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Abstract

We present a fully Bayesian autoencoder model
that treats both local latent variables and global
decoder parameters in a Bayesian fashion. This
approach allows for flexible priors and posterior
approximations while keeping the inference costs
low. To achieve this, we introduce an amortized
MCMC approach by utilizing an implicit stochas-
tic network to learn sampling from the posterior
over local latent variables. Furthermore, we ex-
tend the model by incorporating a Sparse Gaus-
sian Process prior over the latent space, allow-
ing for a fully Bayesian treatment of inducing
points and kernel hyperparameters and leading
to improved scalability. Additionally, we enable
Deep Gaussian Process priors on the latent space
and the handling of missing data. We evaluate
our model on a range of experiments focusing
on dynamic representation learning and genera-
tive modeling, demonstrating the strong perfor-
mance of our approach in comparison to existing
methods that combine Gaussian Processes and
autoencoders.

1. Introduction

The problem of learning representations of data that are
useful for downstream tasks is a crucial factor in the suc-
cess of many machine learning applications (Bengio et al.,
2013). Among the numerous proposed solutions, modeling
approaches that evolved from autoencoders (AES) (Cottrell
etal., 1989) are particularly appealing, as they do not require
annotated data and have proven effective in unsupervised
learning tasks, such as data compression and generative
modeling (Tomczak, 2022; Yang et al., 2022). AES are neu-
ral networks consisting of an encoder that maps input data
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to a set of lower-dimensional latent codes and a decoder that
maps the latent codes back to the observations.

In applications where data is scarce or uncertainty quantifi-
cation is crucial, it is beneficial to treat these models in a
Bayesian manner (Mackay, 1992; Neal, 1996; Wilson & Iz-
mailov, 2020; Izmailov et al., 2021) by imposing meaningful
prior distributions over both the parameters of the encoder
and decoder (Tran et al., 2021; Miani et al., 2022). A parallel
development are Variational Autoencoders (VAES) (Kingma
& Welling, 2014; Rezende & Mohamed, 2015) that treat
the latent space of an autoencoder in a Bayesian fashion,
enabling scalable inference over a large number of local
(per-datapoint) latent variables using amortized variational
inference. Note that these models typically treat the encoder
and decoder as deterministic neural networks. In the related
works section, we further elaborate on the differences be-
tween several versions of AE models and the way Bayesian
inference is carried out.

A critical limitation of standard VAES is their utilization
of factorized priors, which is inadequate for modeling cor-
relations between latent encodings. However, capturing
latent correlations is often necessary to model structured
data. For example, in autonomous driving or medical imag-
ing applications, high-dimensional images are correlated in
time. Spatio-temporal dependencies between samples are
also common in environmental and life sciences datasets.
To address this limitation, several works (Pearce, 2019;
Casale et al., 2018) have attempted to introduce Gaussian
process (GP) priors over the latent space of VAES that cap-
ture correlations between pairs of latent variables through a
kernel function. While GP priors outperform conventional
priors on many tasks, they also introduce computational
challenges such as O(N?) complexity for GP inference,
where NV is the number of data instances. Recently, Jazbec
et al. (2021) proposed the SVGP-VAE model to tackle this
computational issue by relying on sparse approximations;
these summarize the dataset into a set of so-called inducing
points (Quifionero-Candela & Rasmussen, 2005).

Although the SVGP-VAE model (Jazbec et al., 2021) has
achieved promising results, it has several significant draw-
backs. First, similarly to VAES, SVGP-VAE is strongly tied
to a variational inference (VI) formulation (Jordan et al.,
1999; Zhang et al., 2018), which can lead to poor approxi-
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Table 1: A summary of related methods. Here, 8, u, S refer to Gaussian Process (GP) hyperparameters, inducing variables and inducing
inputs, respectively. N and B are the number of data points and the mini-batch size, whereas M, H < N are the number of inducing
points and the low-rank matrix factor, respectively. The notation X indicates the nonexistence of a specific feature (column) within a given
model (row), whereas the symbol - denotes that the model is not employed with a GP prior. The colors denoting the methods shall be used

consistently throughout the paper.

Scalable Noni.i.d. Free-form GP

Arbitrary kernel  Learnable Inference

Model (Minibatching) data posterior complexity & data type GP 0,u,S Reference
(® VAE v X X - - - - Kingma & Welling (2014)
(®) CVAE v X X - - - - Sohn et al. (2015)
(®) GPPVAE 4 v/ X O(NH?) X X X Casale et al. (2018)
(®) GPVAE X v X O(N?) v X X Pearce (2019)
() GP-VAE v v X O(N) X X X Fortuin et al. (2020)
(®) SGP-VAE v v X O(BM? + M?3) v v X Ashman et al. (2020)
(® SVGP-VAE v v X O(BM? + M?) v v X Jazbec et al. (2021)
(®) BAE v X 4 - - - - This work
(®) GP-BAE X v/ v/ O(N3) v/ X X This work
(®) SGP-BAE v/ v/ v O(BM? + M?3) v v v This work

mations due to VI making strong assumptions on both the
factorization and functional form of the posterior. Second,
the SVGP-VAE model follows the common practice in the
sparse GP literature of optimizing the inducing points and
kernel hyperparameters based on the marginal likelihood.
However, this approach does not account for uncertainty in
the inducing inputs and hyperparameters. It is well known
that this can result in biased estimates and underestimated
predictive uncertainties (Rossi et al., 2021; Lalchand et al.,
2022a). In this work, we propose a novel Sparse Gaus-
sian Process Bayesian Autoencoder (SGP-BAE) model that
addresses these issues by providing scalable and flexible in-
ference through a fully Bayesian treatment without relying
on VI.

Contributions. Specifically, first, we develop a fully
Bayesian autoencoder (BAE) model (§ 3), where we adopt a
Bayesian treatment for both the local (per-datapoint) latent
variables and the global decoder parameters. This approach
differs from VAES in that it allows specifying any prior
over the latent space while decoupling the model from the
inference. As a result, we can rely on powerful alterna-
tives to VI to carry out inference, and we adopt stochastic
gradient Hamiltonian Monte Carlo (SGHMC) (Chen et al.,
2014) as a scalable solution. To achieve this, we propose an
amortized Markov chain Monte Carlo (MCMC) approach
for our Bayesian autoencoder (BAE) model by using an
implicit stochastic network as the encoder to learn to draw
samples from the posterior of local latent variables. Our
approach addresses the prohibitively expensive inference
cost induced by the local latent variables and avoids making
strong assumptions on the form of the posterior. Second,
when imposing a GP prior over the latent space, we propose
a novel scalable SGP-BAE model (§ 4) in which the induc-
ing points and kernel hyperparameters of the sparse GP prior
on the latent space are treated in a fully Bayesian manner.

This model offers attractive features such as high scalability,
richer modeling capability, and improved prediction qual-
ity. Third, we extend the SGP-BAE model to allow one to
impose deep GP priors on the latent space (Damianou &
Lawrence, 2013) and to handle missing data. To the best of
our knowledge, this is the first work to consider deep GP
priors for AEs. Finally, we conduct a rigorous evaluation
of our SGP-BAE model through a variety of experiments on
dynamic representation learning and generative modeling.
The results demonstrate excellent performance compared to
existing methods of combining GPs and AES (§ 5).

2. Related Work

Autoencoders. AES (Cottrell et al., 1989) are powerful
models for representation learning which operate by pro-
jecting data onto a lower-dimensional latent space through
an encoder and by mapping latent representations back into
the original data by means of a decoder. VAES (Kingma &
Welling, 2014; Rezende et al., 2014) elegantly combine AES
with variational inference enabling the model to generate
new data and allowing for the specification of any prior on
the latent space. To improve the performance of VAES, re-
cent works have attempted to employ flexible priors such as
mixtures (Dilokthanakul et al., 2016; Tomczak & Welling,
2018; Bauer & Mnih, 2019), normalizing flows (Chen et al.,
2017), nonparametric models such as Stick-breaking pro-
cesses (Nalisnick & Smyth, 2017), or Gaussian processes
(Casale et al., 2018).

