
MMM: Machine Learning-Based Macro-Modeling
for Linear Analog ICs and ADC/DACs

Yishuang Lin∗, Yaguang Li†, Meghna Madhusudan‡, Sachin S. Sapatnekar‡, Ramesh Harjani‡, Jiang Hu†∗
†Dept. of Electrical and Computer Engineering, Texas A&M University
∗Dept. of Computer Science and Engineering, Texas A&M University

‡Dept. of Electrical and Computer Engineering, University of Minnesota

Abstract—Performance modeling is a key bottleneck for analog design
automation. Although machine learning-based models have advanced the
state-of-the-art, they have so far suffered from huge data preparation
cost, very limited reusability, and inadequate accuracy for large circuits.
We introduce ML-based macro-modeling techniques to mitigate these
problems for linear analog ICs and ADC/DACs. On representative
testcases, our method achieves more than 1700× speedup for data
preparation and remarkably smaller model errors compared to recent
ML approaches. It also attains 3600× acceleration over SPICE simulation
with very small errors and reduces data preparation time for an ADC
design from 40 days to 9.6 hours.

I. INTRODUCTION

The lack of performance models that are simultaneously fast and
accurate is a primary reason why AMS (analog/mixed signal) design
automation has not achieved as much success as its digital counter-
part. SPICE simulations are computationally so expensive that their
use for performance estimation in circuit optimization has to be very
limited. In order to overcome this bottleneck, fast circuit modeling
techniques have been extensively studied. Typical early approaches
are symbolic analysis [1] and MOR (Model Order Reduction) [2],
where equations of circuit transfer functions or performance are
derived mathematically. In [3], symbolic analysis is integrated with
graph representations. However, symbolic analysis faces exponential
growth of symbolic elements with respect to circuit sizes and hence
is mostly restricted to small circuits. The effectiveness of MOR is
mostly restricted to linear circuits and it is very difficult to apply
MOR on ADC/DACs.

An alternative to simulation-based approaches uses data-
fitted/trained models, e.g., the early work of posynomial models [4]
and SVM (Support Vector Machine) models [5]. Recently, methods
in this category have made significant progress largely due to the
advancement of neural network technology. ANNs (Artificial Neural
Networks) have been applied for AMS circuit modeling in [6], [7],
[8]; analog placement solutions are assessed by CNNs (Convolu-
tional Neural Networks) in [9]; and GCN (Graph Convolutional
Network) methods have been employed for estimating performance
in reinforcement learning-based analog transistor sizing [10]. In
[11], [12], a customized GNN (Graph Neural Network) technique
is developed to evaluate analog circuit performance. In [13], neural
network-based transistor models are constructed and integrated with
symbolic analysis. Overall, machine learning-based models become a
widespread trend due to their promising results on fast performance
estimation time and generally good accuracy.

However, machine learning-based models face their own chal-
lenges. The preparation of ML training data is computationally
expensive as it relies on circuit simulations. Even assuming 20
minutes for simulating a large circuit (actual simulation times could
be larger), obtaining 1000 data samples requires half a month of
simulation time. The expensive data preparation is exacerbated by
the diverse performance metrics for different analog circuits (e.g.,
performance metrics of OTA (Operational Transconductance Ampli-
fier) include gain, bandwidth and phase margin, while LDO (Low

Dropout Regulator) is evaluated by dropout voltage and power supply
rejection ratio), unlike digital circuits, where the metrics are uniform
(power/performance/area). This implies poor model reusability across
analog circuits. A machine learning model trained from OTA is
difficult to work for LDO. In addition, it is noticed in [7] that the
accuracy of ANN models drops remarkably when circuit sizes or
performance range increases.

A few prior efforts attempt to address data preparation cost. Model
transferability from schematic to layout for the same circuit is shown
in [6], but the model for one type of circuit does not apply for
a different circuit type. In [10], knowledge transfer is restricted
among different process technology nodes of the same circuit design.
Transfer learning for CNN models is explored in [9]. However,
CNN models need much more training data than GNN models [11];
moreover, the knowledge transfer in [11] is restricted between two
different topologies of the same type of circuits. CCI-NN (Circuit
Connectivity Inspired Neural Network) [7] pre-embeds some circuit
knowledge into ANN models to reduce training samples.

We propose a new approach of sub-circuit level ML-based Macro-
Modeling (MMM) with the objectives of largely reducing ML perfor-
mance model construction cost via model reuse and improving model
accuracy at the same time. Although in [13] transistor level ML mod-
els can also be reused, they are too fine-grained and the consequently
frequent calls to such models substantially slow down the estimation
of circuit level performance. A CCI-NN [7] is composed by a set
of sub-NNs, which appear to be similar to our macro-models, but
there is a critical difference: CCI-NN must train the entire NN for
a whole circuit and cannot train sub-NNs individually. By contrast,
each macro-model in MMM is independently trained. There are two
significant consequences due to this difference. First, the output of a
sub-NN in [7] is generally not associated with any physical meaning
and therefore a sub-NN is very difficult, if not impossible, to be
reused in a different type of circuit. Second, CCI-NN is restricted
to use only neural network models while our MMM supports almost
any ML models including random forest and XGBoost. As a result,
the data preparation cost of CCI-NN is over 300× more than that of
MMM and MMM achieves smaller errors than CCI-NN with 2.9×
shorter circuit performance estimation time.

