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Abstract

Label-e�cient and reliable semantic segmentation is essential for many real-life applica-
tions, especially for industrial settings with high visual diversity, such as waste sorting. In
industrial waste sorting, one of the biggest challenges is the extreme diversity of the input
stream depending on factors like the location of the sorting facility, the equipment available
in the facility, and the time of year, all of which significantly impact the composition and vi-
sual appearance of the waste stream. These changes in the data are called “visual domains”,
and label-e�cient adaptation of models to such domains is needed for successful semantic
segmentation of industrial waste. To test the abilities of computer vision models on this
task, we present the VisDA 2022 Challenge on Domain Adaptation for Industrial Waste
Sorting. Our challenge incorporates a fully-annotated waste sorting dataset, ZeroWaste,
collected from two real material recovery facilities in di↵erent locations and seasons, as
well as a novel procedurally generated synthetic waste sorting dataset, SynthWaste. In
this competition, we aim to answer two questions: 1) can we leverage domain adaptation
techniques to minimize the domain gap? and 2) can synthetic data augmentation improve
performance on this task and help adapt to changing data distributions? The results of the
competition show that industrial waste detection poses a real domain adaptation problem,
that domain generalization techniques such as augmentations, ensembling, etc., improve the
overall performance on the unlabeled target domain examples, and that leveraging synthetic
data e↵ectively remains an open problem. See https://ai.bu.edu/visda-2022/
Keywords: domain adaptation, semantic segmentation, AI for environment

1. Introduction

E�cient post-consumer waste recycling is one of the key challenges of modern society as
countries struggle to find sustainable solutions to rapidly rising waste levels. World waste
production is estimated to reach 2.6 billion tonnes a year in 2030, an increase from its
current level of around 2.1 billion tonnes (Kaza et al., 2018). In the US, one of the leading
countries in waste generation by volume, less than 35% of recyclable waste is being actually
recycled (EPA, 2017), which leads to increased soil and sea pollution and is one of the
major concerns of environmental researchers as well as the common public. One of the
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Figure 1: Domain Adaptation for Semantic Segmentation of Recyclables: Given
a large and diverse labeled synthetic dataset (left) and a relatively small la-
beled real dataset (center) as source domains, the challenge task is to adapt the
segmentation model trained on source data to the new unlabeled target domain
(right) which introduces a natural domain shift as it was collected at a di↵erent
location and season than the real source.

major challenges in recycling is waste composition analysis and sorting. In the US and
many other countries, recyclable waste is sorted in material recovery facilities (MRFs).
MRFs usually use special machinery to automatically sort recyclable waste on a conveyor
belt according to the material type, however, they still heavily rely on manual sorting.
As such, manual sorting is a mundane, physically demanding, and often dangerous task,
as workers are exposed to sharp or contaminated objects on a daily basis. Therefore, an
automated solution to aid waste sorting is necessary to make it both safe and profitable,
and to ultimately solve the pollution problem.

Computer vision is instrumental for automating waste sorting since it enables segmen-
tation of objects of various material types such as soft plastic, rigid plastic, metal and card-
board. Unfortunately, modern image segmentation models rely on large labeled datasets.
It is extremely challenging to collect real in-the-wild waste stream images due to the dis-
ruption it causes to the facility’s operation. Furthermore, the data annotation for this task
involves pixel-level annotation and is prohibitively expensive. At the same time, the waste
stream varies significantly by object appearance, season, location of the facility, as well as
the sorting machinery used at a particular MRF, all of which introduce a significant natu-
ral domain shift during deployment and reduce segmentation accuracy. Therefore, domain
adaptation methods that can adapt a model trained on a labeled source dataset to a novel
target data stream without any additional labels are a promising approach for this problem.

While real data annotation is disruptive and expensive, unlimited amounts of data can
be easily generated from 3D models using game engines like Unity, see Figure 1. Simulation
promises to solve the limited and long tailed data problem, but models need to be adapted
to an additional visual domain gap, that between non-photorealistic simulations and real
images from the MRF. Inspired by the success of simulated training in self-driving applica-
tions (Richter et al., 2016; Geiger et al., 2012; Cordts et al., 2016), we propose a Sim2Real
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challenge for industrial recycling. The task is to train a segmentation model on a source
dataset consisting of a small amount of real data and a large amount of simulated data and
achieve good results on a held-out real target domain. Algorithms can use the unlabeled
target images to improve adaptation. We utilize two fully-labeled datasets for semantic seg-
mentation of recyclable waste: the existing ZeroWaste dataset (Bashkirova et al., 2022),
a novel ZeroWaste target dataset (from a di↵erent facility and season than the source),
and a novel synthetic SynthWaste dataset designed according to the collection protocol of
ZeroWaste. We also propose SynthWaste-aug, an augmented version of SynthWaste with
instance-level texture augmentations for increased diversity.