Recently, Tran et al. (2021) and Miani et al. (2022) explored
a Bayesian treatment of the encoder and decoder parame-
ters in standard AES, demonstrating superior performance.
However, this approach lacks a mechanism to impose priors
on the latent space. In the seminal work on VAE, Kingma &
Welling (2014) already explored a fully Bayesian treatment
of VAES by introducing a prior on the decoder. Variational
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inference is employed to infer the decoder and the latent vari-
ables. Daxberger & Hernandez-Lobato (2019) suggested
employing SGHMCS for sampling decoder parameters, but
this method uses the evidence lower bound (ELBO) of VAES
as the sampling objective, which may lead to suboptimal
approximations. Following Glazunov & Zarras (2022) we
use the term Bayesian Variational Autoencoder (BVAE) to
refer to this set of models. To avoid confusion with these
models, hereafter, we use the term Bayesian autoencoders
(BAES) to indicate our proposed approach, where both the
latent variables and decoder are treated in a fully Bayesian
way, and inference uses our amortized SGHMC scheme.

Gaussian process priors for AE models. The earliest at-
tempts to combine AE models with GPs are the GP prior
VAE (GPPVAE) (Casale et al., 2018) and GP-VAE (Pearce,
2019). Both these models lack scalability for generic kernel
choices and data types. GPPVAE is restricted to a special-
ized GP product kernel and employs a Taylor approximation
for GPs, while GP-VAE relies on exact GP inference. Re-
cently, Fortuin et al. (2020) and Zhu et al. (2022) propose
GP-VAE and Markovian-GPVAE, respectively, that are in-
deed scalable (linear in IV time complexity) by exploiting
the Markov assumption, but they are applicable only on
time-series data. Most closely to our method is the approach
of Jazbec et al. (2021) (SVGP-VAE), Ashman et al. (2020)
(SGP-VAE) and Ramchandran et al. (2021), where they uti-
lize inducing point methods (Titsias, 2009; Hensman et al.,
2013) to make GPs scalable. However, all these methods
strongly rely on VAES and a variational formulation for GPS.
In this work, we take a completely different route, as we aim
to treat sparse GPS and AES in a fully Bayesian way while
enjoying scalability thanks to recent advances in stochastic-
gradient MCMC sampling. Table 1 compares our proposed
models with relevant related works.

3. Imposing Distributions over the Latent
Space of Bayesian Autoencoders

We are interested in unsupervised learning problems with

a high-dimensional dataset consisting of /N data points

v &f [yi, -, ¥n] € RVNXP Each data point has a

corresponding low-dimensional auxiliary data entry, sum-

marized as X & [x;,--- ,xn]T € RV*P. For instance,
y, could be a video frame and x; the corresponding time
stamp. As another example, consider electronic health
record (EHR) data, where the auxiliary data could include
patient covariate information, such as age, height, weight,

sex, and time since remission. Finally, we denote by

f ; . .
zY [z1, - ,zn]" € RV*C the low-dimensional latent

representation of the data, meaning that each latent vari-
able z; lives in a C'-dimensional latent space. We aim to
build a model that is able to (1) generate Y based on the
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Figure 1: The graphical models of vanilla BAE (a), and the pro-
posed SGP-BAE with a fully Bayesian sparse GP prior imposed
on the latent space. Here, we treat the decoder’s parameters ¢
in a Bayesian way while the encoder’s parameters ¢ are consid-
ered deterministically. The solid lines denote the generative part,
whereas the dashed lines denote the encoding part. The SGP-BAE
is treated in a fully Bayesian manner by imposing priors on the
decoder’s parameters ¢ as well as the GP kernel’s parameters 6,
inducing locations s. The cyclic thick line represents that the latent
GP correlates with every latent code.

auxiliary data X, and (2) provide useful and interpretable
low-dimensional representations of Y.

Model setup. In this work, we consider a model based
on AES, and we aim to treat this in a fully Bayesian man-
ner. This treatment promises improved predictions, reliable
uncertainty estimates, and increased robustness under data
sparsity (Mackay, 1992; Izmailov et al., 2021). One dif-
ficulty in doing so is that the prior distribution over the
latent variables would be determined by the prior over the
weights of the encoder and not a distribution of interest.
In many applications, including the ones considered here,
this is undesirable, and the goal is to impose a certain prior
distribution over the latent representation in a similar vein
as VAES and their variants. Therefore, we propose to treat
the entire AE in a fully Bayesian manner except for the
encoder and to design the encoder in such a way that it maps
data y; into corresponding codes z; while allowing these
mappings to be compatible with posterior samples over the
latent codes. For the encoder, as we will elaborate on shortly,
we will employ a so-called stochastic inference network to
learn to draw posterior samples of latent variables z; given
high-dimensional inputs y;, while for the decoder and the
latent variables we employ scalable MCMC techniques.

Bayesian treatment of the latent space and the decoder.
In order to retain a fully Bayesian treatment of the latent
space and the decoder, we impose a prior p(¢) over the de-
coder’s parameters, . In addition, another prior p(Z | X; 6)
is imposed on the latent variables. This prior is conditioned
on the auxiliary data X and characterized by a set of hyper-
parameters 6. For example, one may employ an uninfor-
mative prior such as an isotropic Gaussian commonly used
in standard VAES, but in the next section we will consider
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structured priors such as GPs and their deep version as well.
We assume that the observed data Y is fully factorized and
conditional on the latent variables Z and a decoder network

with parameters @, i.c., p(Y | Z, ) = [, p(yi | 2i, @)
The full joint distribution of the model is as follows:

(e, Z,Y | X) =p(e)p(Z|X;0)p(Y |Z,p). (1)

We wish to infer the posterior over the latent variables and
decoder parameters, which is given by Bayes’ rule:

p(¢,Z,Y |X)
p(Y[X)
where p(Y | X) = [p(e,Z,Y | X)depdZ is the marginal

likelihood. The generative process of data samples from
this BAE model is illustrated in Fig. 1a.

p(p,Z]Y,X) = 2)

Characterizing the posterior distribution over ¢, Z is analyt-
ically intractable and requires approximations. Given the
success of scalable MCMC techniques to obtain samples
from the posterior of model parameters in deep learning
models (Zhang et al., 2020; Tran et al., 2022), in this work,
we propose to follow this practice to obtain samples from
p(p,Z|Y,X). In particular, we employ SGHMC (Chen
et al., 2014), which can scale up to large datasets by re-
lying on noisy unbiased estimates of the energy function
(log-posterior) U (¢, Z; X, Y) & —log p(¢, Z, Y | X) and
without the need to evaluate the energy function over the en-
tire data set. More precisely, when the prior over the latent
codes is fully factorized, we can approximate this energy
function using mini-batches of size B as follows:

N
—5 2 [logp(zi|xi:0) +logp(y, |zi. 0)]
i€lp

where Zp is a set of B random indices. The exact procedure
for generating samples from the posterior over ¢, Z using
SGHMC can be found in Appendix A.

Encoder as a stochastic inference network. SGHMC
can be challenging to implement on probabilistic models
with many latent variables due to the high computational bur-
den of iteratively refining the approximate posterior for each
latent variable. Additionally, it can be difficult to evolve
the latent variables for each new test sample. To address
these challenges, we propose using a stochastic neural net-
work as an inference network to efficiently generate latent
codes similar to those generated by the posterior distribu-
tion, inspired by amortized inference techniques (Kingma
& Welling, 2014; Wang & Liu, 2016; Feng et al., 2017; Shi
etal., 2019) and MCMC distillation (Korattikara Balan et al.,
2015; Wang et al., 2018; Li et al., 2017).

More specifically, instead of storing every latent code, we
use an inference network z; = f4(y;; €) with parameters ¢

that generates a corresponding latent code z; given an input
y; and a random seed €. The random seed € is drawn from
a distribution ¢(e) that is easy to sample from, such as a
uniform or standard Gaussian distribution. The inference
network fy serves as an encoder by generating posterior
samples of the latent code z; given the observed input y;. It
is essential to note that the encoder in our model approxi-
mates the posterior distribution of latent variables, which is
similar to the approach used in VAES. However, the primary
distinction is that we do not assume any specific form of the
posterior distribution of latent variables z;. Our encoder is
trained to draw posterior samples of latent variables, rather
than serving as a parametric variational distribution.

