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Abstract

Continuous-time event sequences, i.e., sequences

consisting of continuous time stamps and associ-

ated event types (“marks”), are an important type

of sequential data with many applications, e.g.,

in clinical medicine or user behavior modeling.

Since these data are typically modeled in an au-

toregressive manner (e.g., using neural Hawkes

processes or their classical counterparts), it is nat-

ural to ask questions about future scenarios such

as “what kind of event will occur next” or “will an

event of type A occur before one of type B.” Ad-

dressing such queries with direct methods such as

naive simulation can be highly inefficient from a

computational perspective. This paper introduces

a new typology of query types and a framework

for addressing them using importance sampling.

Example queries include predicting the nth event

type in a sequence and the hitting time distribu-

tion of one or more event types. We also leverage

these findings further to be applicable for estimat-

ing general “A before B” type of queries. We

prove theoretically that our estimation method is

effectively always better than naive simulation

and demonstrate empirically based on three real-

world datasets that our approach can produce or-

ders of magnitude improvements in sampling effi-

ciency compared to naive methods.

1 Introduction

Continuous-time event data occurs across a wide range of ap-

plications and areas such as user behavior modeling (Mishra

et al., 2016; Kumar et al., 2019), finance (Bacry et al., 2012;

Hawkes, 2018), and healthcare (Nagpal et al., 2021; Chiang

et al., 2022). The data typically consists of sets of variable-

length sequences where each sequence is a set of ordered
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events, and each event is associated with a continuous time-

stamp and a categorical event type. Such data are often

modeled as marked temporal point processes (MTPPs), and

a broad variety of modeling frameworks have been success-

fully developed both in the statistical literature (e.g., Hawkes

processes (Hawkes, 1971)) and in the machine learning lit-

erature (e.g., neural MTPP models (Mei and Eisner, 2017)).

These MTPP modeling frameworks provide a general and

flexible setup for making one-step-ahead predictions such

as the timing and/or type of the next event time, conditioned

on a partial history of sequence.

In this paper we look beyond one-step ahead predictions

and instead investigate how to efficiently answer queries

that involve more complex statements about future events

and their timing. Such queries include hitting time queries

(“what is the probability that at least one event of type A
will occur before time t”), queries of the form “what is the

probability that A will occur before B,” as well as com-

puting the marginal distribution of event types for the nth

next event (irrespective of time). These types of queries

are useful across a variety of applications, such as making

predictions conditioned on a patient’s medical and treat-

ment history, or conditioned on a customer’s page view and

purchase history.

However, exact computation of such queries is intractable

in general except in the case of simple parametric models,

such as Poisson processes. For a standard MTPP model to

directly answer such queries requires that all intervening

events (from current time to the event(s) of interest in the

query) are marginalized over. In particular, this involves

marginalizing over both the combinatorially-large space of

possible event types as well as the uncountably infinite space

of possible event timings. While direct simulation of future

trajectories from a model provides one avenue for answering

such queries (e.g., see Daley and Vere-Jones (2003)) these

“naive” methods can be very inefficient (both statistically

and computationally), as we will demonstrate later in the

paper. More efficient alternative approaches (to the naive

simulation method) appear to be completely unexplored

(to our knowledge), for both neural and non-neural MTPP

models.

We develop a general query framework based on impor-
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tance sampling that enables efficient estimates of various

types of queries. In our approach, we first transform each

query into unified forms and then derive the distribution of

interest as functions of type-specific intensities (expected

instantaneous rates of occurrence). Our proposed novel

marginalization scheme empowers real-time computation

of probabilistic queries, with proven higher efficiency com-

pared to naive estimates. Furthermore, experiments on three

real-world datasets in different domains demonstrate that

our proposed estimation method is significantly more ef-

ficient than the naive estimate in practice. For example,

for hitting time queries with neural Hawkes processes, we

show an average magnitude of 103 reduction in estimator

variance.

Our approach for answering probabilistic queries is general-

purpose in the sense that it can be integrated with any

intensity-based black-box MTPP model, either parametric

or neural. To summarize, our main contributions are:

• We identify and formalize a general class of probabilistic

queries that cover a wide range of queries of interest,

such as the distribution of the first occurrence of certain

event types (hitting times), the nth occurring event type

irrespective of time (marginal mark queries), or queries

addressing the order of event types (“A before B” queries).

• Within this class of queries, we develop a novel proposal

distribution for importance sampling. This distribution is

easy to sample from, simple to evaluate likelihoods with,

and results in guaranteed increases in efficiency when

compared to existing estimation techniques.

