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ABSTRACT

Deep learning is a promising approach to early DRV (Design Rule
Violation) prediction. However, non-deterministic parallel rout-
ing hampers model training and degrades prediction accuracy. In
this work, we propose a stochastic approach, called LGC-Net, to
solve this problem. In this approach, we develop new techniques of
Gaussian random field layer and focal likelihood loss function to
seamlessly integrate Log Gaussian Cox process with deep learning.
This approach provides not only statistical regression results but
also classification ones with different thresholds without retraining.
Experimental results with noisy training data on industrial designs
demonstrate that LGC-Net achieves significantly better accuracy
of DRV density prediction than prior arts.
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1 INTRODUCTION

Achieving design closure without any design rule violations (DRVs)
is a fundamental requirement for VLSI designs. However, accurate
design rule checking (DRC) is only possible after detailed routing,
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Figure 1: DRV density maps of two routing solutions for the same
placement with an industrial multi-threaded detailed router.

which is among the last few steps in physical design with little
room to fix all the remaining DRVs. In this regard, many research
efforts [2, 3, 12, 13, 16, 20, 21, 23] have been undertaken to predict
DRVs at earlier design stages, e.g., placement or global routing.
Deep learning-based techniques have especially become popular to
deliver early and high-fidelity DRV prediction, thanks to the strong
knowledge extraction and reuse capability.

Deep learning-based approaches typically require determinis-
tic training data. When it comes to the DRV prediction, however,
non-deterministic parallel routing can bring about non-negligible
randomness in DRV distribution [15]. Figure 1 shows the DRV maps
of two routing solutions on the identical placement obtained by an
industrial parallel detailed router. Although they are similar to each
other, the two DRV maps are far from identical. From the view of
training machine-learning (ML) models, the DRV labels are very
noisy. Even more complicated, the randomness is imbalanced across
a layout; the dissimilarity of the two DRV maps in Figure 1 gets
significant in regions with higher DRV density. Such noise hampers
the model training and degrades the model performance. Nonethe-
less, to the best of our knowledge, the issue of non-deterministic
training data has hardly ever been studied in the EDA field.

In this work, we propose a stochastic approach to handle the non-
deterministic behavior of parallel detailed routers in deep learning-
based DRV prediction. With novel DRV distribution modeling and
Maximum Likelihood Estimation-based training techniques, the
proposed method can predict the parameters of the probabilistic
model governing the non-deterministic nature of DRV occurrence.
Thus, our deep-learning model can provide more detailed DRV in-
formation in presence of non-determinism, which cannot be dealt
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with by most of the previous works based on binary classification.
Furthermore, the prediction outcome can be transformed into DRV
classification results by setting proper thresholds. It is also note-
worthy that our proposed model needs single-pass training to give
binary-classification results for various label thresholds, while a
binary classifier requires multiple rounds of training, each with a
distinct label threshold.
Our main contributions are summarized as follows:

(1) We model the stochastic spatial distribution of DRVs via a
Log Gaussian Cox (LGC) process [5], which is a Poisson point
process [6] in 2D layout space with a Gaussian Random Field
(GRF) [14] that handles the correlation between nearby regions.
We build a deep learning framework — LGC-Net, which is a
realization of LGC process on the J-Net architecture [12].

(2) We develop the GRF layer — a new type of neural network layer
structure. It is an implementation of the theoretic concept of
GRF and designed in a way to be seamlessly integrated with
our LGC-Net architecture so that spatial correlations of DRVs
can be well captured.

(3) We propose a new loss function — Focal Likelihood Loss, for
training the proposed LGC-Net model. It unifies the concepts of
likelihood and focal loss, which are usually used separately. Its
computation is built upon the Poisson point process in the LGC
process. The likelihood estimate makes our LGC-Net training
much more robust to noisy data than the popular mean-square-
error-based loss functions. Moreover, the focal loss part helps
deal with imbalanced training data, which is often seen in cases
of DRV predictions.

(4) LGC-Net can be applied for either regression or classification.
For classification, it can be trained only once and then applied
with different label thresholds without retraining. This is a very
appealing difference from conventional classification models.

