
iLoRE: Dynamic Graph Representation with Instant Long-term
Modeling and Re-occurrence Preservation

Siwei Zhang
swzhang22@m.fudan.edu.cn

Shanghai Key Laboratory of Data
Science, School of Computer Science,

Fudan University
Shanghai, China

Yun Xiong∗
yunx@fudan.edu.cn

Shanghai Key Laboratory of Data
Science, School of Computer Science,

Fudan University
Shanghai, China

Yao Zhang
yaozhang@fudan.edu.cn

Shanghai Key Laboratory of Data
Science, School of Computer Science,

Fudan University
Shanghai, China

Xixi Wu
21210240043@m.fudan.edu.cn

Shanghai Key Laboratory of Data
Science, School of Computer Science,

Fudan University
Shanghai, China

Yiheng Sun
sunyihengcn@gmail.com
Tencent Weixin Group

Shenzhen, China

Jiawei Zhang
jiawei@ifmlab.org

IFM Lab, Department of Computer
Science, University of California,

Davis
CA, USA

ABSTRACT

Continuous-time dynamic graph modeling is a crucial task for
many real-world applications, such as financial risk management
and fraud detection. Though existing dynamic graph modeling
methods have achieved satisfactory results, they still suffer from
three key limitations, hindering their scalability and further appli-
cability. i) Indiscriminate updating. For incoming edges, exist-
ing methods would indiscriminately deal with them, which may
lead to more time consumption and unexpected noisy information.
ii) Ineffective node-wise long-term modeling. They heavily
rely on recurrent neural networks (RNNs) as a backbone, which
has been demonstrated to be incapable of fully capturing node-
wise long-term dependencies in event sequences. iii) Neglect of
re-occurrence patterns. Dynamic graphs involve the repeated
occurrence of neighbors that indicates their importance, which is
disappointedly neglected by existing methods.

In this paper, we present iLoRE, a novel dynamic graph mod-
eling method with instant node-wise Long-term modeling and
Re-occurrence preservation. To overcome the indiscriminate up-
dating issue, we introduce the Adaptive Short-term Updater module
that will automatically discard the useless or noisy edges, ensuring
iLoRE’s effectiveness and instant ability. We further propose the
Long-term Updater to realize more effective node-wise long-term
modeling, where we innovatively propose the Identity Attention
mechanism to empower a Transformer-based updater, bypassing
the limited effectiveness of typical RNN-dominated designs. Finally,
the crucial re-occurrence patterns are also encoded into a graph

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0124-5/23/10. . . $15.00
https://doi.org/10.1145/3583780.3614926

module for informative representation learning, which will further
improve the expressiveness of our method. Our experimental re-
sults on real-world datasets demonstrate the effectiveness of our
iLoRE for dynamic graph modeling.

CCS CONCEPTS

• Information systems→ Data mining; • Computing method-

ologies→ Learning latent representations; Neural networks.

KEYWORDS

Dynamic Graphs; Representation Learning; Data Mining
ACM Reference Format:

Siwei Zhang, Yun Xiong, Yao Zhang, Xixi Wu, Yiheng Sun, and Jiawei
Zhang. 2023. iLoRE: Dynamic Graph Representation with Instant Long-
term Modeling and Re-occurrence Preservation. In Proceedings of the 32nd
ACM International Conference on Information and Knowledge Management
(CIKM ’23), October 21–25, 2023, Birmingham, United Kingdom. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3583780.3614926

1 INTRODUCTION

In real-world scenarios, graphs are often constantly evolving over
time, where objects (nodes) and their interactions (edges) can emerge
and change along a temporal sequence. Such graphs are known as
continuous-time dynamic graphs1 [34]. Graph Neural Networks
(GNNs) for modeling static graphs [14, 18, 26] fail to encode the
temporal dependencies, leading to inferior performance when ap-
plied to dynamic graphs. Fortunately, Temporal Graph Networks
(TGNs) [11, 19, 23, 33, 36] proposed in recent years effectively learn
the temporal representation of dynamic graphs. TGNs focus on de-
veloping effective aggregation methods for incorporating historical
neighbors, such as self-attention [33] and summation [23]. Most
TGNs utilize a memory module to record nodes’ historical behavior,
enabling them to make predictions about future events. Despite
their effectiveness, existing TGNs still have some key limitations:

Indiscriminate updating. TGNs indiscriminately update the
memory of every node by encoding the information from each
1For simplicity, we use “dynamic graph” in the following text.

ar
X

iv
:2

30
9.

02
01

2v
1

 [c
s.L

G
]

5
Se

p
20

23

https://doi.org/10.1145/3583780.3614926
https://doi.org/10.1145/3583780.3614926

iLoRE: Dynamic Graph Representation with Instant Long-term Modeling and Re-occurrence Preservation CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

2.2 Transformers for Graph Learning

Transformer [25] is an innovative model for processing sequential
data. Its self-attention mechanism allows it to perceive longer se-
quences, which is of great importance in the field of long-sequence
modeling. Currently, Transformer has been successfully applied in
many fields, such as computer vision [3, 9, 16], natural language
processing [1, 8, 15], and time series prediction [13, 32, 37].

In static graphs, researchers have proposed many Transformer-
based methods for static graph modeling [14, 18, 21]. The authors
[10] propose a graph transformer layer with Laplacian Eigenvec-
tors to encode graph structure. In [27], the authors utilize a graph
transformer attention layer to extract information and capture the
neighboring correlations, which achieves effective performance.

Currently, most works in the field of dynamic graphs are based
on RNNs, and there are few works that use the Transformer as
the backbone. Therefore, our proposed model extends Transformer
into node-wise long-term modeling in dynamic graphs, opening up
new possibilities in the field of dynamic graph modeling.