• We evaluate our proposed estimation technique across

three real-world user behavior datasets, as well as on

simulated data. In all cases, we find dramatic reductions in

estimator variance compared to existing methods—often

times by several orders of magnitude.

2 Related Work

A large variety of MTPP models have been developed over

recent decades, aimed at modeling sequences of marked

event data with varying sorts of behaviors. This behavior

has been both explicitly modeled with parametric MTPP

models (Isham and Westcott, 1979; Daley and Vere-Jones,

2003), and implicitly modeled using neural network-based

methods (Du et al., 2016; Biloš et al., 2019; Shchur et al.,

2020; Enguehard et al., 2020; Zuo et al., 2020). Of particular

note in these categories are the self-exciting Hawkes process

(Hawkes, 1971; Liniger, 2009) and the neural Hawkes pro-

cess (Mei and Eisner, 2017). The majority of neural MTPP

models utilize some form or extension of recurrent neural

networks to model conditional intensity functions (or equiv-

alent transformations thereof). MTPP models have been

broadly applied to next event prediction across a number

of different application areas: seismology (Ogata, 1998),

finance (Bacry et al., 2012; Hawkes, 2018), social media be-

havior (Mishra et al., 2016; Rizoiu et al., 2017), and medical

outcomes (Cox, 1972; Andersen et al., 2012).1 Neural-based

methods have also been successful at additional tasks such

as imputing missing data (Shchur et al., 2020; Mei et al.,

2019; Gupta et al., 2021), sequential representation learn-

ing (Shchur et al., 2020; Boyd et al., 2020), and long-term

forecasting (Deshpande et al., 2021).

Answering probabilistic queries in some capacity has been

previously explored at a model-specific level. Primary ex-

amples include continuous-time Markov processes (Shel-

ton and Ciardo, 2014), continuous-time Bayesian networks

(Nodelman et al., 2002; Fan et al., 2010), and Markovian

self-exciting processes (Oakes, 1975). In this prior work,

the assumed parametric form of the model allows for ana-

lytic forms of specific queries under certain conditions. For

instance, the Markovian self-exciting process provides a

representation that makes estimating hitting time queries

directly tractable.

However, to the best of our knowledge, apart from the naive

sampling approach (e.g., Daley and Vere-Jones (2003)),

there is no existing work on answering general probabilistic

queries (such as hitting time of a collection of event types)

for black-box MTPP models, which is the focus of this

paper. For discrete-time models, estimating these queries

has been investigated in our prior work (Boyd et al., 2022),

and while there does not exist a direct mapping of those

techniques to continuous time, this previous work will serve

as a large source of inspiration for what we propose in this

paper.

3 Preliminaries

3.1 Notation for Event Sequences

Let τ1, τ2, · · · ∈ R≥0 be a sequence of continuous random

variables with the constraint that ∀i : τi < τi+1. These

represent the time of occurrence for events of interest. Each

event has an associated categorical value, such as a label

or a location, that is referred to as a mark. An event is

jointly represented as (i) a time of occurrence τi and (ii) an

associated mark random variable κi ∈ M. In this work we

will focus on the finite discrete setting of a fixed vocabulary

for marks: M = {1, 2, . . . ,K}, although more generally

the mark space M can be defined on a variety of different

domains.

Let the sequence of events over a specified time

range [a, b] ⊂ R≥0 be denoted as

S[a, b] = {(τi, κi) |τi ∈ [a, b] for i ∈ N}.

1Survival analysis is a special case of temporal point processes
where the event of interest can only occur once.







Alex Boyd, Yuxin Chang, Stephan Mandt, Padhraic Smyth

It can be shown that the optimal proposal distribution

(i.e., lowest estimator variance) takes the form (Robert and

Casella, 2004):

qoptimal(S(T )) :=
|1(S(T ) ∈ Q)|p(S(T ))

Ep[|1(S(T ) ∈ Q)|]

= p(S(T ) |S(T ) ∈ Q),

however, this is not immediately usable since it involves

computing the exact query that we are trying to estimate in

the first place.