We incrementally refine the encoder fg such that its outputs
mimic the SGHMC dynamics. Specifically, after every K
iterations of sampling the decoder parameters and the latent
codes using SGHMC, we adjust the encoder parameters ¢
based on the following objective:

L({zi,y;}iezs; @) &f Z “f¢(yi;5i) _ Zz(k)‘

i€

2

G

2

where ng) is the k-th posterior sample from SGHMC of the
latent variable z;, and it is used as label to update ¢. As the
analytic solution of Eq. 4 is intractable, we perform .J steps
of gradient descent to update ¢ using an optimizer such as
Adam (Kingma & Ba, 2015). It is worth mentioning that
our objective to train the inference network is a modeling
choice. Conditional generative models such as diffusion
models (Ho et al., 2020) or Generative Adversarial Net-
works (GANS) (Goodfellow et al., 2014) can be considered
as alternatives. However, we must exercise caution to ensure
that our goal of learning low-dimensional representations
of the data is met. In our experiments, we used a similar
network architecture for the inference network as in VAES
for fair comparisons. The inference procedure for our BAES
is described in Algorithm 1.

4. Scalable Gaussian Process Prior for
Bayesian Autoencoders

In the previous section, we introduced our novel version of
a BAE where we imposed a simple fully-factorized prior
over the latent space, such as isotropic Gaussians. However,
in many applications, such priors are incapable of appro-
priately modeling the correlation nature of the data. For
example, it is sensible to model structured data evolving
over time with a BAE with a prior over the latent space in the
form of a GP with the auxiliary data as input. In this section,
we consider these scenarios precisely by introducing GP
priors in the latent space, which allows us to model sample
covariances as a function of the auxiliary data. We then dis-
cuss the scalability issues induced by the use of GP priors,
and we propose Sparse Gaussian Process Bayesian Autoen-
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Algorithm 1: Inference for BAES with SGHMC
Input: Dataset {X, Y}, mini-batch size B, # SGHMC
iterations K, # encoder interations .J
Initialize the autoencoder parameters ¢ and
while ¢, Z have not converged do
Sample a mini-batch of B random indices Zp
Sample random seed {&;}2 | ~ q(¢)
Initialize the latent codes from the encoder
{2}, = fol{yiiczs (e} Ey)
for K iterations do
Compute energy function U using Eq. 3
Sample from posterior p(¢, Z | Y, X):
@, {z}B | + scHMC(p, {2}E 1; Vy.0)
for J iterations do
Compute objective function £ using Eq. 4
Update encoder: ¢ <— Optimizer(¢; VaL)

coders (SGP-BAES) where we recover scalability thanks
to sparse approximations to GPS (Quifionero-Candela &
Rasmussen, 2005; Rossi et al., 2021). In this model, we
carry out fully Bayesian inference of the decoder, as well
as the inducing inputs and covariance hyperparameters of
the sparse GPs, while we optimize the stochastic inference
network implementing the encoder.

4.1. Gaussian process prior

We assume C' independent latent functions fI, ..., fIC]
which results in each z; being evaluated at the corresponding
x;, e, z; = [f(x;), -, fl9(x;)]. We assume that
each function is drawn from a zero-mean GP prior with a
covariance function x(x,x’; 0):

H/\/( e |O,Kxx|9>,
g

where the c-th latent channel of all latent variables, z; . €
RY (the c-th column of Z), has a correlated Gaussian prior
with covariance Ky g € RY*Y obtained by evaluating
k(x;,X;; @) over all input pairs of X. Here, the latent func-
tion values are informed by all y values according to the
covariance of the corresponding auxiliary input x. One can
recover the fully factorized AV (0, I) prior on the latent space
by simply setting Ky | = I.

p(Z|X;6) = 5)

This GP prior over the latent space of BAES introduces fun-
damental scalability issues. First, we have to compute the
inverse and log-determinant of the kernel matrix Ky |,
which results in O(NN?) time complexity. This is only pos-
sible when N is of moderate size. Second, it is impossible
to employ a mini-batching inference method like SGHMC
since the energy function U (¢, Z; X,Y) does not decom-

pose as a sum over all the observations.

4.2. Bayesian sparse Gaussian processes

In order to keep the notation uncluttered, we focus on
a single channel and suppress the superscript index c.
Given a set of latent function evaluations over the dataset,
f = [f1,---, fn]T. we assume that the latent codes are
stochastic realizations based on f and additive Gaussian
noise, i.e., N'(Z| f, 0?I). Sparse GPs (Quifionero-Candela
& Rasmussen, 2005) are a family of approximate models
that address the scalability problem by introducing a set
of M < N inducing points u = (uy,- - ,ups) at cor-
responding inducing inputs S = {s1, -, s} such that
u; = f(s;). We assume that these inducing variables fol-
low the same GP as the original process, resulting in the

following joint prior:
sz|9] )
Kssjo]| )’

where the covariance matrices Kgg | ¢ and Kxgs | ¢ are com-
puted between the elements in S and {X, S}, respectively.

p(f.u) = N(o, [KXX o ©)

Ksx |0

Fully Bayesian sparse GPS. The fully Bayesian treat-
ment of sparse GPs requires priors p,(6) and pg(S) over
covariance hyperparameters and inducing inputs, respec-
tively, with 7 and £ as prior hyperparameters. With these as-
sumptions, we term this model as Bayesian sparse Gaussian
process autoencoder (SGP-BAE), and the corresponding
generative model is illustrated in Fig. 1b.

By defining ¥ &ef {p,u,S, 0}, we can rewrite the full joint
distribution of parameters in SGP-BAE:

p(¥.1,2,Y|X) = (7
= p(¥)  p(f|u.X,S,0)p(Z|f;0T)p(Y|Z,¢),
~——
Priors on inducing Sparse GP prior on latent space Likelihood of

observed data

where p(¥) = p(e)p-(0)pe(S)p(ulS,H). Here,
p(u\S70) = N(O9KSS|9)’ and p(f\u,X,S,G) =
N(Kxs| 9K§31|91L Kxx|o — szngéwst\e)«
We assume a factorization p(Z|f; o) =

H?]:lp(zi | fi;0?) and make no further assumptions
about the other distribution.

inputs & variables, decoder

Scalable inference objective. We wish to infer the set of
variables ¥ and the latent codes Z. To do so, we have
to marginalize out the latent process f from the full joint
distribution above. In particular, we have:

logp(¥,Z,Y | X)

= log p(¥)+ )

+log/p(f|\I’,X) (Z | f,0*T)df +1ogp(Y | Z, ).
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This objective should be decomposed over observations
to sample from the posterior over all the latent variables
using a scalable method such as SGHMC. As discussed by
Rossi et al. (2021), this can be done effectively by imposing
independence in the conditional distribution (Snelson &
Ghahramani, 2005), i.e., by parameterizing p(f | ¥, X) =
N (Kxs 0K gt ding [Kooe |0 — Kus 0K gKox 0] )-
With this approximation, the log-joint marginal becomes as
follows:

logp(¥,Z,Y | X) ~ log p(¥)+ )

N
+ Z{ log Ep s, | w.x)[0(Zn | fni0?)] +1og p(y,, | 2, ‘P)}
n=1

©_U(w,2:X,Y).

We can now carry out inference for this SGP-BAE model
by plugging a mini-batching approximation of this energy
function into Line 7 and Line 8 of Algorithm 1. By using
this sparse approximation, we reduce the computational
complexity of evaluating the GP prior down to O(BM?),
and SGP-BAE can be readily applied to a generic dataset
and arbitrary GP kernel function.

Extension to deep Gaussian processes. We can easily
extend SGP-BAE to deep Gaussian process priors (Dami-
anou & Lawrence, 2013) to model much more complex
functions in the latent space of BAES. To the best of our
knowledge, the use of deep GPs has not been considered in
previous work. We assume a deep Gaussian process prior
fW o fL=D) o... 0 f) where each f) is a GP. Each
layer is associated with a set of kernel hyperparameters o0,
inducing inputs S® and inducing variables u(") The set of
variables to be inferred is ® = {¢} U {u®, 8 gW}L
The joint distribution is as follows:
p(T{fOY,, 2, Y [X) = (10)

L
=p(®) [ [ oV £, @)p(Z | £); 0%1) p(Y | Z, ),

=1

Deep GP prior

where we omit the dependency on X for notational brevity.
To perform inference, the hidden layers f @ have to be
marginalized and propagated up to the final layer L (Sal-
imbeni & Deisenroth, 2017). The marginalization can be
approximated by quadrature (Hensman et al., 2015a) or
through Monte Carlo sampling (Bonilla et al., 2019). De-
tailed derivations of this extension can be found in Ap-
pendix C.

