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Abstract. It is unknown precisely how the nervous system of invertebrates com-
bines multiple sensory inputs to calculate more abstract quantities, e.g., combining
the angle of multiple leg joints to calculate the position of the foot relative to the
body. In this paper, we suggest that non-spiking interneurons (NSIs) in the nervous
system could calculate such quantities and construct a neuromechanical model to
support the claim. Range fractionated sensory inputs are modeled as multiple
integrate-and-fire neurons. The NSI is modeled as a multi-compartment dendritic
tree and one large somatic compartment. Each dendritic compartment receives
synaptic input from one sensory neuron from the knee and one from the hip. Every
dendritic compartment connects to the soma. The model is constructed within the
Animatlab 2 software. The neural representation of the system accurately follows
the true position of the foot. We also discuss motivation for future research, which
includes modeling other hypothetical networks in the insect nervous system and
integrating this model into task-level robot control.

Keywords: Non-spiking interneuron - Leaky integrator - Compartmental
model - Synthetic nervous system - Functional subnetwork approach - Legged
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1 Introduction

Sensory feedback is critical for the control of legged locomotion in vertebrates and
arthropods alike [ 1]. One hypothesis for how higher-order quantities such as body posture
is controlled by the action of many smaller units such as individual joints and muscles
is ‘task-level control’, in which the nervous system presumably issues motor commands
at the task level (e.g., a desired foot position in space) and must calculate task-level
feedback for comparison [2]. Many mechanical states that would be valuable to control,
e.g., the position of the foot in space, cannot be measured directly by the nervous system,
and therefore must be calculated by the nervous system using local measurements (e.g.,
joint angles). However, it is not known how such calculations are performed.

In insects, we hypothesize that local non-spiking interneurons (NSIs) in the thoracic
ganglia (ventral nerve cord) may facilitate the calculation of task-level quantities for
motor control. Measurements such as joint angles are represented by the activity of many
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distributed sensory neurons, each of which is sensitive to a small range of joint motion,
an organizational principle called “range fractionation” [3]. Range fractionation consists
of sensory neurons measuring the same state (e.g., joint angle), each with varying firing
thresholds for different stimuli intensities. In insects such as the stick insect and locust,
these range fractionated afferent neurons synapse onto NSIs, which integrate sensory
input from joint angle sensors such as the chordotonal organ (CO) and segment strain
sensors such as campaniform sensilla (CS) from across the leg, then synapse onto the
motor neurons to contribute to control of the leg [4]. Although it is unclear what task-
level calculations each NSI encodes, each appears to act as an information “hourglass”
in which information from many range-fractionated sensory neurons converges onto the
NSI, then diverges due to NSI synapses onto multiple motor neurons throughout the
leg. In this study, we use a neuromechanical model to demonstrate that the NSIs could
calculate task-level quantities directly from range-fractionated sensory inputs.

The model we propose could also be used to calculate task-level quantities for robot
control. In robotics, task-level quantities may be calculated by the direct application of
forward kinematics equations, e.g., through the product of exponentials formulation [5].
More recently, Deep Neural Networks (DNNs) have been trained to compute compli-
cated nonlinear forward kinematics equations [6, 7]. Although this approach has been
successful, DNNs can be computationally expensive to tune, making them impractical
for some applications. Furthermore, their dense connectivity may not model the struc-
ture of the peripheral nervous system, which is exquisitely structured; because we are
interested in modeling the nervous system, we seek a system with more direct biological
inspiration. These challenges inspire the assembly and tuning of dynamical networks
that can mimic the structure and function of the nervous system to perform kinematic
calculations.

The goal of this research is to better understand how insects compute task-level
quantities by integrating range-fractionated sensory signals. To accomplish this goal, we
constructed a biologically plausible model in which spiking afferents from two joints in
a leg are integrated by one nonspiking neuron, modeled with many dendritic compart-
ments and one somatic compartment. The voltage of the somatic compartment encodes
the x-coordinate of the foot’s position relative to the body. Conductances between the
compartments are tuned using the Functional Subnetwork Approach (FSA) [8], which
has been used in the past to construct and tune rate-coded networks. The current study
is the first application of the FSA to construct and tune place-coded networks. Finally,
we discuss future opportunities for applying this network structure to model the nervous
system or as part of a robot control system.

2 Methods

2.1 Neuron Model

The neuron model was designed using our Synthetic Nervous System (SNS) philosophy.
An SNS model is meant to capture as many biological details as possible while running
as quickly as possible to facilitate implementation as a robot control system. Thus, the
NSI model was constructed from leaky integrator compartments [8]. Spiking neurons
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were implemented as generalized leaky integrate-and-fire neurons with conductance-
based synapses [9]. Simulation was performed through the neuromechanical simulator
AnimatLab 2 [10].

