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Two Vignettes on Students’ Symbolizing Activity for Set Relationships

Derek Eckman Kyeong Hah Roh Paul Christian Dawkins
Arizona State University Arizona State University Texas State University

Steven Ruiz Anthony Tucci
Arizona State University Texas State University

Mathematicians often use set-builder notation and set diagrams to define and show relationships
between sets in proof-related courses. This paper describes various meanings that students might
attribute to these representations. Our data consist of students’ initial attempts to create and
interpret these representations during the first day of a paired teaching experiment. Our analysis
revealed that neither student imputed or attributed our desired theoretical meanings to their
diagrams or notation. We summarize our findings in two vignettes, one describing students’
attributed meanings to instructor-provided set-builder notation and the other describing
students’ imputed meanings to their personally-created set diagrams to relate pairs of sets.

Keywords: Symbolization, representations, student thinking, sets, set relationships

Introduction and Literature Review

Mathematics is a unique science in which objects of analysis are inaccessible to the five
senses and can only be visualized indirectly using various representations (Duval, 2006).
Theories of representation abound in the mathematics education literature (e.g., Duval, 1999,
2006; Godino & Font, 2010; Goldin, 2008; Radford, 2013; Vergnaud, 1998). Previous
researchers have called for increased visual representations (e.g., Arcavi, 2003) and identified
privileged forms of representation for specific mathematical topics (e.g., Gonzélez-Martin et al.,
2011). Diverse representations provide opportunities to construct shared meanings, which invite
further investigation into how students invest representations (standard or not) with meaning.

This paper investigates undergraduate students’ symbolizing activity about sets and set
relationships. We define symbolizing activity as a process of mental activities that entails
students’ creation or interpretation of a perceptible artifact (writing, drawing, gesture,
verbalization) to organize, synthesize, or communicate their thinking. We refer to symbolization
as the status of completing the symbolizing activity and perceptible artifacts as symbols. Our
definition differs from Tillema’s (2010) communication-focused symbolizing activity by
including individuals’ creation of personal representations to reflect on their thinking.

As part of our investigation into the role of set-based reasoning in students’ comprehension
of conditional statements (Dawkins, 2017; Dawkins et al., 2021), we created an instructional
sequence for students to investigate sets using set-builder notation and diagrams. We present two
vignettes detailing the various meanings students imputed to these representations during their
initial exposure to these ideas. We provide the following research question to contextualize the
vignettes: What differences in thinking did students exhibit as they (a) made sense of set-builder
notation and (b) created set diagrams to describe relationships between sets?

Theoretical Perspective
One problem with studying representations in isolation from student thinking is that students
can impute various ideas to the same symbol. For instance, Gray and Tall (1994) stated that
mathematicians utilize algebraic notations (e.g., the numeral 6) fluidly to refer to either a process
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(e.g., putting together two and four pennies) or a stabilized concept (e.g., a pile of 6 pennies).
Thompson (2002) showed differences between individual student meanings for a point on a
graph, even after students agreed upon a group definition. Alternately, Eckman and Roh (2022)
showed that students might generate one notation to reason about a process they conceive and a
different convention to describe a concept they abstract from reflecting on the process.

We propose two constructs to describe the representations we investigate in this paper. First,
Eckman and Roh (2022) used the term personal expression to describe students’ imputation of
meaning to a self-generated algebraic expression. In this paper, we expand the definition of
personal expression to cover all forms of students’ mathematical representation. There are two
components to personal expressions: a meaning and a perceptible artifact to which the student
imputes their meaning. We use the term meaning in the constructivist sense (Thompson, 2013;
Thompson et al., 2014) that individuals construct and maintain cognitive structures through their
experience. A perceptible artifact includes any action or product a student produces to convey
their meanings (writing, drawing, gesture, verbalization), which another individual might observe
with his five senses. Our definition of personal expression is related to de Saussere’s (2011)
notion of signifier and signified, which also informed Glasersfeld’s (1995) definition of symbol.