3 NOTATOIN AND TERMINOLOGY

PRELIMINARIES

Definition 3.1. Dynamic Graph. A dynamic graph is a graph
whose edges contain temporal information, i.e., timestamps. We
denote a dynamic graph as a sequence of timestamped evolving
graphs G = (G(𝑡0),G(𝑡1), ...), where 𝑡𝑘 < 𝑡𝑘+1 and G(𝑡𝑘+1) is
generated from G(𝑡𝑘) with the edges whose timestamp is 𝑡𝑘+1. We
represent an edge between nodes 𝑖 and 𝑗 at time 𝑡 as a tuple (𝑖, 𝑗, 𝑡)
with an edge feature e𝑖 𝑗 (𝑡).

A dynamic graph can also be viewed as event sequences E. Each
event (𝑖, 𝑗, 𝑡𝑘+1) ∈ E can be seen as the new edge of G(𝑡𝑘+1) com-
pared to G(𝑡𝑘), and all of the events are sorted by timestamps. For
the remaining part of this paper, in referring to the incoming dy-
namic graph edge sequences, we will misuse the terminologies of
“dynamic graph edge set” and “event sequence” interchangeably
without distinguishing their differences.

Definition 3.2. Dynamic Graph Modeling. Given a dynamic
graph edge set or event sequences E, for each event (𝑖, 𝑗, 𝑡) ∈ E,
the goal of dynamic graph modeling is to learn a mapping function
𝑓 : (𝑖, 𝑗, 𝑡) ↦→ z𝑖 (𝑡), z𝑗 (𝑡), where z𝑖 (𝑡), z𝑗 (𝑡) ∈ R𝑑 respectively
represent temporal representation of nodes 𝑖 and 𝑗 , and 𝑑 is the
vector dimension.

Besides the terminologies defined above, several other important
notations used in this paper are summarized in Table 1.

4 PROPOSED METHOD

We first define the short- and long-term behavior of nodes with the
window-split technique in event sequences, which are encoded as
short- and long-term memory, respectively. Our proposed iLoRE
has three main parts, including i) the Adaptive Short-term Updater,
which achieves instant short-term modeling within a window; ii)
the Long-term Updater, which captures nodes’ long-term depen-
dencies across multiple windows; iii) and the Re-occurrence Graph
Module, which encodes re-occurrence patterns within a graph mod-
ule for representation.

Table 1: Important notations

Symbol Definition

M𝑆
𝑖
(𝑡) Short-term memory of node 𝑖 at 𝑡

M𝐿
𝑖
(𝑡) Long-term memory of node 𝑖 at 𝑡

S𝑖 (𝑡) Node state of node 𝑖 at 𝑡
X𝑖,R (𝑡) Re-occurrence features of node 𝑖’s neighbors at 𝑡
z𝑖 (𝑡) Temporal representation of node 𝑖 at 𝑡

𝑛 Chunk size (hyper-parameter)
𝑏 Block number of Transformer (hyper-parameter)

As illustrated in Figure 2, in the Adaptive Short-term Updater, a
state module is proposed to automatically discard useless or noisy
edges to ensure the effectiveness and instant ability of our method.
Meanwhile, in the Long-term Updater, to empower node-wise long-
term modeling ability for event sequences, Identity Attention is
proposed to optimize the Transformer-based updater, which can
re-sort, pad, chunk, and apply time-aware attention within a chunk.
For more time-sensitive cases, we employ Gaussian Range Encod-
ing [12] and time encoding [33] to preserve the temporal infor-
mation. What’s more, in the Re-occurrence Graph Module, we
incorporate the valuable re-occurrence features into a graph atten-
tion module for informative temporal representation generation.
We will introduce these components in the following subsections.

4.1 Node-wise Short- and Long-term Modeling

4.1.1 Window-split Technique. To perform node-wise long-term
modeling, we propose to split the event sequence into subsequences
according to a pre-defined window size 𝑠 . Given event sequences
E = {𝑒1, 𝑒2, ..., 𝑒𝑟 } where 𝑟 is the event length, we define a window
set w = {𝑤1,𝑤2, ...,𝑤 ⌈𝑟/𝑠 ⌉ }, where𝑤𝑖 = {𝑒𝑖 ·𝑠−𝑠+1, 𝑒𝑖 ·𝑠−𝑠+2, ..., 𝑒𝑖 ·𝑠 |
𝑖 ≤ ⌈𝑟/𝑠⌉} contains 𝑠 events.

In this paper, we use short- and long-term memory,M𝑆 and
M𝐿 , to embed the short- and long-term behavior of each node,
respectively. The memory of each node 𝑖 ,M𝑆

𝑖
andM𝐿

𝑖
, is initialized

as the zero vector and will be updated over time. For given node 𝑖
at time 𝑡 , we use the events within the same window to perform
short-term modeling, i.e., updatingM𝑆

𝑖
(𝑡), and perform long-term

modeling across multiple windows, i.e., updatingM𝐿
𝑖
(𝑡). Note that

once the long-term memory is updated, the short-term memory
will be reset to zero.

4.1.2 Message Generation. Given an event of node 𝑖 at time 𝑡 in
window𝑤𝑖 , a message m𝑖 (𝑡) is generated to update the short-term
memory of 𝑖 , M𝑆

𝑖
(𝑡). Assume that nodes 𝑖 and 𝑗 have an event

at time 𝑡 , (𝑖, 𝑗, 𝑡), with the feature vector e𝑖 𝑗 (𝑡), we generate two
messages with the long-termmemory of 𝑖 and 𝑗 ,M𝐿

𝑖
(𝑡) andM𝐿

𝑗
(𝑡):

m𝑖 (𝑡) = Msg
(
M𝐿

𝑖 (𝑡) ,M
𝐿
𝑗 (𝑡) , e𝑖 𝑗 (𝑡) ,Φ

(
𝑡 − 𝑡−𝑖

))
,

m𝑗 (𝑡) = Msg
(
M𝐿

𝑗 (𝑡) ,M
𝐿
𝑖 (𝑡) , e𝑖 𝑗 (𝑡) ,Φ

(
𝑡 − 𝑡−𝑗

))
,

(1)

where Msg(·) is the message function and 𝑡−∗ is the time that node
𝑖/ 𝑗 last updated. Φ(·) is the time encoding used in [19]. The reason
why we conduct long-term memory for message generation is that
it contains more expressive and valuable information compared

iLoRE: Dynamic Graph Representation with Instant Long-term Modeling and Re-occurrence Preservation CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