The contributions of this work include the following.

• We propose techniques for building sub-circuit level macro-
models that can be reused in performance estimation of linear
analog ICs and ADC/DACs, two types of common AMS circuits.
Variable loading effects between sub-circuits are also considered
in the MMMs.

• The effectiveness of MMM are validated on multiple linear
analog ICs and ADC/DACs, including circuits with feedbacks
and a circuit with over 20K devices.

• Comparisons are made with recent ML approaches of ANN [6],
CCI-NN [7], GNN [11] and NN-based symbolic analysis [13] as
well as MOR [14] to show the following advantages of MMM.

– Training data preparation time. MMM achieves data
preparation speedup of 1788×, 1791×, 357× and 885×979-8-3503-0955-3/23/$31.00 ©2023 IEEE

vs. ANN, GNN, CCI-NN and NN-based symbolic analysis.
For an 8-bit flash ADC design, MMM reduces the data
preparation time from 40 days to 9.6 hours.

– Accuracy of circuit performance estimation. MMM
achieves less than 1% modeling error compared to SPICE,
significantly lower than 6% of ANN, 6% of CCI-NN, 4% of
MOR, 4% of GNN and 9% of NN-based symbolic analysis.

– Runtime cost of circuit performance estimation. MMM
is 3639×, 1873×, 42× and 2.9× faster than SPICE, NN-
based symbolic analysis, MOR and CCI-NN, respectively.

– ML model training cost. MMM obtains training time
reduction of 2462×, 4520×, 5469× and 18255× compared
to ANN, CCI-NN, GNN and NN-based symbolic analysis.

To the best of our knowledge, this is the first study on ML-based
macro-models for linear analog ICs and ADC/DACs.

II. GOALS, STRATEGY, AND SCOPE OF MMM

A macro-model is a model for a sub-circuit that appears in one or
multiple different circuits as a component. In Figure 1, the two-stage
OTA (Operational Transconductance Amplifier) is composed of a one-
stage OTA sub-circuit and two sub-circuits of CSAs (Common Source
Amplifiers). Similarly, the two-stage VGA (Variable Gain Amplifier)
consists of a one-stage VGA and two CSAs. The performance of a
circuit, e.g., either the two-stage OTA or the two-stage VGA, can
be obtained by assembling the macro-models of corresponding sub-
circuits. Since the CSA appears multiple times in the two circuits, its
macro-model is reused multiple times.

Fig. 1: A two-stage OTA composed by a one-stage OTA and two
CSAs (Common Source Amplifiers). A two-stage VGA composed
by a one-stage VGA and two CSAs.

The broad goal of this work is to develop ML-based analog
performance modeling techniques that can simultaneously achieve
high accuracy, fast estimation time, low model construction cost and
high scalability. In general, ML techniques are intrinsically fast for
circuit performance estimation and this is why we continue with
ML techniques. We propose ML-based macro-models that can be
reused across different circuits. The reuse can greatly amortize model
construction cost. The sub-circuit level approach implies limited ML
model size and complexity. Therefore, our approach helps improve
both model accuracy and scalability. Since our macro-models are ML-
based, they are quite different from conventional macro-models in
early works [15].

Our ML model development for macro-models has a key difference
from previous work of flat parameter-to-performance (P2M) mapping
models [6], [7], [11]. For a flat P2M ML model, its outputs are simply
the performance metrics of a circuit. For example, the outputs of an
ML-based performance model for OTA can be gain, phase margin,
bandwidth and unity gain frequency. By contrast, the outputs of ML-
based macro-models need to be more general instead of specific
performance metrics such that they can be applied for different

circuits. In addition, we need to consider how to assemble macro-
models to form the performance model for an entire circuit. To these
ends, we develop parameters to output voltages (P2V) ML modeling
techniques, whose mapping targets are time- and frequency-domain
voltages. Another difference from flat models is that a macro-model
needs to consider loading effects, which are resulted from input and
output impedance from other connected sub-circuits.

MMM currently covers the following types of designs:
• Linear analog ICs, such as OTAs. For these circuits, frequency-

domain modeling introduced in section III is able to estimate
circuit performance including gain, unity gain frequency, band-
width, etc. Besides, frequency-domain modeling is able to esti-
mate circuit performance for any circuits that can be described
by a linear time-invariant system.

