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Abstract— Low-feature environments are one of the main
Achilles’ heels of geometric computer vision (CV) algorithms.
In most human-built scenes often with low features, lines
can be considered complements to points. In this paper, we
present a multi-robot cooperative visual-inertial navigation
system (VINS) using both point and line features. By utilizing
the covariance intersection (CI) update within the multi-state
constraint Kalman filter (MSCKF) framework, each robot
exploits not only its own point and line measurements, but
also constraints of common point and common line features
observed by its neighbors. The line features are parameterized
and updated by utilizing the Closest Point representation. The
proposed algorithm is validated extensively in both Monte-
Carlo simulations and a real-world dataset. The results show
that the point-line cooperative visual-inertial odometry (PL-
CVIO) outperforms the independent MSCKF and our previous
work CVIO in both low-feature and rich-feature environments.

I. INTRODUCTION AND RELATED WORK

Simultaneous localization and mapping (SLAM) has re-

ceived considerable attention in the past few decades and

has already been the core technology in many robotics and

computer vision applications, such as augmented/virtual real-

ity, autonomous driving, and robot navigation. In GPS-denied

environments, visual-inertial navigation systems (VINS) and

related algorithms [1]–[3] have received considerable pop-

ularity through utilizing low-cost and lightweight onboard

cameras and inertial measurement units (IMUs). However,

multiple robots have the ability to accomplish tasks more

efficiently and achieve higher accuracy than a single robot

[4]. Therefore, a key question for a multi-robot group is how

to best utilize the environment information and other robots’

information.

In human-made scenarios, lines can be considered good

complements to points, especially in low-feature environ-

ments where only a few point features can be extracted.

There are two main categories of methods for processing

points and lines in VINS: indirect (feature-based) and direct

methods. In particular, the indirect methods pre-process

image flows by extracting feature descriptors and matching

them along a sequence [1], [5]–[7]. The indirect methods

optimize the system by minimizing the geometric error. The

direct methods skip the feature extraction step and optimize

the photometric error using row pixels directly [8]–[10].

The direct methods are highly efficient but need to assume
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Fig. 1. (a) Overview of the PL-CVIO. Here multiple robots observe point
(square) and line (line segment) features in the same environment, neighbors
communicate and share common points (green and orange squares) and
common lines (orange line segment), and PL-CVIO is performed to estimate
the global poses of each robot. (b) Point and line feature detection of three
different robots in the TUM dataset [11]. Here a green edge denotes a line
extracted from the current frame, and a blue dot surrounded by a red square
denotes a point extracted from the current frame.

brightness constancy (ignoring exposure changes), while the

exposure varies heavily in the real-world environment.

Among the previous feature-based VINS literature, the

solutions can be broadly classified into two categories: filter-

based methods [7], [12]–[17] and graph-based methods [1],

[5], [6], [18]–[20]. One of the state-of-the-art works of the

filter-based methods is the multi-state constraint Kalman

filter (MSCKF) [7], which formed a multi-constraint update

by using the measurements of the same feature. A tightly

coupled monocular graph-based VIO (VINS-Mono) and non-

linear optimization with robust initialization introduced in

[1]. Besides, there are also some VINS algorithms using

both point and line features. The point-line visual-inertial

odometry (PL-VIO) [6] is an extension of VINS-Mono,

which can optimize the re-projection errors of the point and

line features in a sliding window. PL-SLAM [19] proposed

a point-line SLAM framework based on ORB-SLAM [20].

Line features used in Plücker representation for rolling-

shutter cameras were designed in [15]. Article [16] proposed

two line triangulation algorithms. The analysis of three

different line representations (Plücker, Quaternion, Closest



Point) and the corresponding observabilities were provided

in [17]. However, all of the above references focus on the

single robot case.

One advantage of the cooperative VINS (C-VINS) is the

sharing of common features from multiple robots so as to in-

troduce more geometric constraints of the common features.

In particular, each robot in the group not only observes its

own measurements like in the previous literature, but also

collects measurements from the multi-robot group. The robot

applies an update to improve the localization performance by

utilizing the common feature constraints. There exist some

centralized multi-robot solutions [21]–[23]. They usually re-

quire expensive computation and communication. Distributed

algorithms offer some benefits in this regard. Recently, [24]

provided a distributed point-line cooperative SLAM (C-

SLAM) algorithm by adopting the M-Space representation

of different kinds of features, but the consistency of the

estimation cannot be guaranteed because of repeated usage

of the same information in the robot group. In [25], each

robot in the group processed its own available measurements,

and fused the estimation and covariance with other robots

within the communication range only at a particular time

step. DOOR-SLAM [26] introduced a fully distributed C-

SLAM algorithm that contains a pose graph optimizer model

and a data-efficient distributed SLAM frontend similar to

[27]. Article [28] proposed a fully distributed algorithm

using the maximum a posteriori (MAP). Our previous work

CVIO [29] provided a fully distributed cooperative algorithm

and can guarantee consistency by utilizing the covariance

intersection (CI) update, but the low-feature environments

were not considered.