• • •
• •

•
•
•

• •

k1
k2
k3
k4
k5
k6

q1 q3 q4 q5 q6

(a) Full attention
q2

(b) Re-sort

• • •	

	•
 •	
•	 •	

•	
•	
•	

q1 q2 q4 q3 q6 q5
k1
k2
k6
k3

k5

k4

• • •

• • • 	

• • •

• • 	
• •

•

(c) Q=K

q1 q2 q4 q3 q6 q5
q1
q2
q4
q3
q6
q5

• • •

•	• • • 	
• • •

• • 	
• •

•

(d) Pad
q1q2 q4 q3 q6 q5

q1
q2
q4
q3

q6

q5

• • •

•	• • • 	
• • •

• • 	
• •

•

(e) Attend within chunk
q1q2 q4 q3 q6 q5

q1
q2
q4
q3

q6

q5

• • •

•	• • • 	
• • •

• • 	
• •

•

(f) Time-aware attention
q1q2 q4 q3 q6 q5

q1
q2
q4
q3

q6

q5

Short-term 
memory

Re-sort by

Identity

Pad

and chunk

Attend within

a chunk by
time-order

event sequences

Window-split
technique

Window 1 Window 2 Window 3 Window 4 Window 5

Figure 3: Simplified description of Identity Attention (left) and attention matrices that need to be learned in each step (a-f on

right). With the window-split technique, we can take node-wise long-term modeling in multiple widows, e.g., 5 windows, with

nodes’ short-term memory. Note that different colors denote different node identities. The Identity Attention re-sorts, pads,

chunks, and attends within a chunk with time order, which can densify the attention matrix in a chunk, greatly reducing the

difficulty to learn the attention matrix and thus increasing our ability to capture node-wise long-term dependencies effectively.

They employ a highly discriminative encoding for every single
point. It can not align with the nature of time in event sequences
because the timestamps are continuous. To make the model more
order-aware, we use a range-based encoding method. Therefore,
we employ Gaussian Range Encoding [12].

Formally, we propose B ∈ R𝑑×𝑘 as the normalized weights from
𝑘 Gaussian distributions, where 𝑑 denotes the dimension of the
input vector. It can be shown as follows:

B = softmax (𝐵) , (6)

where 𝐵 ∈ R𝑑×𝑘 is a matrix whose attributes are sampled from 𝑘

ranges. In matrix 𝐵, each cell 𝑏𝑖 𝑗 shows the contribution of the 𝑗-th
Gaussian ranges for position 𝑖 , which can be represented as:

𝑏𝑖 𝑗 = −

(
𝑖 − 𝜇 (𝑗)

)2
2𝜎 (𝑗)2

− log
(
𝜎 (𝑗)

)
, (7)

where 𝜇 (𝑗) and 𝜎 (𝑗) are the mean and standard deviation of 𝑗-th
Gaussian ranges, respectively. For implementation, we set these two
parameters to be learnable. Then, the Gaussian Range Embedding
is generated by adding the range embeddings to the input vector 𝑋 :

Gaussian(𝑋) = 𝑋 + B · E, (8)

where E ∈ R𝑘×𝑑 is a learnable matrix. This approach uses 𝑘 learn-
able Gaussian ranges to express different positions, which makes
our position encoding more continuous. Moreover, we adopt clas-
sic time encoding [33] widely used in dynamic graph modeling to
better preserve temporal information.

4.3.2 Identity Attention. Figure 3 illustrates the motivation and
the process of Identity Attention. Figure 3a expresses the atten-
tion matrix that needs to be learned when using full attention for
node-wise long-term modeling, where different colors of 𝑘 and
𝑞 represent different nodes’ identities. Since the distribution of a
node at different times is scattered in the sequence, the attention
matrix for full attention is typically sparse, making it difficult to

learn. Therefore, we propose Identity Attention, which can densify
the attention matrix within a chunk by re-sorting (Figure 3b, c),
padding (Figure 3d), chunking (Figure 3e), and attending within
a chunk (Figure 3f), greatly reducing the learning difficulty and
enhancing our ability to node-wise long-term modeling in event
sequences.

We first rewrite the equation of full attention. For a query posi-
tion 𝑖 , its attention to position 𝑗 can be represented as o𝑖 𝑗 :

o𝑖 𝑗 =
∑︁
𝑗∈P𝑖

exp
(
𝑞𝑖 · 𝑘 𝑗 + z (𝑖,P𝑖)

)
𝑣 𝑗 , (9)

where P𝑖 = { 𝑗 : 𝑗 ≤ 𝑖 𝑜𝑟 𝑗 > 𝑖}. Note that P𝑖 represents the set
that the query position 𝑖 can attend to, and z denotes the partition
function, e.g., softmax. Notably, we omit the parameter

√︁
𝑑𝑘 [25].

We can use a positional encoding functionm(·, ·) to fit the atten-
tion between position 𝑖 and position 𝑗 that 𝑖 can attend to:

o𝑖 𝑗 =
∑︁
𝑗∈P𝑖

exp
(
𝑞𝑖 · 𝑘 𝑗 +m (𝑗,P𝑖) + z (𝑖,P𝑖)

)
𝑣 𝑗 , (10)

wherem(·, ·) usually applies a single point positional encoding [25].
Now we turn to Identity Attention, which we can consider as

the constraint of P𝑖 .
Re-sort. This step aims to cluster temporal nodes in the same

identity. We use bucket sort to rearrange the entire sequence ac-
cording to the order of identity, where position 𝑖 changes after
sorting, i.e., 𝑖 ↦→ 𝑐𝑖 . In the sorted attention matrix, nodes with the
same identity will be clustered, as shown in Figure 3b. We have:

P𝑖 =
{
𝑗 : Id (𝑞𝑖) = Id

(
𝑘 𝑗
)}
, (11)

where Id(·) denotes the identity of a correlated temporal node. For
simplicity, we let 𝑄 = 𝐾 as represented in Figure 3c.