• ADC/DACs without feedback. Our time-domain modeling in
section IV can estimate the output voltages sequence of a circuit,
given a sequence of input voltages in discrete time steps. We
show the circuit performance estimation method for ADC/DACs
without feedback.

To our knowledge, this is the first approach to scalable hierarchical
modeling for AMS circuits. The above test cases provide a proof of
concept that the method presents a promising direction that can be
extended to other types of circuits in future.

The proposed MMM framework is structured as follows.
1) Offline macro-model training. Machine learning-based macro-

models are trained for a set of commonly used sub-circuits.
Almost any machine learning engines can be adopted, e.g.,
neural network and random forest. The labels of training data
are obtained through circuit simulations.

2) Macro-model-based circuit system performance estimation.
Given a circuit system netlist, its performance estimation is
performed as follows.

a) Circuit partitioning and matching. The given circuit sys-
tem is partitioned into sub-circuits, whose corresponding
macro-models are identified from the trained models. This
step is similar to and simpler than technology mapping of
digital ICs. Also, the number of sub-circuits in an analog
or mixed-signal IC is substantially smaller than the logic
cells in a digital IC.

b) Assembling macro-models for system performance es-
timation. This step will be introduced with details in
Sections III and IV for linear circuits and ADC/DACs.

III. FREQUENCY-DOMAIN MODELS FOR LINEAR ICS

The behavior of a linear time-invariant (LTI) system [15] can be
described by its s-domain transfer function H(s) as

H(s) =
Y (s)

X(s)
= K

(s− z1)(s− z2) · · · (s− zm)

(s− p1)(s− p2) · · · (s− pn)
(1)

where X(s) and Y (s) are the input and output signals, zi, i = 1, · ·
·,m and pi, i = 1, · · ·, n are zeros and poles, and K is a constant
factor. In small signal analysis, many analog ICs can be treated as LTI
systems at certain DC operating points. As such, the circuit behaviors
can be described by the s-domain transfer function of Equation (1).

Our frequency-domain MMM for circuit performance estimation
consists of the following main steps.

1) DC voltage modeling. An ML model is built for each sub-circuit
to estimate its DC output voltages for given DC input voltages.
The models for all sub-circuits of a system are connected to
obtain the DC operating points for all sub-circuits.

2) Parametric transfer function-based macro-modeling. According
to the DC operating point, transfer function of each sub-circuit
is derived, whose parameters are obtained through ML models.

3) Obtaining the circuit/system transfer function by assembling the
macro-models.

4) Circuit performance estimation through the circuit system trans-
fer function.

This methodology considers both variable loading effect and feedback
structure in circuits. Although multiple ML models need to be built
in these steps, they all share the same training data and the model
training time is much shorter than the data preparation time. We use
an example of two-stage OTA to illustrate these steps.

A. ML-Based DC Voltage Modeling

For an M -input N -output sub-circuit, an ML model FV is built to
estimate its DC output voltages for the input features of (i) DC input
voltages, (ii) device sizes, (iii) current source/voltage bias and loads
from its surrounding circuits, and can be described by

V O = [VO1, VO2, · · ·, VON]T

= FV (VI1, VI2, · · ·, VIM ;S,L) = FV (V I ;S,L)
(2)

where V I is an M -dimensional vector of DC input voltages, V O

is an N -dimensional vector of DC output voltages, S is the vector
for transistor sizes and L is a vector representing loads and current
source/voltage bias.

Once the ML-based DC voltage models are constructed for all sub-
circuits, the DC operating point for each sub-circuit is obtained based
on whether there is a cascade connection, feedback connection, or a
mix of these two kinds of connections.

Cascade connections are illustrated in Figure 2(a), where each
rectangle indicates the DC voltage model of a sub-circuit. The given
primary DC input voltages at the first sub-circuit can be propagated
through all cascade stages using the ML models of Equation (2) to
obtain the DC input/output voltage of all sub-circuits, i.e., their DC
operating points. The ML-based DC voltage models in Equation (2)
is also used for ADC/DACs.

(a) Cascade connection

(b) Feedback connection
Fig. 2: Two examples of connection structures: a cascade connection
and a feedback connection.

A feedback connection is shown in Figure 2(b), which has QF

feedforward stages and QB feedback stages. The derivation of DC
operating points for circuits with feedback connections is an iterative
process. The feedback output, V

(QF+QB)
O = V

(1)
I2 in Figure 2(b),

is initialized with a guessed value. Then, the ML-based sub-circuit
DC voltage models (2) are applied through each stage of the loop
iteratively till the voltage values converge, which is always observed
in our experiments.