Extension for missing data. In practice, real-world data
may be sparse, with many missing and few overlapping
dimensions across the entire dataset. We can easily extend

SGP-BAE to handle such datasets. We assume that any pos-
sible permutation of observed features is potentially missing,
such that each high-dimensional observationy,, = y2 Uy
contains a set of observed features y? and unobserved fea-
tures y,;. The likelihood term of the inference objective
(Eq. 10) factorizes across data points and dimensions, so
there is no major modification in this objective, as the sum-
mation of the likelihood term should be done only over the
non-missing dimensions, i.e.:

N
p(Y1Z,¢) =) logp(y$ | zn, ¢)-

n=1

(11)

5. Experiments

In this section, we provide empirical evidence that our SGP-
BAE outperforms alternatives of combination between GP
priors and AE models on synthetic data and real-world high-
dimensional benchmark datasets. Throughout all experi-
ments, unless otherwise specified, we use the radial basis
function (RBF) kernel with automatic relevance determina-
tion (ARD) with marginal variance and independent length-
scales \; per feature (MacKay, 1996). We place a lognormal
prior with unit variance and means equal to 1 and 0.05 for
the lengthscales and variance, respectively. Since the auxil-
iary data of most of the considered datasets are timestamps,
we impose a non-informative uniform prior on the induc-
ing inputs. We observe that this prior works well in our
experiments. We set the hyperparameters of the number of
SGHMC and optimization steps to J = 30, and K = 50,
respectively. The details for all experiments are available in
Appendix D.

5.1. Synthetic moving ball data

We begin our empirical evaluation by considering the mov-
ing ball dataset proposed by Pearce (2019). This dataset
comprises grayscale videos showing the movement of a
ball. The two-dimensional trajectory of the ball is simu-
lated from a GP characterized by an RBF kernel. Our task
is to reconstruct the underlying trajectory in the 2D latent
space from the frames in pixel space. Unlike Jazbec et al.
(2021), we generate a fixed number of 35 videos for train-
ing and another 35 videos for testing. It is still possible
to perform full GP inference on such a small dataset. For
this experiment, we consider full GP-based methods, such
as Gaussian Process Bayesian Autoencoder (GP-BAE) and
GP-VAE (Pearce, 2019), as oracles for the sparse variants.
Because the dataset is quite small, we perform full-batch
training/inference.

Benefits of moving away from variational inference In
this experiment, we show that, by relaxing strong assump-
tions on the posterior of latent space and taking advantage
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Table 2: Reconstructions of the latent trajectories of moving ball. In the first column, frames
of each test video are overlayed and shaded by time. Ground truth trajectories are illustrated in
orange, while predicted trajectories are depicted in blue. We use M = 10 inducing points for

the methods employed with sparse GPs.
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= VAE = GPVAE B SVGP-VAE
= BAE GP-BAE ® SGP-BAE

GT VIDEO (® VAE (@) GPVAE (®) SVGP-VAE (®) BAE  (9) GP-BAE (@) SGP-BAE
D | y YR 2RIy
¢ ¢ |( 4 *yn g s /f ‘/|>
\ \ \'
y ‘:xfy (g) .f ‘{)g: . 7 (%/
\ \

Figure 2: Performance of autoencoder
models as a function of the number of
inducing points.

of a powerful scalable MCMC method, BAES consistently
outperform VAES. Fig. 2 illustrates the performance of the
considered methods in terms of root mean squared error
(RMSE). The results show that our GP-BAE model per-
forms much better than GP-VAE (Pearce, 2019) though both
models use the same full GP priors. In addition, by treating
inducing inputs and kernel hyperparameters of sparse GPS
in a Bayesian fashion, SGP-BAE offers a rich modeling
capability. This is evident in the improved performance of
SGP-BAE compared to sparse variational Gaussian process
VAE (SVGP-VAE) (Jazbec et al., 2021). SGP-BAE is able
to approach the performance of GP-BAE despite using a
small number of inducing points. These numerical results
align with the qualitative evaluation of the reconstructed
trajectories shown in Table 2. As expected, the standard
BAE and VAE endowed with a AV (0, I) prior on the latent
space completely fail to model the trajectories faithfully. In
contrast, GP-BAE and SGP-BAE are able to match them
closely. In Appendix F, we further show an ablation study
on alternatives of Bayesian treatments for AESs and AE-style
models with GP prior. This study ultimately demonstrates
that our proposal offers superior performance.

Benefits of being fully Bayesian. Our SGP-BAE model
has the same advantage as the SVGP-VAE (Jazbec et al.,
2021) in that it allows for an arbitrary GP kernel, and the
kernel hyperparameters and inducing inputs can be inferred
jointly during training or inference. In contrast, other meth-
ods either use fixed GP priors (Pearce, 2019) or employ
a two-stage approach (Casale et al., 2018), where the GP
hyperparameters are optimized separately from the AES.
SVGP-VAE optimizes these hyperparameters using the com-
mon practice of maximization of the marginal likelihood,
ML-II. This results in a point estimate of the hyperparam-
eters but may be prone to overfitting, especially when the
training data is small while there are many hyperparame-
ters. A distinct advantage of SGP-BAE over SVGP-VAE
is that it is fully Bayesian for the GP hyperparameters and
inducing points. This not only improves the quality of the
predictions but also offers sensible uncertainty quantifica-
tion. Fig. 3 illustrates the posterior of the lengthscale. By

! CaM=5
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T T T
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Figure 3: The posterior of the lengthscale corresponding to using
a different number of inducing points, M. The red line denotes
the true lengthscale.
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Figure 4: The posterior of the inducing inputs.

using a sufficient number of inducing points and operating
in a Bayesian way, SGP-BAE obtains a distribution over
lengthscales that is compatible with observed data. When
using too few inducing points, the model tends to estimate a
larger lengthscale. This is expected as the effective length-
scale of the observed process in the subspace spanned by
these few inducing points is larger. We also observe that
the more inducing points are used, the more confident the
posterior over the lengthscale is. Our method also produces
a sensible posterior distribution on the inducing inputs, as
shown in Fig. 4. The estimated inducing inputs are evenly
spaced over the time dimension, which is reasonable since
the latent trajectories are generated from stationary GPS.

5.2. Conditional generation of rotated MNIST

In the next experiment, we consider a large-scale benchmark
of conditional generation. We follow the experimental setup
from (Casale et al., 2018; Jazbec et al., 2021), where they
use a rotated MNIST dataset (N = 4050). In particular, we
are given a set of images of digit three that have been rotated
at different angles in [0, 27r). Our goal is to generate a new
image rotated at an unseen angle. As it is not trivial to apply
full GP for such a large dataset, we omit GP-VAE (Pearce,
2019) and GP-BAE baselines. We consider the GPPVAE
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Table 3: Conditionally generated MNIST images. The right most column depicts the

epistemic uncertainty obtained by our SGP-BAE model.

GT IMAGE DEEP-SVIGP (®) CVAE

model (Casale et al., 2018), which employs a low-rank ap-
proximation for the GP, and the SVGP-VAE model (Jazbec
et al., 2021) as baselines. For both SVGP-VAE and SGP-
BAE, we use a number of inducing points of M = 32 and a
mini-batch size of B = 256. We also compare our method
with the Conditional Variational Autoencoder (CVAE) of
Sohn et al. (2015), which allows conditional generation
tasks. Following Jazbec et al. (2021), we consider an exten-
sion of the sparse GP model (Hensman et al., 2013), named
DEEP-SVIGP, that utilizes a deep likelihood parameterized
by a neural network. As shown in Table 3, our SGP-BAE
model generates images that are more visually appealing
and most faithful to the ground truth compared to other
approaches.

Performance on conditional generation. Table 4
presents the quantitative evaluation of the conditionally
generated images in terms of MSE. Our SGP-BAE model
clearly outperforms the other competing methods. It is
worth noting that DEEP-SVIGP (Hensman et al., 2013) does
not use an amortization mechanism, and its performance is
considered to be an upper bound for that of SVGP-VAE. As
discussed by Jazbec et al. (2021), DEEP-SVIGP can be used
for conditional generation tasks, where the goal is to impose
a single GP over the entire dataset, and therefore amortiza-
tion is not necessary. However, this model cannot be used
in tasks where inference has to be amortized across multiple
GPs, such as learning interpretable data representations.

