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Abstract

Selecting informative data points for expert feed-

back can significantly improve the performance

of anomaly detection (AD) in various contexts,

such as medical diagnostics or fraud detection. In

this paper, we determine a set of theoretical con-

ditions under which anomaly scores generalize

from labeled queries to unlabeled data. Motivated

by these results, we propose a data labeling strat-

egy with optimal data coverage under labeling

budget constraints. In addition, we propose a new

learning framework for semi-supervised AD. Ex-

tensive experiments on image, tabular, and video

data sets show that our approach results in state-

of-the-art semi-supervised AD performance under

labeling budget constraints.

1. Introduction

Detecting anomalies in data is a fundamental task in ma-

chine learning with applications across multiple domains,

from industrial fault detection to medical diagnosis. The

main idea is to train a model (such as a neural network) on

a data set of “normal” samples to minimize the loss of an

auxiliary (e.g., self-supervised) task. Using the loss function

to score test data, one hopes to obtain low scores for normal

data and high scores for anomalies (Ruff et al., 2021).

In practice, the training data is often contaminated with

unlabeled anomalies that differ in unknown ways from the

i.i.d. samples of normal data. No access to a binary anomaly

label (indicating whether a sample is normal or not) makes

learning the anomaly scoring function from contaminated

data challenging; the training signal has to come exclusively

from the input features (typically real-valued vectors). Many
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approaches either assume that the unlabeled anomalies are

too rarely encountered during training to affect learning

(Wang et al., 2019) or try to detect and exploit the anomalies

in the training data (e.g., Qiu et al. (2022a)).

While AD is typically an unsupervised training task, some-

times expert feedback is available to check if individual

samples are normal or not. For example, in a medical set-

ting, one may ask a medical doctor to confirm whether

a given image reflects normal or abnormal cellular tissue.

Other application areas include detecting network intrusions

or machine failures. Anomaly labels are usually expensive

to obtain but are very valuable to guide an anomaly detector

during training. For example, in Fig. 1, we can see that our

method, with only one labeled query (Fig. 1 d) is almost on

par with supervised AD (Fig. 1 a). However, the supervised

setting is unrealistic, since expert feedback is typically ex-

pensive. Instead, it is essential to develop effective strategies

for querying informative data points.

Previous work on AD under a labeling budget primarily in-

volves domain-specific applications and/or ad hoc architec-

tures, making it hard to disentangle modeling choices from

querying strategies (Trittenbach et al., 2021). In contrast,

this paper theoretically and empirically studies generaliza-

tion performance using various labeling budgets, querying

strategies, and losses.

In summary, our main contributions are as follows:

1. We prove that the ranking of anomaly scores generalizes

from labeled queries to unlabeled data under certain con-

ditions that characterize how well the queries cover the

data. Based on this theory, we propose a diverse querying

strategy for deep AD under labeling budget constraints.

2. We propose semi-supervised outlier exposure with a

limited labeling budget (SOEL), a semi-supervised learn-

ing framework compatible with a large number of deep

AD losses. We show how all major hyperparameters can

be eliminated, making SOEL easy to use. To this end,

we provide an estimate for the anomaly ratio in the data.

3. We provide an extensive benchmark for deep AD with

a limited labeling budget. Our experiments on image,

tabular, and video data provide evidence that SOEL out-

performs existing methods significantly. Comprehensive

ablations disentangle the benefits of each component.
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Our paper is structured as follows. Sec. 2 introduces the

problem setting we address and our main algorithm. Sec. 3

discusses related work in deep AD. Sec. 4 discusses exper-

imental results on each of image, video, and tabular data.

Finally, we conclude this work in Section 5.

2. Methods

2.1. Notation and Problem Statement

Consider a dataset {xi}
N
i=1 where the datapoints xi are

i.i.d. samples from a mixture distribution p(x) = (1 −
α)p0(x) + αp1(x). The distribution p0(x) corresponds to

the normal data, while p1(x) corresponds to anomalous

data. We assume that 0 ≤ α < 0.5, i.e., that the anomalous

data is non-dominant in the mixture; in practice, α ≪ 0.5.

In the AD problem, we wish to use the data to train an

anomaly detector in the form of a parametric anomaly score

function S(x; θ). Once trained this score function is thresh-

olded to determine whether a datapoint xi is anomalous, as

indicated by the binary anomaly label yi := y(xi) ∈ {0 :=
“normal”, 1 := “abnormal”}.

We focus on the situation where the training data is unla-

beled (only xi is known, not yi), but where we have access

to an oracle (e.g., a human expert) that is able to provide

labels yi for a budgeted number K of the N training points.

2.2. Outline of the Technical Approach

Our work addresses the following questions: How to best

select informative data points for labeling – this is called

the querying strategy, how to best learn an anomaly de-

tector from both the labeled and unlabeled data in a semi-

supervised fashion, and how to make the approach easy to

use by eliminating a crucial hyper-parameter.

Querying Strategy. A successful approach for deep AD

under labeling budget constraints will require a strategy for

selecting the most beneficial set of queries. We choose a

theoretically-grounded approach based on generalization

performance. For this, we exploit that at test-time an AD

method will threshold the anomaly scores to distinguish

between normal samples and anomalies. This means that

the quality of a scoring function is not determined by the

absolute anomaly scores but only by their relative ranking.

In Sec. 2.4, we characterize a favorable property of the

query set which can guarantee that the ranking of anomaly

scores generalizes from the labeled data to unlabeled sam-

ples. Since this is desirable, we derive a querying strategy

that under a limited labeling budget best fulfills the favorable

properties put forth by our analysis.

Semi-supervised Outlier Exposure. As a second contri-

bution, we propose a semi-supervised learning framework

that best exploits both the labeled query set and the unla-

beled data. It builds on supervised AD and latent outlier

exposure (LOE) which we review in Sec. 2.3. We present

SOEL in Sec. 2.5. The SOEL training objective is designed

to receive opposing training signals from the normal sam-

ples and the anomalies. An EM-style algorithm alternates

between estimating the anomaly labels of the unlabaled data

and improving the anomaly scoring function using the data

samples and their given or estimated labels.

Hyperparameter Elimination. Like related methods dis-

cussed in Sec. 3, SOEL has an important hyperparameter

α which corresponds to the expected fraction of anomalies

in the data. While previous work has to assume that α is

known (Qiu et al., 2022a), our proposed method presents

an opportunity to estimate it. The estimate has to account

for the fact that the optimal querying strategy derived from

our theory in Sec. 2.4 is not i.i.d.. In Sec. 2.6, we provide

an estimate of α for any stochastic querying strategy.

2.3. Background: Deep AD

In deep AD, auxiliary losses help learn the anomaly scoring

function S(x; θ). Popular losses include autoencoder-based

losses (Zhou and Paffenroth, 2017), the deep SVDD loss

(Ruff et al., 2018), or the neural transformation learning

loss (Qiu et al., 2021). It is assumed that minimizing such

a loss Lθ
0(x) ≡ L0(S(x; θ)) over “normal” data leads to a

desirable scoring function that assigns low scores to normal

samples and high scores to anomalies.

Most deep AD methods optimize such an objective over

an entire unlabeled data set, even if it contains unknown

anomalies. It is assumed that the anomalies are rare enough

that they will not dilute the training signal provided by

the normal samples (inlier priority, (Wang et al., 2019)).

Building on the ideas of Ruff et al. (2019) that synthetic

anomalies can provide valuable training signal, Qiu et al.

(2022a) show how to discover and exploit anomalies by

treating the anomaly labels as latent variables in training.