Figure 3 shows an example of two-stage OTA composed by a
one-stage OTA and a CSA (Common Source Amplifier), whose DC
voltage models are represented by F

(1)
V and F

(2)
V in Figure 3(b),

respectively. V
(1)
I1 and V

(1)
I2 are two inputs of the one-stage OTA,

while V
(1)
O1 is its output. Similarly, V (2)

I1 and V
(2)
O1 are input and output

of the CSA.
The models F

(1)
V and F

(2)
V are trained individually, i.e., training

data samples are generated separately for the two macro-models.

With the two trained DC voltage macro-models, the system-level DC
voltage model is:

V
(2)
O1 = F

(2)
V (V

(2)
I1 ,S(2),L(2))

= F
(2)
V (V

(1)
O1 ,S

(2),L(2))

= F
(2)
V (F

(1)
V (V

(1)
I ,S(1),L(1)),S(2),L(2))

(3)

where V
(1)
I = [V

(1)
I1 , V

(1)
I2] is the DC input voltage vector of

one-stage OTA. S(1) is the vector of device sizes in one-stage
OTA, while L(1) is the vector of current source/voltage bias and
surrounding circuits’ loads in one-stage OTA. S(2) and L(2) have
similar definitions in CSA.

(a) Two-stage OTA schematic

(b) DC voltage macro-model

(c) Transfer function macro-model
Fig. 3: A two-stage OTA, corresponding DC voltage macro-model
connection and system transfer function modeling.

B. ML-Based Parametric Transfer Function Macro-Models

The transfer function (1) can be rewritten as

H(s) =
a0 + a1s+ · · ·+ amsm

1 + b1s+ · · ·+ bnsn
(4)

where ai, i = 0, · · ·,m and bj , j = 1, · · ·, n are constant coefficients.
The values of m and n are constants determined by the circuit
topology and can be obtained from circuit simulation by running
SPICE pole/zero analysis. Typically, m and n are less than 20. The
macro-model for each sub-circuit is described by transfer function (4),
where the coefficients are functions described by ML models instead
of constants. Therefore, the transfer function is parametric. Specifi-
cally, an ML model is built for each coefficient ai or bj using input
features (i) DC input voltage of the sub-circuit, (ii) device sizes,
and (iii) current source/voltage bias and loads from its surrounding
circuits, i.e.,

a0, a1, · · ·, am, b1, · · ·, bn
= FC(V I ;S,L)

= [FC0(V I ;S,L), ..., FCm+n(V I ;S,L)]

(5)

where FC indicates a vector of ML models. Each element in FC is
an ML model for one coefficient ai or bj in the transfer function. S is
the vector for device sizes, L denotes the vector of loads and current

source/voltage bias, and V I is the DC input voltage of the sub-
circuit. Please note that DC input voltages of sub-circuits are obtained
according to Section III-A. Labels of training data are obtained from
pole/zero analysis through circuit simulations.

The transfer functions of the one-stage OTA and the CSA in
Figure 3 are represented by H(1)(s) and H(2)(s), respectively, which
are parametric upon ML models F

(1)
C and F

(2)
C .

C. Circuit System Transfer Function

For a circuit composed by Q cascaded sub-circuits (Figure 2(a))
with macro-models H(i)(s), i = 1, ···, Q, the system transfer function
is given by

G(s) = H(1)(s)H(2)(s) · · ·H(Q)(s) (6)

For the two-stage OTA in Figure 3, its circuit system transfer
function is G(s) = H(1)(s)H(2)(s), as shown in Figure 3(c).

Fig. 4: A system with feedback connections among sub-circuits. Each
block indicates a sub-circuit.

For a circuit with one feedback loop, whose block diagram is shown
in Figure 4, its transfer function consists of two parts:

• Feedforward transfer function
HF (s) = H

(1)
F (s)H

(2)
F (s) · · ·H(QF)

F (s)
• Feedback transfer function

HB(s) = H
(QF+1)
B (s)H

(QF+2)
B (s) · · ·H(QF+QB)

B (s)

The transfer function of the overall circuit is given by [16]

G(s) =
Y (QF)(s)

X(1)(s)
=

HF (s)

1 +HF (s)HB(s)
(7)

For a circuit with multiple cascaded paths and feedback loops, the
transfer function can be obtained according to [16].

D. Circuit Performance Estimation

Given a circuit transfer function G(s), its performance estimation
varies depending on different circuits and we illustrate this process
using OTA as an example. Since s = jω, G(s) can be expanded as

G(jω) = |G(jω)|∠G(jω) (8)

where |G(jω)| and ∠G(ω) are the amplitude and phase angle,
respectively. Next, circuit performance of OTA, including gain, UGF
(Unity Gain Frequency), BW (Bandwidth) and PM (Phase Margin),
can be obtained by sweeping frequency ω and

Gain :=20log|G(j · 0)| dB
UGF :=ω when |G(j · ω)| = 1

BW :=ω when 20log|G(j · ω)| − 20log|G(j · 0)| = −3dB
PM :=∠G(jω) + 180◦ when |G(j · ω)| = 1

(9)

The performance of other kinds of LTI circuits can be estimated in a
similar manner.

