3, let

p(Sd)(r; ρ) =
ρ
∑M

i=1 ri(1− ρ)M−
∑M

i=1 ri

1− (1− ρ)M
×

✶(∀iri ∈ {0, 1})✶

(

M
∑

i=1

ri > 0

)

(26)

Lemma C.2. For r(n) ∼ p(Sd)(ρn), ρn ∈ (0, 1) and n ∈ N,

if ρn → 1 as n → ∞ then r(n) → r ∼ δ({1}M ) in

distribution as n → ∞.

Proof.

p(Sd)(r = {1}M ; ρn) =
ρMn (1− ρn)

0

1− (1− ρn)M
(27)

→ 1 as n → ∞ (28)

=⇒ r(n) → δ({1}M ) in distribution. (29)
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Lemma C.3. For r(n) ∼ p(Sd)(ρn), ρn ∈ (0, 1) and

n ∈ N, if ρn → 0 as n → ∞ then r(n) → r ∼
Cat(M−1, . . . ,M−1) in distribution as n → ∞.

Proof. Let i ∈ {1, . . . ,M}.

p(Sd)(ri = 1, r¬i = 0; ρn) =
ρn(1− ρn)

M−1

1− (1− ρn)M
(30)

H
=

(1− ρn)
M−1 + ρn(M − 1)(1− ρn)

M−2

M(1− ρn)M−1
(31)

→
1

M
as n → ∞ (32)

where
H
= indicates utilizing l’Hôspital’s Rule. Since the

resulting probabilities sum to 1, this implies that r(n) →
r ∼ Cat(M−1, . . . ,M−1) in distribution as n → ∞.

D. Deriving U
(Sd)

To derive U (Sd), we must first start with a shift in perspective

on how U (S) is represented. We will rewrite the function in

the following way:

U (S)(θ) = −
M
∑

i=1

Eθ
¬i∼q

¬i
[log p([θi, θ¬i],D)] (33)

= −
M

Er∼p(S) [
∑M

i=1 ri]
×

Er∼p(S)Eθ̃∼q

[

log p(rθ + (1− r)θ̃,D)
]

(34)

where p(S) is a M -dimensional categorical distribution with

uniform weights M−1 and p(rθ + (1− r)θ̃,D) is the joint

probability of parameters taking values of rθ+(1− r)θ̃ and

data D.4

We note that changing the distribution of r leads to differ-

ent energy functions to sample from. One such choice is

to have p(Sd)(r; ρ) ∝ ρ
∑M

i=1 ri(1 − ρ)M−
∑M

i=1 ri✶(∀iri ∈

{0, 1})✶(
∑M

i=1 ri > 0) for ρ ∈ (0, 1). Note that this is

identical to ri
iid
∼ Bernoulli(ρ) conditional to

∑M

i=1 ri > 0.

Let the support of p(Sd) be denoted as R = {0, 1}M \{0}M .

This leads to the following energy function:

U (Sd)(θ) = −
M

Er∼p(Sd) [
∑M

i=1 ri]
×

Er∼p(Sd)Eθ̃∼q

[

log p(rθ + (1− r)θ̃,D)
]

. (35)

In practice, a few approximations are made to compute the

corresponding U (Sd). Firstly, we approximate p(Sd) with an

4rθ + (1 − r)θ̃ is a slight abuse of notation that is meant to

represent masking out θi when ri = 0 and masking out θ̃i when
ri = 1.

M -dimensional Bernoulli(ρ) distribution as the difference

is minute when Mρ is large. Secondly, the outer expecta-

tion in Equation (35) is approximated with a Monte Carlo

estimate of K samples. The inner expectation is also approx-

imated with a Monte Carlo estimate using the latest approx-

imate posterior q̂(t). However, just like for S-SGMCMC,

only a single sample is used. This further leads to:

U (Sd)(θ(t); D̃)

= −
1

Kρ

K
∑

k=1

U(r(t,k)θ(t) + (1− r(t,k))θ̃(t,k); D̃) (36)

E. Algorithm for S-SGMCMC and

Sd-SGMCMC

The procedures for S-SGMCMC and Sd-SGMCMC can be

seen in Algorithms 1 and 2.