The key idea of Ruff et al. (2019) is to construct a comple-

mentary loss Lθ
1(x) ≡ L1(S(x; θ)) for anomalies that has

an opposing effect to the normal loss Lθ
0(x). For example,

the deep SVDD loss Lθ
0(x) = ||fθ(x)− c||2, with feature

extractor fθ, pulls normal data points towards a fixed cen-

ter c (Ruff et al., 2018). The opposing loss for anomalies,

defined in Ruff et al. (2019) as Lθ
1(x) = 1/Lθ

0(x), pushes

abnormal data away from the center.

Supervised AD. Using only the labeled data indexed by Q
one could train S(x; θ) using a supervised loss (Hendrycks

et al., 2018; Görnitz et al., 2013)

LQ(θ) =
1

|Q|

∑

j∈Q

(

yjL
θ
1(xj) + (1− yj)L

θ
0(xj)

)

. (1)

Latent Outlier Exposure. Latent outlier exposure (LOE,
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and is hence advantageous for AD.

2.5. Semi-supervised Outlier Exposure Loss (SOEL)

We next consider how to use both labeled and unlabeled

samples in training. We propose SOEL whose loss combines

the unsupervised AD loss of LOE (Qiu et al., 2022a) for

the unlabeled data with the supervised loss (Eq. (1)) for the

labeled samples. For all queried data (with index set Q), we

assume that ground truth labels yi are available, while for

unqueried data (with index set U ), the labels ỹi are unknown.

Adding both losses together yields

L(θ, ỹ) =
1

|Q|

∑

j∈Q

(

yjL
θ
1(xj) + (1− yj)L

θ
0(xj)

)

+

1

|U|

∑

i∈U

(

ỹiL
θ
1(xi) + (1− ỹi)L

θ
0(xi)

)

. (3)

Similar to Qiu et al. (2022a), optimizing this loss involves

a block coordinate ascent scheme that alternates between

inferring the unknown labels and taking gradient steps to

minimize Eq. (3) with the inferred labels. In each iteration,

the pseudo labels ỹi for i ∈ U are obtained by minimizing

Eq. (3) subject to a constraint of
∑

i∈Q yi +
∑

i∈U ỹi =
αN . The constraint ensures that the inferred anomaly labels

respect a certain contamination ratio α. To be specific, let

α̃ denote the fraction of anomalies among the unqueried

set U , so that α̃|U| +
∑

j∈Q yj = αN . The constrained

optimization problem is then solved by using the current

anomaly score function S to rank the unlabeled samples and

assign the top α̃-quantile of the associated labels ỹi to the

value 1, and the remaining to the value 0.

We illustrate SOEL’s effect on a 2D toy data example in

Fig. 1, where SOEL (d) almost achieves the same perfor-

mance as the supervised AD (c) with only one queried point.

In theory, α could be treated as a hyperparameter, but elimi-

nating hyperparameters is important in AD. In many prac-

tical applications of AD, there is no labeled data that can

be used for validation. While Qiu et al. (2022a) have to as-

sume that the contamination ratio is given, SOEL provides

an opportunity to estimate α. In Sec. 2.6, we develop an

importance-sampling based approach to estimate α from

the labeled data. Estimating this ratio can be beneficial for

many AD algorithms, including OC-SVM (Schölkopf et al.,

2001), kNN (Ramaswamy et al., 2000), Robust PCA/Auto-

encoder (Zhou and Paffenroth, 2017), and Soft-boundary

deep SVDD (Ruff et al., 2018). When working with con-

taminated data, these algorithms require a decent estimate

of the contamination ratio for good performance.

Another noteworthy aspect of the SOEL loss is that it weighs

the averaged losses equally to each other. In Supp. E.9, we

empirically show that equal weighting yields the best results

among a large range of various weights. This provides more

weight to every queried data point than to an unqueried one,

because we expect the labeled samples to be more informa-

tive. On the other hand, it ensures that neither loss compo-

nent will dominate the learning task. Our equal weighting

scheme is also practical because it avoids a hyperparameter.

2.6. Contamination Ratio Estimation.

To eliminate a critical hyperparameter in our approach, we

estimate the contamination ratio α, i.e., the fraction of

anomalies in the dataset. Under a few assumptions, we

show how to estimate this parameter using mini-batches

composed of on non-i.i.d. samples.

We consider the contamination ratio α as the fraction of

anomalies in the data. We draw on the notation from Sec. 2.1

to define y(x) as an oracle, outputting 1 if x is an anomaly,

and 0 otherwise (e.g., upon querying x). We can now write

α = Ep(x)[y(x)].

Estimating α would be trivial given an unlimited querying

budget of i.i.d. data samples. The difficulty arises due to

the fact that (1) our querying budget is limited, and (2) we

query data in a non-i.i.d. fashion so that the sample average

is not representative of the anomaly ratio of the full data set.

Since the queried data points are not independently sam-

pled, we cannot straightforwardly estimate α based on the

empirical frequency of anomalies in the query Q. More pre-

cisely, our querying procedure results in a chain of indices

Q = {i1, i2, ..., i|Q|}, where i1 ∼ Unif(1 : N), and each

conditional distribution ik|i<k is defined by Eq. (2). We will

show as follows that this sampling bias can be compensated

using importance weights.

As follows, we first propose an importance-weighted esti-

mator of α and then prove the estimator is unbiased under

certain idealized conditions specified by two assumptions

about our querying strategy. Justifications for the two as-

sumptions will be provided below.

For a random query Q, its anomaly scores {S(xi) : i ∈ Q}
and anomaly labels {y(xi) : i ∈ Q} are known. Write

S(xi) as si and let ps(si) denote the marginal density of

population anomaly scores and qs(si) denote the marginal

density of the queried samples’ anomaly scores. Our

importance-weighted estimator of the contamination ratio is

α̂ =
1

|Q|

|Q|
∑

i=1

ps(si)

qs(si)
y(xi). (4)

As discussed above, y(xi) are the ground truth anomaly

labels, obtained from querying Q. The estimator takes into

account that, upon repulsive sampling, we will sample data

points in the tail regions of the data distribution more often

than we would upon uniform sampling.

In practice, we learn ps and qs using a kernel density esti-
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mator in the one-dimensional space of anomaly scores of

the training data and the queried data, respectively. We set

the bandwidth to the average spacing of scores. With the

following two assumptions, Eq. (4) is unbiased.

Assumption 1. The anomaly scores {S(xi) : i ∈ Q} in a

query set Q are approximately independently distributed.

Assumption 2. Let ys(S(x)) denote an oracle that assigns

ground truth anomaly labels based on the model’s anomaly

scores S(x). We assume that such an oracle exists, i.e., the

anomaly score S(x) is a sufficient statistic of the ground

truth anomaly labeling function: ys(S(x)) = y(x).

Assumptions 1 and 2 are only approximations of reality. In

our experiment section, we will show that they are good

working assumptions to estimate anomaly ratios. Below, we

will provide additional strong evidence that assumptions 1

and 2 are well justified.

The following theorem is a consequence of them:

Theorem 2. Assume that Assumptions 1 and 2 hold. Then,

Eq. (4) is an unbiased estimator of the contamination ratio

α, i.e., E[α̂] = α.

The proof is in Supp. B. Thm. 2 allows us to estimate the

contamination ratio based on a non-iid query set Q.

Discussion. We empirically verified the fact that Thm. 2

results in reliable estimates for varying contamination ratios

in Supp. B.4. Since Assumptions 1 and 2 seem strong, we

discuss their justifications and empirical validity next.