(5) Experiments results based on noisy training data obtained from
a set of industrial 7nm designs demonstrate that our method
achieves stochastic DRV density prediction performance signif-
icantly better than previous arts. Our regression-based classifi-
cation results are also remarkably superior to those from recent
previous work.

The rest of this paper is organized as follows. Section 2 reviews
relevant previous works. Section 3 presents preliminaries for un-
derstanding our method. Section 4 illustrates the details of our
LGC-Net to handle non-determinism in DRV prediction. Section 5
provides experimental results, and Section 6 concludes the paper.

2 PREVIOUS METHODS

Design rule violations is a widely-adopted indicator of layout routabil-
ity. DRV prediction in early design stages allows designers or tools
to prevent DRVs in a proactive manner. Machine learning-based
methods [2, 20], especially deep learning-based techniques [12, 21,
21, 23], have demonstrated their great potential in providing early
and high-fidelity DRV prediction. A support vector machine-based
technique is developed in [20] to predict locations of DRVs. A neu-
ral network-based approach is proposed in [2] for short violation
prediction from a placed netlist. RouteNet [23] is the first deep
learning-based DRV predictor. It utilizes a convolutional neural
network (CNN) to predict the total number of DRVs and a fully
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Figure 2: J-Net convolutional architecture for DRV prediction [12].

convolutional network (FCN) to pinpoint the DRV locations. A
CNN-based approach is developed in [21] to transform global rout-
ing reports into DRV Maps. The work of J-Net [12] proposes a
customized convolutional network to pinpoint DRV locations at
advanced sub-10nm process nodes, where pin accessibility becomes
a major contributor to DRVs.

Other related works include routing congestion predictors [3,
9, 18, 22] for VLSI and FPGA circuits, a neural architecture search
technique for automatic routability predictor development [7], a
CNN-based classifier to identify pin accessibility risks [16] and
routability predictor-driven placement optimization methods [13,
19]. However, the issue of non-deterministic training data has not
yet been studied in the aforementioned works.

3 BACKGROUND

3.1 J-Net Convolutional Network

For accurate DRV prediction at advanced technology nodes, both (i)
higher resolution pin configuration images and (ii) lower resolution
tile-based features, e.g., net density, need to be considered. A flexi-
ble convolutional architecture, called J-Net, is proposed in [12] to
handle the mixed resolution images. J-Net has an encoder-decoder
architecture as shown in Figure 2. Feature maps of different resolu-
tions are fed into different levels at the encoding path. If a feature
map is fed to a middle level of the encoding path, it is concatenated
with the feature representations of the same resolution produced
from the previous levels. In this way, J-Net can accommodate input
features with different resolutions effectively.

3.2 Focal Loss

Focal loss (FL) [17] is a loss function proposed to address extremely
imbalanced data in classification model training. For a sample with
label I € {0, 1}, the raw classification outcome y € R (0 < y < 1)
can be viewed as the probability of this sample being classified as

“1” The focal loss of y is given by:

FL(y, 1) = =(1 = p)" log(ps), (1)
where y is a hyperparameter, and p; is defined asyif/ = 1and 1 -y
otherwise. The term p; near 1 indicates samples where the model
can correctly classify with high probabilities, whereas p; near 0
means difficult-to-classify samples. When a sample has small p;,
the modulating factor (1 — p;)Y is near 1 and the loss is unaffected.
As p; goes to 1, the modulating factor goes to 0 down-weighting
the loss for well-classified samples. Hyperparameter y adjusts the
rate at which easy samples are down-weighted. Figure 3 depicts
how y affects FL. Note that the FL can not be applied to regression
problems directly.
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Figure 3: Illustration of focal loss [17].

3.3 Log Gaussian Cox Process

A point process [6] is a probabilistic model for random scattering
of points in a mathematical space S C R? (the d-dimensional Eu-
clidean space). A point process on S is called a Poisson point process
if the number of points in any bounded region B C S, denoted by
N(B), is a random variable following a Poisson distribution. A Pois-
son point process is fully characterized by a location-dependent
intensity function p(B), which gives the expected number of points
in B as well as its variance, i.e., E[N(B)] = Var[N(B)] = u(B).!
The Poisson point process can be viewed as a fundamental point
process model in that it possesses the property of “complete spatial
randomness” of points.