Relationship to Previous Challenges. This challenge is the 6th iteration of the an-
nual VisDA competition. This year, the organizing team consists of researchers from Boston
University and Worcester Polytechnic Institute and the challenge was part of NeurIPS 2022
Competitions. A subset of our team also co-organized past VisDA competitions:

1. The 1st VISDA (ICCV 2017) proposed a single-source synthetic-to-real domain adap-
tation challenge for object classification and semantic segmentation, focusing on street-
view data.

2. The 2nd VISDA (ECCV 2018) tackled synthetic-to-real open-set domain adaptation
for object detection, where the target dataset contained examples of classes that were
absent in the source domain.

3. The 3rd VISDA (ICCV 2019) introduced multi-source and semi-supervised domain
adaptation settings of the DomainNet dataset (Peng et al., 2019) consisting of object
classification in six domains (real, clipart, painting, drawing, infograph and sketch).

4. The 4th VISDA (ECCV 2020) for domain adaptive instance retrieval, where the target
domain had a set of classes (instance IDs) novel with respect to the source domain.

5. The 5th VISDA (NeurIPS 2021) challenge studied a universal domain adaptation
setup for object classification, in which the sets of classes in the source and target
domains have a significant overlap but both source and target domains have classes
that were not present in the other domain.

Our challenge is di↵erent from the previous iterations of VisDA, as it 1) includes the
novel synthetic and real datasets for semantic segmentation of recyclable waste (see Fig-
ure 1), 2) proposes a setup in which synthetic data is used to improve the adaptation
from one real dataset to another via supervised Sim2Real domain adaptation, as opposed
to VisDA 2017 and 2018 that used only synthetic data as a labeled source domain, and
3) focuses on a challenging application of recyclable waste sorting, a problem that contains
di↵erent types of distributional shift compared to prior domain adaptation setups, and thus
is significantly di↵erent from the standard benchmarks.

Another line of work relevant to the proposed challenge is the simulation-to-real do-
main adaptation benchmarks, such as GTA (Richter et al., 2016) or SYNTHIA (Ros et al.,
2016)-to-KITTI (Geiger et al., 2012) or Cityscapes (Cordts et al., 2016), that focus on the
autonomous driving applications. (Bousmalis et al., 2018) also proposed to use Sim2Real
domain adaptation to improve the quality of robotic grasping. These benchmarks also pro-
pose a challenging Sim2Real setup, but on tasks that are di↵erent from industrial waste
sorting, and therefore, solutions developed for these datasets are not tailored to our task. In
addition to that, they propose an unsupervised Sim2Real domain adaptation setup, whereas
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we aim to leverage limited real supervision to minimize the domain gap and improve gen-
eralization to the unseen data in the real domain.

Another relevant challenge at NeurIPS is the AutoML for Lifelong Machine Learning
(NeurIPS’18 competition) for continuous learning. Although this challenge also addresses
the continuously changing data distributions, it is a lifelong AutoML setup that assumes
a large-scale labeled dataset similar to the test sets (and in particular, during evaluation,
test-set labels were revealed to the algorithm being evaluated after it made predictions on
the most recent batch), whereas our challenge tackles the problem of unsupervised domain
adaptation with a large randomized synthetic dataset and a smaller-scale real dataset as
source domains.

2. Challenge Overview

2.1. Task

In this challenge, we propose a Sim+Real domain adaptation task, in which we provide
fully-labeled data from two source domains: the novel large-scale synthetic SynthWaste
dataset and a relatively small real ZeroWaste dataset for waste detection. The task
at hand is to use these two datasets to adapt the segmentation model to the unlabeled
real target domain (ZeroWaste-v2) that introduces a domain shift naturally occurring
in the waste sorting application. Models have access to the target data during training.
ZeroWaste-v2 is a novel dataset collected according to the ZeroWaste protocol at an MRF
at a di↵erent location and season. An overview of the proposed task and datasets can be
found in Figure 1.