The more our actual proposal distribution q resembles

qoptimal, the more efficient our estimation procedure will

be. Since conditioning on future events is difficult for neural

autoregressive models, we can instead only apply immediate

“local” restrictions on the trajectory such that a sequence

will remain within Q. This can be accomplished by letting

q be a MTPP with intensity

µ∗
k(t) = 1(k /∈ Mi)λ

∗
k(t)

for k ∈ M and t ∈ (αi−1, αi]. Note that this can be seen

as the natural extension of the proposal distribution in Boyd

et al. (2022) to continuous time. This naturally leads to the

likelihood of any sequence generated under q as being

q(S[0, T ]) =

(

N
∏

i=1

µ∗
κi
(τi)

)

exp

(

−

∫ T

0

µ∗(s)ds

)

=

(

N
∏

i=1

λ∗
κi
(τi)

)

exp

(

−
n
∑

i=1

∫ αi

αi−1

λ∗
M\Mi

(s)ds

)

where N = |S[0, T ]|. This proposal distribution was con-

structed so that every sample generated will always belong

to the query space. Applying this to Eq. (2) yields

p(S(T ) ∈ Q) = Eq

[

exp

(

−
n
∑

i=1

∫ αi

αi−1

λ∗
Mi

(s)ds

)]

. (3)

Any query in this class can now be estimated in an unbiased

fashion by using Monte Carlo estimation on Eq. (3).

Estimator Efficiency Since both the naive and impor-

tance sampled estimators are unbiased, whichever has lower

variance can be seen as the more efficient estimator.

Assume that Q belongs to a general restricted-mark query

and that π = p(S(T ) ∈ Q). Let

π̂Naive(S(T )) = 1(S(T ) ∈ Q),

π̂Imp.(S(T )) = exp

(

−
n
∑

i=1

∫ αi

αi−1

λ∗
Mi

(s)ds

)

,

where both are unbiased estimators of π under p and q re-

spectively. Note that π̂Imp.(·) ∈ [0, 1] as λ∗
k(·) ≥ 0. Finally,

let relative efficiency of the two estimators be defined as

eff(π̂Imp., π̂Naive) :=
Varp [π̂Naive(S(T ))]

Varq [π̂Imp.(S(T ))]
.

Theorem 1. If π ∈ (0, 1) and λ∗(t) < ∞ for all t ∈ [0, T ],
then eff(π̂Imp., π̂Naive) > 1. In other words, under these

conditions π̂Imp. is always more efficient than π̂Naive.

Proof. Since the naive estimator is unbiased and binary,

then it follows that π̂Naive(S(T )) ∼ Bern(π). Thus,

Varp [π̂Naive(S(T ))] = π − π2.

To approach the variance of the importance sampling esti-

mator, we note that

Varp [π̂Imp.(S(T ))] = Eq

[

π̂2
Imp.

]

− Eq [π̂Imp.]
2

= Eq

[

π̂2
Imp.

]

− π2

≤ Eq [π̂Imp.]− π2 since π̂Imp. ∈ [0, 1]

= π − π2

The equality only holds if π ∈ {0, 1} or π̂Imp. ∼ Bern(π).
The latter condition is due to the fact that for [0, 1] bounded

random variables with mean π, if the variance is equal to

π − π2 then this implies it is Bernoulli (see Appendix for

proof). However, when π ∈ (0, 1) then unless λ∗(t) = ∞
for some subset of [0, T ] it is impossible for π̂Imp.(S(T )) to

equal 0. Thus, outside of those circumstances the inequality

is strict and eff(π̂Imp., π̂Naive) > 1.

4.4 Practical Estimation of Complex Queries

We will now apply our findings from Section 4.3 to produce

estimators for three different complex, probabilistic queries.

Marginal Distribution of Hitting Time Let A ⊂ M and

A ̸= ∅. The first occurrence of an event with type k ∈ A,

regardless of events of other types, is referred to as the

hitting time of A or hit(A). The probabilistic query of the

CDF of the hitting time of A at a specific time t can be seen

as a query under the general restricted-mark class:

p(hit(A) ≤ t) = 1− p(hit(A) > t)

= 1− p({No events of types A in [0, t]})

= 1− p(∀(τ,κ)∈S[0,t]κ /∈ A)

= 1− Eq

[

exp

(

−

∫ t

0

λ∗
A(s)ds

)]

.

Note that this derivation relies on this query being a special

case of the general framework outlined in Eq. (1) where

n = 1, α0 = 0, α1 = t, and M1 = A. Interestingly, the

importance sampled result of this query greatly resembles

the CDF of the general first event timing: Fτ1(t) = 1 −

exp
(

−
∫ t

0
λ∗(s)ds

)

.4 Furthermore, should A = M then

we recover Fτ1(t) as the estimator becomes deterministic

(due to µ∗(t) = 0 =⇒ q(S) ∝ 1(S = ∅)).

