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Abstract

Marked temporal point processes (MTPPs) are a

general class of stochastic models for modeling the

evolution of events of different types (“marks”) in

continuous time. These models have broad appli-

cations in areas such as medical data monitoring,

financial prediction, user modeling, and commu-

nication networks. Of significant practical inter-

est in such problems is the issue of missing or

censored data over time. In this paper, we focus

on the specific problem of inference for a trained

MTPP model when events of certain types are not

observed over a period of time during prediction.

We introduce the concept of mark-censored sub-

processes and use this framework to develop a

novel marginalization technique for inference in

the presence of censored marks. The approach is

model-agnostic and applicable to any MTPP model

with a well-defined intensity function. We illus-

trate the flexibility and utility of the method in

the context of both parametric and neural MTPP

models, with results across a range of datasets in-

cluding data from simulated Hawkes processes,

self-correcting processes, and multiple real-world

event datasets.

1 INTRODUCTION

Stochastic models for event data evolving in continuous time

are typically referred to as temporal point processes. An im-

portant class within this general family is marked temporal

point processes (MTPPs), where each event in time is asso-

ciated with a random outcome known as a mark. In general,

the mark can either be discrete or continuous; in this work

we focus on discrete marks. The flexibility of MTPPs has

allowed them to be applied to a broad range of applications,

including medical diagnosis [Islam et al., 2017], epidemic

spread models [Marmarelis et al., 2022], environmental data

analysis [Brillinger, 2000], financial data prediction [Zhu

et al., 2021, Shi and Cartlidge, 2022], communication net-

work modeling [Mishra and Venkitasubramaniam, 2013],

user behavior analysis [Yang et al., 2021, Hatt and Feuer-

riegel, 2020], misinformation spread models [Zhang et al.,

2021], and activity prediction [Fortino et al., 2020].

The foundations for MTPP models have their origins in

the statistical literature (e.g., Cox and Lewis [1972], Da-

ley and Vere-Jones [2003], Andersen et al. [2012]), with

subsequent development of specific classes of MTPPs such

as multivariate self-exciting Hawkes processes [Hawkes,

1971] and multivariate self-correcting processes [Zheng and

Vere-Jones, 1991]. More recently, there has been significant

activity in the development of machine learning methods

for MTPPs, with a significant emphasis on approaches that

take advantage of neural representation learning, such as

recurrent MTPPs [Du et al., 2016], neural Hawkes processes

[Mei and Eisner, 2017], stochastic variants of deep MTPPs

[Hong and Shelton, 2022], scalable deep MTPPs [Türkmen

et al., 2020], as well as general approaches to forecasting

with deep MTPP models [Deshpande et al., 2021].

An important practical aspect of working with real-world

event data is that censoring of observations can occur in a

number of different ways. For example, a common example

of right-censoring often occurs in survival analysis (a sub-

field of temporal point processes) in which a patient’s event

of interest is unobserved due to the end of a data collection

period. This particular type of censoring is well-studied

and there are well-known methods for accommodating this

during training and inference. More recently, there has been

work on handling broader categories of censoring for neural

MTPP models, for example, censoring where each event

has a type-specific probability of being missing [Mei et al.,

2019].

In this paper we focus on a different problem, the problem of

making predictions when some, or all, marks are censored

over (potentially open-ended) intervals of time, i.e., there
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3 MARK-CENSORED TEMPORAL

POINT PROCESSES

3.1 PRELIMINARIES

Notation Let τ1, τ2, · · · ∈ R≥0 be a sequence of contin-

uous random variables that are ordered, or more formally

∀i : τi < τi+1. These variables represent the time of oc-

currence for events of interest. Alongside each time of an

event is an accompanying piece of information, such as a

label or location, that is commonly referred to as a mark.

We will represent each mark as a random variable drawn

that takes on discrete values from a fixed set of M values:

κi ∈ M ≡ {1, . . . ,M}.

Let the history of events up until, but not including, time t be

denoted as H(t) = {(τi, κi) |τi < t for i = 1, 2, . . . }. This

implies that H(τi) = {(τ1, κ1), . . . , (τi−1, κi−1)}. For our

purposes, we will often refer to histories over specific ranges

of time such as H[a, b) for all events with times occurring

in the interval [a, b). Additionally, it is often convenient to

consider mark-specific histories (i.e., sequences that only

contain events of specified marks). These will be denoted

as either HA := {(τ, κ) ∈ H|κ ∈ A} or Hk := {(τ, κ) ∈
H|κ = k} for A ⊂ M and k ∈ M.