When a student creates an expression to organize or synthesize her thinking, she creates a
personal expression. We consider all non-student generated expressions that require the student
to anticipate the expression creator’s intended meaning to be communicative expressions. There
are three components to a communicative expression: (a) the creator’s intended meaning, (b) the
interpreter’s evoked meaning, and (c) the perceptible artifact the creator uses to convey their
intended meaning. For instance, Jill might create the personal expression S = {x € Z|x is prime}
to denote her image of the set of prime numbers. If Jill presented her personal expression to Jack,
Jack would perceive S = {x € Z|x is prime} as a communicative expression to which he would
need to assign meaning. However, Jack’s evoked meaning from Jill’s personal expression may
not reflect Jill’s intended meaning. In summary, whether a perceptible artifact is a personal or
communicative expression is in the eye of the beholder. The expression S = {x € Z|x is prime}
is personal to Jill because she created it and communicative to Jack because he must interpret it.

Methodology

The data we present in this paper come from an ongoing project to develop models of
students’ abstraction of logic for conditional statements (Dawkins, 2017; Dawkins et al., 2021).
During the study, we conducted six paired constructivist teaching experiments (Steffe &
Thompson, 2000), consisting of 8-12 sessions lasting 60-90 minutes each. We focus on the first
day of the Spring 2022 teaching experiment. Our students, who chose the names Sarah and Carl,
were enrolled in Calculus 3 at a large public university in the United States. The second author
served as the teacher-researcher, with all other authors serving primarily as witnesses.

Students’ work was collected via video recording, a shared whiteboard application, and
photographs of physical board work. We analyzed the data using the principles of open coding
(Strauss & Corbin, 1998). As our initial codes emerged, we realized that some findings aligned
with previously proposed constructs (Dawkins et al., in preparation; Sellers et al., 2021). During
axial coding, we combined our unique codes with these constructs to describe meanings students
exhibited during their symbolizing activity. We synthesized our findings into two vignettes. The
first vignette describes meanings that students might attribute to communicative expressions of
set-builder notation. The second vignette describes how students might construct set diagrams as
personal expressions to express their image of the relationship between two sets.
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Results
For each vignette, we first present a theoretical model of a beneficial meaning for
representing sets or set relationships. We then offer two alternative meanings from our data that
students exhibited in their symbolizing activity.

Vignette 1: Students’ Meanings for Set-builder Notation (Communicative Expressions)
We initially presented Sarah and Carl with pairs of sets (defined using set-builder notation)
and asked them to posit relationships between the sets (see Figure 1). Our examples constituted
communicative expressions because students interpreted our notation. In this vignette, we report
on students’ imputed meanings to set-builder notation while comparing set pairs «, f and «, y.

Given the set T of all triangles, answer these guestions about each pair of sets:
1) Is there anything in both sets?
2) Does one zet contain all the members of another?
3) Can you say anything more about the relationship between the sets?
4) If you use an oval region to represent one set, how would you portray the
other in relation?

a = {AABC € T: AABC is isosceles} B ={AXYZ € T: AXY¥Z iz equilateral}
a = {AABC € T: AABC iz isosceles} v={ARST e T: LR = +5}
o = {AABC € T: AABC iz isosceles} n ={AJKL € T: AJKL is not isosceles}

Figure 1. An excerpt from Task 1. The prompt is shortened for brevity, and not all pairs of sets are shown.

A beneficial way to interpret communicative expressions for set-builder notation. We
first present a theoretical meaning that did not emerge in our data but we considered beneficial
for students to compare two sets appropriately (see Figure 2).

a = {AABC € T: AABC is isosceles} B ={AXYZ € T: AXYZ is equilateral}

— A

4. Posit a . '
relationship | 1. Imagine arbitrary elements from
between the two I each set possessing properties with

gets, such as subset, no corresponding values

disjoint, or non-
emply intersection. 3. Recognize that since
— implications emerged from

comparing properties, the
relationship holds between
all elements in the sets
having those properties

2. Compare properties to
ascertain the relationship
between elements

Figure 2. A productive meaning and resulting method for comparing sets a and f3.