4It is important to remember that in the general case, we must
marginalize over possible trajectories for other types of events A′

as these can all either potentially influence the intensity of events
of type A.
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Marginal Distribution of nth Mark Let A ⊂ M and n ≥
1. The distribution of the marginal nth mark describes how

likely it is that the nth event has a mark k ∈ A, irrespective

of the timing of itself or of any of the n − 1 events that

occurred prior. In contrast to hitting time queries, we do

not fix the integration bounds but rather sample them to be

the timings of the τn−1 and τn. In doing so, this query falls

under the general mark-restricted framework:

p(κn ∈ A) = p({No events of types A′ in (τn−1, τn]})

= p(∀(τ,κ)∈S(τn−1,τn]κ /∈ A′)

= Eq

[

exp

(

−

∫ τn

τn−1

λ∗
A′(s)ds

)]

where A′ = M \ A. This can be seen as a special case

under Eq. (1) where α0 = 0, αi = τi for i = 1, . . . , n,

M1, . . . ,Mn−1 = ∅, and Mn = A′. Tying the values of

the boundaries αi to the random event times τi effectively

ensures that each span with a restricted vocabulary Mi only

pertains to the occurrence of one event. In doing so, we

actually recover the ability to estimate queries purely con-

cerning the marks, similar to the discrete sequence setting

(Boyd et al., 2022).

It is worth noting that, interestingly, we can also compute

the complement under the same framework as p(κn ∈ A) =

1− Eq

[

exp
(

−
∫ τn

τn−1

λ∗
A(s)ds

)]

.

“A before B” Queries The last class of queries we will

discuss are what we refer to as “A before B” queries. To be

precise, we are interested in the probability of an event with

some type k ∈ A occurring before an event with some type

k ∈ B where A ∩ B = ∅ and non-empty A,B ⊂ M. In

math, this is formally represented as p(hit(A) < hit(B)).

Surprisingly, with our previous developments we can ac-

tually estimate this query using importance sampling in

conjunction with proposal distribution q. For the proposal

distribution, let µ∗
k(t) = 1(k /∈ A ∪ B)λ∗

k(t). It then can

be shown that

p(hit(A) < hit(B))

= 1− Eq

[
∫ ∞

0

λ∗
B(t) exp

(

−

∫ t

0

λ∗
A∪B(s)ds

)

dt

]

= Eq

[
∫ ∞

0

λ∗
A(t) exp

(

−

∫ t

0

λ∗
A∪B(s)ds

)

dt

]

(4)

with both expressions being equal due to the complement

1 − p(hit(A) > hit(B)) also being estimable under this

derivation. See the Appendix for derivations.

Interestingly, just like the parallels between the hitting

time CDF and the first event time CDF, there exist sim-

ilar comparisons for Eq. (4) and the analytical form of

the marginal distribution for the first mark p(κ1 ∈ A) =
∫∞

0
λ∗
A(t) exp

(

−
∫ t

0
λ∗(s)

)

dt. Additionally, should B =

A′ then the estimator becomes deterministic and we recover

the form of p(κ1 ∈ A).

Note that the expectations in Eq. (4) are with respect to

S(∞) ∼ q, which is naturally not possible to evaluate; how-

ever, since the integrands are non-negative we can compute

natural lower and upper bounds by sampling S(T ) ∼ q
and integrating over [0, T ] instead of [0,∞). Lastly, since

these bounds utilize the same proposal distribution, we

can actually compute both at the same time for a little ex-

tra computation. It then follows that a good estimate for

p(hit(A) < hit(B)) would be an average of the upper and

lower bounds:

p(hit(A) < hit(B)) ≈ (5)

1

2
+ Eq

[

∫ T

0

λ∗
A(t)− λ∗

B(t)

2
exp

(

−

∫ t

0

λ∗
A∪B(s)ds

)

dt

]

,

where T > 0 can either be set as a constant or could be

dynamically determined on a per sequence basis based on

some precision threshold. Since T is truncated, this estimate

is no longer unbiased.

5 Experiments

We investigate the effectiveness of our novel importance

sampling regime in the context of estimating hitting time,

“A before B,” and marginal mark distribution queries, while

conditioning on partially observed sequences. We find that

across both synthetic and real settings as well as parametric

and neural-network-based models that our importance sam-

pling estimator dramatically reduces variance compared to

naive sampling and results in a much lower error on aver-

age. Furthermore, we demonstrate that, on average, these

gains in performance outweigh any potential increases in

computation time.