In this paper, we propose a fully distributed multi-robot

pose estimation algorithm using both point and line features.

Each robot not only exploits its own point and line measure-

ments, but also resorts to the cooperation with neighbors (see

Fig. 1). Especially in low-feature environments, where robust

landmarks are absent, each robot’s pose can be estimated

with high accuracy by fusing independent point and line

features from itself and utilizing the CI update to exploit the

constraints imposed by commonly observed point and line

features by neighbors. The PL-CVIO algorithm is developed

in the state-of-the-art OpenVINS [30] system using the

monocular camera-IMU architecture. Monte-Carlo simula-

tions and real-world experiments are used to validate the

performance of our PL-CVIO algorithm. In both low-feature

and rich-feature environments, our algorithm is shown to

achieve more accurate localization.

II. PROBLEM FORMULATION

The goal of the cooperative point and line visual-inertial

estimator is to track the 3D pose of each robot {Ii}, for

i = 1, · · · , n in the global frame {G}. Unlike the indepen-

dent case, multiple robots can share common features with

neighbors. In this paper, we utilize both common point and

common line features to improve the localization accuracy.

A. Visual-Inertial Odometry State Vector

In order to perform the PL-CVIO, the state vector of each

robot i is defined as:

xi =
[

x>
Ii

x>
Calibi

x>
Ci

tdi

]>
, (1)

where xIi denotes the IMU state vector, xCalibi denotes the

rigid body tranformation between the IMU frame and camera

frame, xCi
represents the cloned IMU states, and tdi

= tCi
−

tIi denotes the time-offset between robot i’s camera {Ci}
clock and IMU clock, which treats the IMU clock as the

true time [31], [32]. At any time step k, the state vector of

each IMU can be writen as:

xIi,k =
[

Ii,k
G q̄> Gp>

Ii,k
Gv>

Ii,k
b>
gi,k

b>
ai,k

]>
, (2)

where
Ii,k
G q̄ denotes the JPL unit quaternion [33] representing

the rotation from the global frame to the IMU frame at time

step k. GpIi,k and GvIi,k are the IMU position and velocity

in the global frame at time step k. bgi,k and bai,k
are the

gyroscope and accelerometer biases at time step k. Then, the

error state of the IMU is defined as:

x̃Ii,k =
[

δ
Ii,k
G θ

> Gp̃>
Ii,k

Gṽ>
Ii,k

b̃>
gi,k

b̃>
ai,k

]>
,

(3)

where the position, velocity, and bias errors utilize the

standard additive error, while the quaternion error state is

described by

q̄ = δq̄ ⊗ ˆ̄q '
[

1

2
δθ> 1

]>

⊗ ˆ̄q, (4)

where (̂·) denotes the estimate, and ⊗ is the quaternion

multiplication operator.

In addition to robot i’s IMU state, the spatial calibration

between its IMU frame and camera frame will also be

estimated. In particular, the calibration state vector contains

the unit quaternion rotation from the IMU frame to the

camera frame Ci

Ii
q̄, and the translation from the IMU frame

to the camera frame CipIi as:

xCalibi =
[

Ci

Ii
q̄> Cip>

Ii

]>
. (5)

Robot i maintains a sliding window with m cloned IMU

poses at time step k written as:

xCi,k
=
[

Ii,k−1

G q̄> Gp>
Ii,k−1

...
Ii,k−m

G q̄> Gp>
Ii,k−m

]>
.

(6)

B. Dynamic System Model

For each robot i, the measurement of the IMU linear

acceleration Iiam and the angular velocity Iiωm are modeled

as:

Iiam = Iia+ Ii
GRGg + bai

+ nai
, (7)

Iiωm = Iiω + bgi + ngi , (8)

where Iia and Iiω are the true angular velocity and linear

acceleration. nai
and ngi represent the continuous-time

Gaussian noises that contaminate the IMU measurements.



Gg denotes the gravity expressed in the global frame. Then,

the dynamic system of each IMU can be modeled as [33]:

Ii
G
˙̄q(t) =

1

2
Ω
(

Iiω(t)
)

Ii
G q̄(t), ḃgi(t) = nwgi

(t),

Gv̇Ii(t) =
Gai(t), ḃai

(t) = nwai
(t), GṗIi(t) =

GvIi(t)
(9)

where Gai is the body acceleration in the global frame. GvIi ,
GpIi are the velocity and position of the IMU in the global

frame. nwgi
and nwai

denote the zero-mean Gaussian noises

driving the IMU biases. ω = [ωx ωy ωz]
> is the rotational

velocity in the IMU frame and

Ω(ω) =

[

−bω×c ω

−ω
T 0

]

, bω×c =





0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0



 .