Algorithm 1 S-SGMCMC

Input: Initial sample θ(0); parameter partitions θ1, . . . , θM ;

step sizes {ϵt}t=0,...,T−1.

Output: q̂(T )(θ) := {θ(t)}t=1,...,T

for t = 0 to T − 1 do

Sample minibatch D̃(t) ⊂ D
for i = 1 to M do

Sample θ̃
(t)
¬i ∼ q̂

(t)
¬i

Û
(S,t)
i = Û([θ

(t)
i , θ̃

(t)
¬i ]; D̃

(t))
end

∇θÛ
(S,t) =

∑M

i=1 ∇θÛ
(S,t)
i

θ(t+1) = SGMCMC_step(θ(t),∇θÛ
(S,t), ϵt)

end

return q̂(T )(θ)
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Algorithm 2 Sd-SGMCMC

Input: Initial sample θ(0); parameter partitions θ1, . . . , θM ;

step sizes {ϵt}t=0,...,T−1; masking distribution

p(r).
Output: q̂(T )(θ) := {θ(t)}t=1,...,T

for t = 0 to T − 1 do

Sample minibatch D̃(t) ⊂ D
for k = 1 to K do

Sample masks r
(t,k)
1 , . . . , r

(t,k)
M ∼ p(r)

Sample θ̃(t,k) ∼ q̂(t)

θ(t,k) = [r
(t,k)
i θ

(t)
i + (1− r

(t,k)
i )θ̃

(t,k)
i ]i=1,...,M

Û
(Sd,t)
k = Û(θ(t,k); D̃(t))

end

∇θÛ
(Sd,t) = M

KEr∼p(r)[
∑

M
i=1 ri]

∑K

k=1 ∇θÛ
(Sd,t)
k

θ(t+1) = SGMCMC_step(θ(t),∇θÛ
(Sd,t), ϵt)

end

return q̂(T )(θ)

F. SGMCMC Update Rules

The update rules for SGLD, pSGLD, and SGHMC are de-

fined as follows:

SGLD θ(t+1) = θ(t) −
ϵt
2
∇θÛ(θ(t)) +N (0, ϵtI)

(37)

pSGLD θ(t+1) = θ(t) −
ϵt
2

[

R(θ(t))∇θÛ(θ(t))+

∑

θ

∇θR(θ(t))

]

+N (0, ϵtR(θ(t)))

(38)

SGHMC θ(t+1) = θ(t) + ϵtM
−1m(t+1) (39)

m(t+1) = (1− γϵtM
−1)m(t) − ϵt∇θÛ(θ(t))+

N (0, 2γ − ϵtV̂ (θ(t))) (40)

where ϵt is the step size at time step t, R(·) and M are

preconditioners, γ ≥ 0 is a friction term, and V̂ (·) is an esti-

mate of the covariance induced by the stochastic gradient.5

The update rules for the S-SGMCMC variants are simi-

larly defined as Eqs. 37-40 but all instances of Û(θ(t))
are replaced with Û (S)(θ(t)). Likewise, replacing with

Û (Sd)(θ(t)) yields the Sd-SGMCMC variants.

5Note that we abuse notation in Eqs. 37-40 where the addition
of N (µ,Σ) denotes the addition of a normally distributed random
variable with mean µ and covariance Σ.

G. Ablation Study

This subsection aims to further explore the capabilities of the

proposed methodology. More specifically, we experiment

with various parameter partitions.

