
Published in Transactions on Machine Learning Research (06/2023)

SC2 Benchmark: Supervised Compression for Split Com-

puting

Yoshitomo Matsubara ∗ yoshitom@uci.edu

Department of Computer Science

University of California, Irvine

Ruihan Yang ruihan.yang@uci.edu

Department of Computer Science

University of California, Irvine

Marco Levorato levorato@uci.edu

Department of Computer Science

University of California, Irvine

Stephan Mandt mandt@uci.edu

Departments of Computer Science and Statistics

University of California, Irvine

Reviewed on OpenReview: https://openreview.net/forum?id=p28wv4G65d

Abstract

With the increasing demand for deep learning models on mobile devices, splitting neural network

computation between the device and a more powerful edge server has become an attractive solution.

However, existing split computing approaches often underperform compared to a naive baseline of

remote computation on compressed data. Recent studies propose learning compressed representa-

tions that contain more relevant information for supervised downstream tasks, showing improved

tradeoffs between compressed data size and supervised performance. However, existing evaluation

metrics only provide an incomplete picture of split computing. This study introduces supervised

compression for split computing (SC2) and proposes new evaluation criteria: minimizing computa-

tion on the mobile device, minimizing transmitted data size, and maximizing model accuracy. We

conduct a comprehensive benchmark study using 10 baseline methods, three computer vision tasks,

and over 180 trained models, and discuss various aspects of SC2. We also release our code1 and

sc2bench,2 a Python package for future research on SC2. Our proposed metrics and package will

help researchers better understand the tradeoffs of supervised compression in split computing.

1 Introduction

Machine learning models are increasingly used in intelligent devices such as smart devices, wearable devices, au-

tonomous drones, and surveillance cameras (Chen & Ran, 2019). However, these devices are often computationally

weak, which makes it challenging to deploy complex deep learning models on them (Eshratifar et al., 2019a). To

address this issue, researchers have proposed lightweight machine learning models that are optimized for low com-

putational cost and high supervised performance (Sandler et al., 2018; Tan et al., 2019; Howard et al., 2019). An

alternative approach is to offload heavy computing tasks to a more powerful cloud/edge server. In this scenario, weak

local devices only send compressed data such as images to the cloud/edge server, which carries out heavy computing

costs to run complex deep learning models. In the context of visual data, neural image compression models have been

∗This work was done prior to joining Amazon.
1https://github.com/yoshitomo-matsubara/sc2-benchmark
2https://pypi.org/project/sc2bench/

1

Published in Transactions on Machine Learning Research (06/2023)

2 Background

In this section, we briefly introduce related studies and highlight the main motivation behind this study.

2.1 Related Work

We summarize related ideas from the neural compression and split computing communities.

2.1.1 Neural Image Compression

Neural image compression models are typically trained in an unsupervised manner to reconstruct input images while

learning compressed representations of the data (Yang et al., 2023b). These models leverage neural networks for

nonlinear dimensionality reduction and subsequent entropy coding. Early studies employed LSTM networks to capture

spatial correlations among pixels within an image (Toderici et al., 2017; Johnston et al., 2018).

One of the pioneering works in image compression using autoencoders was proposed by Theis et al. (2017). The con-

nection between image compression and probabilistic generative models was established by variational autoencoders

(VAEs)(Kingma & Welling, 2014; Ballé et al., 2017). Building upon this, Ballé et al. (2018) proposed two-level

VAE architectures with a scale hyper-prior for image encoding. These architectures have been further enhanced by

incorporating autoregressive structures(Minnen et al., 2018; Minnen & Singh, 2020) and optimizing the encoding pro-

cess (Yang et al., 2020a). This approach has been extended to numerous architectures for images (Cheng et al., 2020;

Zhu et al., 2021; Wang et al., 2022; He et al., 2022; Liu et al., 2022; Yang & Mandt, 2022a) and video (Wu et al., 2018;

Djelouah et al., 2019; Han et al., 2019; Chen et al., 2019; Lu et al., 2019; Habibian et al., 2019; Agustsson et al., 2020;

Yang et al., 2023a). Active research topics include variable bitrates (Lu et al., 2021), compression without pre-defined

quantization grids (Flamich et al., 2019; Yang et al., 2020b), and exploring compression limits (Alemi et al., 2017;

Yang & Mandt, 2022b).

While self-supervised compression architectures for generic image classification have been proposed (Dubois et al.,

2021), one particular approach using a Vision Transformer (ViT)-based encoder from the CLIP model (Radford et al.,

2021) by Dubois et al. (2021) is characterized by an encoder with 87.8 million parameters. However, this high

parameter count, which is 627 times larger than the encoder proposed by Matsubara et al. (2022c), mainly due to

the ViT-based encoder, renders it unsuitable for deployment on resource-constrained edge computing systems.

2.1.2 Split Computing

In many real-time application settings, local (mobile) devices capture sensor data (e.g., images) and often have lim-

ited computing resources and battery constraints, thus fully offload computationally heavy tasks to more powerful

cloud/edge servers. In such full offloading scenarios, the more resourceful edge server receives the sensor data from

the mobile device via a wireless communication channel and then execute the entire model. To complete the inference

in a timely manner, the latter strategy requires a high-capacity wireless communication channel between the mobile

device and edge server. With low-capacity wireless networks, critical performance metrics such as end-to-end la-

tency would degrade compared to local computing due to the large communication delay. As an intermediate option

between local computing and full offloading (the full computation is on either local device or edge server), split com-

puting (Kang et al., 2017) has been attracting considerable attention from the research community to minimize total

delay in resource-limited networked systems (Eshratifar et al., 2019b; Matsubara et al., 2019). For instance, Long

Range (LoRa) (Samie et al., 2016) is a widely used technology for resource-constrained Internet of Things devices

and applications, which has a data rate of 37.5 Kbps due to duty cycle limitations (Adelantado et al., 2017).

In split computing, a deep learning model is split into two sequences. The first sequence of the model is executed on

the mobile device. Having received the output of the first section via a wireless communication, the second sequence

completes the inference on the edge server. A critical need is to reduce computational load on the mobile device while

minimizing communication cost (data size) as processing time on the edge server is often smaller than local processing

and communication delays (Matsubara & Levorato, 2021). In order to reduce communication cost, recent studies on

split computing (Eshratifar et al., 2019b; Matsubara et al., 2019; Shao & Zhang, 2020; Matsubara & Levorato, 2021;

Assine et al., 2022) introduce a bottleneck, whose data size is smaller than input sample to vision models. Those studies

3

Published in Transactions on Machine Learning Research (06/2023)

pixels for which the neural image compression model allocates more and fewer bits to each pixel than the supervised

compression model does, respectively.

In this study, we put our focus on supervised compression for split computing (SC2) and present the details of our SC2

benchmark and experiments in Sections 3 and 4, respectively.

2.3 Motivations

In this section, we discuss the motivation behind the SC2 benchmark study.

2.3.1 Issues in Evaluation Metrics

As described in Section 2.1.2, split computing has been attracting a growing interest from the research community.

Contributions from the machine learning community (Singh et al., 2020; Matsubara & Levorato, 2021; Matsubara

et al., 2022c; Assine et al., 2022; Datta et al., 2022; Ahuja et al., 2023) specifically aim at improving the tradeoff

between compressed data size and model accuracy. Many of such contributions leverage ideas and techniques widely

used in neural image compression techniques such as reparameterization trick (Kingma & Welling, 2014), quantization

with entropy coding Wintz (1972); Netravali & Limb (1980), and rate-distortion autoencoders (Ballé et al., 2017).