IV. TIME-DOMAIN MODELS FOR ADC/DACS

A. Time-Domain Macro-Models

The sub-circuits of ADCs are comparators and an encoder, which
are illustrated in Figure 5. The sub-circuits of most ADCs can be
identified in a similar way.

Given an input signal sequence where voltage varies at discrete
time steps, the time-domain macro-model estimates the output voltage

(a) Flash ADC schematic (b) Flash ADC macro-models

Fig. 5: A flash ADC with its sub-circuits and macro-models.

vector V O,t at current time step t based on features including (i) input
voltage vector V I,t of time t, (ii) input voltage vector V I,t− of
the previous time step t−, (iii) output voltage vector V O,t− of the
previous time step t−, (iv) device size vector S, and (v) load vector
L. This can be described as

V O,t = FV T (V I,t,V I,t− ,V O,t− ;S,L) (10)

where each element of V I,t or V O,t indicates input/output voltage
of one sub-circuit terminal at time step t. This is an ML model
trained by data from circuit simulation. After this model is built, for
a given sequence of input voltages in discrete time steps, the output
voltage sequences can be obtained. Unlike DC voltage modeling in
Equation (2), the time-domain macro-model also considers the voltage
in the previous time step because it affects subsequent voltages, e.g.,
a capacitor voltage depends on the voltage in the previous time step
as well as the accumulated electric charge in the current time step.

Figure 5(b) demonstrates the macro-models of a flash ADC. The
flash ADC contains n comparators modeled by an ML model F (1)

V T

and one priority encoder modeled by another ML model F (2)
V T . The n

comparators are identical and share the same model F (1)
V T . The use of

this shared macro-model greatly improves data preparation efficiency
compared to flat ML models, where the same comparator is simulated
n times. For the i-th comparator, its macro-model’s input features
includes input voltage V

(1)
Ii,t at time step t as well as input voltage

V
(1)

Ii,t−
and output voltage V

(1)

Oi,t−
of the previous time step t−. In

addition, device size S
(1)
i and surrounding circuits’ load L

(1)
i are

also included in the features. The macro-model estimates the output
voltage V O,t at time step t. The macro-model of priority encoder
has similar input features while the difference is that the size of its
input voltage [V

(2)
I1,t, ...,V

(2)
I1,t] is significantly greater than the size

of a comparator macro-model’s input feature.

B. ADC/DAC Performance Estimation

For an ADC/DAC without feedback, its output waveform in dis-
crete time can be obtained through propagating the input waveform
through the sub-circuits using corresponding macro-models described
in Section IV-A. Next, a Fast Fourier transform (FFT) is performed
on the waveforms at the output node to obtain the spectrum. Then, the
SFDR (Spurious Free Dynamic Range) and SNDR (Signal to Noise
+ Distortion Ratio) performance metrics are computed by [16]

SFDR = 20× log
AF

AW

SNDR = 20× log
AF

(
∑

A2
N +

∑
A2

D)
1
2

(11)

where AF is the amplitude of fundamental component in the spec-
trum, AW is the amplitude of the worst spur signal, and AN and AD

are amplitudes of noise and distortion, respectively.

Fig. 6: Circuit performance estimation error compared with SPICE.

For ADCs, DNL (Differential nonlinearity) and INL (Integral
nonlinearity) are obtained by sweeping the input voltage VI in full
scale range (or all digital code for DAC) [17]:

DNL = (Vi − Vi−1)/VLSB − 1

INL = (Vi − V ideal
i)/VLSB

(12)

where 0 ≤ i ≤ 2N − 1, Vi is the input voltage for ADC’s i-th code
(or output voltage for DAC’s i-th code), VLSB = VFSR

2N
, V ideal

i is the
ideal voltage for the i-th code. VFSR is the full scale range voltage.
When sweeping VI , only Equation (2) is required to estimate the
output voltage because the input voltage is in DC steady state.

V. EXPERIMENTS

We evaluate the approach on the testcases listed in Table I, where
SCF is a switched capacitor filter and LDO is a low dropout regulator.
The upper part covers linear analog ICs and the lower part is a list of
ADC/DACs. The designs are based on a commercial 12nm process
technology. All training data are obtained through SPICE simulations.
The experiments are conducted on a Linux machine with a Xeon E5-
2680 V2 processor, 2.8GHz frequency and 256G memory.