Pad and chunk. Since the frequency of node updating is differ-
ent in different windows, the number of temporal nodes in each
bucket is unequal. In practice, we employ zero vectors to pad the
temporal nodes that do not have updated in correspondingwindows

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Siwei Zhang, et al.

as depicted in Figure 3d. Moreover, we apply batching approaches
to chunk and concentrate attention within each chunk (after sorting
and padding), shown in Figure 3e. Formally, we have:

P̃𝑖 =
{
𝑗 :

⌊𝑐𝑖
𝑛

⌋
− 1 ≤

⌊𝑐 𝑗
𝑛

⌋
≤

⌊𝑐𝑖
𝑛

⌋}
, (12)

where 𝑛 ∈ R+ is a hyper-parameter that represents the chunk size.
In Long-term Updater, 𝑛 is also the number of windows where
Transformer performs long-term modeling at once in event se-
quences.

Attend within a chunk by time-order. Then, we implement
Gaussian Range Encoding and time-aware attention within a chunk
as illustrated in Figure 3f. Formally, we also use m(·, ·) as our posi-
tional encoding function, which is defined as:

m
(
𝑗, P̃𝑖

)
=

Gaussian
(
𝑖, P̃𝑖

)
, if 𝑗 ∈ P̃𝑖

−∞, otherwise,
(13)

where Gaussian(·, ·) is Gaussian Range Encoding in Section 4.3.1.
Considering that in event sequences, the event that happened at
time 𝑡 can only attend to the past events before 𝑡 , we propose
time-aware attention, which is defined as:

t
(
𝑗, P̃𝑖

)
=

{
Time(𝑖, 𝑡), if 𝑗 ∈ P̃𝑖 and 𝑗 ≤ 𝑖
−∞, otherwise,

(14)

where Time(·, ·) is the time encoding in Section 4.3.1.
Summarily, the final Identity Attention can be represented as:

o𝑖 𝑗 =
∑︁
𝑗∈ P̃𝑖

exp
(
𝑞𝑖 · 𝑘 𝑗 +m

(
𝑗, P̃𝑖

)
+ t

(
𝑗, P̃𝑖

)
+ z

(
𝑖, P̃𝑖

))
𝑣 𝑗 . (15)

Each component that is negative infinity will force our attention
to zero. Similar to full attention, we can also apply the multi-head
technique in Identity Attention.

4.3.3 Transformer. We employ a standard Transformer encoder
for node-wise long-term modeling. Transformer is equipped with
stacking 𝑏 Multi-head Identity Attention (MIA) and Feed-Forward
Network (FFN) blocks. Each block employs a residual connection.
We use ReLU between the two MLPs in each FFN block and apply
Layer Normalization (LN) before each block.

Thanks to the window-split and chunk technique, the input of
Transformer is the short-term memoryM𝑆 that is updated by the
events in recent𝑛windows before𝑤𝑖 , i.e., {𝑤𝑖−𝑛+1, ...,𝑤𝑖 |𝑖 ≤ ⌈𝑟/𝑠⌉},
and it is denoted as Z0 ∈ R𝑙𝑖×𝑑 where 𝑙𝑖 is the length of events. The
output embedding of the 𝑏-th layer is denoted by 𝑯 = 𝒁𝑏 ∈ R𝑙 ′𝑖 ×𝑑

where 𝑙 ′
𝑖
is the length of sequence after padding.

The long-term memory of node 𝑖 at time 𝑡 ,M𝐿
𝑖
(𝑡), is derived by

averaging their related embedding in 𝑯 :

M𝐿
𝑖 (𝑡) = MEAN (𝑯 [𝑖, :]) ∈ R𝑑 . (16)

4.4 Re-occurrence Graph Module

We aim to encode the re-occurrence features into the graph module,
which refers to the property that two nodes may interact at different
timestamps. Intuitively, the re-occurrence number of a historical
neighbor indicates its importance to the central node.

For given a node 𝑖 and its historical neighbors at time 𝑡 , N𝑖 (𝑡),
we count the number of re-occurrence of each neighbor, which is

Algorithm 1: Traning iLoRE (one epoch).
input :Dynamic graph edge set E; Short-term memory

M𝑆 ; Long-term memoryM𝐿 ; Node state Ŝ;
Chunk size 𝑛.

1 InitializeM𝑆 ,M𝐿, Ŝ ← 0 ;
2 foreach batch {(𝑖, 𝑗, 𝑡)} ⊆ E do

3 Split batch into 𝑛 windows, {𝑤1, ...,𝑤𝑛} ;
4 InitializeM(𝑡) ← 0 ;
5 foreach𝑤𝑖 ∈ {𝑤1, ...,𝑤𝑛} do
6 Sample S(𝑡) ∼ Bernoulli(Ŝ(𝑡)) ;
7 Update short-term memoryM𝑆 (𝑡) by Equation 3 ;
8 Update node state Ŝ(𝑡) by Equation 4 ;
9 RecordM𝑆 (𝑡) toM(𝑡) ;

10 end

11 UpdateM𝐿 (𝑡) ← Upd(M(𝑡)) with Identity Attention ;
12 Compute X𝑖,R (𝑡),X𝑗,R (𝑡) by Equation 17 ;

13 Compute z𝑖 (𝑡), z𝑗 (𝑡) ← Emb
(
M𝐿 (𝑡),X𝑖,R ,X𝑗,R

)
;

14 Compute 𝑝𝑖 𝑗 (𝑡), 𝑝𝑖𝑘 (𝑡) by Equation 20 ;
15 Compute temporal link prediction loss L by Equation 21

and backward ;
16 end

represented as R𝑖 (𝑡) ∈ R |N𝑖 (𝑡) |×1. Then, we apply a function 𝑓 (·)
to encode the re-occurrence features of historical neighbors by:

X𝑖,R (𝑡) = 𝑓 (R𝑖 (𝑡)) ∈ R |N𝑖 (𝑡) |×𝑑 , (17)

where 𝑓 (·) is a three-layer perceptron with ReLU activation, whose
input and output dimensions are 1 and 𝑑 , respectively.