2.2. Datasets

Our challenge was based on the following four datasets:

1. Real-world ZeroWaste dataset (http://ai.bu.edu/zerowaste/) (Bashkirova et al., 2022)
is an open-access dataset for industrial waste sorting distributed under the Creative
Commons Attribution 4.0 License. This dataset consists of 4, 503 fully annotated
frames shot at a USA MRF during two hours of its operation. The frames are anno-
tated with polygon semantic segmentation of 4 classes: cardboard, metal, soft plastic
and rigid plastic. All other objects, including paper, as well as the conveyor belt, are
labeled as background.

2. Synthetic SynthWaste dataset is designed specifically for this challenge to improve
generalization and robustness to domain shifts. This dataset consists of 20990 pro-
cedurally generated frames of various recyclable objects randomly spawned onto a
conveyor belt using Unity Development Platform that allows free usage for non-
commercial purposes. The following simulation parameters are randomized: lighting
type, intensity, direction and color, camera angle and position, level of clutter and
overall distribution of object classes.

3. As there are style di↵erences between synthetic and real data, we additionally provide
a texture-randomized version of the synthetic SynthWaste dataset (SynthWaste-
aug, see Figure 1). SynthWaste frames are augmented on the instance level using
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the style transfer-based augmentation with Domain Aware Universal Style Transfer
(DAUST) (Hong et al., 2021), which further increases visual diversity of waste objects.
Objects in a frame are augmented using DAUST using random textures from the Flickr
Material Database (Sharan et al., 2009) according to their material type.

4. We also collected a real-world ZeroWaste-v2 dataset as target domain. This dataset
consists of 7, 720 frames collected according to the protocol of ZeroWaste, but in a
di↵erent season (fall vs spring) and state in the USA (MA vs VT). We annotated 250
and 1004 frames for validation and final testing, respectively, and we provide 6, 466
unlabeled frames for training. This novel dataset introduces a real-life domain shift
typically occurring in industrial waste sorting.

2.3. Organization, Metrics and Baselines

Phases The competition consisted of two stages:
1. Development (June 24 – September 30): the labeled training and test sets

of ZeroWaste, the SynthWaste and SynthWaste-aug datasets were released to the
competitors along with the unlabeled ZeroWaste-v2 training set.

2. Evaluation (September 30th – October 10th): the test examples from ZeroWaste-
v2 are released, and the teams were asked to submit the prediction results on the
unlabeled ZeroWaste-v2 test set to our server, where the solutions are automatically
evaluated.

Metrics and evaluation To evaluate the e↵ectiveness of the competing solutions, mean
intersection over union (mIoU), the standard semantic segmentation metric, was used to
evaluate the performance on the test examples from the target domain. We used EvalAI (Ya-
dav et al., 2019) for hosting our competition. The mean accuracy of per-pixel predictions
(mAcc) was also reported.

Source-Only Baselines We evaluate baseline segmentation models trained only on source
data (ZeroWaste-v1 or ZeroWaste-v1+SynthWaste datasets as stated in the second column
of Table 1) and evaluated on the target data, without any domain adaptation. One such
source-only baseline is the transformer-based SegFormer (Xie et al., 2021). Another is a
convolutional network, DeepLabv2 (Chen et al., 2017). In Table 1, we include the test
results on the annotated test set frames from ZeroWaste-v2. Our results indicate that
there is a significant domain gap between ZeroWaste-v1 and -v2 when the convnet-based
DeepLabv2 is used as a backbone. Notably, the state-of-the-art transformer-based Seg-
Former is a stronger and more robust to this domain shift, with 10.41% source-only mIoU
gap, in contrast to 16.32% gap with DeepLabv2. We note that fine-tuning the SegFormer
model on SynthWaste slightly improves the overall mean accuracy and obtains similar mIoU
as the original SegFormer model pretrained on ImageNet-1K (Deng et al., 2009). We ob-
serve that synthetic data improves performance on frequently occurring classes, such as
cardboard and soft plastic.