Computational efficiency. Similarly to the competing
methods that use sparse approximations such as SVGP-VAE
and DEEP-SVIGP, each iteration of GP-BAE involves the
computation of the inverse covariance matrix, resulting in a
time complexity of O(M?). Fig. 5 shows the convergence
in terms of test MSE for the competing methods and our
SGP-BAE, trained for a fixed training time budget. We omit
GPPVAE (Casale et al., 2018) from this comparison, as re-
ported by Jazbec et al. (2021), which is significantly slower
than the sparse methods. This result demonstrates that SGP-
BAE converges remarkably faster in terms of wall-clock

(®) GPPVAE (®) SVGP-VAE (®) SGP-BAE
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Figure 5: Comparison of test mean squared
error (MSE) on the rotated MNIST dataset as
function of training time.

time while achieving better final predictive performance.

Table 4: Results on the rotated MNIST digit 3 dataset. Here, we
report the mean and standard deviation computed from 4 runs.

MODEL MSE (1)

(® CVAE (Sohn et al., 2015)

(® GPPVAE (Casale et al., 2018)
(® SVGP-VAE (Jazbec et al., 2021)
(® SGP-BAE (OURS)

DEEP-SVIGP (Jazbec et al., 2021)

0.0819 +£ 0.0027
0.0351 £ 0.0005
0.0257 + 0.0004
0.0228 + 0.0004

0.0236 £ 0.0010

Epistemic uncertainty quantification. Unlike the com-
peting methods, our SGP-BAE model can capture the epis-
temic uncertainty of the decoder thanks to the Bayesian
treatment and the use of powerful inference methods. This
can improve the quality of uncertainty quantification on
reconstructed or generated images. As shown in the right-
most column of Table 3, SGP-BAE can provide sensible
epistemic uncertainty quantification. Our model exhibits
increased uncertainty for semantically and visually challeng-
ing pixels, such as the boundaries of the digits.

5.3. Missing data imputation

Next, we consider the task of imputing missing data on
multi-output spatio-temporal datasets. We compare our
method against Sparse GP-VAE (SGP-VAE) (Ashman et al.,
2020) and multi-output GP methods such as Independent
GPs (IGP) and Gaussian Process Autoregressive Regression
(GPAR) (Requeima et al., 2019). Additionally, we consider
the DSGP-BAE model, which is an extension of our SGP-
BAE model endowed with 3-layer deep GP prior. For a
fair comparison, we treat partially missing data as zeros
to feed into the inference network (encoder) for SGP-VAE
and our SGP-BAE model. We leave the adoption of partial
inference networks (Ashman et al., 2020) to our model for
future work. We follow the experimental setup of Requeima
et al. (2019) and Ashman et al. (2020) and use two standard
datasets for this comparison.
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Table 5: A comparison between methods of multi-output GP models and GP autoencoders on the EEG and JURA datasets.

DATASET ~ METRIC || IGP GPAR | (®) SGP-VAE  (®) SGP-BAE (ours) DSGP-BAE (0ugs)
EEG SMSE ({) 1.70 + 0.14 0.28 + 0.00 0.52 +0.05 0.22 + 0.01 0.21 + 0.01
NLL () 2.59 + 0.02 1.68 + 0.01 1.98 + 0.02 1.96 + 0.08 2.25+0.13
JURA MAE ({) 0.57 + 0.00 0.42 + 0.01 0.54 +£0.01 0.45 + 0.03 0.44 + 0.02
NLL () 1563.42 +166.55 17.81 £ 1.06 1.02 £ 0.01 0.91 + 0.04 0.85 + 0.04

Electroencephalogram (EEG). This dataset comprises
256 measurements taken over one second. Each measure-
ment consists of seven electrodes, FZ and F1-F6, placed
on the patients scalp (x,, € R!, y,, € R7). The goal is
to predict the last 100 samples for electrodes FZ, F1, and
F2, given that the first 156 samples of FZ, F1, and F2 and
the whole signals of F3-F6 are observed. Performance is
measured with the standardized mean squared error (SMSE)
and negative log-likelihood (NLL).

Jura. This is a geospatial dataset consisting of 359 mea-
surements of the topsoil concentrations of three metals —
Nickel, Zinc, and Cadmium — collected from a region of
Swiss Jura (x,, € R2, y, € R3). The dataset is split into
a training set comprised of Nickel and Zinc measurements
for all 359 locations and Cadmium measurements for just
259 locations. The task is to predict the Cadmium measure-
ments at the remaining 100 locations conditioned on the
observed training data. Performance is evaluated with the
mean absolute error (MAE) and negative log-likelihood.

Table 5 compares the performance of SGP-BAE to the com-
peting methods. As mentioned in Ashman et al. (2020),
GPAR is the state-of-the-art method for these datasets. We
find that our SGP-BAE and DSGP-BAE models perform
comparably with GPAR on the EEG dataset but better on the
JURA dataset. A significant advantage of GP autoencoder
methods is that they model P outputs using only C' latent
GPs, while GPAR uses P GPs. This can be beneficial when
the dimensionality of the data, P, is very high. Similarly to
the previous experiments, SGP-BAE consistently performs
better than variational approximation-based methods such
as SGP-VAE (Ashman et al., 2020). As expected, IGP is the
worst-performing method due to its inability to model the
correlations between output variables.

We find that the utilization of deep Gaussian process (DGP)
priors yields only marginal improvement on the EEG and
JURA datasets, as shown in Table 5. In addition, we observe
that DSGP-BAE just performs comparably to SGP-BAE on
the moving ball dataset. This can be attributed to the fact that
the correlation between the latent variables of these datasets
is sufficiently simple to be modeled using shallow GPs.
For instance, in the experiments conducted on the moving
ball dataset, the data is generated from a GP, following the
setup used in the previous work (Pearce, 2019; Jazbec et al.,
2021). Nevertheless, when dealing with more complex
datasets, we believe that the flexibility offered by DGPS

can prove beneficial for modeling intricate patterns (e.g.,
discontinuities or strong non-stationarities) of the latent
process.

6. Conclusions

We have introduced our novel SGP-BAE that integrates
fully Bayesian sparse GPS on the latent space of Bayesian
autoencoders. Our proposed model is generic, as it allows
an arbitrary GP kernel and deep GPs. The inference for this
model is carried out by a powerful and scalable SGHMC
sampler. Through a rigorous experimental campaign, we
have demonstrated the excellent performance of SGP-BAE
on a wide range of representation learning and generative
modeling tasks.

Limitations and future works. While our model’s ability
to learn disentangled representations has been demonstrated
through empirical evidence, there is a need to establish a
theoretical grounding for the disentanglement of its latent
space. Furthermore, it would be useful to study the amortiza-
tion gap (Cremer et al., 2018; Krishnan et al., 2018; Marino
et al., 2018) of our model. Additionally, exploring more
informative priors for the decoder’s parameters (Tran et al.,
2021), beyond the isotropic Gaussian prior used in this work,
is also worthwhile. There are potential avenues for future
research. One of them is the fully Bayesian treatment of the
auxiliary data X. This approach can be beneficial when the
auxiliary data is unavailable or contains missing values. In
addition, it would be interesting to apply the model to down-
stream applications where modeling correlations between
data points and uncertainty quantification are required, such
as in bioinformatics and climate modeling.
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A. A taxonomy of latent variable models

By considering the characteristics of the prior distribution on latent variables, the likelihood function, input dependencies,
and Bayesian treatments, we can draw connections between our proposed models and other latent variable models. Fig. 6
summarizes these relationships. Here, we assume an isotropic Gaussian likelihood with precision [ for the high-dimensional
observed data y,, as used in our experiments.

Probabilistic principal component analysis (PCA) (Bishop, 20006) is a simple latent variable model that imposes an isotropic
Gaussian prior over the latent space and linear mapping from the latent variables to the observed data. Variational
Autoencoders (VAES) (Kingma & Welling, 2014; Rezende et al., 2014) build upon this by introducing a nonlinear parametric
mapping to the observed data, while Gaussian process latent variable models (GPLVMS) utilize a nonparametric Gaussian
Process (GP) mapping. Recently, Lalchand et al. (2022b) extended GPLVMS in a fully Bayesian manner using stochastic
variational inference (VI). Conditional Variational Autoencoder (CVAE) (Sohn et al., 2015) is an extension of VAES that
utilizes an input-dependent prior in the latent space for conditional generation tasks. However, this model does not account
for correlations between latent representations. Gaussian Process VAEs (Casale et al., 2018; Pearce, 2019; Jazbec et al.,
2021) overcome this problem by imposing GP priors on the latent space. Our model, Sparse Gaussian Process Bayesian
Autoencoder (SGP-BAE), further enhances the modeling capabilities of these models by using a fully Bayesian approach
for the latent variables, decoder, and GP hyperparameters in a fully Bayesian manner, and decoupling the model from the
variational inference formulation.