After linearization, the continuous-time IMU error-state can

be written as:

˙̃xi(t) ' Fi(t)x̃i(t) +Gi(t)ni(t), (10)

where Fi(t) is the 15× 15 continuous-time IMU error-state

Jacobian matrix, Gi(t) is the 15×12 noise Jacobian matrix,

and ni(t) =
[

n>
gi

n>
wgi

n>
ai

n>
wai

]>
is the system noise with

the covariance matrix Qi.

In order to propagate the covariance matrix from discrete-

time tk to tk+1, the state transition matrix Φi (tk+1, tk) is

computed by solving the differential equation:

Φ̇i (tk+1, tk) = FiΦi (tk+1, tk) , (11)

with the initial condition Φi (tk, tk) = I15. Thus, the

discrete-time noise covariance can be expressed as:

Qi,k =

∫ tk+1

tk

Φi(tk+1, τ)Gi(τ)QiG
>
i (τ)Φi(tk+1, τ)

>dτ,

(12)

and the propagated covariance can be written as:

Pi,k+1|k = Φi (tk+1, tk)Pi,k|kΦi (tk+1, tk)
>
+Qi,k.

(13)

C. Point and Line Measurement Models

In low-feature environments, lines are good complements

to points. Hence we consider both point and line measure-

ments in this paper. The point measurements of robot i can

be described by:

Cizp = Π
(

Cixp

)

+wpi
, Π

(

[x y z]
>
)

=
[x

z

y

z

]>
,

(14)

where Cixp is the 3D position of the point in the camera

frame, and wpi
denotes the corresponding measurement

noise. Based on the relative transformation and time offset

definition in (1), the relationship between point feature in

the global frame Gxp and in the camera frame Cixp can be

expressed as:

Cixp = Ci

Ii
RIi

GR (t̄i)
(

Gxp − GpIi (t̄i)
)

+ CipIi , (15)

where t̄i = ti − tdi
is the exact camera time of the relative

transformation between the global frame and the IMU frame.

For a 3D line, we adopt the Closest Point representation

[16], which represents the 3D line by multiplying a unit

quaternion and the corresponding distance scalar from the

origin to this line. Given the 3D positions of two points pf1

and pf2 on a line, the Plücker coordinate can be expressed

by [34]:
[

nl

vl

]

=

[

bpf1×cpf2

pf2 − pf1

]

, (16)

where nl denotes the normal direction of the line-plane and

vl is the line direction. Then, the Closest Point line can be

expressed as:

Gxl = dlq̄l =
[

q>
l ql

]>
, (17)

where the distance scalar can be computed as dl =
‖nl‖ / ‖vl‖. The unit quaternion q̄l can be transformed from

R (q̄l) = [ne ve bne×cve], where ne and ve are the unit

3D vectors of nl and vl.

Moreover, for each robot i, we adopt the simple projective

line measurement model [35] to describe the 2D line distance

from two line endpoints, xsi = [usi vsi 1]
>

and xei =
[uei vei 1]

>
to the 2D line segment:

Cizl =

[

x
>

si
li√

l2
1
+l2

2

x
>

ei
li√

l2
1
+l2

2

]>

, (18)

where li = [l1 l2 l3]
>

denotes the 2D line representation.

The line measurement can be projected from the 3D line in

the camera frame as in [17]:




l1
l2
l3



 =





fvi
0 0 0 0 0

0 fui
0 0 0 0

−fvi
cui

−fui
cvi

fui
fvi

0 0 0





CiL,

(19)

where fui
, fvi

, cui
, cvi are the camera intrinsic parameters,

and CiL =
[

Cidl
Cin>

e
Civ>

e

]>
is the Plücker coordinate

representation of the 3D line in the camera frame. The line

transformation from the global frame to the camera frame

can be written as:

CiL =

[

Ci

Ii
R bCiPIi×cCi

Ii
R

03
Ci

Ii
R

]

IiL

and

IiL =

[

Ii
GR (t̄i) −Ii

GR (t̄i) bGPIi (t̄i)×c
03

Ii
GR (t̄i)

]

GL, (20)

where IiL and GL are the Plücker line representations in the

IMU frame and the global frame, respectively.