Real-world applications of point processes usually exhibit some
degree of clustering or repelling between the points in a space. The
Log Gaussian Cox (LGC) process [5] is an extension of the Poisson
point process to handle such spatial correlation between points
via a hierarchical stochastic structure. An LGC process consists of
a Poisson point process with its intensity function modeled by a
Gaussian Random Field (GRF) [14]. A random field represents the
joint probability distribution for a set of random variables over a
multi-dimensional space such as R?. A GRF is a random field where
every finite collection of those random variables obeys a multivari-
ate normal distribution. In an LGC process, a GRF is leveraged to
capture the pair-wise correlation between the intensity values of
regions.

4 STATISTICAL DRV PREDICTION

4.1 Modeling Statistical Distribution of DRVs by
Log Gaussian Cox Process

Given a circuit layout, we tessellate it into an array of uniform
rectangular tiles, each of which is an [ x [ square;® a rectangular
layout with size W X H is divided into w X h tiles, where w = [W/I]
and h = [H/I]. With a tessellated layout space, we model the
spatial distribution of non-deterministic DRVs as an LGC process in
a discrete 2D space indexed by tile row and column numbers (i, j)
with intensity function (i, j). Figure 4 illustrates such stochastic
modeling of non-deterministic DRVs. The Poisson point process
implies that the number of DRVs occurring at tile (i, j), denoted by
Npry (i, j), obeys a Poisson distribution with mean p(i, j), i.e.,

(i ik
Pr[Npry (i, j) = k| = e #(2J) % k=012... (2

Formally, ;1(B) is defined with a locally integrable function A : R — [0, c0) such
that p(B) = ./B A(x)dx. If this integral is finite, N (B) obeys a Poisson distribution,

k
ie,Pr[N(B) = k] = e #(B) ”(£!> , where k is a non-negative integer.
2In our experiments, [ is set to be 1.26um.

N . /)~ Po i)
ey (i, ))~ Poisson(n(, j)) -”(1’1) n(1,2)

where Npgy (i, j) is the
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Figure 4: A Log Gaussian Cox process in a 2D layout space.
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Figure 5: Mean vs. variance of the number of DRVs in a tile.

and GRF captures dependency among tiles by enforcing p(i, j) to
have correlation with nearby layout tiles.

We argue that the LGC process can be a good match to the non-
deterministic DRV distribution. The domain of an LGC process
is the set of non-negative integers, which matches the range of
Npry (i, j) in the layout naturally. To further demonstrate the ratio-
nale behind adopting an LGC process for modeling non-deterministic
DRV distribution, we took five placed circuits and obtained DRV
maps from 32 detailed routing runs for each circuit with an indus-
trial router. Treating Npry (i, j) as a random variable, we obtained
32 samples for each random variable from which we estimate their
mean and variance. Figure 5 shows the relationship between the
mean and variance of Npry (i, j). According to the LGC process,
the mean is supposed to be equal to the variance. We can find
that the variance has a roughly linear relationship with the mean,
which conforms to the LGC process characteristics. Although we
observe the variance-to-mean ratio being about 3, a relatively-small
ratio shows that the LGC process is a reasonable model for the
DRV distribution. In addition, we can see clustering behaviors of
DRV occurrence in Figure 1, which can be easily captured in our
stochastic modeling thanks to GRF in the LGC process.

4.2 Problem Formulation of LGC-Net

Given a pre-route design, our goal is to predict the intensity function
u(i, j) of each layout tile (i, j), which we name the DRV intensity.
According to the LGC process, (i, j) is equal to the mean and
variance of the DRV density on tile (i, j). Hence, with predicted
(i, j) for each tile (i, j), we can derive the Poisson distributions
governing non-deterministic DRVs.

We note that DRVs are caused mainly by pin accessibility is-
sues [4] and routing congestion. Hence, we use the following fea-
ture images as input features of the proposed model.

(1) High resolution pin configuration images. These images
capture the exact locations and shapes of every pin in the
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Figure 6: Overview of the proposed LGC-Net to handle non-deterministic routing solutions in DRV prediction.

entire layout [12]. For each metal layer where pins reside, one
pin configuration image is generated. These pin configuration
images help identify pin accessibility issues. In our setup, a
tile (1.26 X 1.26 pm?) corresponds to 126 X 126 pixels in a pin
configuration image.