While verifying the independence assumption (Assumption

1) rigorously is difficult, we tested for linear correlations

between the scores (Supp. B.2). We found that the absolute

off-diagonal coefficient values are significantly smaller than

one on CIFAR-10, providing support for Assumption 1. A

heuristic argument can be provided to support the validity

of Assumption 1 based on the following intuition. When

data points are sampled diversely in a high-dimensional

space, the negative correlations induced by their repulsive

nature tend to diminish when the data is projected onto a

one-dimensional subspace. This intuition stems from the

fact that a high-dimensional ambient space offers ample di-

mensions for the data points to avoid clustering. To illustrate

this, consider the scenario of sampling diverse locations on

the Earth’s surface, with each location representing a point

in the high-dimensional space. By including points from

various continents, we ensure diversity in their spatial dis-

tribution. However, when focusing solely on the altitude of

these locations (such as distinguishing between mountain

tops and flat land), it is plausible that the altitude levels

are completely uncorrelated. While this heuristic argument

provides an intuitive understanding, it is important to note

that it does not offer a rigorous mathematical proof.

To test Assumption 2, we tested the degree to which the

anomaly score is a sufficient statistic for anomaly scoring

on the training set. The assumption would be violated if we

could find pairs of training data xi and xj , where xi ̸= xj ,

with identical anomaly scores S(xi) = S(xj) but different

anomaly labels ys(si) ̸= ys(sj)
2. On FMNIST, we found

38 data pairs with matching scores, and none of them had

opposite anomaly labels. For CIFAR-10, the numbers were

21 and 3, respectively. See Supp. B.3 for details.

3. Related Work

Deep Anomaly Detection. Many recent advances in

anomaly detection are in the area of deep learning (Ruff

et al., 2021). One early strategy was to use autoencoder-

(Zhou and Paffenroth, 2017; Principi et al., 2017) or density-

based models (Schlegl et al., 2017; Deecke et al., 2018).

Another pioneering stream of research combines one-class

classification (Schölkopf et al., 2001) with deep learning

for unsupervised (Ruff et al., 2018; Qiu et al., 2022b)

and semi-supervised (Ruff et al., 2019) anomaly detection.

Many other approaches to deep anomaly detection are self-

supervised. They employ a self-supervised loss function

to train the detector and score anomalies (Qiu et al., 2021;

Golan and El-Yaniv, 2018; Hendrycks et al., 2019; Bergman

and Hoshen, 2020; Shenkar and Wolf, 2022; Schneider et al.,

2022). Our work resides in the self-supervised anomaly de-

tection category and can be extended to other data modalities

if an appropriate loss is provided.

While all these methods assume that the training data con-

sists of only normal samples, in many practical applications,

the training pool may be contaminated with unidentified

anomalies (Vilhjálmsson and Nordborg, 2013; Steinhardt

et al., 2017). This can be problematic because the detection

accuracy typically deteriorates when the contamination ratio

increases (Wang et al., 2019). Addressing this, refinement

(Zhou and Paffenroth, 2017; Yoon et al., 2021) attempts to

cleanse the training pool by removing anomalies therein,

although they may provide valuable training signals. As a

remedy, Qiu et al. (2022a) propose to jointly infer binary

labels to each datum (normal vs. anomalous) while updating

the model parameters based on outlier exposure. Our work

also makes the contaminated data assumption and employs

the training signal of abnormal data.

Querying Strategies for Anomaly Detection. Querying

strategies play an important role in batch active learning

(Sener and Savarese, 2018; Ash et al., 2020; Citovsky et al.,

2021; Pinsler et al., 2019; Hoi et al., 2006) but are less stud-

ied for anomaly detection. The human-in-the-loop setup for

anomaly detection has been pioneered by Pelleg and Moore

(2004). Query samples are typically chosen locally, e.g.,

2The condition S(xi) ̸= S(xj) for xi ̸= xj hints we can
assign a unique label to each data point based on their scores.
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close to the decision boundary of a one-class SVM (Görnitz

et al., 2013; Yin et al., 2018) or sampled according to a

density model (Ghasemi et al., 2011). Siddiqui et al. (2018);

Das et al. (2016) propose to query the most anomalous

instance, while Das et al. (2019) employ a tree-based ensem-

ble to query both anomalous and diverse samples. A recent

survey compares various aforementioned query strategies

with one-class classifiers (Trittenbach et al., 2021).

Pimentel et al. (2020) query samples with the top anomaly

scores for autoencoder-based methods, while Ning et al.

(2022) improve the querying by considering the diversity.

Tang et al. (2020) use an ensemble of deep anomaly detec-

tors and query the most likely anomalies for each detector

separately. Russo et al. (2020) query samples where the

model is uncertain about the predictions. Pang et al. (2021)

and Zha et al. (2020) propose querying strategies based on

reinforcement learning, which requires labeled datasets.

All these querying strategies do not optimize coverage as

defined in Thm. 1, and as a result, their generalization guar-

antees are less favorable than our method. Most querying

strategies from the papers discussed above are fairly general

and can be applied in combination with various backbone

models. Since more powerful backbone models have been

released since these earlier publications, we ensure a fair

comparison by studying all querying strategies in combina-

tion with the same backbone models as SOEL.

4. Experiments

We study SOEL on standard image benchmarks, medical

images, tabular data, and surveillance videos. Our exten-

sive empirical study establishes how our proposed method

compares to eight AD methods with labeling budgets im-

plemented as baselines. We first describe the baselines and

their implementations (Tab. 1) and then the experiments on

images (Sec. 4.1), tabular data (Sec. 4.2), videos (Sec. 4.3)

and finally additional experiments (Sec. 4.4).

Baselines. Most existing baselines apply their proposed

querying and training strategies to shallow AD methods or

sub-optimal deep models (e.g., autoencoders (Zhou and Paf-

fenroth, 2017)). In recent years, these approaches have con-

sistently been outperformed by self-supervised AD methods

(Hendrycks et al., 2019). For a fair comparison, we endow

all baselines with the same self-supervised backbone models

also used in our method. By default we use neural transfor-

mation learning (NTL) (Qiu et al., 2021) as the backbone

model, which was identified as state-of-the-art in a recent

independent comparison of 13 models (Alvarez et al., 2022).

Results with other backbone models are shown in Supp. E.2.

The baselines are summarized in Tab. 1 and detailed in

Supp. C. They differ in their querying strategies (col. 3)

and training strategies (col. 4 & 5): the unlabeled data

is either ignored or modeled with a one-class objective.

Most baselines incorporate the labeled data by a supervised

loss (Eq. (1)). As an exception, Ning et al. (2022) remove

all queried anomalies and then train a weighted one-class

objective on the remaining data. All baselines weigh the

unsupervised and supervised losses equally. They differ in

their querying strategies, summarized below:

• Margin query selects samples close to the boundary of

the normality region deterministically. The method uses

the true contamination ratio to choose an ideal boundary.

• Margin diverse query combines margin query with

neighborhood-based diversification. It selects samples

that are not k-nearest neighbors of the queried set. Thus

samples are both diverse and close to the boundary.

• Most positive query always selects the top-ranked sam-

ples ordered by their anomaly scores.

• Positive diverse query combines querying according to

anomaly scores with distance-based diversification. The

selection criterion combines anomaly score and the mini-

mum Euclidean distance to all queried samples.

• Random query draws samples uniformly.

• Positive random query samples uniformly among the

top 50% data ranked by anomaly scores.

Implementation Details. In all experiments, we use a NTL

(Qiu et al., 2021) backbone model for all methods. Experi-

ments with other backbone models are shown in Supp. E.2.

On images and videos, NTL is built upon the penultimate

layer output of a frozen ResNet-152 pre-trained on Ima-

geNet. NTL is trained for one epoch, after which all |Q|
queries are labeled at once. The contamination ratio α in

SOEL is estimated immediately after the querying step and

then fixed for the remaining training process. We follow Qiu

et al. (2022a) and set ỹi = 0.5 for inferred anomalies. This

accounts for the uncertainty of whether the sample truly is

an anomaly. More details are given in Supp. D and Alg. 1.