Ground Truth Computation of any arbitrary query

p(S(T ) ∈ Q) to arbitrary precision is intractable in the

general case. Given this, in our experiments we compute

our queries with an unbiased estimator to high precision

using a large amount of computation, with much higher

precision than any of the methods and scenarios evaluated

for a given experiment. We refer to the result of this high-

precision computation as “ground truth” below.

Metrics of Interest There are two primary metrics with

which we judge query estimation procedures: mean relative

absolute error and relative efficiency (or variance reduction

should one of the estimators be biased). The former is

defined as the mean of |π− π̂|/π, where π = p(S(T ) ∈ Q)
and π̂ is some estimator of π, over different queries (and

potentially models). This particular form of error is chosen

to offset the fact that π ∈ [0, 1], which can lead to naturally

closer estimates should π be close to 0 or 1. The latter metric
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Table 1: Real-world Dataset Summary Statistics

Dataset # Sequences Tmax # Marks

MovieLens 34,935 43,000 182

MOOC 6,863 715 97

Taobao 17,777 192 1,000

of interest is the relative efficiency (or variance reduction)

of importance sampling compared to naive sampling. This

is calculated by dividing the variance of the naive estimator

(calculated using ground truth: π(1− π)) by the variance of

the importance sampled estimator (calculated empirically).

As an example, a value of 5 for this metric indicates that,

on average, 5 times as many samples are needed for naive

estimation to achieve an estimator variance as low as that of

importance sampling.

5.1 Real-world Experiments

Datasets We conduct our real-world experiments on three

sequential user-behavior datasets. In all three, a sequence

is defined as the records generated by a single individual.

The MovieLens 25M dataset (Harper and Konstan, 2015)

contains records of user-generated movie reviews alongside

a rating. Marks represent the categories under which a re-

viewed movie can be classified as. The MOOC dataset (Ku-

mar et al., 2019) is a collection of online user-behaviors for

students taking an online course. Marks represent the type

interaction a student has performed. Lastly, the Taobao user

behavior dataset (Zhu et al., 2018) contains page-viewing

records from users on an e-commerce platform. Marks

are defined as the category of the item being viewed, with

categories outside of the top 1,000 most frequent being

discarded. All datasets were split into 75% training, 10%

validation, and 15% test splits for model fitting and experi-

ments. Summary statistics for these datasets can be found

in Table 1. All preprocessing details for these three datasets

can be found in the Appendix.

Models All real-world experiments use neural Hawkes

models (Mei and Eisner, 2017), one trained for each dataset.

Each model was trained to convergence on the training split

with stability/generality ensured via the validation split. All

training and model details can be found in the Appendix.

Hitting Time Queries: For each dataset, we randomly

sample 1,000 different sequences S(T ). For each sequence,

we condition on the first five events, S[0, τ5], and evaluate

a hitting time query for the remaining future.5 The specific

hitting time query asked is p(hit(k) ≤ t | S[0, τ5]) where

k := κ6 and t := 10× τ6 for (τ6, κ6) ∈ S(T ).

5All experiments evaluate necessary integrals with the trape-
zoidal rule. For more details, see Appendix.

We compared estimating this query with naive sampling

and importance sampling using varying amounts of sam-

ples: {2, 4, 10, 25, 50, 250, 1000}. Mean RAE compared

to ground truth (estimated using importance sampling with

5000 samples) can be seen in Fig. 3a. We witness roughly

an order of magnitude of improvement in performance for

the same amount of samples. Primarily, we attribute this

improvement to the fact that naive sampling only collects bi-

nary values, whereas our proposed procedure collects much

more dense information over the entire span [τ5, t].

We also analyze the relative efficiency of our estimator

compared to naive sampling. For each query asked, the

efficiency was estimated using 5000 importance samples.

The results can be seen in Fig. 3b. We achieve a dra-

matic decrease in variance by several orders of magnitude,

in the majority of contexts, across all datasets. Interest-

ingly, it appears that the efficiency is correlated with the

underlying ground truth value π. We believe this may

be due to the form of the importance sampling estimator:

1 − exp
(

−
∫ t

0
λ∗
k(s)ds

)

. Since the intensity function is

non-negative, it is simple for the model to produce estimates

close to 0; however, to producing values close to 1 requires

the integral to tend towards infinity.

“A before B” Queries: Similar to the hitting time ex-

periments, for “A before B” queries we similarly sample

1000 random test sequences and condition on the first five

events S[0, τ5]. Then, we estimate the query p(hit(A) <
hit(B) | S[0, τ5]) where A and B are randomly chosen to

contain one third of the mark space M.