Circuit #Transistors Sub-circuits/Macro-models

Two-stage OTA 9 5-transistor OTA, common source amplifier

Three-stage OTA 13 5-transistor OTA, common source amplifier

Two-stage VGA 15 One-stage VGA, common source amplifier

Three-stage VGA 19 One-stage VGA, common source amplifier

Two-stage SCF 29 One-stage SCF, common source amplifier

Three-stage SCF 33 One-stage SCF, common source amplifier

OTA with feedback 1 10 5-transistor OTA, common source amplifier

OTA with feedback 2 12 5-transistor OTA, common source amplifier

VGA with feedback 1 16 One-stage VGA, common source amplifier

VGA with feedback 2 18 One-stage VGA, common source amplifier

LDO (Regulator) 1 7 5-transistor OTA, single transistor

LDO 2 13 One-stage VGA, single transistor

4-bit flash ADC 1076 Comparator, 4-bit priority encoder

6-bit flash ADC 4842 Comparator, 6-bit priority encoder

8-bit flash ADC 20468 Comparator, 8-bit priority encoder

4-bit pipelined ADC 276 Comparator, 5-transistor OTA

6-bit pipelined ADC 414 Comparator, 5-transistor OTA

8-bit pipelined ADC 552 Comparator, 5-transistor OTA

4-bit weighted resistor DAC 31 5-transistor OTA, inverter

6-bit weighted resistor DAC 35 5-transistor OTA, inverter

TABLE I: Circuit testcases.

A. Results of ML-Based Macro-Model Accuracy

Domains Sub-circuits
Error

RF XGBoost PEA [11] ANN CCI-NN [7]

Frequency

5-transistor OTA 0.00% 0.00% 0.54% 0.68% 0.48%
One-stage VGA 0.01% 0.02% 0.85% 0.92% 0.76%
One-stage SCF 0.01% 0.01% 0.64% 0.81% 0.69%

CSA 0.03% 0.02% 0.27% 0.39% 0.28%

Time

4-bit encoder 1.10% 1.45% 4.35% 4.87% 3.84%
6-bit encoder 1.26% 1.35% 4.29% 4.98% 4.09%
8-bit encoder 1.43% 1.32% 5.86% 6.14% 5.61%
Comparator 1.94% 2.35% 4.03% 5.06% 4.97%

Average 0.72% 0.81% 2.60% 2.98% 2.59%

TABLE II: Macro-model error compared to SPICE.
We study several options of ML engines for the macro-models,

including RF (Random Forest), XGBoost and PEA [11], which is
a GNN technique extended from classification to regression. Each
macro-model is trained and tested for the same sub-circuit with 1000

data samples, of which 80% are for training and the other 20% are
for testing. Please note that test data is not seen in training. Table II
compares the errors of macro-models based on different ML engines.
The result of each sub-circuit is averaged on all its macro-models.
One can see that RF and XGBoost are more accurate than PEA while
RF is the most accurate among them.

B. Results of Circuit Performance Estimation Accuracy
We compare the following methods:
• MMM RF. This is our proposed approach where macro-models

are based on RF (Random Forest). Forest size and tree depth are
set as 20 and 10, respectively.

• MMM XGBoost. Almost the same as MMM RF except that its
ML engine is XGBoost.

• MMM PEA: Almost the same as MMM RF, but the ML engine
is PEA [11] regression.

• Flat RF. A random forest model is trained for directly estimating
the performance of an entire circuit. Forest size and tree depth
are set as 400 and 10, respectively.

• Flat PEA. Almost the same as Flat RF except that a PEA [11]
model is used as the ML engine.

• Flat ANN. An ANN model is trained for directly estimating
the performance of an entire circuit like in [6]. The number of
hidden layers and the number of neurons in each layer are set
as 5 and 256, respectively.

• NN-symb. The previous work [13], which is symbolic analysis
using neural network-based transistor models.

• CCI-NN. The recent previous work [7] aimed to training sample
reduction. Similar experiment setup is used as provided in [7].

• MOR. An model order reduction technique [14], which is only
tested on linear analog ICs.

The average performance estimation errors compared with SPICE
are depicted in Figure 6. The error of one test circuit is the average
percentage error among all its performance metrics, e.g., gain, UGF,
bandwidth and phase margin for OTAs, VGAs and SCFs. For LDOs,
PSRR (Power supply rejection ratio) is the performance metric; for
ADC/DACs, performance metrics include SFDR, SNDR, DNL and
INL. We use a sine wave at 1MHz as the input signal for ADC/DACs
and apply an FFT at the output signal to obtain SFDR and SNDR.
We see that MMM RF and MMM XGBoost achieve the smallest
errors, less than 1% on average and significantly smaller than the 9%
and 6% average errors from NN-symbolic and CCI-NN, respectively.
Estimation errors for some specific performance metrics are shown
in Figure 7 and Figure 8, for UGF of linear analog ICs and SFDR
(Spurious Free Dynamic Range) of ADC/DACs, respectively, where
similar trends can be observed.

These results partially confirm the observation [7] that the accuracy
of flat ANN performance models tends to degrade for large circuits
or wide performance range. MMM attains significantly higher accu-
racy as its ML models are trained for sub-circuits that have lower
complexity than entire circuits.