Marked Temporal Point Processes The generative mech-

anisms for these event sequences are generally referred to as

marked temporal point processes (MTPPs). MTPP models

define a probability distribution over a given sequence of

N events, p(H[0, τN ]).1 These models are typically con-

structed in an autoregressive fashion,

p(H[0, τN ]) =

N
∏

i=1

p(τi, κi |H[0, τi−1]),

where the joint distribution for the next event (τi, κi) con-

ditioned on all prior events is modeled by the expected,

instantaneous rate of change for each mark. This is referred

to as the marked intensity function and is defined formally

as

λk(t |H(t))dt := Ep [✶(|Hk[t, t+ dt)| = 1) |H(t)] .

For brevity, we typically use the following ∗ convention to

suppress the conditional: λ∗
k(t) := λk(t |H(t)). Addition-

ally, the following notation will be used to represent the

sum of different marked intensities: λ∗
A(t) :=

∑

k∈A λ∗
k(t)

for A ⊂ M. Note that these functions not only condi-

tion on the preceding events, but also on the fact that no

events have occurred since the last event up until time t, i.e.,

p(· |H[0, t)) 6= p(· |H[0, τi−1]).

The total intensity function λ∗(t) := λ∗
M
(t), also referred to

as the ground intensity, is sufficient to describe the timing of

1For brevity and consistent notation, we will be using p(·) in

reference to both probability density and mass when appropriate.

the next event τi. The distribution of the mark conditioned

on the timing of the next event is naturally described as

p(κi = k | τi = t,H(t)) ≡ λ∗

k
(t)

λ∗(t) . We will be assuming

that the native output of any model we are working with

will produce a vector of marked intensity functions over the

mark space M evaluated at time t.

Lastly, the likelihood of a given sequence H of length N
over an observation window [0, T ] can be computed in terms

of intensity values:

p(H[0, T ]) =

(

N
∏

i=1

λ∗
κi
(τi)

)

exp

(

−

∫ T

0

λ∗(s)ds

)

.

(1)

Sampling Any well-behaved MTPP can be easily sam-

pled by using a thinning procedure [Ogata, 1981], if not

directly. This procedure relies on the fact that the super-

position of two point processes can be characterized as

another point process whose total intensity is the sum of

individual total intensities. As such, one can sample candi-

date event times from a homogenous Poisson process with

rate D that dominates the total intensity of the MTPP of

interest. These times will be accepted iteratively with prob-

ability λ∗(t)/D, and subsequent marks are sampled from

p(κi = k |τi = t,H(t)).

3.2 MARK-CENSORED SUB-PROCESS

Problem Statement Assume that we have access to a

trained MTPP with intensity functions λ∗
k(t) for k ∈ M. We

are interested in performing inference on such a model in

the presence of censoring. In particular, we are interested

in a type of censoring we term mark-censoring in which

only events of types k ∈ O ⊂ M are observed, while

all events of types k ∈ C := M \ O are censored and

unobserved. In particular, we assume in mark-censoring that

we know (a) the time-interval where censoring occurs and

(b) which kinds of marks are missing (e.g., knowing the

time intervals and colors of marks in the censoring boxes

displayed in Fig. 1). Below we develop the framework for

the case when censoring takes place over all of time (i.e., t ∈
[0,∞)); however, as we will discuss later in this section, the

general approach can be directly applied to a range of more

complicated censoring schemes (such as those illustrated in

Fig. 1).

On Censoring The term “censoring” can be quite a loaded

concept with regards to statistical models. In our work we

assume the absence of certain marks over a time interval

to correspond to missing completely at random (MCAR)

[Heitjan and Basu, 1996], i.e., we assume that the realized

sequence H (both observed and unobserved portions) are

independent of why it is censored in the first place. We leave

handling of more informative censoring to future work.
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sampling restriction (i.e., no new events of types k ∈ O

allowed) being satisfied under the original model. This can

be computed for a given sample and is equal to

ω(H̃C(t)) = exp

(

−

∫ t

0

λO(s |HO(s), H̃C(s))ds

)

.

As an illustration of this censored intensity λ∗
k(t), Fig. 2

shows the original, censored, and naive intensities for an

example sequence sampled from a self-correcting process.

After the censoring interval (in gray) ends at t = 7, the

censored intensity tracks the original true intensity (top)

much more closely than the naive intensity (bottom) does.

In this context, naive intensity is referring to the original in-

tensity being computed while treating the partially observed

sequence HO as if it were the fully observed sequence H.

The approximation of λ∗
k(t) is for finite samples and is

a ratio estimator [Tin, 1965]. Taking the limit as n → ∞
converts each summation into an expected value with respect

to the proposal distribution, as ratio estimators are consistent.

This description matches what will formally be derived

below in Eq. (4). Please refer to the Appendix for an in

depth analysis on the bias and variance of this estimator

when using finite samples.