4.1. Experiments on Image Data

We study SOEL on standard image benchmarks to establish

how it compares to eight well-known baselines with various

querying and training strategies. Informative querying plays

an important role in medical domains where expert labeling

is expensive. Hence, we also study nine medical datasets

from Yang et al. (2021). We describe the datasets, the

evaluation protocol, and finally the results of our study.

Image Benchmarks. We experiment with two popular

image benchmarks: CIFAR-10 and Fashion-MNIST. These

have been widely used in previous papers on deep AD (Ruff

et al., 2018; Golan and El-Yaniv, 2018; Hendrycks et al.,

2019; Bergman and Hoshen, 2020).

Medical Images. Since medical imaging is an important

practical application of AD, we also study SOEL on medi-
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Table 3. F1-score (%) with standard deviation for anomaly detection on tabular data when the query budget |Q| = 10. SOEL performs

the best on 3 of 4 datasets and outperforms all baselines by 3.2 percentage points on average.

Mar Hybr1 Pos1 Pos2 Rand1 Rand2 Hybr2 Hybr3 SOEL

BreastW 81.6±0.7 83.3±2.0 58.6±7.7 81.3±0.8 87.1±1.0 82.9±1.1 55.0±6.0 79.6±4.9 93.9±0.5
Ionosphere 91.9±0.3 92.3±0.5 56.1±6.2 91.1±0.8 91.1±0.3 91.9±0.6 64.0±4.6 88.2±0.9 91.8±1.1
Pima 50.1±1.3 49.2±1.9 48.5±0.4 52.4±0.8 53.6±1.1 51.9±2.0 53.8±4.0 48.4±0.7 55.5±1.2
Satellite 64.2±1.2 66.2±1.7 57.0±3.0 56.7±3.2 67.7±1.2 66.6±0.8 48.6±6.9 56.9±7.0 71.1±1.7

Average 72.0 72.8 55.1 70.4 74.9 73.3 55.4 68.3 78.1

for inferring y (Fig. 13), and comparison to additional semi-

supervised baselines (Fig. 13, Tab. 10).

5. Conclusion

We introduced semi-supervised outlier exposure with a lim-

ited labeling budget (SOEL). Inspired by a set of conditions

that guarantee the generalization of anomaly score rank-

ings from queried to unqueried data, we proposed to use

a diversified querying strategy and a combination of two

losses for queried and unqueried samples. By weighting the

losses equally to each other and by estimating the unknown

contamination rate from queried samples, we were able to

make our approach free of its most important hyperparam-

eters, making it easy to use. An extensive empirical study

on images, tabular data, and video confirmed the efficacy of

SOEL as a semi-supervised learning framework compatible

with many existing losses for AD.

Limitations: The success of our approach relies on several

heuristics that we demonstrated were empirically effective

but that cannot be proven rigorously. Estimation of the con-

tamination ratio can be noisy when the query set is small—

but the LOE loss is robust even under misspecification of

the contamination ratio (Qiu et al., 2022a). The diversified

sampling strategy becomes expensive when the dataset is

large, but this can be mitigated by random data thinning.

Societal Impacts: The use of human labels for anomaly

detection runs the risk of introducing potential human bi-

ases in the definition of what is anomalous, particularly for

datasets involving human subjects. Since our approach re-

lies heavily on a relatively small number of human labels,

the deployment of our approach with real human labelers

would benefit by having guidelines for the labelers in terms

of providing fair labels and avoiding amplification of bias.
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Next, we provide an empirical, overall justification of Thm. 1 (see also Fig. 10 on test data). An implication of Thm. 1 is that,

assuming anomaly scores are fixed, a smaller δ will satisfy the large anomaly score margin (S(xa)− S(xn)) more easily,

hence it is easier for S to correctly rank the remaining unlabeled points. To justify this implication, we need a metric of

ranking. AUC satisfies this requirement as it is alternatively defined as (Mohri et al., 2018, 10.5.2)(Cortes and Mohri, 2003)

AUC =
1

|U0|+ |U1|

∑

n∈U0,a∈U1

1(S(ua) > S(un)) ≈ Pn∈U0,a∈U1
(S(ua) > S(un))

which measures the probability of ranking unlabeled samples ua higher than un in terms of their scores. U = U0

⋃

U1 is

the un-queried data indices and U0 and U1 are disjoint un-queried normal and abnormal data sets respectively. ua and un

are instances of each kind. We conducted experiments on CIFAR-10 and F-MNIST, where we trained an anomaly detector

(NTL) on the queried data for 30 epochs and then compute the AUC on the remaining un-queried data. The results of four

querying straties are reported in Fig. 5, which shows that our proposed diverse querying strategy generalizes the anomaly

score ranking the best to the unqueried data among the compared strategies, testifying our analysis in the main paper. A

consequence is that diverse querying can provide accurate assignments of the latent anomaly labels, which will further help

learn a high-quality of anomaly detector through the unsupervised loss term in Eq. (3).

Optimality of Cover Radius. Although k-means++ greedily samples the queries which may have a sub-optimal cover

radius, greedy sampling strategies for selecting a diverse set of datapoints in a multi-dimensional space are known to produce

nearly optimal solutions (Krause and Golovin, 2014), with significant runtime savings over more sophisticated search

methods. As a results, we follow common practice (e.g. Arthur and Vassilvitskii (2007)) and also use the greedy approach.

We check the diversity of the rustling query set by comparing all sampling strategies considered in the paper in terms of data

coverage. Figure 4 shows that the greedy strategy we use achieves the best coverage, i.e. results in the most diverse query

set.

On the Assumptions of Thm. 1. In the proof, we assume a Lipschitz continuous S and a large margin between S(xa)
and S(xn). Lipschitz continuity serves as a working assumption and is a common assumption when analyzing optimization

landscapes of deep learning. Lipschitz continuity can be controlled by the strength of regularization on the model parameters.

The large margin condition is achieved by optimizing our loss function. The supervised anomaly detection loss encourages a

large margin as it minimizes the anomaly score of queried normal data and maximizes the score of the queried abnormal data.

If the anomaly score function doesn’t do well for the queried samples, then it should be optimized further. Our empirical

results also show this is a reasonable condition.

B. Theorem 2

In this section, we will empirically justify the assumptions we made in Sec. 2.6 that are used to build an unbiased estimator

of the anomaly ratio α (Eq. (4)). We will also demonstrate the robustness of the estimation under varying α.

B.1. Proof

Proof. Let A1 and A2 denote Assumption 1 and 2, respectively. Furthermore, let q(x1, ...,x|Q|) and qs(s1, ..., s|Q|) denote

the query distribution in the data and anomaly score spaces, respectively. A2 assumes ys(s) := ys(S(x)) = y(x) for all x.

So the expectation of Eq. (4) is

E[α̂] = Eq(x1,...,x|Q|)





1

|Q|

|Q|
∑

i=1

ps(S(xi))

qs(S(xi))
y(x)





A2
= Eqs(s1,...,s|Q|)





1

|Q|

|Q|
∑

i=1

ps(si)

qs(si)
ys(si)





A1
= E∏|Q|

i=1
qs(si)





1

|Q|

|Q|
∑

i=1

ps(si)

qs(si)
ys(si)



 =
1

|Q|

|Q|
∑

i=1

Eqs(si)

[

ps(si)

qs(si)
ys(si)

]

= Eps(s)[ys(s)]

= Ep(x)[ys(S(x))]
A2
= Ep(x)[y(x)] = α

where the change of variables makes necessary assumptions, including the existence of density functions.
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Figure 6. Anomaly score correlation matrix ⟨S(xi), S(xj)⟩, where xi and xj are jointly sampled in the same query set. The result

indicates that anomaly scores can be considered as approximately independent random variables.