Parameter Partitions. We tested our proposal with four

partitioning schemes on a 2 layer with 50 neurons fully

connected network on a regression task. The partitioning

schemes that we used are the following: (a) the parameters

are split into 3 groups randomly, (b) the parameters are split

by layer(3 layers, 1 input and 2 hidden), (c) by activating

neurons inside the layers and (d) every parameter belongs

in each own group. We used 7 different datasets: the wine

quality datset (Cortez et al., 2009), the Boston housing

dataset (Harrison Jr & Rubinfeld, 1978), the obesity levels

dataset (Palechor & de la Hoz Manotas, 2019), the Seoul

bike-sharing dataset (E et al., 2020; E & Cho, 2020), the

concrete compressive strength dataset (Yeh, 1998), and the

airfoil self-noise dataset (Brooks et al., 1989). Every dataset

was split into 75% training data, 10% validation data, and

15% test data. We trained the model on training set and

validated it in the validation set with an early stoppage. For

every dataset and every partitioning scheme we used the

learning rates: 1e-3,1e-4,1e-5,1e-6,1e-7 for hyperparameter

tuning. For each combination of partition and dataset, we

chose the learning rate that provides the best accuracy score

on the test set. In this case, as an accuracy score, we used

the Mean Squared Error. The final learning rates that we

used are presented in Table 2.

Mixing Time Comparisons on Real-World Data. We

further validated our findings from Section 6.2 by evaluating

the IAC and ESS on larger datasets using various methods.

Both pSGLD and SGHMC were used as base methods in

conjunction with Sd-SGMCMC using a Bernoulli masking

distribution. IAC and ESS were calculated for these methods

using the latest 5,000 samples after sampling for 300 epochs;

the results of which can be found in Table 4.

For all three datasets, we see that Sd-SGMCMC with every

parameter in a different group mixes the fastest against all

other methods.

H. Hyperparameter Optimization

We also tested the proposed method for hyperparameter

optimization. We optimize the hyperparameter precision λ,

using gradients while drawing samples from the posterior.

We experimented with classification in MNIST with a 2-

layer neural network where every layer has 50 neurons. Let

us redefine the model with a hyperparameter λ in the prior,

which prior we assume that is gaussian. Then the prior is

p(θ|λ) and the model is p(x|θ)p(θ|λ). The log-likelihood in

this case is log p(x|θ)+log p(θ|λ). The goal is to maximize
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are used to sample response values yi ∼ N (w⃗T x⃗i + b, σ2)
where w⃗ = [w1, w2, w3]

T = [1.5,−0.8, 1.3]T , b = 0.5,

and σ2 = 1. More details on the generation process for x⃗
can be found in the Supplement.

We choose to fit a linear regression model of the same form

as the generation process. σ2 is assumed to be known.

Thus, θ = [w1, w2, w3, b]. A standard normal distribution

is used as the prior for each parameter. Due to conjugacy,

the posterior distribution can be calculated analytically. As

such, the MAP is roughly θ̂MAP ≈ [0.52, 0.31, 0.47, 0.84].

The approximated posterior distributions for θ are found

using SGLD, S-SGLD, and Sd-SGLD. For the latter two

sampling schemes, two parameter partitions are tested:

(i) two groups of parameters where θ1 = [w1, w2] and

θ2 = [w3, b] and (ii) four groups of parameters where

θ1 = w1, θ2 = w2, θ3 = w3, and θ4 = b. For Sd-SGLD,

ρ = 0.5 and K = 4 was used.

The resulting posterior distributions for (w1, w2) and

(w1, w3) from all five scenarios, with SGLD in the leftmost

column as our baseline, can be seen in Figure 2. We observe

that, as expected, correlations between (w1, w2) still exist

when they are allocated to the same parameter group and

become apparently independent when assigned to different

groups. We also note that the variance of the distributions

shrink as the parameter space is partitioned into smaller

groups. The underestimation of posterior variance is a com-

monly reported finding for VI techniques and is interesting

to note that our non-parametric methods appear to exhibit

this behavior as well. Finally, it appears that the Sd-SGLD

adequately approximates S-SGLD with just slightly higher

variances and very minor correlations between parameter

groups being exhibited.