Such studies from the machine learning community still heavily rely on a rate-distortion evaluation metric that is

popular in the neural image compression community (Ballé et al., 2017; 2018; Minnen et al., 2018; Minnen & Singh,

2020; Yang et al., 2020b;a; Yang & Mandt, 2023). However, the rate-distortion metric does not consider one of the

essential aspects to determine the success of these techniques in real-world systems, that is, the cost of encoding given

the heavily asymmetric computing power of mobile devices and edge servers. As emphasized in Section 2.1.2, it is

important to reduce both the encoding cost (local computing cost on mobile devices) and size of data to be transferred

from a weak mobile device to a powerful cloud/edge server.

For instance, Singh et al. (2020); Datta et al. (2022); Ahuja et al. (2023) discuss the supervised rate-distortion tradeoff

for their approaches in the context of image classification, object detection, and/or semantic segmentation tasks. To

achieve better supervised rate-distortion tradeoff, those studies introduce bottlenecks (splitting points) to existing

convolution neural network models almost at the end of their layers – e.g., the penultimate layers or last convolution

layers/blocks in the original models, which results in approximately 60-170 times larger encoder size than encoder

size of Entropic Student (Matsubara et al., 2022c) (see Section 4.3). Since those are discriminative models, it should

be easier to compress data with respect to the input data (e.g., images) when introducing bottlenecks at the later stage

of the models. As a result, such approaches will put most of the model’s inference cost on weak mobile devices to

compress data, a strategy that increases total execution time and imposes high energy consumption.

The neural image compression community (Ballé et al., 2017; 2018; Minnen et al., 2018; Minnen & Singh, 2020;

Yang et al., 2020b;a), Singh et al. (2020); Datta et al. (2022); Ahuja et al. (2023) refers to bits per pixel (BPP) as rate

as part of the rate-distortion tradeoff evaluation. Conversely, split computing studies such as (Matsubara et al., 2019;

Matsubara & Levorato, 2021; Assine et al., 2022; Haberer & Landsiedel, 2022), instead, focus on the actual data size

of compressed representations. Reducing the data size directly decreases the data communication time between the

mobile device and the edge server, while BPP does not so necessarily (e.g., larger data size can result in small BPP

if the image has more pixels). In order to improve the effectiveness of split computing at runtime, the performance

evaluation should focus on the actual data size of compressed representations in SC2 problems.

To address those issues, in this study we define evaluation criteria for SC2 in Section 3.1 and propose how to incorpo-

rate them into existing rate-distortion tradeoffs in Section 3.2.

2.3.2 Lack of Comprehensive Benchmark

Besides the issues in evaluation metrics for SC2 (Section 2.3.1), we point out that a comprehensive discussion on many

important aspects of SC2 is lacking in the machine learning community. We report some examples in the following:

1. Multiple target tasks: Currently, supervised compression studies (Matsubara & Levorato, 2021; Singh et al.,

2020; Matsubara et al., 2022c; Yuan et al., 2022) discuss the performance of their methods for different tasks,

using different evaluation metrics. In order to highlight the differences between the proposed methods, it is

5

Published in Transactions on Machine Learning Research (06/2023)

essential to discuss the performance on a shared set of tasks. e.g., does one method consistently outperform other

methods on all the tasks?

2. Bottleneck placement: For efficient inference in split computing, it is critical to reduce both encoding cost and

data size of compressed representations. Moreover, determining where to introduce bottlenecks in a model is

a relevant question as it influences the allocation of computing load in the system. These aspects and tradeoffs

should be discussed in state of the art supervised compression methods, also providing a comparison with image-

codec-based feature compression baselines (Alvar & Bajić, 2021).

3. Variety of reference models: Image classification models play an important role as they are used as backbones

for complex computer vision tasks such as object detection and semantic segmentation (e.g., ResNet (He et al.,

2016) as a backbone for Faster R-CNN with FPN (Ren et al., 2015; Lin et al., 2017a) and DeepLabv3 (Chen et al.,

2017b) respectively). There is a trend in both supervised compression and split computing studies (Eshratifar

et al., 2019b; Matsubara et al., 2019; Matsubara & Levorato, 2021; Singh et al., 2020; Matsubara et al., 2022c;

Yuan et al., 2022) introduce bottlenecks to some existing models (referred to as reference models in this study)

rather than design new models with bottlenecks from scratch. Besides CNN models, there is an increasing interest

in Vision Transformer (ViT) (Dosovitskiy et al., 2021) in the machine learning and computer vision communities.

Thus, investigating the effect of reference model choice for SC2 should be an interest of the communities.

4. More sophisticated encoder-decoder: Several studies from the neural image compression community (Ballé

et al., 2018; Minnen et al., 2018; Minnen & Singh, 2020) show that sophisticated encoder-decoder architec-

tures such as a hyperprior significantly outperform simpler encoder-decoder architectures like factorized prior

(FP) (Ballé et al., 2018) in terms of rate-distortion tradeoff for image compression tasks (unsupervised com-

pression). For supervised compression, Matsubara et al. (2022c) use a FP-based encoder-decoder architecture.

Following the study, Yuan et al. (2022) propose a hyperprior-based architecture, but do not compare its per-

formance to that of the FP-based encoder-decoder. In addition to the choice of reference models, it should be

important to discuss the impact of encoder-decoder architectures in the context of the SC2 problem.

Addressing the issues in SC2 evaluation metrics (Section 2.3.1), we tackle each of them through experiments with

strong input and feature compression baselines in Sections 4.1 - 4.5.

3 Evaluation and SC2 Benchmark

In this section, we describe our evaluation criteria in detail. This includes concise definitions of the supervised rate-

distortion tradeoff, the proposed tradeoffs between rate, distortion, and computing load, as well as our selection of

baselines. Experimental results will be presented in Section 4.

3.1 Evaluation Criteria

In split computing, the following three components are typically considered: a low-powered local (mobile) device,

a capacity-constrained network, and an edge (cloud) server. The overall goal is to distribute a neural network M
such that the first layers are deployed on the local device, and the remaining layers are deployed on the cloud/edge

server. The portion of the model deployed on the mobile device is considered an “encoder” because it compresses the

data into a representation suitable for transmission to the edge server. Given the asymmetric nature of the system, the

complexity of the encoder should be minimized, while the remaining part of the model should comprehend most of the

computing load, as the edge server is assumed to have a larger computing power compared to the mobile device. We

remark that the training process is performed offline, and the split computing is executed at runtime only. Training split

deep neural network (DNN) models across multiple devices (Gupta & Raskar, 2018) (or split learning (Vepakomma

et al., 2018)) is a different problem and out of the scope of this study.

As described in Section 2.2, we define supervised compression as learning compressed representations for supervised

downstream tasks such as classification, detection, or segmentation. The design should aim for three criteria: high

supervised performance (low distortion), high compressibility (low rate), and minimal encoder size on the local device

(low computing load). We discuss these three aspects in more detail.

6

Published in Transactions on Machine Learning Research (06/2023)

3.1.1 Supervised Distortion

The target metric highly depends on the supervised task; in the simplest case, it could be a form of accuracy, e.g.,

in classification. In this paper, we study three applications of supervised compression involving classification, object

detection, and semantic segmentation. In these cases, we consider the supervised distortion to be accuracy, mean

average precision (mAP), and mean intersection over union (mIoU), respectively. Note that compressing intermediate

model representations typically requires a discretization step at the bottleneck layer. These supervised distortions are

therefore computed after such intermediate discretizations.