(2) Tile-based layer-wise routing congestion maps. They are
produced by a trial global router. Unlike a majority of prior arts
resorting to a 2D routing congestion map, we use 3D layer-wise
congestion maps as input, since the actual routing is conducted
in a 3D space. Although a few recent efforts [7, 12] classify
DRC hotspot without any routing information, predicting DRV
intensity with noisy label data is evidently much more chal-
lenging. Besides, it is reasonably fast to call a trial global router,
which takes a couple of minutes for one placement instance on
our test cases.

We now state the target problem as follows. Given a placement
with its trial routing result, predict a 2D DRV intensity map in
which each entry (i, j) represents the DRV intensity u(i, j) in the
corresponding layout tile. Labels are extracted from post-routing
design rule checking.

4.3 Overview of LGC-Net

Figure 6 depicts an overview of the proposed LGC-Net. We view
that each placed layout corresponds to one LGC process describing
the statistical distribution of DRVs. The similar but not identical
DRV labels from different routing solutions for the same placement
are regarded as samples of the corresponding LGC process. We inte-
grate a deep neural network J-Net [12] with our proposed GRF layer
into LGC-Net for mapping a placement instance to the parameters
(i.e., the DRV intensity function) of the corresponding LGC process.
The GRF layer is a customized network layer that implements a
Gaussian random field, allowing our LGC-Net to capture the spatial
correlations of DRVs. Based on the LGC process, we develop the
Focal Likelihood Loss (FLL) function, which guides the training of
LGC-Net in a Maximum Likelihood Estimation (MLE) manner. This
is another key difference that distinguishes LGC-Net from J-Net
and other deep learning models.

4.4 Gaussian Random Field (GRF) Layer

The GRF layer is a customized neural network layer implementa-
tion of GRF that can be integrated with deep learning models to

achieve end-to-end training. It processes the unstructured predic-
tion output Z € R¥*" of the J-Net model and outputs a structured
output Y € R¥*"_Here, unstructured output means the intensity
function prediction outcome without considering the dependency
among tiles, while the structured output means the prediction tak-
ing correlation among nearby tiles into account.

The GRF layer is essentially composed of a set of matrix op-
erations, whose computation can be conveniently accelerated by
off-the-shelf ML packages. Denote the flattened vector of Z as z,
which is a vector of length w X h, and the flattened vector of Y as y.
The GRF layer outputs z that maximizes the probability

1
Prly | 7] = —e P09, )

where « is a normalization term ensuring that the integral of the
probability over y is equal to 1, and E(y, z) is defined as:

E(y,2) = ) (zi = y)* + B D Sij(yi —y))*. @)
i i<j
In Equation (4), f8 is a weighting factor, and S; j is a similarity
measure between the i-th and the j-th entry. The first term on the
right-hand side of Equation (4) enforces the structured output Y
to be close to the unstructured output Z, while the second term
enforces similar entries to have similar outputs. The similarity
measure S; j describes the similarity among entries, which is given
by ¢4/ if i # jand 0 otherwise, where d(i, j) is the Manhattan
distance between two layout tiles corresponding to entry i and j,
and o is a learnable parameter.

E(y, z) can be rewritten in a vector form as follows:

E(y.2) =y Qy-2y'z+2'zcy' Qy - 2y’ 2, (5)
where Q(i, j) is given by

)1+ BEpsi Sin =
Q. j) = e (6)
_Si,j ifi #j.
We let the weighting factor f be a learnable parameter.
Once the values of f and S; ; are obtained, Q can be computed.
For positive-definite matrix Q, the optimal structured output y*

that maximizes Pr[y | z] can be obtained by
y'=Q7'z. ()
With the GRF layer, we use a two-stage training process. At the

first stage, the GRF layer does not come into play and the J-Net part
is trained solely to output unstructured prediction. At the second
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stage, the GRF layer is attached to the model as the last layer and
the entire model is trained end-to-end to deliver structured output.
We empirically find that such two-stage training process is easier
to converge than a one-stage end-to-end training.