The non-spiking interneuron (NSI) was modeled as 25 low-capacity dendrite
compartments that connect to 1 high-capacity soma compartment. Each of the 25
compartments is modeled as a leaky integrator with the dynamics

n
Conem - U = —Guem - U+ 3 Gl (Ej,yn . U) + Iypp, (1)
i=1

where U is the compartment’s voltage, Gy, is the leak conductance of the cell mem-
brane (we set Gy = 1S in every case), Cyer 1S the membrane capacitance of that
compartment, I,y is an optional applied current, » is the number of incoming synapses
to that compartment, Ggyn is the instantaneous conductance of the i incoming synapse,
and Eém is the reversal potential of the i incoming synapse relative to the compart-
ment’s rest potential. When all incoming synapses have a conductance of 0, the neuron
has the time constant Tye;m = Chem/Gmem; because G = 1S in every case, Tienm 1S
directly proportional to Cpey,.

To simulate the conductance of current from the dendrite to the soma, the

compartments were connected by graded-potential synapses, such that
Gsyn = Gpax - min(max(U /R, 0), 1), )

where G, represents the maximal inter-compartment coupling and R is a constant
voltage that represents the expected fluctuation of one compartment’s voltage [8].

The joint angle-encoding afferent neurons were modeled as generalized leaky
integrate-and-fire neurons. The voltage of each neuron follows the same dynamics as
the nonspiking compartments, but with the additional consideration that when the mem-
brane voltage U surpasses the spiking threshold 6, a spike occurs and U is set to 0 in
the following time step.

Spiking synapses were modeled as first-order different equations, with the conduc-
tance following the dynamics

Tsyn * Gsyn = _Gsyn, 3)

where 1y, is the decay time constant. When the presynaptic neuron spikes, Gyyy is set
to its maximum value, G-

2.2 Sensory Model

To demonstrate that the NSIs may compute task-level states of the leg despite being only
one or two synaptic connections from the sensory neurons themselves, we constructed a
simple kinematic model of a two-jointed planar leg based on the stick insect (Fig. 1A).
This leg has a hip joint, which is connected to the origin of the coordinate system, and a
knee, which connects the femur and tibia segments. Each segment is 10 cm long. Each
joint is limited to rotate between 0.75 rad (43°) and -0.75 rad (-43°). At the distal end
of the tibia is the foot, whose position is designated by the point P = (Px, Py).
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‘We wished for our test network to encode the x coordinate of the foot’s position, Py,
in the voltage of the NSI soma (Fig. 1B). We assumed that each joint angle is represented
in a range-fractionated manner by five sensory neurons, although single joint sensing
organs may possess hundreds of sensory neurons [11]. Each neuron receives an applied
current based on the instantaneous joint angle 6,

Lpp(©) =R exp(—c 6 - b)z), (4)

where R is the amplitude, b is the mean value, and ¢ controls the width of the Gaussian
bell curve. In our model, R = 20 nA. In our model, each hip sensory neuron had a unique
value of b, equally spaced between the minimum (-0.75 rad [-43°]) and maximum (0.75
rad [43°]) angles of the joint (see diagrams in Fig. 1B). The knee sensory neurons were
configured in the same way. Finally, parameter ¢ was varied logarithmically between
values of 7.5 and 60 to test its effect on the network’s encoding accuracy.

Each sensory neuron was designed such that its spiking frequency was proportional
to the Gaussian applied current I, using the methods in [9]. In short, given a maximum
input current of 20 nA and a desired maximum spiking frequency of 100 Hz, the param-
eter values in Eq. 1 could be determined. In our model, Cyer, = 200 nF, Gy = 1S
(resulting in a time constant of 200 ms), & = 1 mV, and each neuron receives a tonic
applied current of 0.5 nA in addition to Iy, from Eq. 4.

>

Knee joint

Hip joint

NSI soma X

compartment

NSI dendrite
compartments

Hip sensory J
neurons

G
lee
B

a .

Knee sensory | |

nieurons {} I app {X T lapp PP Im,
Ot 0 i O Binee

Fig. 1. (A) Schematic of a planar leg with a hip joint and a knee. The angle of rotation to the global
real axis is defined by 6pjp or Ogpee- (B) Schematic of the sensory neurons from hip, the yellow
circles, and knee, the green circles. One of each the hip and knee sensory neurons excites the NSI
dendrite compartments in its row or column, respectively. Every NSI dendrite compartment, the
smaller blue circles, then connects to the NSI soma compartment, the large blue circle, creating a
unique conductance value that represents the diameter of each of the bell curves.
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The network was structured such that each NSI dendrite compartment received exci-
tatory synaptic input from exactly one hip sensory neuron and exactly one knee sensory
neuron, reflected in the grid structure of Fig. 1B. Each dendrite compartment then made
a connection to the soma with a unique conductance value. These varying conductance
values represent the varying diameter of the dendritic structure of the NSI.