3.1.2 Compressed Data Size (Rate)

Rate is defined as the average file size per datum after compression. In the neural compression literature (Ballé et al.,

2017; 2018; Minnen et al., 2018; Yang et al., 2020b; Singh et al., 2020), most studies focus on bits per pixel (BPP),

defined as the number of bits in the compressed representation divided by the input image size. In this paper, we report

the rate on the basis of data points since this measures the actual amount of data sent to the edge server. Frameworks

should penalize large amount of data transferred from the mobile device to the edge server. Notably, BPP does not

penalize absolute amount of data, for instance when feeding higher resolution images to downstream models for

achieving higher model accuracy (Touvron et al., 2019). The rate could either be directly related to the size of the raw

feature representations rounded to a certain arithmetic precision or result from an additional entropy coding step.

3.1.3 Encoder Size

In addition to minimizing rate and distortion, it is also critical to minimize local processing cost as mobile devices

usually have battery constraints and limited computing power (Matsubara et al., 2020; 2022c). To estimate the local

processing cost, FLOPS (floating point operations per second) and MAC (multiply-accumulate) (Zhang et al., 2019)

are often used. However, FLOPS is not a static value, and FLOP/MAC is not well-defined in practice.3 As a simple

proxy to the computing cost, we measure the number of model parameters, a static value that widely used to discuss

model complexity (He et al., 2016; Huang et al., 2017; Devlin et al., 2019; Matsubara et al., 2022c).We define the

encoder size Esize as the total number of bits needed to represent the parameters of the encoder:

Esize =
∑

i∈|Θ|

#bits(Θi), (1)

where Θ is a set of the encoder’s parameters, and #bits(·) indicates the number of bits for its input. For comparison,

we also demonstrate the usage of encoder FLOPS in Appendix E.

3.2 Supervised R-D Tradeoff and Three-way Tradeoff

In lossy data compression (Yang et al., 2023b), one typically studies the tradeoff between the rate and distortion (R-D)

of a compression scheme, i.e., the quality degradation as a function of file size (Ballé et al., 2017; 2018; Minnen

et al., 2018; Singh et al., 2020). In analogy to this, split computing approaches typically consider a supervised R-D

tradeoffs (Matsubara et al., 2020; Matsubara & Levorato, 2021; Singh et al., 2020; Matsubara et al., 2022c) and replace

the reconstruction distortion with the supervised distortion defined above.

The conventional supervised rate-distortion (R-D) tradeoff does not consider the encoder size. This approach is rea-

sonable as long as models are compared with similar encoder sizes. However, without restrictions on the encoder

size, the supervised compression problem becomes trivial. For example, in a K-class classification setup, a powerful

encoder could simply carry out the classification task on the local device and only compress the label, leading to a

cheap − log(K) bit representation of the transmitted features. If the bottleneck layer is deployed close to the output

layer, similarly small compression costs can be achieved (Singh et al., 2020; Datta et al., 2022; Ahuja et al., 2023).

However, Matsubara et al. (2022c) emphasize the importance of minimizing the encoder size for achieving efficient

split computing.

To also take the encoder size into account, we propose to analyze the three-way tradeoff between encoder size, data

size, and supervised distortion. Naturally, not all criteria can be simultaneously fulfilled: upon choosing a lighter

3E.g.,https://detectron2.readthedocs.io/en/latest/modules/fvcore.html#fvcore.nn.FlopCountAnalysis

7

Published in Transactions on Machine Learning Research (06/2023)

Table 1: List of methods in this study. IC: Input compression, FC: Feature compression, SC: Supervised compression.

Name (Acronym) Type Description

JPEG IC Standard lossy image codec

WebP IC Classical lossy image codec (Google)

BPG IC State-of-the-art classical lossy image codec (Bellard)

FP IC Factorized prior (Ballé et al., 2018)

SHP IC Scale hyperprior (Ballé et al., 2018)

MSHP IC Mean-scale hyperprior (Minnen et al., 2018)

JAHP IC Joint autoregressive hierarchical prior (Minnen et al., 2018)

JPEG FC JPEG-based intermediate feature compression (Alvar & Bajić, 2021)

WebP FC WebP-based intermediate feature compression (Alvar & Bajić, 2021)

CR + BQ SC Channel reduction & bottleneck quantization (Matsubara & Levorato, 2021)

Compressive Feature SC End-to-end learning of compresive feature (Singh et al., 2020; Yuan et al., 2022)

Entropic Student SC Multi-stage fine-tuning with neural compression and knowledge distillation (Matsubara et al., 2022c)

weight encoder, we naturally have a less compressible bottleneck representation or a drop in accuracy. In Section 4,

we visualize several such tradeoff curves. To simplify plotting and ease model selection, we also propose another

tradeoff that takes encoder size and data size multiplicatively into account. We term this quantity ExR-D tradeoff,

where we plot the distortion as a function of the product of encoder size and data size (see Section 3.1).

3.3 Baselines

In this section, we discuss relevant baselines and categorize them as either input compression, feature compression or

supervised compression methods. All these baselines and the corresponding acronyms are summarized in Table 1.

3.3.1 Input / Feature Compression Baselines

In conventional implementations of the edge computing paradigm for computer vision tasks, compressed images are

transmitted to the edge server, where all the tasks are then executed. We consider seven baselines in this study referring

to the “input compression” scenario that can be categorized into either codec-based or neural input compression.

Classical Image Compression. A first approach relies on using off-the-shelf classical image compressors. We evalu-

ate each model’s performance in terms of the rate-distortion curve by setting different quality values for three codec-

based input compression methods: JPEG, WebP (Google), and BPG (Bellard). We use the implementations in Pillow4

and investigate the rate-distortion (R-D) tradeoff for the combination of the codec and pretrained downstream models

by tuning the quality parameter in the range of 10 to 100. Since BPG is not available in Pillow, our implementation

follows (Bellard), and we use tune the quality parameter in the range of 0 to 50 to observe the R-D curve. We use the

x265 encoder with 4:4:4 subsampling mode and 8-bit depth for YCbCr color space, following (Bégaint et al., 2020).

We also introduce codec-based feature compression baselines (Alvar & Bajić, 2021) (see Section 4.3).

Neural Image Compression. As an alternative, we consider state of the art neural image compressors (Ballé et al.,

2018; Minnen et al., 2018; Minnen & Singh, 2020) (see (Yang et al., 2023b) for a recent survey). We adopted the neural

image compression models whose pretrained weights were available in CompressAI (Bégaint et al., 2020). These

models mainly rely on variational autoencoder architectures and differ in terms of their entropy models (priors) that can

have a large effect on the achievable code lengths. Without going into detail, these models are known under the names

of “factorized prior” (Ballé et al., 2018), “scale hyperprior” (Ballé et al., 2018), “mean-scale hyperprior” (Minnen

et al., 2018), and “joint autoregressive hierarchical prior” (Minnen et al., 2018).

3.3.2 Supervised Compression Baselines

Another group of baseline models originates from frameworks prior to split computing. We broadly divide them into

the following three categories.