4.5 Focal Likelihood Loss (FLL)

FLL is a novel loss function that combines the capability of focal
loss to address imbalanced data and the strength of MLE (Maximum
Likelihood Estimation) in coping with uncertainty. Its computation
is built upon the Poisson point process in LGC process. MLE esti-
mates the parameters of an assumed probability distribution given
some observed data, by maximizing a likelihood function so that
the observed data is most probable. Here, the probability distribu-
tion is the LGC process and the parameters are the DRV intensities
41; the observed data is the noisy DRV labels L € N**# (N is the
set of non-negative integers) collected after detailed routing. The
likelihood is calculated as

{(Lij, Yij) =log (Pr[Lyjlu(i, j) = Yy 1), ®)

where the conditional probability Pr[L; j|u(i, j) = Y; j] is calculated
according the properties of Poisson point process:

Y.L i e_YiJ'

Pr[Lijlu(i, ) = Yij] = ———. ©)
1]
It is obtained by letting yi(i, j) = ¥; j and k = L; j in Equation (2).
FLL is defined as follows:

1
FLL(Y,L) = ~— > (1= PrlLijlu(i.j) = Yi 1) (L. Yi,).
Lj

(10)
Essentially, Equation (10) is obtained via replacing the p; in Equa-
tion (1) by Pr[L;; | u(i, j) = Yi,j].3 FLL guides the training process
to converge to a solution that maximizes the likelihood {(L; j, Y;, ).
The term 1 — Pr[L; | u(i, j) = Y; ;] is the focal loss term, which
down-weights easy samples adaptively during training, as intro-
duced in Section 3. The introduction of the focal loss term helps
FLL handle the issue of imbalanced data sets.

In many applications including DRV intensity regression, maxi-
mizing likelihood matters more than minimizing absolute errors.
Consider two cases, where one has prediction Y; j = 0 and label
Lij = 1, and the other has prediction Yy ; = 9 and label L;; = 10.
Although both cases have the same absolute errors (or MSEs), the
first case is arguably worse than the second one. Correspondingly,
our FLL penalizes the first case much more heavily, since L; j = 1
can never happen if the Poisson distribution has mean 0. As shown
in Figure 1, the absolute difference between two different routing
solutions for the same design is larger in regions with large number
of DRVs. As such, we prefer to tolerate larger absolute prediction
errors for tiles with higher DRV density. Our proposed FLL can
handle the DRV density-dependent noise nicely.

To reduce runtime overhead during training, we pre-calculate
log(k!) for every integer k € [0, K] before training and store them
in a look-up table. Then, Equation (8) can be calculated as:

{(Lij, Yij) = Lijlog(Yi ;) = Yij —log(Ly;!), (11)

3In our experiments, we set y as 1.

Table 1: Testcase characteristics.

[ [[ Design | Dimensions (um) [ #IPs | #Gates | #Nets | #DRVs |

D1 161.28 X 72.58 2 26906 26647 330142
D2 122.88 X 124.42 0 44088 46461 33133
D3 142.08 X 124.42 0 76799 79993 17795
Train D4 103.68 X 305.86 0 126238 131862 268615
set D5 138.24 X 305.86 0 149351 151128 6394
D6 276.48 X 510.62 16 172133 159509 15471
D7 249.60 X 300.67 3 183544 192820 84620
D8 760.32 X 189.22 600 270614 290613 370
Test D9 207.36 X 145.15 0 79062 85635 192862
set D10 215.04 X 139.97 0 84477 92054 3280
D11 211.20 X 419.90 4 217821 218583 99322

where log(L; ;!) is obtained via the look-up table, and Pr[L; j | ; ;]
is obtained by performing an exponentiation operation.

5 EXPERIMENTAL VALIDATION

5.1 Testcases and Data Collection

Experiments were conducted on 11 industrial designs at a 7nm
process node, whose characteristics are summarized in Table 1. The
testing designs were totally unseen during training. A total of 10
placement instances were generated for each design by varying tool
parameters in an industrial synthesis & physical design flow. For
each placement instance, 10 detailed routing runs were performed
with the same setting. We observed around +10% difference in
the number of DRVs across different routing runs for the same
placement solution. The average number of DRVs for each design
are shown in Table 1. We extracted features from the design flow
via tcl scripts and implemented our LGC-Net on the ML framework
PyTorch. During training, a pair of (i) placement and (ii) DRV labels
from one routing run was regarded as one data point. Also, we
deployed two data augmentation techniques proposed in [12], i.e.,
random flipping and random cropping, to enlarge training set. In
evaluation, we compared the prediction outcome with the average
DRV ground truth across 10 routing runs.