I.2. Real-World Data Experiments

Framework Details. In this subsection, we provide more

detailed results for our experiments and a grid search for

FMNIST, CIFAR10, and SVHN. We note that all the code

apart from the metrics was written in PyTorch (Paszke et al.,

2019). Regarding the metrics, ESS was adopted from the

TensorFlow probability library (Dillon et al., 2017; Abadi

et al., 2016) and IAC was calculated in python. For all

the experiments, we used a seed of 2. Moreover, we note

that we grouped the parameters in an ordered way for Sd-

pSGLD and S-pSGLD. We denoted previously that Kρ
is the number of groups. So every parameter will go to

the i mod Kρ group where i is the parameter index. If,

for instance, Kρ is 8 then parameter 1 will go to group 1,

parameter 2 will go to group 2, parameter 9 will go to group

1, etc. If Kρ is the same as the number of parameters, every

parameter will go into its own group. For the VI methods we

used the official repository provided by Ritter et al. (2021).6

Metrics. IAC is computed as τf =
∑∞

τ=−∞ ρf (τ)
where ρf is the normalized autocorrelation function

of the stochastic process that generated the chain for

f . ρf is estimated via ρ̂f (τ) = ĉf (τ)/ĉf (0); where

ĉf (τ) = 1
N−τ

∑N−τ

n=1 (fn − µf ) (fn+τ − µf ) and µf =
1
N

∑N

n=1 fn.7 ESS measures how many independent sam-

ples would be equivalent to a chain of correlated samples

and is calculated as neff = n
1+(n−1)p , where n is the number

of samples and p is the autocorrelation.

MNIST. Regarding MNIST, we ran all the experiments

for 500 epochs with a batch size of 500 and a learning rate

of 1e-2. For Sd-pSGLD, the K is set to 300, which is the

forward passes that the model does within 1 epoch. For the

grouping of the parameters, for Sd-pSGLD we used group

sizes of 2, 4, 8, 32, 128, 512, 2048, 4096, 8192, 16384,

32768, and 42200; and for S-pSGLD we used groups sizes

of 2, 8, 32, 128, 512, 2048, 4096, and 8192.

FashionMNIST. We ran all experiments for 500 epochs

with a batch size of 500. For Sd-SGHMC, the K is set to

2, which is the forward passes that the model does within

1 epoch. We observed with experimenting with K that we

do not need to set K very high, and even a small number

like 16 that we used here is enough to produce the same

results as with an K of 200 or 300. Regarding the parameter

partitioning, for Sd-SGMCMC, we put every parameter in

a different group, and for S-SGMCMC we used groups of

2, 4, 8, and 16. For Sd-pSGLD, pSGLD, Sd-SGHMC and

SGHMC we tested their performances with learning rates

of 1e-2, 1e-3, 1e-4, and 1e-5. We conducted a grid search

for learning rate, dropout rate, and optimizers to find the

best performing models and test them for their accuracy.

The learning curves of the best models that we found are

depicted in Figure 5. In Figure 5, Sd-pSGLD has ρ = 0.5
and learning rate equal to 1e-3, pSGLD has learning rate

equal to 1e-4, Sd-SGHMC has ρ = 0.5 and learning rate

equal to 1e-2 and SGHMC has learning rate equal to 1e-2.

CIFAR10. The setup is similar to the one we used in

FashionMNIST as we ran all experiments for 500 epochs

with a batch size of 128. For Sd-SGHMC, the K is set

to 2, which K is the forward passes that the model does

within 1 epoch. Regarding the parameter partitioning, for

Sd-SGMCMC, we put every parameter in a different group,

and for S-SGMCMC we used groups of 2, 4, 8, and 16. For

Sd-pSGLD, pSGLD, Sd-SGHMC and SGHMC we tested

their performances with learning rates of 1e-2, 1e-3, 1e-4,

6https://github.com/microsoft/bayesianize
7In practice, ĉf (τ) was calculated using a fast Fourier trans-

form as it is more computationally efficient than directly summing.
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Table 5: Evaluation Metrics on FashionMNIST with pSGLD, Sd-pSGLD and S-pSGLD