4https://python-pillow.org/

8

Published in Transactions on Machine Learning Research (06/2023)

Channel Reduction + Bottleneck Quantization. These split computing baselines (Matsubara et al., 2020; Shao &

Zhang, 2020; Matsubara & Levorato, 2021; Dong et al., 2022) correspond to reducing the bottleneck data size with

channel reduction and bottleneck quantization; we hence denote them as CR+BQ. These methods quantize 32-bit

floating-point to 8-bit integers (Jacob et al., 2018). Matsubara et al. (2020); Matsubara & Levorato (2021) report

that post-training bottleneck quantization did not lead to significant accuracy loss. Following (Matsubara & Levorato,

2021), we modify these pretrained models and introduce bottlenecks with a different number of output channels in a

convolution layer to control the bottleneck data size. Using the original pretrained model as a teacher model, we train

the bottleneck-injected model (student) by generalized head network distillation (GHND) and quantize the bottleneck

after the training session.

End-to-End Supervised Compression. As an instantiation of information bottleneck framework (Alemi et al.,

2017), Singh et al. (2020) first propose an end-to-end supervised compression method with an entropy bottleneck

for image classification tasks, and Yuan et al. (2022) apply a similar idea to object detection tasks. Singh et al.

(2020)’s approach focuses on a single task and introduces the compressible bottleneck to the penultimate layer. In

the considered setting, such a design leads to an overwhelming workload allocated to mobile devices: for example,

in terms of model parameters, about 92% of the ResNet-50 (He et al., 2016) parameters would be deployed on the,

weaker, mobile device. To make this approach compatible with SC2 setting, we apply their approach to entropic stu-

dent models without a teacher model. We find that compared to (Singh et al., 2020), having a stochastic bottleneck at

an earlier layer (due to limited capacity of mobile devices) leads to a model that is harder to optimize (see Section 4.1).

Entropic Student. Our final baseline in this paper is Entropic Student (Matsubara et al., 2022c), a two-stage fine-

tuning method that combines the concepts of neural image compression and knowledge distillation (Hinton et al.,

2014). At the first stage of the fine-tuning, only the encoder-decoder in the student model is trained to mimic interme-

diate representations of its teacher model. The second stage of the method freezes the parameters of its encoder and

fine-tune decoder and all the subsequent layers for the target tasks so that the encoder can be reused for other tasks.

For the end-to-end supervised compression and Entropic Student methods, we individually train the same model archi-

tectures (including its encoder-decoder) with each of the two training methods. Following (Matsubara et al., 2022c),

we design the encoder with convolution and GDN (Ballé et al., 2016) layers followed by a quantizer described in

Appendix B. Similarly, the corresponding decoder is designed with convolution and inversed GDN (IGDN) layers to

have the output tensor shape match that of the first residual block in ResNet-50 (He et al., 2016). For image classi-

fication, the entire architecture of the model consists of the encoder and decoder followed by the last three residual

blocks, average pooling, and fully-connected layers in ResNet-50. For object detection and semantic segmentation,

we replace ResNet-50 in Faster R-CNN (Ren et al., 2015) and DeepLabv3 (Chen et al., 2017b) with the student model

for image classification.

3.4 Choice of Datasets

We use image data with relatively high resolution, including ImageNet (ILSVRC 2012) (Russakovsky et al., 2015),

COCO 2017 (Lin et al., 2014), and PASCAL VOC 2012 datasets (Everingham et al., 2012). As pointed out in (Mat-

subara et al., 2022b), split computing is mainly beneficial for supervised tasks involving high-resolution images e.g.,

224 × 224 pixels or larger. For small data samples, either local processing or full offloading often achieve better

operating points in the three way tradeoff compared to split computing.5

3.5 Python Package - sc2bench -

To facilitate research on supervised compression for split computing (SC2), we publish an installable Python pack-

age named sc2bench (i.e., pip install sc2bench) and scripts to reproduce the experimental results reported in

this paper.1 This Python package is built on PyTorch (Paszke et al., 2019) and torchdistill (Matsubara, 2021) for repro-

ducible SC2 studies, using CompressAI (Bégaint et al., 2020) and PyTorch Image Models (Wightman, 2019) for neural

compression modules/models and reference models, respectively. Our Python package offers various supervised com-

pression models, modules and functions for further studies on SC2, and our repository provides the implementations

of our baseline models and training methods, including weights of the models we trained in this study.

5E.g., the average data sizes of 32 × 32 pixels images for MNIST (LeCun et al., 1998) (Gray scale) and CIFAR (Krizhevsky, 2009) (RGB) are

only 0.966 KB and 1.79 KB, respectively.

9

Published in Transactions on Machine Learning Research (06/2023)

where we adopt a hierarchical design in which the latent representations z are compressed using an entropy model

that relies on additional hyperlatents zh. While the supervised encoder-decoder design in Entropic Student (see Sec-

tion 3.3.2) is based on the factorized prior (FP) model of image compression (Ballé et al., 2018), the hyperprior

approach draws on the mean-scale hyperprior (MSHP) model from (Minnen et al., 2018). The hyperprior can be

expected to reduce the data size since the distribution of z can be better approximated.

In Fig. 8 (left), we confirm that the MSHP-based encoder-decoder consistently improved the R-D tradeoff compared to

those with FP-based encoder-decoder. These gains are more significant for simpler reference models i.e., ResNet-50

and -101. We stress that this extra performance comes at the cost of additional encoder complexity, which is reflected

in the ExR-D curve that considers data size and encoder size jointly.

5 Conclusion

In this paper, we investigated supervised compression for split computing (SC2), where a machine learning model is

split between a low-powered device and a much more powerful edge server. We explored optimal ways of splitting

the network while aiming for high supervised performance, high compression rates, and low computational costs on

the edge server. We introduced SC2 Benchmark, a new benchmarking framework of supervised compression for split

computing to more rigorously analyze this setting and the various tradeoffs involved. Specifically, we investigated a

variety of input/feature compression models, supervised compression models, supervised tasks (such as image clas-

sification, object detection, and semantic segmentation), training schemes (such as knowledge distillation), metrics

(such as ExR-D and three-way tradeoffs), and architectures (convolutional or Vision Transformers). Altogether, this

study involved more than 180 trained models. We showed that Entropic Student (Matsubara et al., 2022c), a super-

vised compression model inspired by neural image compression models (with or without hyperpriors), trained in a

multi-stage knowledge distillation approach, performed best in terms of the supervised R-D, ExR-D, and three-way

tradeoffs for the three supervised tasks considered in this study. Hoping that our benchmark will set the stage for a

more rigorous evaluation of supervised compression methods and split computing models, we publish sc2bench,

a pip-installable Python package to lower the barrier to SC2 studies. We also release our code repository1 based on

sc2bench to offer reproducibility of the experimental results in this study.

Acknowledgments

We acknowledge the support by the National Science Foundation under the NSF CAREER award 2047418 and Grants

1928718, 2003237, 2007719, IIS-1724331 and MLWiNS-2003237, the Department of Energy, Office of Science under

grant DESC0022331, the IARPA WRIVA program, as well as Disney, Intel, and Qualcomm.

References

Ferran Adelantado, Xavier Vilajosana, Pere Tuset-Peiro, Borja Martinez, Joan Melia-Segui, and Thomas Watteyne.

Understanding the Limits of LoRaWAN. IEEE Communications Magazine, 55(9):34–40, 2017.