For node 𝑖 at time 𝑡 , we compute the embedding z𝑖 (𝑡) with its
long-term memoryM𝐿

𝑖
(𝑡). We aggregate its historical neighbors’

long-term memory,M𝐿
𝑗
(𝑡 𝑗) where 𝑗 ∈ N𝑖 (𝑡), using an attention

mechanism as follows:

ℎ𝑙𝑖 (𝑡) = MLP(𝑙)
(
h𝑙−1𝑖 (𝑡) ∥h̃𝑙𝑖 (𝑡)

)
, (18)

h̃𝑙𝑖 (𝑡) = Att(𝑙) ©­«
⊙

𝑗∈N𝑖 (𝑡)

(
h𝑙−1𝑗 (𝑡) ∥e𝑖 𝑗

(
𝑡 𝑗
)
∥Φ

(
𝑡 − 𝑡 𝑗

)
∥X𝑗,R

(
𝑡 𝑗
))ª®¬
(19)

where
⊙

denotes the stacking operation and Att(·) is the graph
attention used in [19]. Note that the input h0

𝑖
(𝑡) =M𝐿

𝑖
(𝑡) and the

node representation z𝑖 (𝑡) = h𝐿
𝑖
(𝑡) where 𝐿 is the layer number.

4.5 Training

4.5.1 Error Grandients. Our method is differential except for the
Bernoulli process in Equation 2, which is a binary value as the
output. We employ the widely-used straight-through estimator [2],
which implements the identity to approximate the step function for
gradients computation during the backward pass: 𝜕 Bernoulli(𝑥)𝜕𝑥 = 1.

4.5.2 Loss Function. We take temporal link prediction as our self-
supervised task. For the representation of nodes 𝑖 and 𝑗 at time 𝑡 ,
z𝑖 (𝑡) and z𝑗 (𝑡), we compute the probability of having interaction

iLoRE: Dynamic Graph Representation with Instant Long-term Modeling and Re-occurrence Preservation CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

Table 2: Average Precision (AP(%) ± Std) for temporal link prediction in transductive and inductive setting. The result %d that

is bolded is the best result and the second is %d.

(a) Transductive Setting.

Wikipedia Reddit MOOC LastFM

CTDNE 79.42 ± 0.4 73.76 ± 0.5 65.34 ± 0.7 57.25 ± 1.0
JODIE 94.62 ± 0.5 91.11 ± 0.3 76.50 ± 1.8 68.77 ± 3.0
TGAT 95.34 ± 0.1 98.12 ± 0.2 60.97 ± 0.3 53.36 ± 0.1
DyRep 94.59 ± 0.2 97.98 ± 0.1 75.37 ± 1.7 68.77 ± 2.1
TGN 98.46 ± 0.1 98.70 ± 0.1 85.88 ± 3.0 80.69 ± 0.2
CAW 98.63 ± 0.1 98.39 ± 0.1 80.15 ± 0.3 81.29 ± 0.1
TIGER 98.38 ± 0.1 99.04 ± 0.1 89.64 ± 0.9 87.85 ± 0.9

GraMixer 97.95 ± .03 97.31 ± .01 82.78 ± 0.2 67.27 ± 2.1
PINT 98.78 ± 0.1 99.03 ± .01 85.14 ± 1.2 88.06 ± 0.7
Ours 98.98 ± 0.3 99.11 ± 0.4 90.44 ± 1.0 91.39 ± 0.1

(b) Inductive Setting.

Wikipedia Reddit MOOC LastFM

CTDNE - - - -
JODIE 93.11 ± 0.4 94.36 ± 1.1 77.83 ± 2.1 82.55 ± 1.9
TGAT 93.99 ± 0.3 96.62 ± 0.3 63.50 ± 0.7 55.65 ± 0.2
DyRep 92.05 ± 0.3 95.68 ± 0.2 78.55 ± 1.1 81.33 ± 2.1
TGN 97.81 ± 0.1 97.55 ± 0.1 85.55 ± 2.9 84.66 ± 0.1
CAW 98.24 ± .03 97.81 ± 0.1 81.42 ± 0.2 85.67 ± 0.5
TIGER 98.45 ± 0.1 98.39 ± 0.1 89.51 ± 0.7 90.14 ± 1.0

GraMixer 96.65 ± .02 95.26 ± .02 81.41 ± 0.2 82.11 ± 0.4
PINT 98.38 ± .04 98.25 ± .04 85.39 ± 1.0 91.76 ± 0.7
Ours 98.60 ± 0.3 98.65 ± 0.3 89.75 ± 0.8 93.29 ± 0.8

Table 3: AUC (AUC(%) ± Std) for evolving node classification task on Wikipedia, Reddit and MOOC. The result %d that is

bolded is the best result and the second is %d.