5.2 Performance Metrics

5.2.1 Regression Metrics. We used the following metrics to assess

regression performance:

(1) The mean-squared-error (MSE).

(2) The Pearson correlation coefficient between the DRV density
ground truth data and the predicted DRV intensity.

(3) The mean of the predicted DRV intensity for tiles with label
Nprv = 0. For perfect prediction, the mean is 0. The smaller
the mean, the better the prediction performance.

(4) The mean of normalized errors for tiles with DRVs. For a tile
with label [ and prediction output y, the normalized error is
given by |l — y|/VI. According to the Poisson processes, VI can
be viewed as an approximate of the standard deviation of the
DRV density. The normalized error measures the prediction
error normalized against the standard deviation.

5.2.2  Multi-Class Classification Metrics. For K-class classification,
we firstly calculated the confusion matrix, where c; j represents the
number of tiles that are labeled class i and predicted class j. Then
the following metrics were calculated:

e True-positive-rate (TPR) for class i: TPR(i) = ¢; ;/ 25-(:_01 Cij-
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Table 2: Average DRV density regression performances of LGC-Net
with different input features and of [11] on the test set.

. LGC-Net w/ different inputs
Performance metrics o [ 2 [ 3 [ Fa Zhou[11]

Correlation coefficient 0.25 | 0.29 | 0.44 0.70 0.23

MSE 3.13 | 0.56 | 0.57 0.32 4.16

Mean outcomes 1.76 | 0.27 | 0.33 0.06 2.03
(DRV-free tiles)

Mean norm. error 2.78 | 0.93 | 1.30 0.86 3.31
(tiles w/ DRVs)

e Precision for class i: Precision(i) = Ci,i/25~(=_()l Cji-
TPR (i) XPrecision (i)
TPR(i)+Precision (i)

e Macro-averaged F1-score: MacroF1 = Zﬁgl F1(i)/K.

e Fl-score for class i: F1(i) = 2 X

e Micro-averaged F1-score: MicroF1 = Zf;ol Ck,k/Z{iBl 25.(_01 Cij-

5.2.3 Binary Classification Metrics. For the binary classification
performance, we plotted ROC (Receiver Operating Characteristic)
curves dictating the trade-off between TPR and false-positive-rate
(FPR). TPR is the number of correctly classified positive samples
out of the total number of positive samples, and FPR is the number
of negative samples wrongly predicted as positive out of the total
number of negative samples.

5.3 Experiment 1: Impact of Non-Determinism

We study how the DRV prediction is affected by non-deterministic
routing. For the placement instances from testing designs, the DRV
label from the first routing run is compared with the average DRV
label across the remaining 9 runs. The MSE is 0.24 and the correla-
tion coefficient is 0.78. The significant error and limited correlation
imply that the predictability of DRV density is greatly affected
by the non-determinism in routing. It is impossible to get perfect
estimation even with the time-consuming detailed routing.

5.4 Experiment 2: Regression Results and
Ablation Study

We present the regression results of our LGC-Net with the following
four different input feature combinations:
(1) F1: only 3D layer-wise congestion maps.
(2) F2: pin configuration maps and a few tile-based connection
features extracted without trial routing results (same as [12]).
(3) F3: pin configuration and 2D congestion maps.
(4) F4: pin configuration and 3D layer-wise congestion maps.
The results from different input feature sets on DRV density
regression performance are listed in Table 2. We can see that both
the pin configuration images (F4 results vs. F1 ones) and the conges-
tion maps (F3 results vs. F2 ones) are of great importance for DRV
prediction. Also, comparing F4 results with F3 ones we can find
that the 3D layer-wise congestion maps provide more information
than the 2D congestion map.
Figure 7 shows a snapshot of our DRV prediction results with
feature set F4. We can see that our prediction outcome matches
well with the average DRV density map and the variance map. Our
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Figure 7: Illustration of regression results of D9, where the LGC-Net
outcome (lower right) matches with both the mean (lower left) and
variance of #DRVs (lower middle).
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Figure 8: Validation performances for LGC-Net regression using our
focal likelihood loss compared with using various MSE losses.

prediction outcome seems to be a smoothed version of the average
DRV density map.