Domain-Adaptive Baselines We used the state-of-the-art DAFormer domain adap-
tation method by (Hoyer et al., 2022a) trained either on ZeroWaste-v1 or on the combined
data consisting of ZeroWaste-v1 and SynthWaste samples, as source domain, and the un-
labeled examples from ZeroWaste-v2 as target domain. DAFormer uses the same visual
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train on eval on mIoU mAcc

Source-only Baselines

DeepLabv2 v1 v1 47.83 60.65
DeepLabv2 v1 v2 30.54 41.72
SegFormer v1 v1 56.00 95.45
SegFormer v1 v2 45.49 91.64
SegFormer Synth+v1 v2 42.61 91.22

Adaptation Baselines

DAFormer v1+v2 v2 52.26 91.20
DAFormer Synth+v1+v2 v2 48.31 90.63

Winning Solutions

SI-Analytics (#1) v1+v2 v2 59.66 92.81
Pros (HRDA) (#2) v1+v2 v2 55.46 92.59
BIT-DA(PICO++) (#3) v1+v2 v2 54.38 91.80

Table 1: Source-only, baseline domain adaptation results, and the results of the top-3 so-
lutions with ZeroWaste-v1 (v1), ZeroWaste-v2 (v2), and SynthWaste (Synth)
datasets. The source-only results of DeepLabv2 (Chen et al., 2017) and Seg-
Former (Xie et al., 2021) backbones show that while ZeroWaste-v2 introduces a
domain shift that is significant for convnet-based DeepLabv2 architecture, features
learned by SegFormer are more robust to this shift. The top submitted solutions
are able to improve results significantly above our baselines.

transformer backbone as SegFormer. It is evident that the domain adaptation technique
introduced in DAFormer improves the mIoU target (v2) domain w.r.t. the SegFormer
source-only performance.

We also see that a naive baseline of training DAFormer on the combined SynthWaste and
ZeroWaste-v1 reduces segmentation quality, likely due to a significant domain shift between
the real and synthetic datasets. Therefore, the given baselines leave room for improvement,
which is what we had hoped to achieve in the proposed challenge. As we will see below,
none of the top solutions used the synthetic data, so this remains an open problem.

Materials and code We provide a starting kit that includes the data, data loaders and
code to reproduce our baseline results at the start of the first phase of the competition. We
also provide the executable used to generate SynthWaste to allow the participants to explore
meta-learning approaches to further improve the synthetic data. All the code and materials
provided can be found on our github page: https://github.com/dbash/visda2022-org

3. Results

In this section, we provide the main results of our challenge, including the participation
statistics, the overview of the winning solutions, as well as the main takeaways. The top
three solutions’ results are summarized in Table 1.

Participation statistics 14 teams actively participated in the development phase of our
challenge, with 314 submissions made total. In the evaluation phase, we limited the total
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Method background rigid plastic cardboard metal soft plastic avg. mIoU

Baseline (DAFormer) 90.78 38.4 59.73 23.84 48.57 52.26

SIA Adapt 92.81 48.38 65.87 36.46 54.80 59.66
HRDA 92.20 41.80 63.90 28.30 51.20 55.50
PICO++ 91.36 44.35 61.71 31.24 43.25 54.38

Table 2: Per-category and average mIoU for models trained on ZeroWaste v1 and unlabeled
frames from ZeroWaste v2 and evaluated on the ZeroWaste v2 test set.

number of submissions per team to avoid overfitting to the test set, and we received 40
submissions from 8 competing teams. Based on the results of the evaluation phase, we
selected three winning solutions from teams SI-Analytics, Pros, and BIT-DA.

Reproducibility The results of the top-3 solutions according to the evaluation phase
were tested and reproduced by the organizing team. The links to the code for reproducing
the baseline and top-3 solutions can be found on our website.

3.1. First place solution: SIA Adapt

The first place solution, SIA Adapt, uses DAFormer (the baseline method) as the first step.
There were two notable variations to DAFormer used by SIA Adapt. First, the team found
rare class sampling, which was used in training DAFormer, to be unhelpful for performance,
and so they dropped it. Second, and more importantly, instead of an Imagenet-1K pre-
trained transformer backbone, an Imagenet-22K pretrained ConvNeXt-L (Liu et al., 2022)
backbone was used. This allowed the method to use a strong feature representation to build
on top of and even without any target data at training time, perform at an impressive 56.4%
mIoU on the target (ZeroWaste v2) test set. As another comparison, when the method was
initialized with an Imagenet-1K pre-trained ConvNeXt-L backbone, it achieved 57.29%
mIoU on the target test set, compared to the 59.66% mIoU (See Table 1) achieved with an
Imagenet-22K initialization, thus isolating the e↵ect that pre-training had on SIA Adapt’s
performance. To better decouple the e↵ects of the backbone architecture and pre-training,
we conducted a study with the DAFormer baseline (See Appendix B).