CTDNE JODIE TGAT DyRep TGN TIGER GraMixer PINT Ours

Wikipedia 75.89 ± 0.5 84.84 ± 1.2 83.69 ± 0.7 84.59 ± 2.2 87.81 ± 0.3 86.92 ± 0.7 86.80 ± .01 87.59 ± 0.6 91.37 ± 0.2

Reddit 59.43 ± 0.6 61.83 ± 2.7 65.56 ± 0.7 62.91 ± 2.4 67.06 ± 0.9 69.41 ± 1.3 64.22 ± .03 67.31 ± 0.2 71.82 ± 1.6

MOOC 67.54 ± 0.7 66.87 ± 0.4 53.95 ± 0.2 67.76 ± 0.5 69.54 ± 1.0 72.35 ± 2.3 67.21 ± .02 68.77 ± 1.1 73.89 ± 2.0

between them by a two-layer MLP:

𝑝𝑖 𝑗 (𝑡) = 𝜎
(
MLP

(
z𝑖 (𝑡) ∥z𝑗 (𝑡)

))
, (20)

where 𝜎 (·) is the sigmoid function. Then, we set the cross-entropy
as the loss function:

L = −
∑︁

(𝑖, 𝑗,𝑡) ∈E

[
log𝑝𝑖 𝑗 (𝑡) + log (1 − 𝑝𝑖𝑘 (𝑡))

]
, (21)

where 𝑘 is the negative destination node by random sampling. The
pseudo-code of the iLoRE is provided in Algorithm 1.

5 EXPERIMENTS

5.1 Datasets and Baselines

For better comparison, we conduct experiments with four widely-
used public datasets [11] including Wikipedia, Reddit, MOOC, and
LastFM. Notably, all datasets have no node feature, and MOOC and
LastFM have no edge feature, where we assign zero vectors in each
of these datasets. Except for LastFM, others share evolving node
labels of source nodes, and we can conduct the node classification
task on them. All datasets are split with 70%-15%-15% for training,
validation, and testing as [19].

For evaluation, we choose nine dynamic graph modeling meth-
ods to compare with ours, including CTDNE [17], DyRep [23],
JODIE [11], TGAT [33], TGN [19], CAW [31], TIGER [36], GraMixer
[6], PINT [22]. Note that CTDNE can not be applied in the induc-
tive setting, and CAW can not be conducted in the evolving node
classification task.

5.2 Temporal Link Prediction

Firstly, we evaluate our model on the temporal link prediction
task. Similar to previous dynamic graph modeling methods, we test
our model under two settings: transductive and inductive. In the
transductive setting, we test edges whose nodes have been seen
in the training splits, while in the inductive setting, we examine
the unseen nodes for temporal link prediction. We use average
precision (AP) as our evaluation metric and select an equal number
of negative edges as we did in Equation 21.

The results are shown in Table 2. Our model outperforms all
baselines on all datasets in both transductive and inductive settings.
This observation proves the excellent effectiveness and expressive-
ness of our method. For all baselines, existing sequential models,
i.e., [6, 11, 17, 23], perform worse than graph models. This may be
owing to the fact that graph models, whose nodes can attend to
multi-hop neighbors, have preserved the longer neighbors’ infor-
mation during training. It also gives us the motivation that there is
still considerable room for improvement in sequential models.

5.3 Evolving Node Classification

To further evaluate the effectiveness of our model, we use the
learned temporal representation for the evolving node classification
task. In practice, we utilize temporal link prediction as a pre-training
task for the models. We use Wikipedia, Reddit, and MOOC for
testing as only these datasets have evolving node labels. Following
[19], we input the temporal representation of node 𝑖 , z𝑖 (𝑡), into a
two-layer MLP to obtain the class probability of the temporal nodes
and then design a training signal in Equation 21.

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Siwei Zhang, et al.

Table 4: P-value of the chi-square independence test on Wikipedia and MOOC.

JODIE TGAT DyRep TGN CAW TIGER GraMixer PINT Ours

Wikipedia 0.006 0.015 0.011 0.031 0.008 0.042 0.029 0.040 0.185

MOOC 0.010 0.005 0.018 0.034 0.019 0.010 0.033 0.022 0.115

100 ~80 ~60 ~40 ~20 ~10
Ratio of Wikipedia (%)

86

88

90

92

94

96

98

Av
er

ag
e

Pr
ec

is
io

n
(%

)

100 ~80 ~60 ~40 ~20 ~10
Ratio of MOOC (%)

60

65

70

75

80

85

90

95

Av
er

ag
e

Pr
ec

is
io

n
(%

)

JODIE TGAT DyRep TGN CAW TIGER GraphMixer PINT Ours

(a) Transductive temporal link prediction.

100 ~80 ~60 ~40 ~20 ~10
Ratio of Wikipedia (%)

86

88

90

92

94

96

98

Av
er

ag
e

Pr
ec

is
io

n
(%

)

100 ~80 ~60 ~40 ~20 ~10
Ratio of MOOC (%)

65

70

75

80

85

90

95

Av
er

ag
e

Pr
ec

is
io

n
(%

)

JODIE TGAT DyRep TGN CAW TIGER GraphMixer PINT Ours

(b) Inductive temporal link prediction.

Figure 4: The ability to node-wise long-term modeling for temporal link prediction task on Wikipedia and MOOC.

The results are presented in Table 3. Our method achieves the
best performance on all datasets, further confirming the powerful
dynamic graph modeling capabilities of our method. The satisfac-
tory outcomes demonstrate that the learned representations of our
method are effective for downstream tasks.

5.4 Ability to Node-wise Long-term Modeling

To validate the node-wise long-term modeling ability of models,
we design experiments focusing on big nodes in dynamic graphs.
Specifically, we sort all the nodes in dynamic graphs by the number
of their edges, i.e., node frequency, and select nodes whose node
frequency is in the top 𝑘 ∈ {100%, 80%, 60%, 40%, 20%, 10%} to gen-
erate some subgraphs separately. It is worth noting that the smaller
𝑘 of the subgraph, the higher proportion of big nodes, the more
challenging node-wise long-term modeling. Moreover, considering
that the unequal number of samples in these subgraphs may affect
the credibility of the conclusion, we employ the chi-square indepen-
dence test. We first conduct a contingency table with the number of
successful and failed predictions that are generated from the model
in each subgraph, then we calculate the P-value of the chi-square
independence test 𝑝𝑣 . Our null hypothesis is “the subgraphs and the
success or failure of the predictions are independent”. If 𝑝𝑣 > 0.05,
we can accept the null hypothesis. It indicates that different sub-
graphs, which contain different proportions of big nodes, have little
impact on the performance of the model, confirming the model’s
ability to node-wise long-term modeling.