We compared estimating this query with naive sampling

and importance sampling using varying amounts of sam-

ples: {2, 4, 10, 25, 50, 250}. We utilized the truncated im-

portance sampled estimator, Eq. (5), where T is chosen

dynamically for each sequence such that a maximum differ-

ence of 0.01 is allowed between the upper and lower bounds.

Mean RAE compared to ground truth (estimated using naive

sampling with 5,000 samples) can be seen in Fig. 4a.6 Like

the hitting time results, we can see roughly an order of mag-

nitude improvement in performance. Some results indicate

that the limiting factor is the precision threshold for choos-

ing T (e.g., see MovieLens results). We also see a similar

variance reduction relative to previous experiments, shown

in Fig. 4b. Here, the runtime cost is much greater as we have

to accumulate an integral over an indefinite amount of time;

however, we can see that on average it is still very much

“worth it” to utilize this framework over naive sampling as

evidenced by all of the blue dots above the red line.

Marginal Mark Distribution Queries: We additionally

performed nth marginal mark distribution queries in much

6Importance sampling would have been used for ground truth
here; however, it is more sound to use an unbiased estimator for
ground truth.
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A Efficiency Proof Lemma

Lemma 2. If a bounded random variable X ∈ [0, 1], with mean π and CDF F , has Var [X] = π(1−π), then X ∼ Bern(π).

Proof. Let X be a random variable with support [0, 1], mean π, and variance π(1− π). It then follows that:

Var [X] = E
[

X2
]

− E [X]
2

=⇒ π(1− π) = E
[

X2
]

− π2

=⇒ π = E
[

X2
]

=

∫

[0,1]

x2dF (x)

=

∫

{0,1}

x2dF (x) +

∫

(0,1)

x2dF (x)

= p(X = 1) +

∫

(0,1)

x2dF (x)

∫

(0,1)
x2dF (x) > 0 if and only if p(X ∈ (0, 1)) > 0. If we assume that p(X ∈ (0, 1)) > 0, then it follows that:

π = p(X = 1) +

∫

(0,1)

x2dF (x)

< p(X = 1) +

∫

(0,1)

xdF (x)

= p(X = 1) + (π − p(X = 1))

= π,

however, π ≮ π. Hence, by contradiction p(X ∈ (0, 1)) = 0 which implies that p(X = 1) = π and p(X = 0) = 1 − π
since E [X] = π. Thus, it can be concluded that X ∼ Bern(π).

B Deriving “A before B” Estimator

Let A,B ⊂ M and A ∩B = ∅. Recall that SA[0, t] is the sequence of events over times [0, t] with the restriction that the

marks must all belong to A. Finally, let q describe a proposal distribution with µ∗
k(t) = 1(k /∈ A ∪B)λ∗

k(t). With this in

mind, we derive the expected value expression for the “A before B” queries:

p (hit(A) < hit(B)) =

∫ ∞

0

p (hit(A) < hit(B), hit(A) = t) dt

=

∫ ∞

0

∑

k∈A

p (S[t, t] = {(t, k)},SA(t) = ∅,SB(t) = ∅) dt

=

∫ ∞

0

∑

k∈A

p (S[t, t] = {(t, k)},SA∪B(t) = ∅) dt

=

∫ ∞

0

∑

k∈A

Ep [p (S[t, t] = {(t, k)},SA∪B(t) = ∅ |S(t))] dt
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=

∫ ∞

0

∑

k∈A

ES(t)∼p [p (S[t, t] = {(t, k)}|SA∪B(t) = ∅,S(t)) p (SA∪B(t) = ∅ |S(t))] dt

=

∫ ∞

0

∑

k∈A

ES(t)∼p [p (S[t, t] = {(t, k)}|S(t))1 (SA∪B(t) = ∅)] dt

=

∫ ∞

0

∑

k∈A

ES(t)∼p [p (S[t, t] = {(t, k)}|S(t))1 (SA∪B(t) = ∅)] dt

=

∫ ∞

0

∑

k∈A

ES(t)∼p [λ
∗
k(t)1 (SA∪B(t) = ∅)] dt

=

∫ ∞

0

ES(t)∼p [λ
∗
A(t)1 (SA∪B(t) = ∅)] dt

=

∫ ∞

0

ES(t)∼q

[

λ∗
A(t)1 (SA∪B(t) = ∅)

p (S(t))

q (S(t))