B.2. Assumption 1

We verify Assumption 1 by showing the correlation matrix in Fig. 6, where we jointly queried 20 points with diversified

querying strategy and repeated 1000 times on two classes of CIFAR-10 and F-MNIST. Then the correlation between each

pair of points are computed and placed in the off-diagonal entries. For each matrix, we show the average, maximum, and

minimum of the off-diagonal terms

• CIFAR-10 Class 1: -0.001, 0.103, -0.086

• CIFAR-10 Class 2: -0.001, 0.085, -0.094

• F-MNIST Class 1: -0.001, 0.081, -0.075

• F-MNIST Class 2: -0.005, 0.087, -0.067

Which shows the correlations ⟨S(xi), S(xj)⟩ are negligible, and the anomaly scores can be considered approximately

independent random variables.

B.3. Assumption 2

We verify Assumption 2 by counting the violations, i.e., S(xi) = S(xj) but y(xi) ̸= y(xj) (because Assumption 2

states ys(si) = y(xi) and ys(sj) = y(xj), S(xi) = S(xj) implies y(xi) = ys(si) = ys(sj) = y(xj). The negation is

S(xi) = S(xj) and y(xi) ̸= y(xj).). We run the experiments on both CIFAR-10 and FMNIST. We apply the "one-vs.-rest"
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setup for both datasets and set the first class as normal and all the other classes as abnormal. We set the ground-truth anomaly

ratio as 0.1. After the initial training, we count the pairs of data points that satisfy S(xi) = S(xj) but y(xi) ̸= y(xj) for

i ̸= j. Our validation shows that on FMNIST, among 6666 training data points, there are 38 pairs of matching scores,

and none of them have opposite labels, and on CIFAR-10, among 5555 training data points, the numbers are 21 and 3,

respectively.

B.4. Contamination Ratio Estimation

Table 4. Estimated contamination ratios on CIFAR-10 and F-MNIST when |Q| = 40 and the backbone model is NTL. The first row

shows the true contamination ratio ranging from 1% to 45%. The estimations are repeated 50 times.

1% 5% 10% 15% 20%

CIFAR-10 0.5%± 1.2% 6.0%± 3.3% 12.0%± 4.4% 15.3%± 4.5% 18.9% ± 5.4%
F-MNIST 1.0%± 1.5% 3.8%± 2.3% 8.7%± 4.1% 12.8%± 5.3% 19.3% ± 5.1%

25% 30% 35% 40% 45%

CIFAR-10 26.2% ± 6.0% 30.6% ± 5.5% 35.8% ± 6.9% 42.0% ± 7.7% 47.2% ± 6.7%
F-MNIST 27.9% ± 6.4% 31.8% ± 6.1% 38.3% ± 6.5% 43.1% ± 5.7% 48.9% ± 5.6%

We estimate the contamination ratio by Eq. (4) under varying true ratios. This part shows the estimated contamination

ratio when the query budget is |Q| = 40. The estimations from the backbone model NTL is shown in Tab. 4. The first row

contains the ground truth contamination rate, and the second and third row indicate the inferred values for two datasets,

using our approach. Most estimates are withing the error bars and hence accurate. The estimation errors for low ground-truth

contamination ratios are acceptable as confirmed by the sensitivity study in (Qiu et al., 2022a) which concludes that the

LOE approach still works well if the anomaly ratio is mis-specified within 5 percentage points. Interestingly, we find the

estimation error increases somewhat with the contamination ratio. However, a contamination ratio larger than 40% is rare

in practice (most datasets should be fairly clean and would otherwise require additional preprocessing). In an anomaly

detection benchmark (https://github.com/Minqi824/ADBench), none of the datasets have an anomaly ratio

larger than 40%.

C. Baselines Details

In this section, we describe the details of the baselines in Tab. 1 in the main paper. For each baseline method, we explain

their query strategies and post-query training strategies we implement in our experiment. Please also refer to our codebase

for practical implementation details.

• Rand1. This strategy used by Ruff et al. (2019) selects queries by sampling uniformly without replacement across the

training set, resulting in the queried index set Q = {iq ∼ Unif(1, · · · , N)|1 ≤ q ≤ |Q|}. After the querying, models are

trained with a supervised loss function based on outlier exposure on the labeled data and with a one-class classification

loss function on the unlabeled data,

LRand1(θ) =
1

|Q|

∑

j∈Q

(

yjL
θ
1(xj) + (1− yj)L

θ
0(xj)

)

+
1

|U|

∑

i∈U

Lθ
0(xi). (6)

As in SOEL both loss contributions are weighted equally. LRand1(θ) is minimized with respect to the backbone model

parameters θ.

• Rand2. The querying strategy of Trittenbach et al. (2021) samples uniformly among the top 50% data ranked by anomaly

scores without replacement. This leades to a random set of “positive” queries. After the queries are labeled, the training

loss function is the same as LRand1(θ) (Eq. (6)).

• Mar. After training the backbone model for one epoch, this querying strategy by Görnitz et al. (2013) uses the α-quantile

(sα) of the training data anomaly scores to define a “normality region”. Then the |Q| samples closest to the margin sα are

selected to be queried. After the queries are labeled, the training loss function is the same as LRand1(θ) (Eq. (6)). Note that

in practice we don’t know the true anomaly ratio for the α-quantile. In all experiment, we provide this querying strategy

with the true contamination ratio of the dataset. Even with the true ratio, the “Mar” strategy is still outperformed by SOEL.
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• Hybr1. This hybrid strategy, also used by (Görnitz et al., 2013) combines the “Mar” query with neighborhood-based

diversification. The neighborhood-based strategy selects samples with fewer neighbors covered by the queried set to

ensure the samples’ diversity in the feature space. We start by selecting the data index argmin1≤i≤N ∥si − sα∥ into Q.

Then the samples are selected sequentially without replacement by the criterion

argmin
1≤i≤N

0.5 +
|{j ∈ NNk(φ(xi)) : j ∈ Q}|

2k
+ β

∥si − sα∥ −mini ∥si − sα∥

maxi ∥si − sα∥ −mini ∥si − sα∥

where the inter-sample distance is measured in the feature space and the number of nearest neighbors is k = ⌈N/|Q|⌉.

We set β = 1 for equal contribution of both terms. After the queries are labeled, the training loss function is the same as

LRand1(θ) (Eq. (6)).

• Pos1. This querying strategy by Pimentel et al. (2020) always selects the top-ranked samples ordered by their anomaly

scores, argmax1≤i≤N si. After the queries are labeled, the training loss only involves the labeled data

LPos1(θ) =
1

|Q|

∑

j∈Q

(

yjL
θ
1(xj) + (1− yj)L

θ
0(xj)

)

.

Pimentel et al. (2020) use the logistic loss but we use the supervised outlier exposure loss. The supervised outlier exposure

loss is shown to be better than the logistic loss in learning anomaly detection models (Ruff et al., 2019; Hendrycks et al.,

2018).

• Pos2. This approach of (Barnabé-Lortie et al., 2015) uses the same querying strategy as Pos1, but the training is different.

Pos2 also uses the unlabeled data during training. After the queries are labeled, the training loss function is the same as

LRand1(θ) (Eq. (6)).