Eirikur Agustsson, David Minnen, Nick Johnston, Johannes Balle, Sung Jin Hwang, and George Toderici. Scale-space

flow for end-to-end optimized video compression. In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pp. 8503–8512, 2020.

Nilesh Ahuja, Parual Datta, Bhavya Kanzariya, V Srinivasa Somayazulu, and Omesh Tickoo. Neural Rate Estimator

and Unsupervised Learning for Efficient Distributed Image Analytics in Split-DNN Models. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2022–2030, 2023.

Alexander A Alemi, Ian Fischer, Joshua V Dillon, and Kevin Murphy. Deep Variational Information Bottleneck. In

International Conference on Learning Representations, 2017.

Saeed Ranjbar Alvar and Ivan V Bajić. Pareto-Optimal Bit Allocation for Collaborative Intelligence. IEEE Transac-

tions on Image Processing, 30:3348–3361, 2021.

14

Published in Transactions on Machine Learning Research (06/2023)

Juliano S Assine, JCS Santos Filho, and Eduardo Valle. Collaborative Object Detectors Adaptive to Bandwidth and

Computation. In ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pp. 2839–2843. IEEE, 2022.

Johannes Ballé, Valero Laparra, and Eero P Simoncelli. Density Modeling of Images using a Generalized Normaliza-

tion Transformation. In International Conference on Learning Representations, 2016.

Johannes Ballé, Valero Laparra, and Eero P Simoncelli. End-to-end Optimized Image Compression. International

Conference on Learning Representations, 2017.

Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin Hwang, and Nick Johnston. Variational image compression

with a scale hyperprior. In International Conference on Learning Representations, 2018.

Amin Banitalebi-Dehkordi, Naveen Vedula, Jian Pei, Fei Xia, Lanjun Wang, and Yong Zhang. Auto-Split: A General

Framework of Collaborative Edge-Cloud AI. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge

Discovery & Data Mining, pp. 2543–2553, 2021.

Jean Bégaint, Fabien Racapé, Simon Feltman, and Akshay Pushparaja. CompressAI: a PyTorch library and evaluation

platform for end-to-end compression research. arXiv preprint arXiv:2011.03029, 2020. https://github.

com/InterDigitalInc/CompressAI.

Fabrice Bellard. BPG Image format. https://bellard.org/bpg/ [Accessed on February 18, 2023].

Jiasi Chen and Xukan Ran. Deep Learning With Edge Computing: A Review. Proceedings of the IEEE, 107(8):

1655–1674, 2019.

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille. DeepLab: Seman-

tic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 40(4):834–848, 2017a.

Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking Atrous Convolution for

Semantic Image Segmentation. arXiv preprint arXiv:1706.05587, 2017b.

Zhibo Chen, Tianyu He, Xin Jin, and Feng Wu. Learning for Video Compression. IEEE Transactions on Circuits and

Systems for Video Technology, 30(2):566–576, 2019.

Zhengxue Cheng, Heming Sun, Masaru Takeuchi, and Jiro Katto. Learned Image Compression With Discretized

Gaussian Mixture Likelihoods and Attention Modules. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pp. 7939–7948, 2020.

Hyomin Choi, Robert A Cohen, and Ivan V Bajić. Back-And-Forth Prediction for Deep Tensor Compression. In

ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.

4467–4471. IEEE, 2020.

Jinyoung Choi and Bohyung Han. Task-aware quantization network for jpeg image compression. In European Con-

ference on Computer Vision, pp. 309–324. Springer, 2020.

Parual Datta, Nilesh Ahuja, V Srinivasa Somayazulu, and Omesh Tickoo. A Low-Complexity Approach to Rate-

Distortion Optimized Variable Bit-Rate Compression for Split DNN Computing. In 2022 26th International Con-

ference on Pattern Recognition (ICPR), pp. 182–188. IEEE, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of Deep Bidirectional

Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chap-

ter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short

Papers), pp. 4171–4186, 2019.

A. Djelouah, J. Campos, S. Schaub-Meyer, and C. Schroers. Neural inter-frame compression for video coding. In

2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6420–6428, 2019.

15

Published in Transactions on Machine Learning Research (06/2023)

Xin Dong, Barbara De Salvo, Meng Li, Chiao Liu, Zhongnan Qu, HT Kung, and Ziyun Li. SplitNets: Designing Neu-

ral Architectures for Efficient Distributed Computing on Head-Mounted Systems. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pp. 12559–12569, 2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An Image is Worth 16x16 Words:

Transformers for Image Recognition at Scale. In International Conference on Learning Representations, 2021.

Yann Dubois, Benjamin Bloem-Reddy, Karen Ullrich, and Chris J Maddison. Lossy Compression for Lossless Pre-

diction. In Neural Compression: From Information Theory to Applications–Workshop@ ICLR 2021, 2021.

Amir Erfan Eshratifar, Mohammad Saeed Abrishami, and Massoud Pedram. JointDNN: an efficient training and

inference engine for intelligent mobile cloud computing services. IEEE Transactions on Mobile Computing, 2019a.

Amir Erfan Eshratifar, Amirhossein Esmaili, and Massoud Pedram. BottleNet: A Deep Learning Architecture for

Intelligent Mobile Cloud Computing Services. In 2019 IEEE/ACM Int. Symposium on Low Power Electronics and

Design (ISLPED), pp. 1–6, 2019b.

Mark Everingham, Luc Van Gool, CKI Williams, John Winn, and Andrew Zisserman. The PASCAL Visual Object

Classes Challenge 2012 (VOC2012). 2012.

Gergely Flamich, Marton Havasi, and José Miguel Hernández-Lobato. Compression without Quantization. In Open-

Review, 2019.

Google. Compression Techniques | WebP | Google Developers. https://developers.google.com/speed/

webp/docs/compression [Accessed on February 18, 2023].

Otkrist Gupta and Ramesh Raskar. Distributed learning of deep neural network over multiple agents. Journal of

Network and Computer Applications, 116:1–8, 2018.

Janek Haberer and Olaf Landsiedel. Activation Sparsity and Dynamic Pruning for Split Computing in Edge AI. In

Proceedings of the 3rd International Workshop on Distributed Machine Learning, pp. 30–36, 2022.

Amirhossein Habibian, Ties van Rozendaal, Jakub M Tomczak, and Taco S Cohen. Video compression with rate-

distortion autoencoders. In Proceedings of the IEEE International Conference on Computer Vision, pp. 7033–7042,

2019.

Jun Han, Salvator Lombardo, Christopher Schroers, and Stephan Mandt. Deep generative video compression. In

Advances in Neural Information Processing Systems, volume 32, 2019.

Dailan He, Ziming Yang, Weikun Peng, Rui Ma, Hongwei Qin, and Yan Wang. ELIC: Efficient Learned Image Com-

pression With Unevenly Grouped Space-Channel Contextual Adaptive Coding. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pp. 5718–5727, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image Recognition. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778, 2016.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask R-CNN. In Proceedings of the IEEE Interna-

tional Conference on Computer Vision, pp. 2961–2969, 2017.

Kaiming He, Ross Girshick, and Piotr Dollár. Rethinking ImageNet Pre-training. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, pp. 4918–4927, 2019.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the Knowledge in a Neural Network. In Deep Learning and

Representation Learning Workshop: NIPS 2014, 2014.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,

Ruoming Pang, Vijay Vasudevan, et al. Searching for MobileNetV3. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, pp. 1314–1324, 2019.