Formal Definition of λ Without loss of generality, we will

assume that any prior events being conditioned on have been

shifted to end at t = 0 such that H(0) contains all of the

previous events. It can be shown that the censored intensity

function for the sub-process is just a specific marginalization

of the original intensity function:

λ∗
k(t) := λk(t |H(0),HO[0, t) = ∅) for k ∈ O

= lim
∆↓0

1

∆
p(hit(k) ∈ [t, t+∆) |H(0),HO[0, t) = ∅)

= lim
∆↓0

1

∆
Ep(HC[0,t) |H(0),HO[0,t)=∅)

[

p(hit(k) ∈ [t, t+∆) |H(0),HO[0, t) = ∅,HC[0, t))
]

= lim
∆↓0

1

∆
Ep(HC[0,t) |H(0),HO[0,t)=∅)

[

p(τi ∈ [t, t+∆), κi = k |H(t))
]

, |H(t)| = i− 1

= Ep(HC[0,t) |H(0),HO[0,t)=∅)

[

lim
∆↓0

1

∆
p(τi ∈ [t, t+∆), κi = k |H(t))

]

by DCT

= Ep(HC[0,t) |H(0),HO[0,t)=∅) [λ
∗
k(t)]

where in this context, hit(k) refers to the first occurrence

time of event k, and H(t) := H(0) ∪ HO[0, t) ∪ HC[0, t).
The Dominated Convergence Theorem (DCT) holds true

because we assume that there exists some value D that is

greater than λ∗
k(t) for any given t. Note that this assumption

is typically made to sample from arbitrary MTPPs.

Tractable Estimation of Censored Intensity To ap-

proximate the censored intensity function λ∗
k(t), we need

to perform a Monte Carlo estimation on the above

derived expected value, Ep(HC[0,t) |H(0),HO[0,t)=∅) [λ
∗
k(t)].

The only issue is that we cannot directly sample from

p(HC[0, t) |H(0),HO[0, t) = ∅) due to the autoregressive

nature of MTPPs.

Consider the proposal distribution q which is a MTPP with

intensity function

µ∗
k(t) =

{

0 if k ∈ O and t ≥ 0

λ∗
k(t) otherwise.

(2)

This can essentially be thought of as the original MTPP prior

to censoring, and then during sampling it only produces se-

quences of events that cannot be observed. The likelihood

for a sequence under this distribution is computed as fol-

lows:

q(HC[0, t)) := q(HC[0, t) |H(0)) (3)

=

[

N
∏

i=1

µ∗
κi
(τi)

]

exp

(

−

∫ t

0

µ∗(s)ds

)

=

[

N
∏

i=1

λ∗
κi
(τi)✶(κi ∈ C)

]

exp

(

−

∫ t

0

λ∗
C(s)ds

)

where |HC[0, t)| = N . Note that the proposal distribution

has the same support as p(HC[0, t) |H(0),HO[0, t) = ∅).2

Using importance sampling with this proposal distribution,

we can see that the censored intensity becomes tractable:

λ∗
k(t) = Ep(HC[0,t) |H(0),HO[0,t)=∅) [λ

∗
k(t)]

= Eq(HC[0,t))

[

λ∗
k(t)

p(HC[0, t) |H(0),HO[0, t) = ∅)

q(HC[0, t))

]

= Eq(HC[0,t))

[

λ∗
k(t)

p(HC[0, t) |H(0))✶(HO[0, t) = ∅)

p(HO[0, t) = ∅|H(0))q(HC[0, t))

]

=

Eq(HC[0,t))

[

λ∗
k(t)

[
∏

N

i=1
λ∗

κi
(τi)] exp(−

∫
t

0
λ∗(s)ds)

[
∏

N

i=1
λ∗

κi
(τi)✶(κi∈C)] exp(−

∫
t

0
λ∗

C
(s)ds)

]

p(HO[0, t) = ∅|H(0))

=
Eq(HC[0,t))

[

λ∗
k(t) exp

(

−
∫ t

0
λ∗
O
(s)ds

)]

p(HO[0, t) = ∅|H(0))
.

Note that in this context p(HC) is equivalent to the likeli-

hood of HC under the original model p, as if it were a fully

observed sequence H.

Now the expected value can be approximated with easy-to-

access Monte Carlo samples. The only immediate problem

is evaluating p(HO[0, t) = ∅ |H(0)) as this does not have

a closed form solution; however, as in the recent approach

of Boyd et al. [2023], we can estimate this statement using

importance sampling. Interestingly, we can actually utilize

the exact same proposal distribution q as specified in Eqs. (2)

2It follows that Eq(HC)[0,t) [✶(HO[0, t) = ∅)] = 1, which be-

comes useful for subsequent derivations.
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and (3) to represent p(HO[0, t) = ∅ |H(0)) as a tractable

expected value:

p(HO[0, t) = ∅|H(0))=Ep(H[0,t) |H(0)) [✶(HO[0, t) = ∅)]

= Eq(HC[0,t))

[

✶(HO[0, t) = ∅)
p(HC[0, t) |H(0))

q(HC[0, t))

]

= Eq(HC[0,t))

[

exp

(

−

∫ t

0

λ∗
O(s)ds

)]

.