Latent neural processes (Garnelo et al., 2018) can be seen as an extension of CVAE. However, this model follows a

N, N
meta-learning approach and splits the data into a context set, {XLLC} , yLCq} ‘ , and a target set, {XLT] , yg }} : . This

n=1 n=1
model uses a global latent variable z to capture the global properties of the context data. The likelihood is conditioned on
both new target input XLT] and the global latent variable z.
Probabilistic PCA [a] VAE [d] Neural Process [g]NC
— [c] _[C] .
ZnNN(Oy:[) R TS 3 Z‘HNN(OyI) u7a27fenc ({Xn 1yn }n:17¢>
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Figure 6: Connections between our proposed models and other latent variables models. References are [a] for Bishop (2006), [b] for
Lawrence (2005), [c] for Damianou & Lawrence (2013), [d] for Kingma & Welling (2014); Rezende et al. (2014), [e] for Sohn et al.
(2015), [f] for Casale et al. (2018); Pearce (2019); Jazbec et al. (2021), [g] for Garnelo et al. (2018), and [h] for this work and Kingma &
Welling (2014); Daxberger & Hernandez-Lobato (2019).
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B. Details on stochastic gradient Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) (Neal, 2011) is a highly-efficient Markov Chain Monte Carlo (MCMC) method used to
generate samples @ from a potential energy function U(€). HMC introduces auxiliary momentum variables r and samples
are then generated from the joint distribution p(6, r) using the Hamiltonian dynamics:

a1
{de =M 'rdt, 1)

dr = —-VU(0)dt,

where M is an arbitrary mass matrix that serves as a preconditioner. The continuous system described by HMC is
approximated using n-discretized numerical integration, and subsequent Metropolis steps are applied to account for errors
that may result from this approximation.

However, HMC becomes computationally inefficient when applied to large datasets, as it requires the calculation of the
gradient VU (0) on the entire dataset. To address this issue, (Chen et al., 2014) proposed an extension of HMC called
stochastic gradient Hamiltonian Monte Carlo (SGHMC), which uses a noisy but unbiased estimate of the gradient VI (8)
computed from a mini-batch of the data. The discretized Hamiltonian dynamics are then updated using this estimate of the
gradient as follows:

{AO =M lr,
(13)

Ar = -—VU(8) — nCM 'r + N(0,27(C — B)),

where 7 is the step size, C is a user-defined friction matrix, B is the estimate for the noise of the gradient evaluation. To
select suitable values for these hyperparameters, we use a scale-adapted version of SGHMC proposed by Springenberg et al.
(2016), in which the hyperparameters are automatically adjusted during a burn-in phase. After this period, the values of the
hyperparameters are fixed.

Estimating M. In our implementation of SGHMC, we set the mass matrix Mt = diag (ngl/ 2), where Vg is an

estimate of the uncentered variance of the gradient, Vg ~ E[(VU(8))?]. which can be estimated by using the exponential

moving average as follows: R A ~
AVp = -7V +77'V(U(0))?, (14)

where 7 is a parameter vector that specifies the moving average windows. This parameter can be chosen adaptively using
the method proposed by Springenberg et al. (2016) as follows:

AT = —ggffg_lr +1, and, Agg = —7'71.(]9 + 7'71V(7(0), (15)
where gg is a smoothed estimate of the gradient VU (6).
Estimating B. Ideally, the estimate of the noise of the gradient evaluation, B, should be the empirical Fisher information

matrix of U (6). However, this matrix is computationally expensive to calculate, so we instead use a diagonal approximation
given by B = %nVe. This approximation is already obtained from the step of estimating M.

Choosing C. In practice, it is common to set the friction matrix C to be equal to the identity matrix, i.e. C = CI, which
means that the same independent noise is applied to each element of 6.

The discretized Hamiltonian dynamics. By substituting v := nf/g_l/ 2

A =v
- i A . 16
{Av = =02V 2VT(0) — nCVy PV 4+ N (0,20°CV ). 1o

r, the dynamics in Eq. 13 becomes

Following (Springenberg et al., 2016), we choose C' such that nC Vg_l/ >

momentum coefficient of a.. The final discretized dynamics are then

= ol. This is equivalent to using a constant

AO =v
RN - N 17
{Av = —772V971/2VU(0) —av + N(0, 2772aV071/2 — D). ("
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C. Details of the scalable sampling objective for sparse Gaussian processes

GPs (Rasmussen & Williams, 2006) are one of the main workhorses of Bayesian nonparametric statistics and machine
learning, as they provide a flexible and powerful tool for imposing a prior distribution over functions:

f(x) ~ GP(m(x), 5(x,%; 8)), (18)

where f(x) : RP — R maps D-dimensional inputs into one-dimensional outputs. GPs are fully characterized by their mean
and their covariance:

E[f(x)] =m(x),  cov[f(x),f(x)] = k(x,x;0), (19)

where m : R — R is the mean and k : R? x RP — R is the kernel function with hyperparameters 6. GPs indeed
can be viewed as an extension of a multivariate Gaussian distribution to infinitely many dimensions. For any fixed set of
inputs X € RY* P the realizations of functions with a GP prior at these inputs, denoted by f € R, follow the Gaussian
distribution:

Here, we assume a zero-mean GP prior and Kxx | ¢ is the covariance matrix obtained by evaluating r(x,x’; @) over all
input pairs x;, x; (we will drop the explicit parameterization on @ for the sake of notation). From now on, in order to keep
the notation uncluttered, we focus on a single channel of latent space of autoencoders (AEs). We assume that the latent
codes Z are stochastic realizations based on f and additive Gaussian noise i.e. Z | f ~ N(f, o%I). We further assume a full

factorization p(Z | £;021) = [T°_, p(2n | fn; 02).

Though GPs provide an elegant mechanism to handle uncertainties, their computational complexity grows cubically with
the number of inputs, i.e. O(N?). This problem is commonly tackled by sparse GPs, which are a family of approximate
models that address the scalability issue by introducing a set of M inducing variables u = (u1, ...,ups) | € RM*1 at the
corresponding inducing inputs S = [s] , ...,s,] T € RM*P with u,, = f(s,,). The inducing points S can be interpreted as
a compressed version of the training data where the number of inducing points M acts as a trade-off parameter between the
goodness of the approximation and scalability. The inducing variables are assumed to be drawn from the same GP as the
original process, i.e.:

p(f,u) = p(u)p(f |u), with 21
p(u) = N(O7 KSS)? (22)
p(f | 11) = N(KXSK;s1u7 Kxx - KXSKgleSX)7 (23)

where the covariance matrices Kgs, Kxs are computed between the elements in S and {X, S}, respectively, and K¢x = K;rx.

There is a line of works using variational techniques for sparse GPs priors for VAES (Jazbec et al., 2021; Ashman et al.,
2020). More specifically, they rely on the variational framework proposed by Titsias (2009); Hensman et al. (2013), enabling
the use of GP priors on very large datasets. However, the posterior of the inducing variables u under this framework involves
constraining to have a parametric form (usually a Gaussian).