As shown in Figure 4 and Table 4, Our model outperforms all
other baselines in all subgraphs. As the proportion of big nodes
increases, the performance of our model remains stable, while other
baselines decline, demonstrating the strong node-wise long-term
modeling capability of our model in dynamic graphs. Only our
model has a P-value greater than 0.05. The chi-squared test rules out
concerns that may have arisen from differences in sample number
among subgraphs, enhancing the credibility of the conclusion.

5.5 Analysis of Inference Time

To verify the effectiveness of discarding edges and the model’s effi-
ciency, we conduct comparative experiments on the inference time
and the performance of models. Our experiments are performed on
a Linux PCwith an Intel i7 CPU (6 cores, 2.6 GHz), using the original
public implementations of baselines. In industry, the inference time
of a model is much more important than its training time. In the
online payment platform, for example, there are billions of transac-
tion data that are generated daily. Industry research institutes do
not necessarily train models frequently, but they need to process
these large amounts of daily data frequently for downstream tasks
such as financial risk management [29], leading to redundant time
consumption. Consequently, a model with a lower inference time
has more commercial value. Thus, we compare the inference time
of a batch (batch size is 100) and the performance of models.

The results are shown in Figure 5, where the closer to the upper
left corner, the shorter the inference time and the better perfor-
mance of the model. Our model outperforms other baselines in
both inference time and performance, mainly due to the successful
removal of some useless or noisy edges. We also find that [22, 31]
have significantly longer inference time compared to other methods.
This may be because they search for neighbors through temporal
walks, which is extremely time-consuming during inference.

5.6 Ablation Study

We conduct an ablation study to further investigate the impact of
the main innovative components in our model, including the state
module (SM) in Section 4.2, Gaussian Range Encoding (GRE) in
Section 4.3.1, Identity Attention (IA) in Section 4.3.2, and the Re-
occurrence features (ReO) in Section 4.4. We propose four variants:
w/o SM, w/o GRE, w/o IA, and w/o ReO, respectively. The w/o SM
variant does not discard temporal edges and performs indiscrimi-
nate updating; The w/o GRE variant replaces the Gaussian Range
Encoding with the default positional encoding used in Transformer

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Siwei Zhang, et al.

REFERENCES

[1] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez,
Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam
Santoro, Ryan Faulkner, et al. 2018. Relational inductive biases, deep learning,
and graph networks. arXiv preprint arXiv:1806.01261 (2018).

[2] Víctor Campos, Brendan Jou, Xavier Giró-i Nieto, Jordi Torres, and Shih-Fu Chang.
2017. Skip rnn: Learning to skip state updates in recurrent neural networks.
arXiv preprint arXiv:1708.06834 (2017).

[3] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander
Kirillov, and Sergey Zagoruyko. 2020. End-to-end object detection with trans-
formers. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part I 16. Springer, 213–229.

[4] Xinshi Chen, Yan Zhu, Haowen Xu, Mengyang Liu, Liang Xiong, Muhan Zhang,
and Le Song. 2021. Efficient Dynamic Graph Representation Learning at Scale.
arXiv preprint arXiv:2112.07768 (2021).

[5] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase
representations using RNN encoder-decoder for statistical machine translation.
arXiv preprint arXiv:1406.1078 (2014).

[6] Weilin Cong, Si Zhang, Jian Kang, Baichuan Yuan, Hao Wu, Xin Zhou, Hanghang
Tong, and Mehrdad Mahdavi. 2023. Do We Really Need Complicated Model
Architectures For Temporal Networks? arXiv preprint arXiv:2302.11636 (2023).

[7] Hanjun Dai, Yichen Wang, Rakshit Trivedi, and Le Song. 2016. Deep coevolu-
tionary network: Embedding user and item features for recommendation. arXiv
preprint arXiv:1609.03675 (2016).

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).

[10] Vijay Prakash Dwivedi and Xavier Bresson. 2020. A generalization of transformer
networks to graphs. arXiv preprint arXiv:2012.09699 (2020).

[11] Srijan Kumar, Xikun Zhang, and Jure Leskovec. 2019. Predicting dynamic em-
bedding trajectory in temporal interaction networks. In Proceedings of the 25th
ACM SIGKDD international conference on knowledge discovery & data mining.
1269–1278.

[12] Bing Li, Wei Cui, Wei Wang, Le Zhang, Zhenghua Chen, and Min Wu. 2021.
Two-stream convolution augmented transformer for human activity recognition.
In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35. 286–293.

[13] Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang,
and Xifeng Yan. 2019. Enhancing the locality and breaking the memory bottle-
neck of transformer on time series forecasting. Advances in neural information
processing systems 32 (2019).

[14] Xiao Liu, Shiyu Zhao, Kai Su, Yukuo Cen, Jiezhong Qiu, Mengdi Zhang, Wei Wu,
Yuxiao Dong, and Jie Tang. 2022. Mask and Reason: Pre-Training Knowledge
Graph Transformers for Complex Logical Queries. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining. 1120–1130.

[15] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[16] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin,
and Baining Guo. 2021. Swin transformer: Hierarchical vision transformer us-
ing shifted windows. In Proceedings of the IEEE/CVF international conference on
computer vision. 10012–10022.

[17] Giang Hoang Nguyen, John Boaz Lee, Ryan A Rossi, Nesreen K Ahmed, Eunyee
Koh, and Sungchul Kim. 2018. Continuous-time dynamic network embeddings.
In Companion proceedings of the the web conference 2018. 969–976.