Method dropout LR IAC ESS Accuracy

Sd-pSGLD|θ| 0.1 1e-05 1018 5.63 0.918

Sd-pSGLD|θ| 0.1 1e-04 808 7 0.925

Sd-pSGLD|θ| 0.1 1e-03 754 7.48 0.924

Sd-pSGLD|θ| 0.1 1e-02 723 8.05 0.911

Sd-pSGLD|θ| 0.5 1e-05 778 7.08 0.923

Sd-pSGLD|θ| 0.5 1e-04 777 7.15 0.923

Sd-pSGLD|θ| 0.5 1e-03 737 7.57 0.925

Sd-pSGLD|θ| 0.5 1e-02 677 8.24 0.91

pSGLD - 1e-5 779 7.09 0.924

pSGLD - 1e-4 774 7.16 0.911

pSGLD - 1e-3 770 7.26 0.809

pSGLD - 1e-2 745 7.48 0.724

S-pSGLD2 - 1e-3 740 7.55 0.918

S-pSGLD4 - 1e-3 751 7.45 0.919

S-pSGLD8 - 1e-3 776 7.24 0.919

S-pSGLD16 - 1e-3 855 6.64 0.916

Table 6: Evaluation Metrics on FashionMNIST with SGHMC, Sd-SGHMC and S-SGHMC

Method dropout LR IAC ESS Accuracy

Sd-SGHMC|θ| 0.1 1e-05 782 7.08 0.412

Sd-SGHMC|θ| 0.1 1e-04 888 6.41 0.796

Sd-SGHMC|θ| 0.1 1e-03 793 6.98 0.92

Sd-SGHMC|θ| 0.1 1e-02 1113 5.06 0.922

Sd-SGHMC|θ| 0.5 1e-05 790 6.93 0.207

Sd-SGHMC|θ| 0.5 1e-04 789 6.9 0.758

Sd-SGHMC|θ| 0.5 1e-03 796 6.81 0.92

Sd-SGHMC|θ| 0.5 1e-02 923 5.70 0.927

SGHMC - 1e-5 791 6.93 0.206

SGHMC - 1e-4 789 6.9 0.751

SGHMC - 1e-3 795 6.83 0.92

SGHMC - 1e-2 920 5.72 0.928

S-SGHMC2 - 1e-2 928 5.67 0.928

S-SGHMC4 - 1e-2 915 5.77 0.927

S-SGHMC8 - 1e-2 1142 4.87 0.919

S-SGHMC16 - 1e-2 1121 4.92 0.906
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and 1e-5. We conducted a grid search for learning rate,

dropout rate, and optimizers to find the best performing

models and test them for their accuracy. The learning curves

of the best models that we found are depicted in Figure 5. In

Figure 5, Sd-pSGLD has ρ = 0.5 and learning rate equal to

1e-5, pSGLD has learning rate equal to 1e-5, Sd-SGHMC

has ρ = 0.5 and learning rate equal to 1e-3 and SGHMC

has learning rate equal to 1e-3.

SVHN. We also ran all of the experiments for 500 epochs

with a batch size of 128. Here for Sd-SGHMC, the K is set

to 2, which is the forward passes that the model does within

1 epoch. We note that K here is less than on CIFAR10

and FashionMNIST, but as we mentioned before, this does

not make a difference for our results, as we have tested.

Regarding the parameter partitioning, for Sd-SGMCMC,

we put every parameter in a different group, and for S-

SGMCMC we used groups of 2, 4, 8, and 16. For Sd-

pSGLD, pSGLD, Sd-SGHMC and SGHMC we tested their

performances with learning rates of 1e-1, 1e-2, 1e-3, 1e-4,

1e-5, 1e-6. We conducted a grid search for learning rate,

dropout rate, and optimizers to find the best performing

models and test them for their accuracy. The learning curves

of the best models that we found are depicted in Figure 5.

In Figure 5, Sd-pSGLD has ρ = 0.5 and learning rate of

1e-4, pSGLD has a learning rate of 1e-5, Sd-SGHMC has

ρ = 0.5 and learning rate equal to 1e-2 and SGHMC has

learning rate equal to 1e-3.