2.3 Tuning Parameters Within the Model

To tune the network parameter values, we first needed to calculate the ground-truth
position to be encoded, Py, the x coordinate of the foot’s position. Because the leg
model is planar, we can represent the position of the foot relative to the origin using
complex number vector notation. Each vector is represented as a complex number, with
the real component indicating the x coordinate and the imaginary component indicating
the y coordinate. Rotations are performed by multiplying by exp(j6), in whichj = /—1
and 6 is the angle of rotation relative to the global real axis. Using this notation and the
angles as defined in Fig. 1A,

Px::Re(L'eprQMp)+—Loexp(j'G%m-%Qbmg—-g))), (5)

where Re is the real component of the result, L is the length of the femur and the tibia,
Onip is the angle between the ground and the femur, and Oy, is the angle between the
femur and knee, with a /2 radian offset. Plotting P, versus 0, and 6., produces a
surface of the foot position’s dependence on the locally-measured joint angles that the
network encodes (Fig. 2).

The lateral foot position P, was mapped to the conductance values from each dendrite
compartment to the soma. In this way, the soma voltage was driven to a value that reflected
P, simply due to the structure and tuning of the conductance values. Specifically, we
applied the Functional Subnetwork Approach [8] by mapping the value of P, for each pair
of Oip and Oy, values to the gain k of the conductance from the dendrite compartment
to the soma compartment:

k= P, — min(Py) ©)

max(P,) — min(Py)

Then, the corresponding conductance g could be calculated using R = 20 mV, the
maximum expected membrane voltage above rest, and E = 70 mV, the reversal potential
above the resting membrane potential,

k'R
E—k-R
The resulting conductance value from each dendrite to the soma is plotted in Fig. 2.
This conductance value surface is reminiscent of the lateral foot position surface but is
ultimately different due to the difference in units and the nonlinear nature of Eq. 7.

To compare the membrane voltage of the soma to the actual foot position, we
calculated the expected neural encoding of Py as

Uep =k - R, ®)
where k is defined in Eq. 6 and R = 20 mV.

g N
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Fig. 2. From left to right respectively, a surface plot of the lateral foot position versus the knee
and hip joint angles and a surface plot of the conductance from the dendrite to the soma versus
the knee and hip joint angles.

3 Results

To test how well our model NSI could encode foot position, the hip and knee angles
were cycled at different frequencies to sample many different combinations of angle
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values. Figure 3 compares the encoded foot position (U.y, in Eq. 8) and the neural
representation of the foot position versus time during such a test. This plot shows that
the neural representation tracks the position of the foot. The system works reasonably
accurately with the Gaussian function width ¢ = 15 for the sensory neurons and the
soma’s time constant Ty, = 600ms (i.e., Cyem = 600 nF).

We sought to understand how the parameters within this network affect the accuracy
and time lag of the neural representation of the foot position relative to the expected
value. Altering the width c in the Gaussian function from Eq. 4 affected the offset of the
soma’s membrane voltage. Figure 4 shows that if each sensory neuron’s response curve
is too narrow, e.g., the width ¢ = 30 in each Gaussian function, the soma’s voltage level
is lower than expected. This occurs because there are “dead zones” in which no sensory
neurons are spiking as the joints rotate, and the dendrite and soma compartments leak
their current. In contrast, Fig. 5 shows that if each sensory neuron’s response curve is
too wide, e.g., the width ¢ = 7.5 in each Gaussian function, the soma’s voltage level is
higher than expected. This occurs because several sensory neurons are active at once,
exciting many dendrite compartments and consequently overexciting the soma.