[18] Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu,
Guy Wolf, and Dominique Beaini. 2022. Recipe for a general, powerful, scalable
graph transformer. Advances in Neural Information Processing Systems 35 (2022),
14501–14515.

[19] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico
Monti, and Michael Bronstein. 2020. Temporal graph networks for deep learning
on dynamic graphs. arXiv preprint arXiv:2006.10637 (2020).

[20] Alex Sherstinsky. 2020. Fundamentals of recurrent neural network (RNN) and
long short-term memory (LSTM) network. Physica D: Nonlinear Phenomena 404
(2020), 132306.

[21] Yu Shi, Shuxin Zheng, Guolin Ke, Yifei Shen, Jiacheng You, Jiyan He, Shengjie
Luo, Chang Liu, Di He, and Tie-Yan Liu. 2022. Benchmarking graphormer on
large-scale molecular modeling datasets. arXiv preprint arXiv:2203.04810 (2022).

[22] Amauri Souza, Diego Mesquita, Samuel Kaski, and Vikas Garg. 2022. Provably
expressive temporal graph networks. Advances in Neural Information Processing
Systems 35 (2022), 32257–32269.

[23] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. 2019.
Dyrep: Learning representations over dynamic graphs. In International conference
on learning representations.

[24] Rafaël Van Belle, Bart Baesens, and Jochen De Weerdt. 2023. CATCHM: A novel
network-based credit card fraud detection method using node representation
learning. Decision Support Systems 164 (2023), 113866.

[25] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[26] Petar Veličković. 2023. Everything is connected: Graph neural networks. Current
Opinion in Structural Biology 79 (2023), 102538.

[27] Hanrui Wang, Pengyu Liu, Jinglei Cheng, Zhiding Liang, Jiaqi Gu, Zirui Li,
Yongshan Ding, Weiwen Jiang, Yiyu Shi, Xuehai Qian, et al. 2022. QuEst:
Graph Transformer for Quantum Circuit Reliability Estimation. arXiv preprint
arXiv:2210.16724 (2022).

[28] Lu Wang, Xiaofu Chang, Shuang Li, Yunfei Chu, Hui Li, Wei Zhang, Xiaofeng He,
Le Song, Jingren Zhou, and Hongxia Yang. 2021. Tcl: Transformer-based dynamic
graph modelling via contrastive learning. arXiv preprint arXiv:2105.07944 (2021).

[29] Xuhong Wang, Ding Lyu, Mengjian Li, Yang Xia, Qi Yang, Xinwen Wang, Xin-
guang Wang, Ping Cui, Yupu Yang, Bowen Sun, et al. 2021. Apan: Asynchronous
propagation attention network for real-time temporal graph embedding. In Pro-
ceedings of the 2021 international conference on management of data. 2628–2638.

[30] Yiwei Wang, Yujun Cai, Yuxuan Liang, Henghui Ding, Changhu Wang, Siddharth
Bhatia, and Bryan Hooi. 2021. Adaptive data augmentation on temporal graphs.
Advances in Neural Information Processing Systems 34 (2021), 1440–1452.

[31] Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. 2021.
Inductive representation learning in temporal networks via causal anonymous
walks. arXiv preprint arXiv:2101.05974 (2021).

[32] HaixuWu, Jiehui Xu, JianminWang, and Mingsheng Long. 2021. Autoformer: De-
composition transformers with auto-correlation for long-term series forecasting.
Advances in Neural Information Processing Systems 34 (2021), 22419–22430.

[33] Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan.
2020. Inductive representation learning on temporal graphs. arXiv preprint
arXiv:2002.07962 (2020).

[34] Guotong Xue, Ming Zhong, Jianxin Li, Jia Chen, Chengshuai Zhai, and Ruochen
Kong. 2022. Dynamic network embedding survey. Neurocomputing 472 (2022),
212–223.

[35] Yao Zhang, Yun Xiong, Dongsheng Li, Caihua Shan, Kan Ren, and Yangyong Zhu.
2021. CoPE: Modeling Continuous Propagation and Evolution on Interaction
Graph. In Proceedings of the 30th ACM International Conference on Information &
Knowledge Management. 2627–2636.

[36] Yao Zhang, Yun Xiong, Yongxiang Liao, Yiheng Sun, Yucheng Jin, Xuehao Zheng,
and Yangyong Zhu. 2023. TIGER: Temporal Interaction Graph Embedding with
Restarts (WWW ’23). Association for Computing Machinery, New York, NY, USA,
478–488. https://doi.org/10.1145/3543507.3583433

[37] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong,
and Wancai Zhang. 2021. Informer: Beyond efficient transformer for long se-
quence time-series forecasting. In Proceedings of the AAAI conference on artificial
intelligence, Vol. 35. 11106–11115.

[38] Hongkuan Zhou, Da Zheng, Israt Nisa, Vasileios Ioannidis, Xiang Song, and
George Karypis. 2022. Tgl: A general framework for temporal gnn training on
billion-scale graphs. arXiv preprint arXiv:2203.14883 (2022).

https://doi.org/10.1145/3543507.3583433

	Abstract
	1 Introduction
	2 Related Work
	2.1 Dynamic Graph Modeling
	2.2 Transformers for Graph Learning

	3 Notatoin and Terminology Preliminaries
	4 Proposed method
	4.1 Node-wise Short- and Long-term Modeling
	4.2 Adaptive Short-term Updater
	4.3 Long-term Updater
	4.4 Re-occurrence Graph Module
	4.5 Training

	5 Experiments
	5.1 Datasets and Baselines
	5.2 Temporal Link Prediction
	5.3 Evolving Node Classification
	5.4 Ability to Node-wise Long-term Modeling
	5.5 Analysis of Inference Time
	5.6 Ablation Study
	5.7 Parameter Study

	6 Conclusion and Future Work
	Acknowledgments
	References