A student determining the relationship between sets a and # might first imagine arbitrary
elements, AABC and AXYZ, from each set (Figure 2, step 1). These arbitrary elements contain no
specific measurements for characteristics such as angle measure. The student would then
compare the properties of the two elements to determine their relationship (Figure 2, step 2). For
instance, the student might imagine that since the isosceles triangle has at least two equal sides
and the equilateral triangle has exactly three equal sides, the equilateral triangle can be
considered isosceles. The student would then infer that since every element in set  has exactly
three equal sides, all equilateral triangles can be considered isosceles (Figure 2, step 3). Finally,
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the student would conclude that if all equilateral triangles are isosceles, then set § must be a
subset of set a (Figure 2, step 4). Conventionally, we call this meaning for AABC or AXYZ an
arbitrary particular. However, our theoretically propitious meaning was distinct from the
meanings exhibited by Carl and Sarah. In the following data-driven examples, we show two
meanings these students attributed to set-builder notation while comparing pairs of sets.

Meaning 1a: Particular AABC. When Sarah read the teacher-researcher’s communicative
expressions @ = {AABC € T:AABC is isosceles} and f = {AXYZ € T: AXYZ is equilateral},
she imagined specific triangles with corresponding values and labels unique to each triangle.

Sarah: 1 have a question. (Interviewer 1: Ok.) The left-hand side set (@) is congruent to the
right-hand side set () but they’re two different triangles...or are they the same triangle?
Like, they are different sets of triangles, right?

(omitted dialogue)

Interviewer 2: Sarah, just to clarify, was your question in part about set a has the letters ABC
and set 8 has the letters XYZ?

Sarah: Yes.

Interviewer 2: And so, because there are different letters, you weren’t sure if the triangles
were the same triangles?

Sarah: Yeah, I just got a little bit confused on that.

In this example, Sarah questioned interviewer 1 (second author) whether two triangles from
sets a and £ (which she considered congruent) could be regarded as the same triangle when
comparing sets. Eventually, interviewer 2 (first author) asked whether Sarah’s confusion
emanated from denoting elements of set @ with AABC and elements of set f with AXYZ, which
she confirmed. In other words, Sarah comprehended that a triangle AABC from set a could be
congruent to a triangle AXYZ in set § but was unsure whether AABC could exist within set 5
because the vertices of AABC in the communicative expression for set @ were not labeled with
the letters for set . We call Sarah’s evoked meaning for the expression AABC a particular
triangle. We compare Sarah’s meaning with our theoretical meaning in the vignette 1 summary.

Meaning 1b: Spontaneous particular AABC. When Carl compared the the communicative
expressions AABC and AXYZ, he imagined various possible pairings between elements in set o
and set 8 and the relationships that might occur for each comparison.

Interviewer 1: What do you think, Carl (about the relationship between sets a and £5)?

Carl: Yeah. Um, I thought that it was. I don’t think of like, the sets. I thought it more like, it
could, like have a good chance of being 100% the same triangle. But also, there’s also a
good chance that it’s close, similar, but not quite. Like 70 or so percent chance.

Interviewer 1: You’re talking about one specific triangle?

Carl: Yeah, like comparing ABC to XYZ.

Carl’s explanation shows that he was considering two distinct situations: (1) comparing a
triangle with exactly two equal sides from set a with a triangle from set § and (2) comparing a
triangle with exactly three equal sides from set a with a triangle from set . Carl’s probabilistic
language also indicates that he imagined how often the triangles he selected spontaneously were
likely to be in both sets. We thus say that Carl’s evoked meaning for the expression AABC was
of a spontaneous particular and not an arbitrary particular triangle. We further discuss how
Carl’s spontaneous particular meaning emerged in his set diagram personal expressions in
vignette 2.

Carl’s spontaneous particular meaning AABC and AXYZ is analogous to what Sellers et al.
(2021) called an MQ4 meaning for a quantified variable. Students exhibit an M(Q4 meaning when
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they spontaneously select elements within a domain of universal discourse, make inferences
without exhausting all elements, and may or may not repeat this process to make (potentially
different) inferences about other elements.