16

Published in Transactions on Machine Learning Research (06/2023)

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely Connected Convolutional

Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708,

2017.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig Adam, and

Dmitry Kalenichenko. Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only In-

ference. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2704–2713,

2018.

Nick Johnston, Damien Vincent, David Minnen, Michele Covell, Saurabh Singh, Troy Chinen, Sung Jin Hwang, Joel

Shor, and George Toderici. Improved Lossy Image Compression with Priming and Spatially Adaptive Bit Rates

for Recurrent Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.

4385–4393, 2018.

Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, Jason Mars, and Lingjia Tang. Neuro-

surgeon: Collaborative Intelligence Between the Cloud and Mobile Edge. In Proceedings of the Twenty-Second

International Conference on Architectural Support for Programming Languages and Operating Systems, pp. 615–

629, 2017. ISBN 978-1-4503-4465-4. doi: 10.1145/3037697.3037698.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In Third International Conference

on Learning Representations, 2015.

Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes. In International Conference on Learning

Representations, 2014.

Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images. 2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-Based Learning Applied to Document

Recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and

C Lawrence Zitnick. Microsoft COCO: Common Objects in Context. In European conference on computer vi-

sion, pp. 740–755. Springer, 2014.

Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie. Feature Pyramid Net-

works for Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

pp. 2117–2125, 2017a.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object detection. In

Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988, 2017b.

Anji Liu, Stephan Mandt, and Guy Van den Broeck. Lossless Compression with Probabilistic Circuits. In International

Conference on Learning Representations, 2022.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic Gradient Descent with Warm Restarts. In International Confer-

ence on Learning Representations, 2017.

Guo Lu, Wanli Ouyang, Dong Xu, Xiaoyun Zhang, Chunlei Cai, and Zhiyong Gao. Dvc: An end-to-end deep video

compression framework. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.

11006–11015, 2019.

Yadong Lu, Yinhao Zhu, Yang Yang, Amir Said, and Taco S Cohen. Progressive Neural Image Compression with

Nested Quantization and Latent Ordering. In 2021 IEEE International Conference on Image Processing (ICIP), pp.

539–543. IEEE, 2021.

Yoshitomo Matsubara. torchdistill: A Modular, Configuration-Driven Framework for Knowledge Distillation. In

International Workshop on Reproducible Research in Pattern Recognition, pp. 24–44. Springer, 2021. https:

//github.com/yoshitomo-matsubara/torchdistill.

17

Published in Transactions on Machine Learning Research (06/2023)

Yoshitomo Matsubara and Marco Levorato. Neural Compression and Filtering for Edge-assisted Real-time Object

Detection in Challenged Networks. In 2020 25th International Conference on Pattern Recognition (ICPR), pp.

2272–2279, 2021.

Yoshitomo Matsubara, Sabur Baidya, Davide Callegaro, Marco Levorato, and Sameer Singh. Distilled Split Deep

Neural Networks for Edge-Assisted Real-Time Systems. In Proceedings of the 2019 Workshop on Hot Topics in

Video Analytics and Intelligent Edges, pp. 21–26, 2019.

Yoshitomo Matsubara, Davide Callegaro, Sabur Baidya, Marco Levorato, and Sameer Singh. Head Network Distilla-

tion: Splitting Distilled Deep Neural Networks for Resource-Constrained Edge Computing Systems. IEEE Access,

8:212177–212193, 2020. doi: 10.1109/ACCESS.2020.3039714.

Yoshitomo Matsubara, Davide Callegaro, Sameer Singh, Marco Levorato, and Francesco Restuccia. BottleFit: Learn-

ing Compressed Representations in Deep Neural Networks for Effective and Efficient Split Computing. In 2022

IEEE 23rd International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), pp.

337–346. IEEE, 2022a.

Yoshitomo Matsubara, Marco Levorato, and Francesco Restuccia. Split Computing and Early Exiting for Deep Learn-

ing Applications: Survey and Research Challenges. ACM Computing Surveys, 55(5):1–30, 2022b.

Yoshitomo Matsubara, Ruihan Yang, Marco Levorato, and Stephan Mandt. Supervised Compression for Resource-

Constrained Edge Computing Systems. In Proceedings of the IEEE/CVF Winter Conference on Applications of

Computer Vision, pp. 2685–2695, 2022c.

David Minnen and Saurabh Singh. Channel-Wise Autoregressive Entropy Models for Learned Image Compression.

In 2020 IEEE International Conference on Image Processing (ICIP), pp. 3339–3343. IEEE, 2020.

David Minnen, Johannes Ballé, and George D Toderici. Joint Autoregressive and Hierarchical Priors for Learned

Image Compression. In Advances in Neural Information Processing Systems, pp. 10771–10780, 2018.

Arun N Netravali and John O Limb. Picture coding: A review. Proceedings of the IEEE, 68(3):366–406, 1980.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, et al. PyTorch: An imperative style, high-performance deep learning library.

In Advances in Neural Information Processing Systems, pp. 8024–8035, 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,

Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning Transferable Visual Models From Natural Language

Supervision. arXiv preprint arXiv:2103.00020, 2021.

Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollár. Designing Network Design

Spaces. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10428–

10436, 2020.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards Real-Time Object Detection with

Region Proposal Networks. In Advances in Neural Information Processing Systems, pp. 91–99, 2015.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition

Challenge. International Journal of Computer Vision, 115(3):211–252, 2015.

Farzad Samie, Lars Bauer, and Jörg Henkel. IoT Technologies for Embedded Computing: A Survey. In 2016 In-

ternational Conference on Hardware/Software Codesign and System Synthesis (CODES+ ISSS), pp. 1–10. IEEE,

2016.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. MobileNetV2: Inverted

Residuals and Linear Bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition, pp. 4510–4520, 2018.

18

Published in Transactions on Machine Learning Research (06/2023)

Jiawei Shao and Jun Zhang. BottleNet++: An end-to-end approach for feature compression in device-edge co-

inference systems. In 2020 IEEE International Conference on Communications Workshops (ICC Workshops), pp.

1–6. IEEE, 2020.

Saurabh Singh, Sami Abu-El-Haija, Nick Johnston, Johannes Ballé, Abhinav Shrivastava, and George Toderici. End-

to-end Learning of Compressible Features. In 2020 IEEE International Conference on Image Processing (ICIP),

pp. 3349–3353. IEEE, 2020.

Andreas Peter Steiner, Alexander Kolesnikov, Xiaohua Zhai, Ross Wightman, Jakob Uszkoreit, and Lucas Beyer.

How to train your ViT? Data, Augmentation, and Regularization in Vision Transformers. Transactions on Machine

Learning Research, 2022. ISSN 2835-8856. URL https://openreview.net/forum?id=4nPswr1KcP.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and Quoc V Le. MnasNet:

Platform-Aware Neural Architecture Search for Mobile. In Proceedings of the IEEE Conf. on Computer Vision and

Pattern Recognition, pp. 2820–2828, 2019.

Lucas Theis, Wenzhe Shi, Andrew Cunningham, and Ferenc Huszár. Lossy Image Compression with Compressive

Autoencoders. In International Conference on Learning Representations, 2017.

George Toderici, Damien Vincent, Nick Johnston, Sung Jin Hwang, David Minnen, Joel Shor, and Michele Covell.

Full Resolution Image Compression with Recurrent Neural Networks. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 5306–5314, 2017.