• Hybr2. This hybrid strategy by Das et al. (2019) makes positive diverse queries. It combines querying according to

anomaly scores with distance-based diversification. Hybr2 selects the initial query argmax1≤i≤N si into Q. Then the

samples are selected sequentially without replacement by the criterion

argmax
1≤i≤N

si −mini si
maxi si −mini si

+ βmin
j∈Q

d(xi,xj)−mina ̸=b d(xa,xb)

maxa ̸=b d(xa,xb)−mina ̸=b d(xa,xb)

where d(xi,xj) = ||φ(xi)− φ(xj)||2. We set β = 1 for equal contribution of both terms. After the queries are labeled,

Das et al. (2019) use the labeled set to learn a set of weights for the components of an ensemble of detectors. For a fair

comparison of active learning strategies, we use the labeled set to update an individual anomaly detector with parameters

θ by optimizing the loss

LHybr2(θ) =
1

|Q|

∑

j∈Q

(

yjL
θ
1(xj) + (1− yj)L

θ
0(xj)

)

.

• Hybr3. This baseline by (Ning et al., 2022) uses the same query strategy as Hybr2, but differs in the training loss

function,

LHybr3(θ) =
1

|Q|+ |U|

∑

j∈Q

wj(1− yj)L
θ
0(xj) +

1

|Q|+ |U|

∑

i∈U

ŵiL
θ
0(xi),

where wj = 2σ(dj) and ŵi = 2− 2σ(di) where σ(·) is the Sigmoid function and di = 10cd
(

||φ(xi)− c0||2 − ||φ(xi)−

c1||2
)

where c0 is the center of the queried normal samples and c1 is the center of the queried abnormal samples in the

feature space, and cd is the min-max normalization factor.

We make three observations for the loss function. First, LHybr3(θ) filters out all labeled anomalies in the supervised

learning part and puts a large weight (but only as large as 2 at most) to the true normal data that has a high anomaly score.

Second, in the unlabeled data, LHybr3(θ) puts smaller weight (less than 1) to the seemingly abnormal data. Third, overall,

the weight of the labeled data is similar to the weight of the unlabeled data. This is unlike SOEL, which weighs labeled

data |U|/|Q| times higher than unlabeled data.
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Algorithm 1 Training Procedure of SOEL

Input: Unlabeled training dataset D, querying budget K
Procedure:

Train the model on D for one epoch as if all data were normal;

Query K data points from D diversely resulting in a labeled set Q and an unlabeled set U ;

Estimate the contamination ratio α based on Q;

Finally train the model with {Q,U} until convergence:

For each iteration:

We construct a mini-batch with Q and a subsampled mini-batch of U
The sample in Q is up-weighted with 1/|Q| and the sample in U is down-weighted with weight 1/|U|
The training strategy for Q is supervised learning; the training strategy for U is LOE with the estimated anomaly ratio α.

D. Implementation Details

In this section, we present the implementation details in the experiments. They include an overall description of the

experimental procedure for all datasets, model architecture, data split, and details about the optimization algorithm.

D.1. Experimental Procedure

We apply the same experimental procedure for each dataset and each compared method. The experiment starts with an

unlabeled, contaminated training dataset with index set U . We first train the anomaly detector on U for one epoch as if

all data were normal. Then we conduct the diverse active queries at once and estimate the contamination ratio α by the

importance sampling estimator Eq. (4). Lastly, we optimize the post-query training losses until convergence. The obtained

anomaly detectors are evaluated on a held-out test set. The training procedure of SOEL is shown in Alg. 1.

D.2. Data Split

Image Data. For the image data including both natural (CIFAR-10 (Krizhevsky et al., 2009) and F-MNIST (Xiao et al.,

2017)) and medical (MedMNIST (Yang et al., 2021)) images, we use the original training, validation (if any), and test split.

When contaminating the training data of one class, we randomly sample images from other classes’ training data and leave

the validation and test set untouched. Specifically for DermaMNIST in MedMNIST, we only consider the classes that have

more than 500 images in the training data as normal data candidates, which include benign keratosis-like lesions, melanoma,

and melanocytic nevi. We view all other classes as abnormal data. Different experiment runs have different randomness.

Tabular Data. Our study includes the four multi-dimensional tabular datasets from the ODDS repository3 which have

an outlier ratio of at least 30%. . To form the training and test set for tabular data, we first split the data into normal and

abnormal categories. We randomly sub-sample half the normal data as the training data and treat the other half as the test

data. To contaminate training data, we randomly sub-sample the abnormal data into the training set to reach the desired

10% contamination ratio; the remaining abnormal data goes into the test set. Different experiment runs have different

randomness.

Video Data. We use UCSD Peds14, a benchmark dataset for video anomaly detection. UCSD Peds1 contains 70

surveillance video clips – 34 training clips and 36 testing clips. Each frame is labeled to be abnormal if it has non-pedestrian

objects and labeled normal otherwise. Making the same assumption as (Pang et al., 2020), we treat each frame independent

and mix the original training and testing clips together. This results in a dataset of 9955 normal frames and 4045 abnormal

frames. We then randomly sub-sample 6800 frames out of the normal frames and 2914 frames out of the abnormal frames

without replacement to form a contaminated training dataset with 30% anomaly ratio. A same ratio is also used in the

literature (Pang et al., 2020) that uses this dataset. The remaining data after sampling is used for the testing set, whose about

30% data is anomalous. Like the other data types, different experiment runs have different randomness for the training

dataset construction.

3http://odds.cs.stonybrook.edu/
4http://www.svcl.ucsd.edu/projects/anomaly/dataset.htm
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D.3. Model Architecture

The experiments involve two anomaly detectors, NTL and multi-head RotNet (MHRot), and three data types.

NTL on Image Data and Video Data. For all images (either natural or medical) and video frames, we extract their

features by feeding them into a ResNet152 pre-trained on ImageNet and taking the penultimate layer output for our usage.

The features are kept fixed during training. We then train an NTL on those features. We apply the same number of

transformations, network components, and anomaly loss function Lθ
1(x), as when Qiu et al. (2022a) apply NTL on the

image data.

NTL on Tabular Data. We directly use the tabular data as the input of NTL. We apply the same number of transformations,

network components, and anomaly loss function Lθ
1(x), as when Qiu et al. (2022a) apply NTL on the tabular data.

MHRot on Image Data. We use the raw images as input for MHRot. We set the same transformations, MHRot architecture,

and anomaly loss function as when Qiu et al. (2022a) apply MHRot on the image data.

DSVDD on Image Data. For all images (either natural or medical), we build DSVDD on the features from the penultimate

layer of a ResNet152 pre-trained on ImageNet. The features are kept fixed during training. The neural network of DSVDD is

a three-layer MLP with intermediate batch normalization layers and ReLU activation. The hidden sizes are [1024, 512, 128].

D.4. Optimization Algorithm

Model Dataset Learning Rate Epoch Minibatch Size τ

NTL

CIFAR-10 1e-4 30 512 1e-2
F-MNIST 1e-4 30 512 1e-2
MedMNIST 1e-4 30 512 1e-2
ODDS 1e-3 100 ⌈N/5⌉ 1e-2
UCSD Peds1 1e-4 3∗ 192 1e-2

MHRot
CIFAR-10 1e-3 15 10 N/A
F-MNIST 1e-4 15∗∗ 10 N/A
MedMNIST 1e-4 15 10 N/A

Deep SVDD
CIFAR-10 1e-4 30 512 1e-2
F-MNIST 1e-4 30 512 1e-2
MedMNIST 1e-4 30 512 1e-2

∗Hybr2, Hybr3, Pos1, and Pos2 train 30 epochs. All other methods train 3 epochs.
∗∗SOEL train 3 epochs.

Table 5. A summary of optimization parameters for all methods.