Circuit
Training data preparation time (hour) ML model training time (sec) Performance estimation time (sec)

MMM Flat Flat CCI-NN NN-symb MMM Flat Flat Flat NN-symb CCI-NN MMM Flat Flat Flat NN-symb
SPICE

CCI-NN MOR
RF PEA RF/ANN [7] [13] RF RF PEA ANN [13] [7] RF RF PEA ANN [13] [7] [14]

Two-stage OTA 0.11 0.76 0.70 0.14 0.67 0.30 2.05 45.56 15.37 10.76 5.53 0.004 0.032 0.015 0.001 0.07 1.22 0.01 0.001
Three-stage OTA 0.15 0.99 0.95 0.19 0.97 0.36 3.53 47.10 21.51 14.43 5.29 0.010 0.039 0.018 0.001 0.08 1.63 0.02 0.004
Two-stage VGA 0.14 0.77 0.72 0.14 1.11 0.13 4.18 43.11 18.30 19.35 13.31 0.005 0.049 0.023 0.003 0.08 1.24 0.04 0.021

Three-stage VGA 0.18 0.81 0.78 0.16 1.41 0.19 5.46 46.66 23.23 25.46 13.82 0.010 0.076 0.027 0.003 0.08 1.32 0.02 0.022
Two-stage SCF 0.22 0.87 0.86 0.17 2.15 0.50 5.35 43.75 35.62 43.50 3.07 0.004 0.097 0.064 0.003 0.08 1.43 0.03 1.458

Three-stage SCF 0.26 0.84 0.83 0.17 2.45 0.57 6.50 46.81 43.41 39.27 8.01 0.011 0.035 0.083 0.002 0.08 1.35 0.02 1.527
OTA with feedback 1 0.11 0.66 0.62 0.12 0.74 0.30 2.23 48.95 25.47 11.50 4.04 0.005 0.033 0.012 0.003 0.15 1.03 0.03 0.004
OTA with feedback 2 0.11 0.93 0.91 0.18 0.89 0.30 2.48 45.18 30.75 14.04 7.16 0.008 0.039 0.016 0.002 0.19 1.54 0.04 0.022
VGA with feedback 1 0.14 0.83 0.81 0.16 1.19 0.13 3.44 48.56 43.74 21.44 1.70 0.006 0.049 0.023 0.003 0.25 1.32 0.02 0.022
VGA with feedback 2 0.14 0.79 0.82 0.16 1.34 0.13 3.73 43.48 52.28 22.86 7.22 0.007 0.054 0.029 0.004 0.28 1.29 0.02 0.004

LDO 1 0.06 0.86 0.86 0.17 0.52 0.20 1.65 35.94 39.47 6.510 13.49 0.011 0.030 0.008 0.002 0.15 1.43 0.01 0.001
LDO 2 0.08 0.82 0.84 0.17 0.97 0.06 3.01 33.16 43.38 12.35 9.48 0.009 0.022 0.012 0.003 0.45 1.37 0.03 0.004

4-bit flash ADC 5.29 76.15 76.85 15.37 80.00 4.81 112 63.84 480.7 860.8 57.24 0.007 0.083 8.500 0.004 18.54 136.9 0.02 -
6-bit flash ADC 7.34 291.3 292.1 58.42 359.8 7.69 650 211.3 688.9 4648 189.20 0.026 0.188 27.48 0.002 188.1 523.6 0.06 -
8-bit flash ADC 9.56 966.0 965.9 193.2 1522 8.00 2081 914.5 763.6 15146 714.98 0.084 0.364 109.9 0.003 1745 1736 0.17 -

4-bit pipelined ADC 0.005 21.46 21.42 4.28 20.51 0.003 23.4 32.84 8.90 245.6 23.20 0.023 0.060 1.039 0.003 13.85 38.53 0.02 -
6-bit pipelined ADC 0.005 65.07 65.01 13.00 30.75 0.004 42.0 43.19 9.89 434.7 29.82 0.037 0.076 2.851 0.002 37.78 116.98 0.03 -
8-bit pipelined ADC 0.005 93.54 93.46 18.69 40.99 0.006 51.5 58.61 13.07 623.8 48.22 0.053 0.059 5.690 0.003 56.81 168.19 0.05 -

4-bit weighted resistor DAC 0.008 7.01 6.98 1.40 2.30 0.001 5.27 35.08 18.90 30.69 30.74 0.017 0.038 0.059 0.005 10.85 12.50 0.02 -
6-bit weighted resistor DAC 0.008 16.13 16.10 3.22 2.60 0.001 6.75 39.85 20.07 36.05 35.76 0.026 0.042 0.073 0.006 26.95 28.91 0.03 -

Normalized average 1.0 1791.0 1788.9 357.8 885.5 1.0 1975.2 5469.1 2462.0 18255.5 4520.5 1.0 6.2 193.6 0.3 1873.9 3639.1 2.9 42.3

TABLE III: Comparisons of data preparation time, model training time and performance estimation time.