Summary of vignette 1. In this vignette, we have shown three meanings that a student might
have for AABC in the communicative expression @ = {4ABC € T: AABC is isosceles}. A
student exhibiting the arbitrary particular meaning (see Figure 2) imagines triangles defined by
the properties described in the set-builder notation and would be capable of making general
comparisons between sets. Sarah’s meaning of particular triangles allowed her to imagine
elements of sets a, f and y (Figure 2, step 1) and make rudimentary comparisons between these
elements (Figure 2, step 2). However, her image of triangles with fixed values for various
characteristics precluded her from discerning the appropriate relationship between the entire sets
of objects (Figure 2, steps 3, 4). Carl’s meaning of spontaneous particular triangles allowed him
to imagine random pairings of elements from sets a and B (Figure 2, step 1) and compare them
(Figure 2, step 2). In effect, Carl constructed relationships of likelihood, not relationships of
necessity as are privileged in mathematical logic, which are essential for proving.

Vignette 2: Students’ Meanings for Set diagrams (Personal Expressions)

We also invited Sarah and Carl to construct set diagrams to represent the relationships they
envisioned between pairs of sets (see Figure 1, question 4). We consider the diagrams that Carl
and Sarah generated (even if they exhibited the conventions of Euler diagrams) to constitute their
personal expressions for organizing their thinking about various pairs of sets.

Regions that partition: A beneficial way to construct a set diagram. We first present a
beneficial meaning that did not emerge in our data which a student might leverage to construct a
set diagram to compare sets a and [ (see Figure 3). First, the student would imagine the universe
of discourse, T, the set of all triangles. The student might then draw a box to metaphorically
gather all triangles into an enclosed entity (Figure 3, part 1). Second, the student would consider
set a, the set of isosceles triangles. The student might represent a by drawing an oval region
inside the box to simultaneously gather all isosceles triangles and partition them from other
triangles (Figure 3, part 2). The student would recognize that the region outside the oval denoting
a constitutes the complement set to a (a€). Third, the student would utilize the arbitrary
particular meaning to determine that all elements of § exist within set a (Figure 3, part 3).

a = {AABC € T: AABC is isosceles} B = {AXYZ € T:AXYZ is equilateral}

(1) (2] — o
i_ ia
(5] (4]
T a“ T af {j ] — ‘y
- -2

Figure 3. A productive method to produce a set diagram comparing sets a and 3.

The student might then draw an oval region to represent set § within his previously created
region for a (Figure 3, part 4). The student would realize that his actions (a) gather equilateral
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triangles from the universal set T into the oval region f and (b) denote the regions outside the
oval for set  as the set of all non-equilateral triangles (S¢; Figure 3, part 5). We have previously
used regions that partition to describe students’ set diagrams constructed through this propitious
meaning (Dawkins et al., in preparation). In the following data-driven examples, we report two
other meanings that Sarah and Carl attributed to their diagrams comparing set pairs a,n and «, y.
Meaning 2a: Regions that gather. When Sarah drew her set diagram personal expression to
relate sets a and n (which are disjoint sets), she drew one oval region to represent a and a
second, non-overlapping oval region to represent 1 (see Figure 4). Sarah then drew isosceles and
equilateral triangles to represent the elements she imagined in set @ and a scalene triangle to
represent the elements she imagined in set 17 (see Figure 4). When the interviewer asked Sarah
what she imagined the region outside a and 7 to represent, Sarah responded that this area was
irrelevant but she could imagine the region as empty if she chose. Sarah’s comment indicates that
she created her personal expression to represent solely her images of a, 1, and their relationship.

Figure 4. Sarah’s set diagram comparing sets a and 1 (regions that gather).

We have previously defined students’ diagrams to which they gave meaning solely to the
inside of drawn regions as regions that gather (Dawkins et al., in preparation). A student who
creates a diagram to express regions that gather typically ignores areas outside their drawn
regions (i.e., no partitioning). These students use set diagrams to highlight sets of interest, not
construe relationships between all the elements within the universal domain.