]

dt

=

∫ ∞

0

ES(t)∼q

[

λ∗
A(t) exp

(

−

∫ t

0

λ∗
A∪B(s)ds

)]

dt

=

∫ ∞

0

ES(∞)∼q

[

λ∗
A(t) exp

(

−

∫ t

0

λ∗
A∪B(s)ds

)]

dt

= ES(∞)∼q

[
∫ ∞

0

λ∗
A(t) exp

(

−

∫ t

0

λ∗
A∪B(s)ds

)]

dt

where the last line is justified due to the Dominated Convergence Theorem. The prerequisites for this theorem are satisfied

by noting that:

∫ ∞

0

λ∗
A(t) exp

(

−

∫ t

0

λ∗
A∪B(s)ds

)

dt ≤

∫ ∞

0

λ∗
A∪B(t) exp

(

−

∫ t

0

λ∗
A∪B(s)ds

)

dt

= −

∫ ∞

0

d

dt
exp

(

−

∫ t

0

λ∗
A∪B(s)ds

)

dt

= exp

(

−

∫ 0

0

λ∗
A∪B(s)ds

)

− exp

(

−

∫ ∞

0

λ∗
A∪B(s)ds

)

= 1− exp

(

−

∫ ∞

0

λ∗
A∪B(s)ds

)

≤ 1.

C Further Experimental Details and Results

C.1 Dataset Preprocessing

We evaluate our methods for probabilistic querying on three real-world user-behavior datasets in different application

domains that are publicly available. All datasets do not include personally identifiable information, where users are identified

by unique integer IDs. For all our experiments, sequences are defined as the event histories of each user, where events

have timestamps in seconds. We changed the time resolution from seconds to hours for better interpretability of our query

implications. Additionally, we only consider sequences with at least 5 events and at most 200 events. We use 75% of the

sequences for training, 10% for validation, and 15% for testing.

MovieLens The MovieLens 25M dataset (Harper and Konstan, 2015) contains 25 million movie ratings by 162,000 users.

The movie category (genre) associated with each rating is modeled as marks, and the exact rating value is ignored.7 For

7A single movie in this dataset can possibly have multiple categories associated with it. To accommodate this, if a movie has multiple
categories we randomly select a subset of two categories to represent the movie. Note this highlights the benefits of formulating queries as
sets of marks instead of just singular marks. To evaluate the hitting time of the next “comedy” movie reviewed, then we would need
to evaluate the hitting time of the set of all pairs of categories where one element is the comedy genre. This is essentially describing
marginalizing over a hierarchical structure for the marks.
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Table 2: Model Hyperparameters for Real-World Datasets

Hyperparameter MovieLens MOOC Taobao

# Training Epochs 100 100 300

Mark Embedding Size 32 32 64

Recurrent Hidden State Size 64 64 128

each sequence, the start and the end time are defined as the first and the last event time of each user respectively, because the

time span for different users ranges from seconds to years. The first event is discarded in the sequence of history and is only

used to indicate t = 0. For consistent dynamics across the dataset, we filter the data to only contain reviews at or after the

year 2015. This leaves 34,935 remaining sequences, each from a unique user.

MOOC The MOOC user action dataset (Kumar et al., 2019) represents user activities on a massive open online course

(MOOC) platform. It consists of 411,749 course activities in 97 different types modeled as marks for 7,047 users, out of

which 4,066 users dropped out after an activity. Timestamps are standardized to start from timestamp 0. We use the last

event time for drop-out users as the end of their sequences, and the maximum timestamp for the other users.

Taobao The Taobao user behavior dataset (Zhu et al., 2018) was originally intended for recommendations for online

shopping, which includes four behaviors: page viewing, purchasing, adding items to the chart, and to wishlist. We focus on

page viewing of users as events, and model the item category as the event mark, which has marketing implications such as

click through rate of recommending some types of items. Due to the large scale of the dataset, we use a subset of 2,000,000

events on 8 consecutive calendar days inclusive (November 25th, 2017 - December 2nd, 2017), as well as the most frequent

1,000 marks (item categories) to demonstrate query answering. All user sequences have the same length.

C.2 Modeling Details

For each of the real-world datasets, a neural Hawkes process model (Mei and Eisner, 2017) was trained with a batch size of

128, a learning rate of 0.001, a linear warm-up learning rate schedule over the first 1% of training iterations, a max allowed

gradient norm of 104 for training stability, and the Adam stochastic gradient optimization algorithm (Kingma and Ba, 2015)

with default hyperparameters. Specific datasets had specific model hyperparameters due to differences in the amount of

data and total possible marks. The details for these can be found in Table 2. All models were trained for a fixed amount of

epochs; however, each one was confirmed to have converged based on average held-out validation log-likelihood.