Fig. 7: UGF (Unity Gain Frequency) estimation errors.

Fig. 8: SFDR estimation errors.
C. Model Construction and Circuit Performance Estimation Runtime

Circuit performance estimation runtime comparisons for different
methods are provided in the rightmost section of Table III. The
runtime of MMM XGBoost is almost the same as MMM RF and
not included here. Among the 8 methods being compared, MMM
RF is in the second place for performance estimation runtime and
2.9× faster than the recent approach CCI-NN [7]. It is also 42×
than MOR for linear circuits. Flat ANN is faster than MMM RF,
however, its performance estimation errors are significantly larger.
Flat RF is slower than MMM RF because it requires more trees to
model an entire circuit system.

Model construction time consists of the time for obtaining training
data and model training. The former dominates the latter one as
training data preparation needs to run many circuit simulations.
Since our macro-models are reused in different circuits, their data
preparation time and model training time reported in Table III are
amortized, e.g., the time is scaled by 1/k if the model is reused for k
circuits in our testcases. The advantage of our proposed MMM RF on
model construction time is huge, orders of magnitude smaller than the
other methods. In particular, the data preparation time of our MMM
RF is 357× less than CCI-NN [7], which has a similar goal as ours.
For the largest case of 8-bit flash ADC, MMM RF can reduce the
data preparation time from about 40 days to 9.6 hours. The model
construction time of MMM XGBoost is similar to MMM RF and not
included due to space limit.

VI. CONCLUSIONS

Although machine learning-based models has advanced the state-
of-the-art for fast analog performance estimation, existing approaches
are mostly flat models that suffer from huge model construction cost
and low reusability. This work introduces macro-model level machine
learning techniques to address the problems for linear analog ICs and
ADC/DACs. Experimental results on circuits with up to 20K devices
show that our approach can reduce model construction cost by three
orders of magnitude compared to recent ML techniques. At the same
time, it achieves significantly smaller errors and is three orders of
magnitude faster than circuit simulation.

ACKNOWLEDGEMENT

This project is partially supported by NSF CCF-2106725, CCF-
2212346 and CCF-2212345.

REFERENCES

[1] G. Gielen et al., “Symbolic analysis methods and applications for analog
circuits: A tutorial overview,” Proceedings of the IEEE, 1994.

[2] M. Celik et al., IC Interconnect Analysis. Boston, MA: Kluwer, 2002.
[3] C.-J. Shi et al., “Canonical symbolic analysis of large analog circuits

with determinant decision diagrams,” IEEE TCAD, 2000.
[4] W. Daems et al., “Simulation-based automatic generation of signomial

and posynomial performance models for analog integrated circuit sizing,”
in Proc. ICCAD, 2001.

[5] F. De Bernardinis et al., “Support vector machines for analog circuit
performance representation,” in Proc. DAC, 2003.

[6] J. Liu et al., “Transfer learning with Bayesian optimization-aided sam-
pling for efficient ams circuit modeling,” in Proc. ICCAD, 2020.

[7] M. Hassanpourghadi et al., “Circuit connectivity inspired neural network
for analog mixed-signal functional modeling,” in Proc. DAC, 2021.

[8] S. Kamineni et al., “AuxcellGen: A framework for autonomous genera-
tion of analog and memory unit cells,” in Proc. DATE, 2023.

[9] M. Liu et al., “Towards decrypting the art of analog layout: Placement
quality prediction via transfer learning,” in Proc. DATE, 2020.

[10] H. Wang et al., “GCN-RL circuit designer: Transferable transistor sizing
with graph neural networks and reinforcement learning,” in Proc. DAC,
2020.

[11] Y. Li et al., “A customized graph neural network model for guiding
analog ic placement,” in Proc. ICCAD, 2020.

[12] Y. Lin et al., “Are analytical techniques worthwhile for analog ic
placement?” in Proc. DATE, 2022.

[13] Z. Zhao et al., “Efficient performance modeling for automated CMOS
analog circuit synthesis,” IEEE TVLSI, 2021.

[14] U. Baur et al., “Model order reduction for linear and nonlinear systems:
a system-theoretic perspective,” Archives of Computational Methods in
Engineering, 2014.

[15] R. A. Rutenbar et al., “Hierarchical modeling, optimization, and synthe-
sis for system-level analog and RF designs,” Proceedings of the IEEE,
2007.

[16] A. V. Oppenheim et al., Signals & Systems. Prentice hall Upper Saddle
River, NJ, 1997.

[17] N. Karmokar et al., “Constructive placement and routing for common-
centroid capacitor arrays in binary-weighted and split DACs,” IEEE
TCAD, 2023.