Hugo Touvron, Andrea Vedaldi, Matthijs Douze, and Herve Jegou. Fixing the train-test resolution discrepancy. Ad-

vances in Neural Information Processing Systems, 32:8252–8262, 2019.

Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and Ramesh Raskar. Split learning for health: Distributed deep

learning without sharing raw patient data. arXiv preprint arXiv:1812.00564, 2018.

Dezhao Wang, Wenhan Yang, Yueyu Hu, and Jiaying Liu. Neural Data-Dependent Transform for Learned Image

Compression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.

17379–17388, 2022.

Ross Wightman. Pytorch image models. https://github.com/rwightman/pytorch-image-models,

2019.

Paul A Wintz. Transform picture coding. Proceedings of the IEEE, 60(7):809–820, 1972.

Chao-Yuan Wu, Nayan Singhal, and Philipp Krahenbuhl. Video compression through image interpolation. In Pro-

ceedings of the European Conference on Computer Vision (ECCV), pp. 416–431, 2018.

Ruihan Yang and Stephan Mandt. Lossy Image Compression with Conditional Diffusion Models. arXiv preprint

arXiv:2209.06950, 2022a.

Ruihan Yang, Yibo Yang, Joseph Marino, and Stephan Mandt. Insights from generative modeling for neural video

compression. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023a.

Y Yang and S Mandt. Towards empirical sandwich bounds on the rate-distortion function. In International Conference

on Learning Representations, 2022b.

Yibo Yang and Stephan Mandt. Asymmetrically-powered neural image compression with shallow decoders. arXiv

preprint arXiv:2304.06244, 2023.

Yibo Yang, Robert Bamler, and Stephan Mandt. Improving Inference for Neural Image Compression. In Advances in

Neural Information Processing Systems, volume 33, pp. 573–584, 2020a.

Yibo Yang, Robert Bamler, and Stephan Mandt. Variational Bayesian Quantization. In International Conference on

Machine Learning, pp. 10670–10680. PMLR, 2020b.

Yibo Yang, Stephan Mandt, Lucas Theis, et al. An Introduction to Neural Data Compression. Foundations and

Trends® in Computer Graphics and Vision, 15(2):113–200, 2023b.

19

Published in Transactions on Machine Learning Research (06/2023)

Zhongzheng Yuan, Samyak Rawlekar, Siddharth Garg, Elza Erkip, and Yao Wang. Feature Compression for Rate

Constrained Object Detection on the Edge. In 2022 IEEE 5th International Conference on Multimedia Information

Processing and Retrieval (MIPR), pp. 1–6. IEEE, 2022.

Hao Zhang, Dongdong Chen, and Seok-Bum Ko. New Flexible Multiple-Precision Multiply-Accumulate Unit for

Deep Neural Network Training and Inference. IEEE Transactions on Computers, 69(1):26–38, 2019.

Yinhao Zhu, Yang Yang, and Taco Cohen. Transformer-based Transform Coding. In International Conference on

Learning Representations, 2021.

20

Published in Transactions on Machine Learning Research (06/2023)

A Image Compression Codecs

As image compression baselines, we use JPEG, WebP (Google), and BPG (Bellard). For JPEG and WebP, we follow

the implementations in Pillow6 and investigate the rate-distortion (RD) tradeoff for the combination of the codec and

pretrained downstream models by tuning the quality parameter in range of 10 to 100. Since BPG is not available in

Pillow, our implementation follows (Bellard) and we tune the quality parameter in range of 0 to 50 to observe the RD

curve. We use the x265 encoder with 4:4:4 subsampling mode and 8-bit depth for YCbCr color space, following (Bé-

gaint et al., 2020).

B Quantization

This section briefly introduces the quantization technique used in both proposed methods and neural baselines with

entropy coding.

B.1 Encoder and Decoder Optimization

As entropy coding requires discrete symbols, we leverage the method that is firstly proposed in (Ballé et al., 2017) to

learn a discrete latent variable. During the training stage, the quantization is simulated with a uniform noise to enable

gradient-based optimization:

z = fθ(x) + U(−
1

2
,

1

2
). (2)

At runtime, we round the encoder output to the nearest integer for entropy coding and the input of the decoder:

z = ⌊fθ(x)⌉. (3)

B.2 Prior Optimization

For entropy coding, a prior that can precisely fit the distribution of the latent variable reduces the bitrate. However, the

prior distributions such as Gaussian and Logistic distributions are continuous, which is not directly compatible with

discrete latent variables. Instead, we use the cumulative of a continuous distribution to approximate the probability

mass of a discrete distribution (Ballé et al., 2017):

P (z) =

∫

z+ 1

2

z− 1

2

p(t)dt, (4)

where p is the prior distribution we choose, and P (z) is the corresponding probability mass under the discrete distri-

bution P . The integral can easily be computed with the cumulative distribution function of the continuous distribution.

C Channel Reduction and Bottleneck Quantization

A combination of channel reduction and bottleneck quantization (CR + BQ) is a popular approach in studies on split

computing (Eshratifar et al., 2019b; Matsubara et al., 2020; Shao & Zhang, 2020; Matsubara & Levorato, 2021; Choi

et al., 2020; Dong et al., 2022), and we refer to the approach as a baseline.

C.1 Network Architecture

C.1.1 Image classification

We reuse the architectures of encoder and decoder from Matsubara and Levorato (Matsubara & Levorato, 2021)

introduced in ResNet (He et al., 2016) and validated on the ImageNet (ILSVRC 2012) dataset (Russakovsky et al.,

2015). Following the study, we explore the rate-distortion (RD) tradeoff by varying the number of channels in a

convolution layer (2, 3, 6, 9, and 12 channels) placed at the end of the encoder and apply a quantization technique

(32-bit floating point to 8-bit integer) (Jacob et al., 2018) to the bottleneck after the training session.

6https://python-pillow.org/

21

Published in Transactions on Machine Learning Research (06/2023)

C.1.2 Object detection and semantic segmentation

Similarly, we reuse the encoder-decoder architecture used as ResNet-based backbone in Faster R-CNN (Ren et al.,

2015) and Mask R-CNN (He et al., 2017) for split computing (Matsubara & Levorato, 2021). The same ResNet-based

backbone is used for Faster R-CNN (Ren et al., 2015) and DeepLabv3 (Chen et al., 2017b). Again, we examine the

RD tradeoff by controlling the number of channels in a bottleneck layer (1, 2, 3, 6, and 9 channels) and apply the same

post-training quantization technique (Jacob et al., 2018) to the bottleneck.

C.2 Training

Using ResNet-50 (He et al., 2016) pretrained on the ImageNet dataset as a teacher model, we train the encoder-decoder

introduced to a copy of the teacher model, that is treated as a student model for image classification. We apply the

generalized head network distillation (GHND) (Matsubara & Levorato, 2021) to the introduced encoder-decoder in

the student model. The model is trained on the ImageNet dataset to mimic the intermediate features from the last

three residual blocks in the teacher (ResNet-50) by minimizing the sum of squared error losses. Using the Adam

optimizer (Kingma & Ba, 2015), we train the student model on the ImageNet dataset for 20 epochs with the batch size

of 32. The initial learning rate is set to 10−3 and reduced by a factor of 10 at the end of the 5th, 10th, and 15th epochs.