In the experiments, we use Adam (Kingma and Ba, 2014) to optimize the objective function to find the local optimal anomaly

scorer parameters θ. For Adam, we set β1 = 0.9, β2 = 0.999 and no weight decay for all experiments.

To set the learning rate, training epochs, minibatch size for MedMNIST, we find the best performing hyperparameters by

evaluating the method on the validation dataset. We use the same hyperparameters on other image data. For video data

and tabular data, the optimization hyperparameters are set as recommended by Qiu et al. (2022a). In order to choose τ (in

Eq. (2)), we constructed a validation dataset of CIFAR-10 to select the parameter τ among {1, 1e-1, 1e-2, 1e-3} and applied

the validated τ (1e-2) on all the other datasets in our experiments. Specifically, we split the original CIFAR-10 training data

into a training set and a validation set. After validation, we train the model on the original training set again. We summarize

all optimization hyperparameters in Tab. 5.

When training models with SOEL, we resort to the block coordinate descent scheme that update the model parameters θ and

the pseudo labels ỹ of unlabeled data in turn. In particular, we take the following two update steps iteratively:

• update θ by optimizing Eq. (3) given ỹ fixed;

• update ỹ by sovling the constrained optimization in Sec. 2.5 given θ fixed;
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Upon updating ỹ, we use the LOES variant (Qiu et al., 2022a) for the unlabeled data. We set the pseudo labels ỹ by

performing the optimization below

min
ỹ∈{0,0.5}|U|

1

|U|

∑

i∈U

ỹiL
θ
1(xi) + (1− ỹi)L

θ
0(xi) s.t.

|U|
∑

i=1

ỹi =
α̃|U|

2
,

where α̃ is the updated contamination ratio of U after the querying round, α̃ =
(

αN−
∑

j∈Q y(xj)
)

/|U|, and α is computed

by Eq. (4) given Q. The solution is to rank the data by Lθ
0(x) − Lθ

1(x) and label the top α̃ data abnormal (equivalently

setting ỹ = 0.5) and all the other data normal (equivalently ỹ = 0).

When we compute the Euclidean distance in the feature space, we construct the feature vector of a sample by concatenating

all its encoder representations of different transformations. For example, if the encoder representation has 500 dimensions

and the model has 10 transformations, then the final feature representation has 10× 500 = 5000 dimensions.

D.5. Time Complexity

Regarding the time complexity, the optimization uses stochastic gradient descent. The complexity of our querying strategy

is O(KN) where K is the number of queries and N is the size of the training data. This complexity can be further reduced

to O(K logN) with a scalable extension of k-means++ (Bahmani et al., 2012).

E. Additional Experiments and Ablation Study

The goal of this ablation study is to show the generality of SOEL, to better understand the success of SOEL, and to

disentangle the benefits of the training objective and the querying strategy. To this end, we applied SOEL to different

backbone models and different data forms (raw input and embedding input), performed specialized experiments to compare

the querying strategies, to demonstrate the optimality of the proposed weighting scheme in Eq. (3), and to validate the

detection performance of the estimated ratio by Eq. (4). We also compared SOEL against additional baselines including

semi-supervised learning frameworks and shallow anomaly detectors.

E.1. Randomness of Initialization

Random Initialization affects both the queried samples and downstream performance. To evaluate the effects, we ran all

experiments 5 times with different random seeds and reported all results with error bars. In Fig. 4 we can see that the radius

of the cover (a smaller radius means the queries are more diverse) does have some variance due to the random initialization.

However, the corresponding results in terms of detection accuracy in Fig. 2 do have very low variance. Our interpretation is

that for the CIFAR10 and F-MNIST experiments, the random initialization has little effect on detection performance.

E.2. Results with Other Backbone Models

Table 6. |Q| = 20. AUC (%) with standard deviation for anomaly detection on six datasets (CIFAR-10, F-MNIST, Blood, OrganA,

OrganC, OrganS). The backbone models are MHRot (Hendrycks et al., 2019) and Deep SVDD (Ruff et al., 2018). For all experiments,

we set the contamination ratio as 10%. SOEL consistently outperforms two best-performing baselines on all six datasets.

MHRot Deep SVDD

SOEL Hybr1 Hybr2 SOEL Hybr1 Hybr2

CIFAR-10 86.9±0.7 83.9±0.1 49.1±2.0 93.1±0.2 89.0±0.6 91.3±1.0
F-MNIST 92.6±0.1 87.1±0.2 58.9±5.7 91.4±0.5 90.9±0.4 82.5±2.9
Blood 83.3±0.2 81.1±2.5 61.8±2.1 80.2±1.1 79.7±1.2 77.2±3.0
OrganA 96.5±0.3 94.1±0.3 61.1±4.8 89.5±0.3 87.1±0.7 71.3±3.8
OrganC 92.1±0.2 91.6±0.1 70.9±0.8 87.5±0.7 85.3±0.8 84.2±0.9
OrganS 89.3±0.2 88.3±0.3 68.2±0.1 85.5±0.7 83.4±0.3 81.2±1.3

We are interested whether SOEL works for different backbone models. To that end, we repeat part of the experiments in

Tab. 2 but using an self-supervised learning model MHRot (Hendrycks et al., 2019) and a one class classification model

Deep SVDD (Ruff et al., 2018) as the backbone model. We compare SOEL to two best performing baselines — Hybr1 and
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anomaly detection we made.

FixMatch, as a semi-supervised learning algorithm, regularizes the image classifier on a large amount of unlabeled data. The

regularization, usually referred to consistency regularization, requires the classifier to have consistent predictions on different

views of unlabeled data, thus improves the classifier’s performance. FixMatch generates various data views through image

augmentations followed by Cutout (DeVries and Taylor, 2017). We noticed that, although FixMatch focuses on making

use of the unlabeled data, its performance is highly affected by the quality of the labeled data subset. We investigated two

variants depending on how we acquire the labeled data. One is the original semi-supervised learning setting, i.e., assuming

the labeled data is a random subset of the whole dataset. The other one utilizes the same diversified data querying strategy

k-means++ as SOEL to acquire the labeled part. In Fig. 13, we compared the performance of the two variants with SOEL.

It shows that, on natural images CIFAR10 for which FixMatch is developped, while the original FixMatch with random

labeled data is still outperformed by SOEL, FixMatch with our proposed querying strategy k-means++ has a comparable

performance with SOEL. However, such advantage of FixMatch diminishes for the gray image dataset F-MNIST, where

both variants are beat by SOEL on all querying budgets. In addition, the FixMatch framework is restrictive and may not be

applicable for tabular data and medical data, as the augmentations are specially designed for natural images.

FixMatch is designed for classification. To make it suit for anomaly detection, we adapted the original algorithm6 and

adopted the following procedure and loss function.

1. Label all training data as normal and train the anomaly detector for one epoch;

2. Actively query a subset of data with size |Q|, resulting in Q and the remaining data U ;

3. Finetune the detector in a supervised manner on non-augmented Q for 5 epochs;

4. Train the detector with the FixMatch loss Eq. (7) on augmented {U ,Q} until convergence.

We denote weak augmentation of input x by α(x) and the strong augmentation by A(x). The training objective function

we used is

LFixMatch(θ) =
1

|Q|

∑

j∈Q

(

yjL
θ
1(α(xj)) + (1− yj)L

θ
0(α(xj))

)

+
1

|U|

∑

i∈U

1(S(α(xi)) < q0.7 or S(α(xi)) > q0.05)
(

ỹiL
θ
1(A(xi)) + (1− ỹi)L

θ
0(A(xi))

)

(7)

where pseudo labels ỹi = 1(S(α(xi)) > q0.05)) and qn is the n-quantile of the anomaly scores {S(α(xi))}i∈U . In the

loss function, we only use the unlabeled samples with confidently predicted pseudo labels. This is controlled by the

indicator function 1(S(α(xi)) < q0.7 or S(α(xi)) > q0.05). We apply this loss function for mini-batches on a stochastic

optimization basis.