VI methods. For all VI methods, MFVI, MFVI-I and

Ensemble-I we tested their performances with learning rates

of 1e-2,1e-3 and 1e-4. We used a seed of 2 and 300 epochs

for training. The rest of the settings are the same as the ones

provided in the official repository. In table you can see the

classification accuracy results for various learning rates.
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Table 7: Evaluation Metrics on CIFAR10 with pSGLD, Sd-pSGLD and S-pSGLD

Method dropout LR IAC ESS Accuracy

Sd-pSGLD|θ| 0.1 1e-02 623 7.23 0.191

Sd-pSGLD|θ| 0.1 1e-03 572 7.6 0.896

Sd-pSGLD|θ| 0.1 1e-04 692 6.45 0.921

Sd-pSGLD|θ| 0.1 1e-05 922 4.88 0.922

Sd-pSGLD|θ| 0.5 1e-02 546 8.01 0.768

Sd-pSGLD|θ| 0.5 1e-03 582 7.88 0.918

Sd-pSGLD|θ| 0.5 1e-04 691 6.85 0.926

Sd-pSGLD|θ| 0.5 1e-05 620 7.22 0.925

pSGLD - 1e-2 716 8.01 0.666

pSGLD - 1e-3 740 7.87 0.866

pSGLD - 1e-4 780 7.41 0.914

pSGLD - 1e-5 831 6.89 0.924

S-pSGLD2 - 1e-3 600 7.44 0.894

S-pSGLD4 - 1e-3 599 7.4 0.905

S-pSGLD8 - 1e-3 709 6.41 0.881

S-pSGLD16 - 1e-3 767 5.93 0.836

Table 8: Evaluation Metrics on CIFAR10 with SGHMC, Sd-SGHMC and S-SGHMC

Method dropout LR IAC ESS Accuracy

Sd-SGHMC|θ| 0.1 1e-02 608 7.16 0.91

Sd-SGHMC|θ| 0.1 1e-03 975 4.6 0.922

Sd-SGHMC|θ| 0.1 1e-04 654 6.63 0.869

Sd-SGHMC|θ| 0.1 1e-05 652 6.65 0.724

Sd-SGHMC|θ| 0.5 1e-02 584 7.7 0.918

Sd-SGHMC|θ| 0.5 1e-03 751 6.26 0.925

Sd-SGHMC|θ| 0.5 1e-04 679 6.73 0.886

Sd-SGHMC|θ| 0.5 1e-05 772 6.01 0.778

SGHMC - 1e-2 727 7.94 0.86

SGHMC - 1e-3 832 6.84 0.924

SGHMC - 1e-4 862 6.57 0.885

SGHMC - 1e-5 858 6.6 0.746

S-SGHMC2 - 1e-3 583 7.49 0.913

S-SGHMC4 - 1e-3 624 7.03 0.919

S-SGHMC8 - 1e-3 904 4.97 0.908

S-SGHMC16 - 1e-3 822 5.47 0.774
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Table 9: Classification accuracy scores for VI methods on CIFAR10, SVHN and FMNIST.

(a) CIFAR10

Method LR Accuracy

MFVI 1e-2 80.06

MFVI 1e-3 91.52

MFVI 1e-4 87.5

MFVI-I 1e-2 91.73

MFVI-I 1e-3 91.91

MFVI-I 1e-4 87.6

Ensemble-I 1e-2 92.68

Ensemble-I 1e-3 91.96

Ensemble-I 1e-4 87.22

(b) SVHN

Method LR Accuracy

MFVI 1e-2 94.79

MFVI 1e-3 94.36

MFVI 1e-4 94.19

MFVI-I 1e-2 95.91

MFVI-I 1e-3 95.47

MFVI-I 1e-4 94.78

Ensemble-I 1e-2 96.01

Ensemble-I 1e-3 95.89

Ensemble-I 1e-4 95.08

(c) FMNIST

Method LR Accuracy

MFVI 1e-2 90.93

MFVI 1e-3 92.24

MFVI 1e-4 90.04

MFVI-I 1e-2 92.70

MFVI-I 1e-3 92.74

MFVI-I 1e-4 91.48

Ensemble-I 1e-2 93.45

Ensemble-I 1e-3 93.23

Ensemble-I 1e-4 91.54