Meaning 2b: Regions that distinguish. While comparing sets a and y, Carl initially
concluded the two sets were equal and drew a single ovular region (see Figure 5). Carl then
claimed that he could further clarify his diagram by drawing a second oval region inside the first.
Carl explained that the new oval region denoted instances where he was comparing triangles
from a and y with exactly three congruent sides. He then stated that the region outside of the
interior oval (but inside the exterior oval) represented instances where he was comparing
triangles with exactly two congruent sides. In other words, Carl introduced a local partition to
distinguish two classes of elements he perceived within his gathered set containing elements of
sets a and y. We use the term regions that distinguish to describe Carl’s separation-of-elements-
into-cases meanings he imputed within a locally gathered region of his set diagram.

Case 1: triangles —

with exactly two \ > ~
congruent sides ,-"/ G ‘ \

¥R / =
M4 i @ 3 |
i\ I'. ( | :,
Case 2: triangles / A S 4
with exactly o Y
three congruent S
sides

Figure 5. Carl’s set diagram for comparing sets & and y and a digital reproduction (regions that distinguish).
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Summary of Vignette 2. In this vignette, we have shown three meanings that students might
attribute to the regions they draw in a set diagram personal expression. Sarah’s meaning allowed
her to imagine gathering elements of a similar type, and she drew regions that gather to denote
her grouping action. Sarah’s meanings allowed her to create oval regions to represent the sets a
and n and successfully determined that the sets were disjoint (Figure 3, steps 2-4). However,
Sarah indicated that the regions outside the ovals were irrelevant to the task. Later in the
interview, Sarah claimed that exterior regions contained non-examples of the sets but gave no
indication that she considered these elements as the complement of the sets portrayed by her
ovular regions (Figure 3, steps 2, 5). We also note that some students creating regions that
gather may not include a box representing the universe of discourse (see Dawkins et al., 2021;
Figure 3, step 1). Carl’s meaning allowed him to imagine sorting comparisons between classes of
elements, and he drew regions that distinguish to denote his sorting of these cases. Carl provided
meaning to all areas within his outermost region (Figure 2, steps 2-4). However, Carl created his
set diagrams not to partition the universe into sets possessing or not possessing properties (Figure
3, steps 2, 5) but to sort comparisons of set elements. Finally, a student imagining gathering
elements into one set while simultaneously creating a complement set draws regions that
partition to denote this partitioning action.

Discussion and Conclusion

Our research question for this paper was related to students’ differences in meaning when
creating personal expressions and interpreting communicative expressions for sets and set
relationships. In vignette 1 we described three meanings, one theoretical and two emerging from
our data, that students might possess for communicative expressions of set-builder notation
presented to them by an instructor. In vignette 2 we described three meanings, one theoretical
and two emerging from our data, that students might attribute to personal expressions they create
to diagrammatically represent set relationships. Our results show that students can (a) invest only
one portion of a conventional meaning to an expression (e.g., regions that gather, particular) or
(b) aatribute meanings that allow local comparisons of element classes but fail to support claims
about set relationships (e.g., spontaneous particular, regions that distinguish).

Our findings further work done by previous mathematics educators. For instance, we
provided an expanded definition of Eckman and Roh’s (2022) personal expression and proposed
communicative expressions to describe the role of symbols in mathematical communication. We
also added regions that distinguish to Dawkins et al.’s (in preparation) description of the
meanings students attribute to set diagrams. Finally, we utilized Sellers et al.’s (2021) MQ4
meaning to inform our descriptions of spontaneous particular and regions that distinguish,
extending their MQ framework beyond the context of interpreting quantified variables.

Our vignettes also have relevance for instructors. Vignette 1 highlights that students may
attribute very different meanings to a communicative expression of set-builder notation than their
instructor intended when creating the symbol as a personal expression. Vignette 2 reveals that
students’ imputed meanings to local regions of their personal expression set diagrams may vary
across students and differ from convention. Therefore, we recommend that instructors regularly
facilitate classroom discussions about personal and communicative expressions and the potential
meanings the expression creators and interpreters attribute to these expressions.
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