We also extend the semi-supervised learning methods using non-parametric algorithms to our active anomaly detection

framework. We applied k-nearest neighbors and Gaussian process for inferring the latent anomaly labels (Iscen et al., 2019;

Li et al., 2018) because these algorithms are unbiased in the sense that if the queried sample size is large enough, the inferred

latent anomaly labels approach to the true anomaly labels. For these baselines, we also queried a few labeled data with

k-means++ -based diverse querying strategy and then annotate the unqueried samples with k-nearest neighbor classifier or

Gaussian process classifer trained on the queried data.

Both methods become ablations of SOEL. We compare SOEL with them on CIFAR-10 and F-MNIST under various query

budgets and report their results in Fig. 13. On both datasets, SOEL improves over the variant of using only queried samples

for training. On F-MNIST, SOEL outperforms all ablations clearly under all query budgets, while on CIFAR-10, SOEL

outperforms all ablations except for FixMatch when query budget is low. In conclusion, SOEL boosts the performance by

utilizing the unlabeled samples properly, while other labeling strategies are less effective.

E.13. More Comparisons

Comparisons to kNN (Ramaswamy et al., 2000) We compared against kNN in two ways. First we confirmed that

our baseline backbone model NTL is competitive with kNN, which is shown to have a strong performance on tabular

6We adapted the FixMatch implementation https://github.com/kekmodel/FixMatch-pytorch
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• Satellite: 51.0±1.1, 53.5±0.7, 54.7±1.3, 57.4±1.8, 59.3±1.3, 61.1±2.2

Comparisons to Gradient Diversity Querying Strategy (BADGE) (Ash et al., 2020) We compared against a popular

active learning method, BADGE (Ash et al., 2020), which is a diversity-driven active learning method that exploits sample-

wise gradient diversity. We start with observing that BADGE doesn’t work well for anomaly detection in Fig. 14, where we

only replaced the objects that k-means++ works on in SOEL with gradients demanded in BADGE (Ash et al., 2020) while

keeping all other settings fixed. This variant is referred to as "Gradient Diversity" while ours is denoted by "Representation

Diversity". Fig. 14 shows the performance of Gradient Diversity is outperformed by a large margin, failing in querying

informative samples as our Representation Diversity.

To understand which part of BADGE breaks for anomaly detection tasks, we check the gradients used by BADGE in an

anomaly detection model. Before that, we start with describing how BADGE works. BADGE is developed for active

learning in classification tasks. Given a pre-trained classifier, it first predicts the most likely label ŷ (pseudo labels) for the

unlabeled training data x. These pseudo labels are then used to formulate a cross entropy loss lCE(x, ŷ). BADGE computes

every data point’s loss function’s gradient to the final layer’s weights as the data’s representation. Upon active querying, a

subset of data are selected such that their representations are diverse. In particular, the gradient to each class-specific weight

Wk is ∇Wk
lCE(x, ŷ) = (pk − 1(ŷ = k))φ(x) where pk is the predicted probability of being class k and φ(x) is the output

of the penultimate layer. Proposition 1 of Ash et al. (2020) shows the norm of the gradient with pseudo labels is a lower

bound of the one with true labels. In addition, note that the gradient is a scaling of the penultimate layer output. The scaling

factor describes the predictive uncertainty and is upper bounded by 1. Therefore, the gradients are informative surrogates of

the penultimate layer output of the network, as shown by the inequality

||∇Wk
lCE(x, ŷ)||

2 ≤ ||∇Wk
lCE(x, y)||

2 ≤ ||φ(x)||2. (8)

However, these properties are associated with the softmax activation function usage. In anomaly detection, models and

losses are diverse and are beyond the usage of softmax activation outputs. Hence the gradients are no longer good

ways to construct active queries. For example, the supervised deep SVDD (Ruff et al., 2019) uses the contrasting loss

l(x, y) = y/(Wφ(x) − c)2 + (1 − y)(Wφ(x) − c)2 to compact the normal sample representations around center c.

However, the gradient ∇W l(x, y) =
(

2(1− y)(Wφ(x)− c)− 2y(Wφ(x)− c)−3
)

φ(x) is not a bounded scaling of φ(x)
any more, thus not an informative surrogate of point x.

E.14. NTL as a Unified Backbone Model

In Section 4 of the main paper, we have empirically compared SOEL to active-learning strategies known from various

existing papers, where these strategies originally were proposed using different backbone architectures (either shallow

methods or simple neural architectures, such as autoencoders). However, several recent benchmarks have revealed that

these backbones are no longer competitive with modern self-supervised ones (Alvarez et al., 2022). For a fair empirical

comparison of SOEL to modern baselines, we upgraded the previously proposed active-learning methods by replacing their

simple respective backbones with a modern self-supervised backbone: NTL (Qiu et al., 2021)—the same backbone that is

also used in SOEL.

We motivate our choice of NTL as unified backbone in our experiments as follows. Fig. 15 shows the results of ten shallow

and deep anomaly detection methods (Qiu et al., 2022a; Ruff et al., 2018; Deecke et al., 2018; Golan and El-Yaniv, 2018;

Hendrycks et al., 2019; Tax and Duin, 2004; Liu et al., 2008; Diederik P. Kingma, 2014; Makhzani and Frey, 2015; Sohn

et al., 2020b) on the CIFAR10 one-vs.-rest anomaly detection task. NTL performs best (by a large margin) among the

compared methods, including many classic backbone models known from the active anomaly detection literature (Trittenbach

et al., 2021; Ruff et al., 2019; Görnitz et al., 2013; Das et al., 2019; Pimentel et al., 2020; Ning et al., 2022; Barnabé-Lortie

et al., 2015).

An independent benchmark comparison of 13 methods (including nine deep methods proposed in 2018–2022) (Alvarez

et al., 2022) recently identified NTL as the leading anomaly-detection method on tabular data. In their summary, the authors

write: ’NeuTraLAD, the transformation-based approach, offers consistently above-average performance across all datasets.

The data-augmentation strategy is particularly efficient on small-scale datasets where samples are scarce.’. Note that the

latter is also the scenario where active learning is thought to be the most promising. We show the results from Alvarez et al.

(2022) in Tab. 11.

28




	Introduction
	Methods
	Notation and Problem Statement
	Outline of the Technical Approach
	Background: Deep ad
	Querying Strategies for ad
	Semi-supervised Outlier Exposure Loss (SOEL)
	Contamination Ratio Estimation.

	Related Work
	Experiments
	Experiments on Image Data
	Experiments on Tabular Data
	Experiments on Video Data
	Additional Experiments

	Conclusion
	Theorem 1
	Theorem 2
	Proof
	Assumption 1
	Assumption 2
	Contamination Ratio Estimation

	Baselines Details
	Implementation Details
	Experimental Procedure
	Data Split
	Model Architecture
	Optimization Algorithm
	Time Complexity

	Additional Experiments and Ablation Study
	Randomness of Initialization
	Results with Other Backbone Models
	Robustness to Anomaly Ratios
	Disentanglement of aloe
	Comparison to Binary Classifier
	Comparison to a Batch Sequential Setup
	Comparisons of Querying Strategies
	Ablation on Estimated Contamination Ratio
	Ablations on Weighting Scheme
	Ablations on Temperature 
	Ablations on Pseudo-label Values 
	Comparisons with Semi-supervised Learning Frameworks
	More Comparisons
	NTL as a Unified Backbone Model