With a trained DAFormer (including the modifications as described above), the method
proceeds by pseudo-labeling the target and further self-training three di↵erent copies of this
initial trained DAFormer, each using a di↵erent data-augmentation method (See Figure 2).
Finally, these three networks are combined in a model soup (Wortsman et al., 2022), i.e.,
their weights are averaged, to obtain the final model.

3.2. Second place solution: HRDA

Overview: HRDA is a context-aware high resolution domain adaptation method for seman-
tic segmentation (Hoyer et al., 2022b). The method comprises a multi-resolution training
approach for UDA that combines small high-resolution crops and large low-resolution crops
to preserve fine segmentation details as well as capture long-range context information.
Predictions from both resolution crops are fused using a learned scale attention, which can
enable adapting objects at the better-suited scale. As a backbone of their framework, this
solution uses the DAFormer (Hoyer et al., 2022a) architecture that is based on a Trans-
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Figure 2: Overview of SIA Adapt, the first place solution for VisDA-2022. The method
uses a strong backbone initialization in the form of an Imagenet-22K pre-trained
ConvNeXt-L and pseudolabeling. Also key to the method are self-training using
di↵erent augmentations and using the resulting models together in a model soup.

former network which utilizes self-training. The latter uses pseudo labels generated by a
teacher network to iteratively adapt the model to the target domain. Similar to the first
place solution, the team concludes after an ablation study in Table 3 that rare class sam-
pling (RCS) used to train DAFormer is ine↵ective for performance.

Results: Results of this solution are reported in Table 1, showing that HRDA yields a
remarkable improvement in mIoU and mean accuracy compared to the source-only method.
In addition, a detailed breakdown of the method’s performance is reported in Table 2. The
participating team also provides an ablation study with di↵erent source datasets and RCS
configurations. In Table 3, the ablation study shows that training on the Zerowaste real-
world dataset alone is enough to yield the best performance and that rare class sampling
actually deteriorates it.

Source Dataset RCS Validation mIoU

Synthwaste ⇥ 20.4
Synthwaste + Zerowaste ⇥ 45.5
Synthwaste + Zerowaste, Equal Size ⇥ 51.1
Zerowaste X 47.1
Zerowaste ⇥ 56.6

Table 3: Ablation study by HRDA, the second place solution, examining di↵erent source data
and the RCS (rare class sampling) configuration of the DAFormer backbone.
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Figure 3: PICO++. A student-teacher framework, where the teacher is updated using
EMA. The teacher then is used as a target data pseudo-labeler for both supervised
contrastive and cross-entropy losses. Details are in Appendix A.2.

3.3. Third place solution: PICO++

Overview: PICO++ is a variant of SePiCo (Xie et al., 2023). The method composes
a student-teacher architecture with learning signals from semi-supervised contrastive and
semi-supervised cross-entropy losses. The student updates the teacher with EMA, while
the teacher provides pseudo-labels for the student network to learn from target data. The
samples are contrasted against class prototypes, which are computed from teacher represen-
tations. Di↵erent from other solutions, the contrastive loss provides explicit source-target
domain alignment. Similar to other winning solutions, PICO++ is built on top of the very
strong DAFormer (Hoyer et al., 2022a) architecture. The EMA update provides an implicit
ensembling through model parameter averaging, which has been shown to improve domain
generalization performance (Wortsman et al., 2021). For details, please see Appendix A.

Results: Results of PICO++ are reported in Table 1. PICO++ achieves substantial
performance gains compared to the baseline method. As seen in Table 2, the gain is much
greater for classes like rigid plastic and metal, implying that PICO++ has more potential in
recognizing classes featuring a relatively regular shape. Nonetheless, a consistent improve-
ment can be observed from all foreground classes, showing the e↵ectiveness of PICO++.

3.4. Lessons learned

In this challenge, our goal was to investigate which domain adaptation and generaliza-
tion techniques are particularly e�cient for the real-world scenario a↵orded by the waste
detection application. Below, we summarize our key observations:

1. A small real dataset is better than a large synthetic one. One of the unique
features of our challenge compared to the previous Sim2Real competitions was that
we propose both the synthetic source domain data and a small-scale real labeled
dataset. The main assumption is that SynthWaste has higher visual diversity but is
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less realistic, and the small-scale ZeroWaste can be used to bridge the gap between
the synthetic and real domains. Interestingly, the results from the winning solutions
indicate that omitting the sim2real adaptation step and performing domain adaptation
from ZeroWaste-v1 to ZeroWaste-v2 results in higher performance.