In this work, we take a different route as we treat the inducing variables u, inducing inputs S as well as the kernel
hyperparameters 6 in a fully Bayesian way. As discussed in the main paper, we wish to infer these variables together with
the decoder parameters and the latent codes by using a powerful and scalable SGHMC (Chen et al., 2014) sampler. To do
so, the sampling objective Eq. 9 should be decomposed over all data points. The main obstacle is the joint distribution
p(Z,u|0) = Ep¢|w[p(Z | f; 02I)], which has a complicated form due to the expectation under the conditional p(f | u).
As discussed by Rossi et al. (2021), this problem can be solved effectively by the fully independent training conditionals
(FITC; see Quifonero-Candela & Rasmussen, 2005), i.e., parameterizing p(f | u) as follows:

p(fu) = N(f; Ky K u, diag[K o — Kuo K Kex)) (24)
N N
= [ p(fulw) = [T N(fns fin, 52, (25)
n=1 n=1
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where

fin = K(xn, S)K u, (26)
52 = K(Xn, Xn) — (%X, S) K K(S, x,). (27)

We then can decompose the log-joint distribution over all data points as follows:

log p(Z, u|6) = 10g By u,6)[p(2 | f;0°T)] (28)
—log [ p(t|u.0)p(Z]| .0t (29)
N
—tog | T]ptan | fui ™ol |0, O)dfs.df, (30)
n=1
N
ZIOgH /N(Zn:fnaaz)N(fna/]nvéz)dfn (31)
n=1
N
zlogH/\/(zn;ﬁn,&i—i-UQ) (32)
n=1
N
= log N (zn; jin, 5% + 02), (33)
n=1

where fi,,, 52 are given by Eq. 26 and Eq. 27, respectively.

In this work, we adopt the approach proposed by Hensman et al. (2015b), which involves sampling the hyperparameters
6 and u jointly. To achieve sampling efficiency, a whitening representation is utilized, where the inducing variables are
reparameterized as u = Lggv, with Kgg = LSSLJS. Subsequently, the sampling process involves obtaining samples from
the joint posterior distribution over v and 6.

D. Details of the extension to deep Gaussian processes

We assume a deep Gaussian process prior f(X) o f(L=D o... 0 f(1) (Damianou & Lawrence, 2013), where each f() is a
GP. For the sake of notation, we use ¥¥) to indicate the set of kernel hyperparameters and inducing inputs of the [-th layer

L
and £ as the input X. We additionally denote ¥ = {¢} U {u(l), w® }l , where ¢ is the decoder’s parameters.

The full joint distribution is as follows:

qFOVE 7 ‘ _ W p=1), ‘(m; 2 o).
p (@A, 2, Y | X) p(@)l[[lp(f €070, 9) p (2] £1;0°T) p(Y | Z, ) (34)

Deep GP prior

Here we omit the dependency on X for notational brevity.

We wish to infer the posterior over ¥ and the latent variables Z. To do this, the hidden layers f @ have to be marginalized
and propagated up to the final layer L (Salimbeni & Deisenroth, 2017). In particular, the log posterior is as follows:

log p(¥,Z | Y, X) = 1ogp(¥) +10gE _/con | run g’ p(Z’f(L);021> Flogp(Y|Z, ) —logC,  (35)
p({ }z=1‘{u ’ }1=1)

where C' is a normalizing constant.

The above posterior is intractable, but we have obtained the form of its (un-normalized) log-joint, from which we can
sample using the HMC method. Unfortunately, the expectation term is intractable, but we can estimate it using Monte Carlo
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sampling as follows:

log]Ep({fm}lL:l ’{u(z)_’q,(l)}f:l)p (Z ‘ f(L); JQI) ~

~ (L). 2 7 ( W) | 4@ @ <0>>

S8R, (o3 15 (o gy )P (Z‘f Lo I), £~ p (£ [u®, gD £O) (36)

~ oo (L). 2 7@ (@] @ @ FY

N1001Ep({f(L)}lL=3|?<2>7{uu>’w};3)p (Z‘f .o I), £ p (f@|u® e® FV) 37)

~ log L), 2 (L1 L1 (L—1 L-1) FL-2)

~ lOg Ep(f(L) |f(’4*1)’u(fl)’\ll(l‘))p (Z ’ f( )70 I) ) f ~D <f 11( )7 ‘I’( )a f ) ) (38)
N

= S 108E, (11 - it P (70| £20) (39)
n=1

Notice that each step of the approximation is unbiased due to the layer-wise factorization of the joint distribution (Eq. 34).

We can obtain a closed form of the last-layer expectation as z,, | fT(LL) is a Gaussian. In the case of using a different
distribution, this expectation can be approximated using quadrature (Hensman et al., 2015a).

E. Experimental details

In this section, we present details on implementation and hyperparameters used in our experimental campaign. All
experiments were conducted on a server equipped with a Tesla T4 GPU having 16 GB RAM. Throughout all experiments,
unless otherwise stated, we impose an isotropic Gaussian prior over the decoder parameters. We use the radial basis
function (RBF) kernel with automatic relevance determination (ARD) with marginal variance and independent lengthscales
A; per feature (MacKay, 1996). We place a lognormal prior with unit variance and means equal to 1 and 0.05 for the
lengthscales and variance, respectively. Since the auxiliary data of most of the considered datasets are timestamps, we
impose a non-informative uniform prior on the inducing inputs. We observe that this prior works well in our experiments.
The lengthscales are initialized to 1, whereas the inducing points are initialized by a k-means algorithm as commonly used
in practice (Hensman et al., 2015a). For inference, we use an adaptive version of SGHMC (Springenberg et al., 2016) in
which the hyperparameters are automatically tuned during a burn-in phase. The hyperparameters are tuned according to the
performance on the validation set.

The random seed for the stochastic inference network is drawn from an isotropic Gaussian distribution, i.e. () = N(0, I).
In case the encoder is a multilayer perceptron (MLP), we concatenate the random seeds and the input into a long vector. The
dimension of the random seeds is the same as that of the input. If the encoder is a convolutional neural network, we spatially
stack the random seeds and the input. We use an Adam optimizer (Kingma & Ba, 2015) with a learning rate of 0.001 for
optimizing the encoder network. Unless otherwise specified, we set the default hyperparameters of the number of SGHMC
and encoder optimization steps J = 30, and K = 50, respectively.

E.1. Moving ball experiment

We use the same network architectures as in Jazbec et al. (2021); Pearce (2019). We follow the data generation procedure
of Jazbec et al. (2021), in which a squared-exponential GP kernel with a lengthscale [ = 2 was used. Notice that, unlike
Jazbec et al. (2021), we generate a fixed number of 35 videos for training and another 35 videos for testing rather than
generating new training videos at each iteration, regardless of the fact that tens of thousands of iterations are performed.
This new setting is more realistic and is designed to show the data efficiency of the considered methods. The number of
frames in each video is 30. The dimension of each frame is 32 x 32. Table 6 presents the default hyperparameters used for
our SGP-BAE and Gaussian Process Bayesian Autoencoder (GP-BAE) models. For the competing methods, we follow the
setups specified in Jazbec et al. (2021).

E.2. Rotated MNIST experiment

For the rotated MNIST experiment, we follow the same setup as in Jazbec et al. (2021) and Casale et al. (2018). In particular,
we use the GP kernel proposed by Casale et al. (2018) and a neural network consisting of three convolutional layers followed
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by a fully connected layer in the encoder and vice-versa in the decoder. The details of hyperparameters used for our models
are presented in Table 7. For the competing methods, we refer to Jazbec et al. (2021).

E.3. Missing imputation experiment

We follow the experimental setting in Ashman et al. (2020), in which squared exponential GP kernels are used. Notice that,
to ensure a fair comparison, we handle partially missing data by treating it as zero and feeding it into the inference network
(encoder) for SGP-VAE (Ashman et al., 2020) and our SGP-BAE model. This is because it is not trivial to adapt partial
inference networks (Ashman et al., 2020) to our stochastic inference network, and we leave this for future work. Table 8 and

Table 9 show the default hyperparameters used for our models. For multi-output GP baselines, we refer to Requeima et al.
(2019).

Table 7: Parameter settings for the rotated MNIST experiment.