D. Independent Point and Line Feature Update

To perform the independent point or line feature update,

a standard MSCKF update [7] will be applied to each

robot. In particular, we collect all of the point and line

measurements over the current sliding window. By stacking

the measurements of one point or line, we can triangulate

the point feature or line feature utilizing the estimate of the

IMU poses. To simplify the notation, let x̃f denotes either a



point feature or a line feature, and the measurement residual

of robot i can be linearized as:

ri = h
(

x̃i,
Gx̃f

)

+wi ' Hi,xx̃i +Hi,f
Gx̃f +wi, (21)

where ri is the residual of a point or line measurement.

Hi,x and Hi,f denote the Jacobians w.r.t. the state vector

and the feature, respectively. wi denotes the noise vector

corresponding to the point or line feature.

After that, we perform the left nullspace projection by

applying the QR decompositon to Hi,f in (21) as:

[

r1i
r2i

]

=

[

H1
i,x

H2
i,x

]

x̃i +

[

H1
i,f

0

]

Gx̃f +

[

w1
i

w2
i

]

. (22)

In this expression, r2i is only related to the state vector x̃i.

Hence robot i will perform an EKF update using r2i , while

r1i will be dropped.

E. Common Point and Line Feature Update

Note that neighboring robots might observe a common

point or line feature. Hence, we will further exploit both point

and line feature constraints among neighbors to improve the

localization accuracy. The robots can communicate with their

neighbors to share information.

Robot i and its neighbors will apply the linearization (21)

and the left nullspace projection (22) to the common feature,

denoted as Gx̃f . As in Sec II-D, robot i will use r2i for

an EKF update. However, instead of dropping r1i , robot i
will exploit shared information from its neighbors. It will

construct a new residual system that depends on the common

point or line feature Gx̃f by stacking the top parts in (22)

associated with itself and its neighbors as in [29]:











r1i
r1i1
...

r1ij











= diag





















H1
i,x

H1
i1,x

...

H1
ij ,x































x̃i

x̃i1

...

x̃ij











+











H1
i,f

H1
i1,f

...

H1
ij ,f











Gx̃f +











w1
i

w1
i1
...

w1
ij











, (23)

where diag denotes the block-diagonal matrix, and i1 . . . ij
denote the neighbors of robot i. Then, we utilize the left

nullspace projection to the stacked common point or line

feature Jacobian matrix in (23) and obtain a new residual

system that is independent of the common feature as:

r′i =
[

H′
i,x H′

i1,x
· · · H′

ij ,x

]











x̃i

x̃i1

...

x̃ij











+w′
i. (24)

In order to guarantee the consistency of estimation, we

adopt the CI-EKF algorithm in [29], where the weights of

the CI are ωi > 0, ωil > 0, and ωi +

j
∑

l=1

ωil = 1. The

Kalman gain of robot i is given by:

Ki =
Pi,k+1|kH

′>
i,x

ωi

(

∑

r∈Ni

1

ωr

H′
r,xPr,k+1|kH

′>
r,x +Ri

)−1

,

(25)

where Ni denotes the set of robot i’s neighboring robots that

the current common feature can be tracked, and Ri denote

the covariance matrix associated with w′
i. Then, the state

correction of robot i can be written as:

∆xi,k = Kir
′
i. (26)

The state covariance matrix of robot i is updated using the

CI as:

Pi,k+1|k+1 =
1

ωi

(

I−KiH
′
i,x

)

Pi,k+1|k. (27)

III. SIMULATIONS AND EXPERIMENTS

In this section, we utilize Monte-Carlo simulations and

real-world datasets to verify that common line features can

improve localization accuracy in cooperative cases, and line

features can also improve the accuracy in independent cases.

We compare our PL-CVIO algorithm with the previous

works in Table I under two different environments, where

low-feature scenes contain a few features and rich-feature

scenes contain enough features. As shown in Table. I, P-

VIO denotes the independent MSCKF algorithm [7], PL-

VIO denotes the independent point-line MSCKF algorithm

[16], P-CVIO denotes our previous work CVIO [29], IPL-

CP-CVIO denotes the algorithm which not only utilizes

independent point-line features from each robot but also

collects the common point features from the neighbors, and

PL-CVIO uses both independent and common point-line

features as in this paper.

TABLE I

Descriptions of various algorithms to be compared in the simulations and

experiments.

Algorithm Independent Features Common Features

P-VIO [7] Points 7

PL-VIO [16] Points w/ Lines 7

P-CVIO [29] Points Points

IPL-CP-CVIO Points w/ Lines Points

PL-CVIO Points w/ Lines Points w/ Lines

A. Monte-Carlo Simulations

For our Monte-Carlo simulations, we utilize a group of

three robots. Robot 0 in the group follows the real trajectory

of a dataset, and the trajectories of robot 1 and robot 2 are

created by adding position and orientation offsets to the real

one. After that, the 3D features and the corresponding 2D

measurements are generated if the number of the point or line
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