C.3 Integration Approximation

For the real-world experiments, many integrals need to be evaluated in order to produce estimates for various queries. Since

we use essentially black-box MTPP models, we do not have access to an analytical form for integration. As such, we must

estimate every integral at play.

To do this, we utilize the trapezoidal rule. For reference, this involves estimating integrals with the following summation:

∫ b

a

f(x)dx ≈
N
∑

i=1

(f(xi) + f(xi−1))
xi − xi−1

2

where the points xi−1 < xi span the interval [a, b] with x0 = a and xN = b. For hitting time queries and marginal mark

queries, we utilize N = 1000 integration points with equal spacing. It is likely that we could get by with much less for these

queries, however, for the sake of high precision for experimental results we utilized a large amount of sample points.

For the “A before B” queries, we found that the resolution at which the estimator is evaluated at is of much more importance

than the other queries. As such, for this query we estimate integrals in an online fashion during the sampling procedure for

each proposal distribution sample sequence in conjunction with a very high proposal dominating rate (see Ogata (1981) for

details). This allowed for a much more efficient procedure (in both computation and memory consumption) compared to

integrating results after sampling.
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between underlying ground truth values and the relative efficiency of this estimator.

Notably, these results do not appear to be as drastic as the hitting time query results. We believe this is due to the fact that the

estimator’s bounds of integration are sampled from the proposal distribution to be between τN−1 and τN for each sequence

(whereas the bounds for the hitting time query p(hit(k) ≤ t) is always the span of [0, t]). This added variability seems to

dampen the impact of the integration in the first place.

C.5 Synthetic Data Experiments

We also perform experiments on hitting time queries and “A before B” queries using self-exciting parametric Hawkes

processes (Hawkes, 1971). The intensity for Hawkes processes with exponential kernels has the explicit form:

λ∗
k(t) = µk +

K
∑

κ=1

∫ t

0

φκk(t− u)dNκ(u)

= µk +
K
∑

κ=1

∑

τκ,i<t

φκk(t− τκ,i), (6)

where τκ,i refers to the time when the ith event of type κ occurs, φ(x) = αe−βx with α,β > 0, and Equation 6 can be

expressed in matrix form. The first term µ is referred to as the base intensity or background intensity in literature. Each

event instantaneously increases the intensity by the corresponding value of α and its influence decays exponentially with β
and over time. Under this parametric form, the integrals for query estimates can be computed in closed forms.

We also conduct both experiments on hitting time and “A before B” queries using Hawkes processes with Gamma kernels.

The Gamma kernel has the form of φ(x) = xe−x, and the corresponding Hawkes processes do not have closed-form

solutions to these queries.

We evaluate our methods on (i) hitting time queries p(hit(k) ≤ t) and (ii) “A before B” queries p(hit(A) < hit(B)). All

results are averaged over 1,000 different randomly initiated parametric self-exciting Hawkes models that are not feasible for

real-world datasets. These random models have different total amounts of marks ranging from K = 3 to K = 10, and have

different inter-event effects as well as exponential rates of decay. We use 10 integration points for hitting time queries and

1,000 integration points for “A before B” queries. 8

For each hitting time query, we fix t = 1 and k = 0, because the model is randomly generated. For the “A before B” queries,

like the real-world experiments we let them be randomly sampled subsets of the vocabulary such |A| = |B| ≈ K/3. We

evaluate the hitting time queries using varying amounts of samples: {2, 4, 10, 25, 50, 250, 1000}. For “A before B” queries,

we only use {2, 4, 10, 25, 50, 250} number of samples because the query estimates take longer. Ground truth probabilities

are calculated using 5,000 samples with importance sampling for hitting time queries and with naive method for “A before

B” queries respectively.

The plots in Figs. 7 and 8 reveal similar patterns and illustrate that our method is more efficient than the naive estimates

averaged over a range of different model settings.

8For the “A before B” queries, using 1,000 integration points after sampled provided sufficient precision and we did not need to employ
the online integration approach used with the real-world experiments. This is most likely attributable to the well-behaved dynamics
exhibited by the parametric Hawkes intensity. This is also why we used a reduced amount of integration points for the synthetic hitting
time queries as well compared to the real-world experiments.
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