Altering the time constant of the soma (proportional to Cy,;,, from Eq. 1) decreased
the soma’s response magnitude and introduced lag in the neural representation of the
foot position. Figure 6 shows a case where ¢ = 15 and © = 6000 ms. The fluctuations
in the neural representation lag behind the true foot position by almost 2 s, which is
likely too long to be useful for closed-loop leg control. This motivates finding the lowest
possible value for t that preserves accurate encoding of the foot position.
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Fig. 4. A plotof the position of the foot and the neural representation versus time with the width 30
and the time constant 600 ms. This shows that by narrowing the width, the neural representation’s
amplitude decreases.
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Gaussian Width Function Widened to q?7.5
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Fig. 5. A plot of the position of the foot and the neural representation versus time with the width
7.5 and the time constant 600 ms. This shows that by widening the width, the neural representation’s
amplitude decreases and its mean value is shifted upward.
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Fig. 6. A plot of the position of the foot and the neural representation versus time with the width
15 and the time constant 6000. This shows that by lengthening the time constant, the neural
representation lags behind the foot position.
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To better understand trends in the network performance as its parameter values
change, we calculated the mean absolute error between the foot position and neural
representation for multiple values of ¢, the width of the sensory encoding curve from
Eq. 4. Figure 7 (A) plots mean absolute error between the expected and actual network
activity throughout one trial versus the different widths, clearly demonstrating that for
this leg motion, ¢ = 15 minimizes the error of foot position encoding. We also calculated
the lag of the neural representation relative to the foot position by finding the shift in
time necessary to maximize the cross correlation between the signals. Figure 7 (B) plots
the lag versus the time constant. The plot clearly shows that increasing the time constant
increases the lag of the neural representation.

0.01 A. Accuracy B. Lag of Neural Representation
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L
© 0.006 %2
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2 0.004 3
1
<
£ 0.002
0]
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Fig. 7. A. A plot of the accuracy of the system. The system operates the most accurately when
the width ¢ = 15. When the width is changed in either direction, the system works less accurately.
B. A plot of the lag of the system versus the time constant. This shows that the longer the time
constant of the soma compartment, the longer the lag between the foot position and the soma’s
voltage. To decrease the lag, v should be as small as possible.

4 Discussion

Although it is unknown, we discussed that higher-order quantities may be calculated
by the nervous system through the use of many local measurements. We model how
local NSIs of insects may calculate different quantities for motor control. In our model,
range fractionated sensory inputs impinge onto multiple compartments that simulate
the dendrite of the NSI. Each compartment is coupled to the soma with a different
conductance value that reflects the mechanical quantity to be encoded (in this study,
the x component of the foot’s position in space). We modeled this using our Synthetic
Nervous System philosophy to create and tune a dynamical network. For our system,
we found parameter values for which the neuron’s voltage encoded the position of the
foot closely. We found that the performance of the network depended on the width of the
sensory encoding curves (Eq. 4) and the time constant of the soma 7, (proportional
to Cem in Eq. 1).
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We argue that models of nervous system processing of sensory information may be
more accurate if they include range fractionated inputs. However, this is not commonly
done. One study from Ache and Diirr demonstrated the power of range fractionated
inputs by identifying and modeling descending interneurons (DINs) from the antennae
to the thoracic networks of the stick insect Carausius morosus [12]. In their model,
DINs integrated input from many range fractionated sensory neurons to calculate higher
order “codings” of the antennae movement, e.g., their positions and velocities. Our
study pursues a similar goal, to calculate the position of the foot from multiple range-
fractionated measurements of several joints’ angles. The diversity of DIN responses and
the success of Ache and Diirr’s model suggests that we can apply our method to calculate
other features of leg motion, e.g., foot velocity, manipulator Jacobian of the leg.

There are several opportunities to expand and improve the model from this study.
One simplification we made was to assume this is a small network, with only five
sensory neurons sensing the hip angle and five sensory neurons sensing the knee angle.
Inreality, insect joint sensors have many more sensory neurons [11], and the neurons may
encode diverse features of motion [3]. However, our simplified network demonstrated
that this approach could be applied to calculate leg kinematics from multiple joint angle
measurements. In the future, we plan to investigate how the joints’ range of motion and
the accuracy of network encoding depend on the number of sensory neurons.

Another simplification we made in our model was to configure the conductances from
the dendrite compartments to the soma compartment such that current could only flow
from the dendrite to the soma. Such a simplification eliminated the coupling between den-
dritic compartments and simplified network tuning. In reality, NSIs have large branching
structures through which current may flow in any direction and may not directly excite
the soma [13—15]. We have begun to apply the lessons learned from this study to con-
struct more realistic NSI models, in which adjacent dendritic compartments are coupled
and current can flow in any direction. We suspect that increasing the realism of our
model will produce a computational unit whose function is highly resilient in the face
of incomplete sensory feedback.

Another opportunity to expand this framework is to construct networks that calculate
quantities other than forward kinematics for a simple leg model. To more broadly test the
application of the Functional Subnetwork Approach to tuning models of this type (i.e.,
many-to-one mappings), we plan to build networks that calculate other quantities, such as
the manipulator Jacobian, as noted above. Should this method prove broadly applicable,
we plan to use it to construct transparent models of networks that incorporating the
whole-limb and whole-body feedback for both leg-local control and ascending sensory
signals to the brain.
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