2. Pretraining and backbone architecture matter. The results of the first place
solution from SI-Analytics in Sec. 3.1 show a significant boost in segmentation quality
when using ImageNet22K-pretrained ConvNeXt-L model compared to an ImageNet1K
transformer model used in DAFormer. Our analysis in Appendix B with these changes
made in the DAFormer baseline indicate the extent to which each a↵ects target seg-
mentation performance.

3. Ensembling-based techniques and image augmentations are e�cient. The
winning solutions commonly use some form of ensembling and / or augmentation,
which is shown to improve model generalization. For example, SI-Analytics used
model soup (Wortsman et al., 2022) of models trained on data augmented with di↵er-
ent kinds of augmentations; Pros used HRDA (Hoyer et al., 2022b) that fuses predic-
tions at various resolutions with attention; BIT-DA used a student-teacher paradigm
and update the student network with the exponential moving average of the teacher
weight update which is an ensembling / regularization technique, and a new variant
of a contrastive loss for the source-target domain alignment.

4. DAFormer is a strong baseline. Even though ZeroWaste-v2 introduces a sig-
nificant domain shift w.r.t. ZeroWaste with a 17.29% mIoU (47.83 versus 30.54)
performance gap with DeepLabv2, DAFormer proved to be a strong baseline, with
only 4 out of 14 teams beating the baseline in the development phase, and only 3 out
of 8 in the final evaluation phase.

4. Conclusion

In this paper, we introduced the VisDA 2022 Visual Domain Adaptation Challenge that
focuses on domain adaptation for industrial waste sorting. We show that domain shift
occurs naturally in the industrial waste detection, and propose a new domain adaptation
setup in which a large-scale and diverse synthetic dataset is used alongside the small real
dataset to adapt the segmentation model to the real target domain. We propose a novel
synthetic dataset, SynthWaste, as well as ZeroWaste-v2 collected according to the protocol
of ZeroWaste at a di↵erent location and time. Our goal in this challenge was to reach out
to the computer vision community to investigate e�cient solutions for pressing and socially
important applications and to popularize one of the applications of AI for environment. The
results of our challenge suggest that state-of-the-art generalization methods significantly
improve the overall performance on the target domain. We believe that our challenge opens
new avenues of research in the fields of domain adaptation, and increases awareness and
popularity of environment-centered applications of computer vision.
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Appendix A. Solution Details

A.1. SIA Adapt

Datasets SIA Adapt uses ZeroWastev1 as the labeled source domain and ZeroWastev2 as
the unlabeled target domain according to the VisDA 2022 challenge rule1. In training, Syn-
thWaste and SynthWaste-aug is not used. As per the challenge instructions, ZeroWastev2
test set is used for final evaluation.

Training The model was implemented using the DAFormer o�cial code23, except for
rare class sampling which was not used in SIA Adapt. IN-22K pre-trained weights for
ConvNeXt-L are publicly available4. An NVIDIA RTX8000 GPU was used for training
and all hyperparameter tuning experiments. 40,000 iterations of training was done for the
initial adaptive model and 10,000 iterations for the fine-tuned model.

Fine-tuninig Model soup recipe was used to combine model weights after self-training.
However, no EMA (exponential moving average) was used for training the individual self-
trained models. The 3 di↵erent augmentations used, each for a di↵erent self-trained model,
were: PhotoMetricDistortion implemented by mmseg5, GaussNoise and RandomGridShuffle
implemented by albumentations6.

A.2. PICO++

Student and Teacher Network Architectures: The student and teacher networks are
identical in architecture; they are built on top of the very strong DAFormer architecture,
which is also used as a baseline for the challenge.Additionally, an extra projection head
is added to reduce dimensionality (512!256) for both the student and teacher. During
training, the student is updated with loss gradients while the teacher is update with an
exponential moving average (EMA) of student iterates.
Cross-Entropy Losses: There are two cross-entropy losses used to update the student
network. The first is a standard cross entropy loss applied on (augmented) source samples,
denoted as Ls

ce. Then, augmented target samples are pseudo-labeled using the teacher net-
work, and then mixed with a source sample, creating mixed image Iam. The target pseudo-
label is also mixed with the source label, creating mixed label Ym. Another cross-entropy
loss is applied to the student with the resulting mixed image-label pair Lm

ce(I
a
m, Ym). The ra-

tio of mixed image predictions whose confidence exceed �, which is called �� , reweights the
Lm
ce. The final loss on mixed images is Lm

ssl = ��Lm
ce. This method follows the DACS (Tran-

heden et al., 2021) methodology and allows for self-training using unlabelled target data.
Contrastive Losses: In addition to the cross-entropy losses, a semi-supervised contrastive
loss is used following SePiCo (Xie et al., 2023). First, the training is warm-started using