During training, we hold 20% training data as the validation set
and evaluate the models after each training iteration. We transform
the regression outcome into binary classification during validation
and use the area under ROC curve (AUC-ROC) as the performance
metric (the larger the area, the better the performance). To study the
effectiveness of our proposed focal likelihood loss, we compare the
validation performance for LGC-Net regression using our FLL with
the performances using various MSE losses. As shown in Figure 8,
we observe that none of the MSE loss training can converge well and
they often get stuck at a solution with 0.5 area, which means random
guess. The failure of MSE loss training is mainly caused by the noisy
and imbalanced data set of DRV density maps. In contrast, our FLL
helps the model successfully converge to meaningful solutions.
In other words, our FLL technique facilitates the training of deep
learning models with noisy and imbalanced data set.

We also investigate the impacts of our Gaussian Random Field
layer on DRV regression. We observe that the correlation coefficient
drops by 0.05 and the MSE increases by 0.07 when removing the
GRF layer from our LGC-Net. The training time is doubled when
integrating the LGC layer to LGC-Net due to our two-stage training
scheme introduced in Section 4.4 while the inference time overhead
is neglectable.



A Stochastic Approach to Handle Non-Determinism in Deep Learning-Based Design Rule Violation Predictions ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

5.5 Experiment 3: Comparison with [11]

We compare LGC-Net with [11], which is the only previous DRV
regression work to the best of our knowledge. It is a multivari-
ate adaptive regression-based method using pin density, ratio of
blocked areas, HPWL density and global routing results as inputs.
Since [11] does not reveal its loss function, we adopt the MSE loss
function in this experiment.

As shown in Table 2, LGC-Net with feature set F4 significantly
outperforms the result of Zhou [11]. The superior performance from
our method is brought by our input features, the deep neural work
architecture, and the proposed stochastic techniques for handling
noisy training data.

5.6 Experiment 4: Comparison with J-Net [12]
and RouteNet [23]

In this experiment, we compare the performance of our LGC-Net
with J-Net [12] and RouteNet [23], which are two state-of-the-art
deep learning-based DRV classifiers. The works J-Net [12] and
RouteNet [23] were originally proposed for binary DRC hotspot
prediction problem. Here, we also extend them for multi-class classi-
fication, using the weighted MSE loss during training. We transform
our LGC-Net regression results into classification ones by setting
different thresholds. For multi-class classification, tiles are divided
into three classes according to their number of DRVs, using 0.5 and
4.5 as the thresholds. Note that we use the average DRV map across
10 routing runs as ground truth in evaluation, so the thresholds are
real numbers. Tiles with #DRV<0.5 are easy to route while those
with > 4.5 DRVs can be viewed as hard to route. For binary classifi-
cation, we compare the prediction accuracy at label thresholds 0.5,
2.5 and 4.5, separately.

5.6.1  Multi-Class Classification Results. Table 3 compares the multi-
class classification performances of our LGC-Net and extensions

of J-Net [12] and RouteNet [23]. It can be seen that our LGC-Net

performs obviously better than other methods, by 17% higher micro-
averaged F1 score and 25% higher macro-averaged F1 score. Besides,
for those misclassified tile samples by our method, most of them are

classified to be categories similar to their label categories. In con-
trast, many misclassified samples by the extended version of [12]

are classified to be categories far away from their labels. As a matter

of fact, it classifies over 169k class-0 samples into class 2.

The superior performance of the LGC-Net regression-based clas-
sification is attributed to two main reasons. The first lever is our
stochastic techniques in handling noisy data. Also, regression la-
bels are naturally more informative than classification labels. The
LGC-Net regression-based classification can take advantage of the
regression labels.