Thus, the censored intensity can be ultimately represented

as a ratio of two expected values:

=⇒ λ∗
k(t) =

Eq(HC[0,t))

[

λ∗
k(t) exp

(

−
∫ t

0
λ∗
O
(s)ds

)]

Eq(HC[0,t))

[

exp
(

−
∫ t

0
λ∗
O
(s)ds

)] . (4)

In practice, this censored intensity can be approximated

using Monte Carlo (MC) estimates for both the numerator

and denominator.

It is worth reiterating that this estimator, which accounts for

the censoring of marks C at inference time, only requires

a trained MTPP along with samples from it. No further

training, additional models, or specific architectures are

required to properly deal with the censoring.

More Complex Censoring Regimes All of the deriva-

tions thus far have been focused on having a static set of

marks C being censored for an indefinite amount of time;

however, there are many other types of censoring that can

occur for a given MTPP. For example, the censoring could

occur over a specific window of time for either some or

all marks M. This could occur, for instance, in settings

where the connection is briefly lost to some or all sensors

in a system. Furthermore, censoring could occur multiple

times over different windows, and the marks being censored

across each window need not be the same from censoring

to censoring. See Fig. 1 for example censoring scenarios.

We can easily extend our previous results to cover the most

general case allowing for censoring over arbitrarily many

time windows and arbitrarily different censored marks. To

do so, first we will define the censoring schedule. The ob-

served and censored marks, O and C, are no longer static

and will potentially change over time. This will be repre-

sented via O(t),C(t) ⊂ M for t ≥ 0. This results in the

proposal distribution q now being characterized by the in-

tensity function µ∗
k(t) = λ∗

k(t)✶(k ∈ C(t)). Lastly, the

resulting censored intensity estimate also accommodates

this dynamic censoring:

λ∗
k(t) =

Eq(H[0,t))

[

λ∗
k(t) exp

(

−
∫ t

0
λ∗
O(s)(s)ds

)]

Eq(H[0,t))

[

exp
(

−
∫ t

0
λ∗
O(s)(s)ds

)] . (5)

This result is achieved effectively for free as the censored

intensity λ∗
k(t) in the static setting is technically defined

individually for any given moment in time t, making the

swap from O to O(t) and C to C(t) for each t well defined.

More Complex Mark Spaces M Our setting of interest

has the marks being modeled come from some discrete,

finite mark space M := {1, . . . ,M}; however, that does

not have to be the case. We can easily extend our method

to apply for more complex mark spaces. Consider an arbi-

trary mark space M which could be finite, continuous, high-

dimensional, etc. and let ν be a reference measure for M

(e.g., the Lebesgue measure for M ≡ R). Assume we have

a MTPP model with marked intensity function λ∗(t,m) for

m ∈ M, and that under our framework we know the ob-

served and censored portions of the mark space at any given

time, O(t) ⊂ M and C(t) := M \O(t) respectively. From

this, the censored intensity defined in Eq. (4) can be readily

used by letting λ∗
O(t)(t) :=

∫

O(t)
λ∗(t,m)dν(m) which can

either be computed analytically or estimated with Monte-

Carlo samples. The proposal distribution stays the same

as previously defined and samples from it can be achieved

easily using either rejection sampling on top of the typical

thinning procedure.

4 EXPERIMENTS

We investigate experimentally the impact that mark-

censoring has on various MTPP models and the ability of our

proposed marginalization method to handle such censoring

relative to baseline. Our investigations are carried out across

both classical parametric models and neural network-based

models on both synthetic and real-world data, respectively.

We find, as a whole, that in the presence of mark-censoring,

the inference ability of a model (i.e., assigning likelihood

to observed sequences) suffers significantly in comparison

to properly accounting for the missing data via our method.

Not surprisingly, we also find that our method yields larger

improvements as the information being censored becomes

more influential with respect to the information observed.

We also investigate the effect that mark-censoring has on

next event (time and mark) prediction. We observe in general

systematic differences that our mark-censored model has on

these predictions, with positive improvements in real-world

settings. Lastly, we also perform a sensitivity analysis on

the effect of both the number of sequences sampled as well

as the resolution used in estimating integrals has on our

method. We find that our method is typically fairly robust

to these hyperparameters. More details and exact results for

both of these experiments can be found in the Appendix.

Censoring In each of the experiments, we analyze the

performance of models using various sequences H(T ) of

differing lengths T . For the synthetic setting, we utilize

sequences that have been drawn from the given models. For

the real-world data, we use held-out sequences from the

dataset that a given model was trained on.

For every sequence being used, we filter out events accord-

ing to a particular censoring scheme that is selected for each
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