Table 6: Parameter settings for the moving ball experiment. PARAMETER VALUE
PARAMETER VALUE NUM. OF CONV. LAYERS IN ENCODER 3
NUM. OF CONV. LAYERS IN DECODER 3
NUM. OF FEEDFORWARD LAYERS IN ENCODER 2 NUM. OF FILTERS PER CONV. CHANNEL 8
NUM. OF FEEDFORWARD LAYERS IN DECODER 2 FILTER SIZE 3x3
WIDTH OF A HIDDEN FEEDFORWARD LAYER 500 NUM. OF FEEDFORWARD LAYERS IN ENCODER 1
DIMENSIONALITY OF LATENT SPACE 2 NUM. OF FEEDFORWARD LAYERS IN DECODER 1
ACTIVATION FUNCTION TANH ACTIVATION FUNCTION ELU
NUM. OF INDUCING POINTS 10 DIMENSIONALITY OF LATENT SPACE 16
MINI-BATCH SIZE FULL NUM. OF INDUCING POINTS 32
STEP SIZE 0.005 MINI-BATCH SIZE 512
MOMENTUM 0.05 STEP SIZE 0.01
NUM. OF BURN-IN STEPS 1500 MOMENTUM 0.01
NUM. OF SAMPLES 100 NUM. OF BURN-IN STEPS 1500
THINNING INTERVAL 400 NUM. OF SAMPLES 200
THINNING INTERVAL 800
Table 8: Parameter settings for the JURA experiment. Table 9: Parameter settings for the EEG experiment.
PARAMETER VALUE PARAMETER VALUE
NUM. OF FEEDFORWARD LAYERS IN ENCODER 1 NUM. OF FEEDFORWARD LAYERS IN ENCODER 1
NUM. OF FEEDFORWARD LAYERS IN DECODER 2 NUM. OF FEEDFORWARD LAYERS IN DECODER 2
WIDTH OF A HIDDEN ENCODER LAYER 20 WIDTH OF A HIDDEN ENCODER LAYER 20
WIDTH OF A HIDDEN DECODER LAYER 5 WIDTH OF A HIDDEN DECODER LAYER 5
DIMENSIONALITY OF LATENT SPACE 2 DIMENSIONALITY OF LATENT SPACE 3
ACTIVATION FUNCTION RELU ACTIVATION FUNCTION RELU
NUM. OF INDUCING POINTS 128 NUM. OF INDUCING POINTS 128
MINI-BATCH SIZE 100 MINI-BATCH SIZE 100
STEP SIZE 0.002 STEP SIZE 0.003
MOMENTUM 0.05 MOMENTUM 0.05
NUM. OF BURN-IN STEPS 1500 NUM. OF BURN-IN STEPS 1500
NUM. OF SAMPLES 50 NUM. OF SAMPLES 50
THINNING INTERVAL 180 THINNING INTERVAL 180

F. Additional results
F.1. Ablation study on Bayesian treatments of Autoencoders

There are several approaches to treating autoencoder models in a fully Bayesian manner. In fact, in Appendix E of the
seminal paper on VAE, Kingma & Welling (2014) had already considered a fully Bayesian treatment of VAES by introducing
a prior on the decoder. VI is employed to infer the decoder and the latent variables. Daxberger & Herndndez-Lobato (2019)
suggested employing SGHMC for sampling decoder parameters, but they use the evidence lower bound (ELBO) of the
marginal likelihood of VAE as the objective for sampling. This may result in suboptimal approximations. In contrast, our
proposed approach entails direct sampling from the posterior of the decoder and latent variables. In order to differentiate our
model from these approaches, we name them as Bayesian Variational Autoencoders (BVAES), following the terminology
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used by Glazunov & Zarras (2022). In particular, we consider the VI (Kingma & Welling, 2014) and SGHMC approaches
(Daxberger & Hernandez-Lobato, 2019) to treat the decoder of VAES in a Bayesian manner. These approaches are hereafter
referred to as BVAE-VI and BVAE-SGHMC, respectively.

In this section, with the aim of thoroughly disentangling the factors contributing to the superior performance of our proposed
models, we present a comprehensive ablation study on these Bayesian treatments of AES and AE-style models with GP
priors. Based on this set of experiments, we identified three key factors that contribute to the improved performance of
our proposed models. These factors are: (i) the new amortized SGHMC scheme for inference of the latent variables Z;
(ii) treating the decoder in a Bayesian manner and using SGHMC for inference properly; (iii) employing a full Bayesian
sparse GP prior on the latent variables and using SGHMC for inference. To evaluate the impact of each factor, we evaluate
different modeling and inference choices of the decoder, latent variables, and GP prior. As shown in Fig. 7, the results
further demonstrate that our proposal in fact offers the best performance.

Regarding (i), we consider baselines in which the decoder in our models, BAE, GP-BAE, and SGP-BAE, are treated in
a non-Bayesian way. In the figure, we name these baselines as BAE-NonBayesDec, GP-BAE-NonBayesDec, SGP-BAE-
NonBayesDec, respectively. The results of these new models are slightly worse than the original ones. However, they are
still significantly better than variational-based models. Moreover, this also implies the benefit to treat the decoder Bayesian
properly (ii).

For (ii), we additionally consider Bayesian VAES, such as BVAE-VI and BVAE-SGHMC. We find that the Bayesian
treatment of the decoder of VAES is not clearly helpful, even when using SGHMC for the decoder. This is because BVAE-
SGHMC still relies on the ELBO as the sampling objective. In contrast, in our models, we sample the decoder directly from
the posterior. This is aligned with the recent success of SGHMC on modern Bayesian neural networks (Tran et al., 2022;
Izmailov et al., 2021). Moreover, our models jointly sample all parameters at once, which avoids the inefficiency of iterative
switching between optimizing the inference network using VI and sampling the decoder.

To verify (iii), we evaluate our model SGP-BAE in the case where the sparse GP is not treated in a fully Bayesian way. The
inducing points and kernel parameters are optimized using the objective of Titsias (2009). In Fig. 7, we term this baseline as
SGP-BAE-NonBayesGP. We observe that this model performs much worse than our SGP-BAE model.

Model Decoder ¢ Latent variables Z GP prior
- VAE Non-Bayesian VI None
- BVAE-VI VI VI None
== BAE-SGHMC SGHMC VI None
== BAE SGHMC SGHMC None
I BAE-NonBayesDec None SGHMC None
% _— GP-VAE None VI Full GP (Fixed)
s =——  GP-BVAE-VI SGHMC VI Full GP (Fixed)
o — GP-BVAE-SGHMC SGHMC VI Full GP (Fixed)
— GP-BAE SGHMC SGHMC Full GP (Fixed)
GP-BAE-NonBayesDec Non-Bayesian SGHMC Full GP (Fixed)
==  SVGP-VAE Non-Bayesian VI Sparse GP (VI)
=€  SVGP-BVAE-VI VI VI Sparse GP (VI)
pam—— =»=  SVGP-BVAE-SGHMC SGHMC VI Sparse GP (VI)
T T T =8  SGP-BAE SGHMC SGHMC Bayesian sparse GP (SGHMC)
5 10 20 SGP-BAE-NonBayesDec ~ Non-Bayesian SGHMC Bayesian sparse GP (SGHMC)
Number of inducing points =8~  SGP-BAE-NonBayesGP SGHMC SGHMC Sparse GP (VI)

Figure 7: An ablation study on different Bayesian treatments of AE models and AE-style models with GP priors on the moving ball
dataset.

F.2. Latent space visualization

Fig. 8 illustrates a two-dimensional t-SNE (van der Maaten & Hinton, 2008) visualization of latent vectors (C' = 16) for
the rotated MNIST data obtained by our SGP-BAE model. It is evident that the clusters of embeddings are organized in a
structured manner according to the angles they represent. Specifically, the embeddings of rotated images are arranged in a
continuous sequence from 0 to 27 in a clockwise direction.
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Figure 8: Visualization of t-SNE embeddings (van der Maaten & Hinton, 2008) of SGP-BAE latent vectors on the training data of the
rotated MNIST. Each image embedding is colored with respect to its associated angle. Here, we use a perplexity parameter of 50 for
t-SNE.
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Figure 9: Trace plots for four test points on the rotated MNIST dataset. Here, we simulate 4 chains with 200 samples for each.

F.3. Convergence of SGHMC

We follow the common practice of using the R potential scale-reduction diagnostic (Gelman & Rubin, 1992) to assess the
convergence of Markov chain Monte Carlo (MCMC) on Bayesian neural networks (BNNs) (Izmailov et al., 2021; Tran et al.,
2022). Given two or more chains, R estimates the ratio between the chain variance and the average within-chain variance.
For the large-scale MNIST experiment, we compute the R statistics on the predictive posterior over four independent chains
and obtain a median value of less than 1.1, which suggests good convergence (Izmailov et al., 2021). In addition, we present
trace plots of the predictive posterior in Fig. 9, which also support the conclusion of good mixing.

F.4. Visualization of EEG data

Fig. 10 depicts the predictive mean and uncertainty estimation for the missing values of the EEG dataset.
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Figure 10: Visualization of predictions for missing data of the EEG dataset. Each panel shows one of the three channels with missing
data (orange crosses) and observed data (black points).
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