5.6.2  Classifications with Different Thresholds. ROC curves of LGC-

Net regression-based binary classification, J-Net [12] and RouteNet [23]

are shown in Figure 9. Compared with the J-Net and RouteNet bi-
nary classifiers, our regression-based classification delivers superior
performance at various label thresholds. Another advantage of our
method is that the regression model needs one-time training to give
binary-classification results for various label thresholds; whereas
one binary classifier is required to be trained for each distinct label

Table 3: Average multi-class classification results on the test set.

l H Our LGC-Net
Predicted class 0 1 2
Label=0 932275 | 80715 4367
Label=1 16170 23765 6254
Label=2 1239 6717 12658
Micro-averaged F1 89.4%
Macro-averaged F1 60.9%

l H Extension of JNet [12] l
Predicted class 0 1 2
Label=0 766738 | 80829 169790
Label=1 10154 3487 32548
Label=2 1199 128 19287
Micro-averaged F1 72.8%
Macro-averaged F1 35.6%

[ H Extension of RouteNet [23] ]
Predicted class 0 1 2
Label= 0 633462 | 73914 | 309981
Label=1 15702 8026 20850
Label= 2 7009 5867 9349
Micro-averaged F1 60.0%
Macro-averaged F1 31.0%

threshold, consequently leading to several times longer training
and inference overhead.

5.6.3 Computing Runtime. The training time of LGC-Net on a
Nvidia GeForce RTX 2080-Ti is about 60 hours, which is 2x longer
than that of a J-Net classifier [12]. The longer traing time is caused
by the two-stage training process introduced in Section 4.4. Since
our trained model can be reused for different placements, the amor-
tized training cost is limited. LGC-Net can be applied for either
regression or classification. For classification, it can be trained only
once and then applied with different label thresholds without re-
training. The LGC-Net inference runtime on one placement instance
is about 1 minute.

5.7 Experiment 5: Effect of Data Pruning

We study the impact of using the DRV label from single routing
run or the average label across 10 routing runs for each placement
during training. Arguably, the results from single routing round or
the average results are deterministic, since each placement instance
corresponds to one DRV label. We also try performing Gaussian
filtering with a standard deviation of 1 on the noisy DRV label from
one routing solution and then use it for training. We compare their
prediction performances with those of using the results from all 10
routing runs.

Figure 10 shows that it does not help eliminate the negative ef-
fects of non-deterministic parallel routing by using only the result
from one detailed routing round (10% data) or the average result
across 10 rounds (average of 10 runs) for each placement instance.
In contrast, it obviously degrades the prediction performance since
less training data is deployed. In addition, simply performing Gauss-
ian filtering on noisy DRV labels (10% data + GF) is not sufficient to
handle the noisy data issue. It is also interesting to note that, Gauss-
ian filtering enhances the performance of [12] but does not help
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Figure 9: ROC curves for binary-classification at different label thresholds: (a) th = 0.5, (b) th = 2.5, and (c) th = 4.5.
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Figure 10: The effects of training (a) with one detailed routing result
and (b) with the average result across 10 runs for each placement.

our approach which has already explicitly considered the stochastic
properties of DRVs.

5.8 Discussion of Data Efficiency

We want to highlight that our method has better data efficiency for
noisy data sets compared to previous deep learning-based DRV pre-
diction methods. In particular, compared with [12], which utilizes
a model with similar amount of learnable parameters to ours, our
method has obviously better performance after training with the
noisy DRV data, as shown in Figure 10.

It is noteworthy that our LGC-Net also works well when it is
trained with one noisy DRV label for each placement instance (ours
with 10% data in Figure 10). With the noisy data set, LGC-Net
trained with one routing run result for each placement outperforms
[12] trained with 10 routing run results for each placement.

6 CONCLUSION AND BROAD IMPACT

In this work, we present a stochastic approach - LGC-Net, to han-
dle non-determinism in deep learning-based DRV predictions. Ex-
periments results from noisy training data on industrial designs
demonstrate that our method can handle the non-deterministic
training data caused by parallel routing and achieves significantly
better DRV density prediction performance than previous arts.
We view that the noisy label data due to non-deterministic par-
allel computing is a general problem in applying ML techniques to
EDA problems, given that many EDA algorithms are accelerated

by multi-threading. More broadly, it has been recognized that noise
or chaotic behavior is ubiquitous in EDA tools [1, 8, 10, 15], i.e., a
slight change in inputs or even the exact same input can lead to
large variation in results. Thus, the results here provide a helpful
experience for addressing this general challenge in future research.
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