1 https://ai.bu.edu/visda-2022/ 2 https://github.com/lhoyer/DAFormer
3 https://github.com/dbash/visda2022-org 4 https://github.com/facebookresearch/ConvNeXt
5 https://github.com/open-mmlab/mmsegmentation 6 https://github.com/albumentations-team/albumentations
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cross-entropy losses for Tw = 3000 iterations. Then, using the source data, per-label gaus-
sians are fit to teacher projection-head features. These per-label gaussians are used to
create proto-types to contrast the student features against. For a single sample of class i,
the contrastive loss is formulated as

Lqi
cl = � log

2

4 exp(
q>i µi

⌧ +
q>i ⌃iqi
2⌧2 )

exp(
q>i µi

⌧ +
q>i ⌃iqi
2⌧2 ) +

PC
k=1,k 6=i exp(

q>i µk

⌧ +
q>i ⌃kqi
2⌧2 )

3

5+
q>i ⌃iqi
2⌧2

, (1)

where qi represents a query feature q of ith class, and C is the class number, ⌧ denotes the
smoothing factor common in contrastive learning. µi and ⌃i are the mean and covariance
of the distribution within the prototype from ith class. For source samples, ground truth
class labels. For target samples, pseudo-labels are used. This contrastive loss ensures cross-
domain feature alignment. For the derivation of this loss, please see the SePiCo paper (Xie
et al., 2023), section 3.3.2.. Finally the regularization term is formulated as:

Lq̄
reg =

1

C logC

CX

k=1

log
eq̄

>µk/⌧

PK
l=1 e

q̄>µl/⌧
, (2)

where q̄ is the average of all features for either source or target domain. This prevents
collapse of unsupervised samples.
Overall loss: Overall, PICO++ trained with the following objective:

L = Ls
ce + Lm

ssl + �clLcl + �regLreg (3)

where �cl and �reg are constant weights.
Hyperparameters and training details: All models are trained on a single NVIDIA
A100-SXM4-40GB. AdamW (Loshchilov and Hutter, 2019) with betas (0.9, 0.999) and a
weight decay of 0.01 is used. The initial learning rate is set to 6e-5 for encoder and 6e-
4 for decoder. Note that only the student model is optimized, and the teacher model is
momentum updated by the student. DAFormer (Hoyer et al., 2022a) is followed to employ a
learning rate warmup policy in the first 1,500 iterations, and set pseudo confidence threshold
↵ to 0.968, momentum coe�cient � to 0.999, respectively. The model is trained with a batch
of two 640⇥640-cropped images for 40,000 iterations. To get better initialization of the
distributions, contrastive learning is started from the 3,000th iteration, and merely update
the class prototypes before this. For the weights before loss terms, they are simply fixed
to �cl = �reg = 1. Similar to the multi-view scheme proposed in DACS (Tranheden et al.,
2021), ColorJitter and GaussianBlur is applied only to the samples entering the student
model, with a uniform possibility.

Appendix B. E↵ect of Backbone architecture and Pre-training

Since the first place solution SIA Adapt used a strong initialization and architecture in the
form of an Imagenet-22K pre-trained ConvNeXt-L backbone, in this section we decouple
and isolate the e↵ects of these via experiments using the DAFormer baseline. Table 4 shows
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ConvNeXt-L backbone Imagenet-22K pre-training mIoU

x x 52.26
X x 56.41
X X 58.72

Table 4: Decoupling the e↵ect of backbone architecture and pre-training on Zerowaste-v2
test performance for the DAFormer method.

the mIoU of DAFormer using di↵erent backbone architectures and initializations on the
Zerowaste-v2 test set (a ’x’ in a column means using the default setting in DAFormer—which
corresponds to the MiT transformer backbone and Imagenet-1K pre-training respectively).
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