Similarly, we use ResNet-50 models in Faster R-CNN with FPN pretrained on COCO 2017 dataset (Lin et al., 2014)

and DeepLabv3 pretrained on PASCAL VOC 2012 dataset (Everingham et al., 2012) as teachers, and apply the GHND

to the students for the same dataset. The training objective, initial learning rate, and number of training epochs are the

same as those for the classification task. We set the training batch size to 2 and 8 for object detection and semantic

segmentation tasks, respectively. The learning rate is reduced by a factor of 10 at the end of the 5th and 15th epochs.

D Entropic Student

This section presents the details of end-to-end and multi-stage fine-tuning supervised compression baselines for En-

tropic Student models. We refer readers to (Matsubara et al., 2022c) for the architectures of Entropic Student models.

D.1 Two-stage Training

Here, we describe the two-stage method proposed to train the Entropic Student models in (Matsubara et al., 2022c).

D.1.1 Image classification

Using the ImageNet dataset, we put our focus on the introduced encoder and decoder at the first stage of training and

then freeze the encoder to fine-tune all the subsequent layers at the second stage for the target task. At the 1st stage, we

train the student model for 10 epochs to mimic the behavior of the first residual block in the teacher model (pretrained

ResNet-50) in a similar way to (Matsubara & Levorato, 2021) but with the rate term to learn a prior for entropy coding.

We use Adam optimizer with batch size of 64 and an initial learning rate of 10−3. The learning rate is decreased by a

factor of 10 after the end of the 5th and 8th epochs.

Once we finish the 1st stage, we fix the parameters of the encoder that has learnt compressed features at the 1st stage

and fine-tune all the other modules, including the decoder for the target task. By freezing the encoder’s parameters,

we can reuse the encoder for different tasks. The rest of the layers can be optimized to adopt the compressible features

for the target task. Note that once the encoder is frozen, we also no longer optimize both the prior and encoder, which

means we can directly use rounding to quantize the latent variable. With the encoder frozen, we apply a standard

knowledge distillation technique (Hinton et al., 2014) to achieve better model accuracy, and the concrete training

objective is formulated as follows:

L = α · Lcls(ŷ, y) + (1 − α) · τ2 · LKL

(

oS, oT
)

, (5)

where Lcls is a standard cross entropy. ŷ indicates the model’s estimated class probabilities, and y is the annotated

object category. α and τ are both hyperparameters, and LKL is the Kullback-Leibler divergence. oS and oT represent

the softened output distributions from student and teacher models, respectively. Specifically, oS = [oS
1, oS

2, . . . , oS
|C|]

22

Published in Transactions on Machine Learning Research (06/2023)

where C is a set of object categories considered in target task. oS
i

indicates the student model’s softened output value

(scalar) for the i-th object category:

oS
i =

exp
(

vi

τ

)

∑

k∈C exp
(

vk

τ

) , (6)

where τ is a hyperparameter defined in Eq. 5 and called temperature. vi denotes a logit value for the i-th object

category. The same rules are applied to oT for teacher model, which is a target distribution.

For the 2nd stage, we use the stochastic gradient descent (SGD) optimizer with an initial learning rate of 10−3,

momentum of 0.9, and weight decay of 5 × 10−4. We reduce the learning rate by a factor of 10 after the end of the 5th

epoch, and the training batch size is set to 128. The balancing weight α and temperature τ for knowledge distillation

are set to 0.5 and 1, respectively.

D.1.2 Object detection

We reuse the entropic student model trained on the ImageNet dataset in place of ResNet-50 in Faster R-CNN (Ren

et al., 2015) and DeepLabv3 (Chen et al., 2017b) (teacher models). Note that we freeze the parameters of the encoder

trained on the ImageNet dataset, following (Matsubara et al., 2022c). Reusing the encoder trained on the ImageNet

dataset is a reasonable approach as 1) the ImageNet dataset contains a larger number of training samples (approxi-

mately 10 times more) than those in the COCO 2017 dataset (Lin et al., 2014); 2) models using an image classifier as

their backbone frequently reuse model weights trained on the ImageNet dataset (Ren et al., 2015; Lin et al., 2017b).

To adapt the encoder for object detection, we train the decoder for 3 epochs at the 1st stage in the same way we train

those for image classification (but with the encoder frozen). The optimizer is Adam (Kingma & Ba, 2015), and the

training batch size is 6. The initial learning rate is set to 10−3 and reduced to 10−4 after the first 2 epochs. At the 2nd

stage, we fine-tune the whole model except its encoder for 2 epochs by the SGD optimizer with learning rates of 10−3

and 10−4 for the 1st and 2nd epochs, respectively. We set the training batch size to 6 and follow the training objective

in (Ren et al., 2015), which is a combination of bounding box regression, objectness, and object classification losses.

D.1.3 Semantic segmentation

For semantic segmentation, we train DeepLabv3 in a similar way. At the 1st stage, we freeze the encoder and train the

decoder for 40 epochs, using Adam optimizer with batch size of 16. The initial learning rate is 10−3 and decreased to

10−4 and 10−5 after the first 30 and 35 epochs, respectively. At the 2nd stage, we train the entire model except for its

encoder for 5 epochs. We minimize a standard cross entropy loss, using the SGD optimizer. The initial learning rates

for the body and the sub-branch (auxiliary module)7 are 2.5 × 10−3 and 2.5 × 10−2, respectively. Following (Chen

et al., 2017b), we reduce the learning rate after each iteration as follows:

lr = lr0 ×



1 −
Niter

Nmax_iter

0.9

, (7)

where lr0 is the initial learning rate. Niter and Nmax_iter indicate the accumulated number of iterations and the total

number of iterations, respectively.

D.2 End-to-end Training

In this work, the end-to-end training approach for learning compressive feature (Singh et al., 2020; Yuan et al., 2022)8

is treated as a baseline and applied to the entropic student models without teacher models.

D.2.1 Image classification

Following the end-to-end training approach (Singh et al., 2020), we train the entropic student model from scratch.

Specifically, we use Adam (Kingma & Ba, 2015) optimizer and cosine decay learning rate schedule (Loshchilov &

Hutter, 2017) with an initial learning rate of 10−3 and weight decay of 10−4. Based on their training objectives (Eq. 8),

7https://github.com/pytorch/vision/tree/main/references/segmentation
8Singh et al. (2020) and Yuan et al. (2022) assess their methods only for image classification and object detection tasks, respectively.

23

	Introduction
	Background
	Related Work
	Neural Image Compression
	Split Computing

	Supervised Compression
	Motivations
	Issues in Evaluation Metrics
	Lack of Comprehensive Benchmark

	Evaluation and SC2 Benchmark
	Evaluation Criteria
	Supervised Distortion
	Compressed Data Size (Rate)
	Encoder Size

	Supervised R-D Tradeoff and Three-way Tradeoff
	Baselines
	Input / Feature Compression Baselines
	Supervised Compression Baselines

	Choice of Datasets
	Python Package - sc2bench -

	Experiments
	Image Classification
	Object Detection and Semantic Segmentation
	Bottleneck Placement
	Network Architecture Ablations
	Supervised Compression with a Hyperprior

	Conclusion
	Image Compression Codecs
	Quantization
	Encoder and Decoder Optimization
	Prior Optimization

	Channel Reduction and Bottleneck Quantization
	Network Architecture
	Image classification
	Object detection and semantic segmentation

	Training

	Entropic Student
	Two-stage Training
	Image classification
	Object detection
	Semantic segmentation

	End-to-end Training
	Image classification
	Object detection
	Semantic segmentation

	Encoder FLOPS

