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ABSTRACT 

Accurate delay prediction is important in the early stages of logic 
and high-level synthesis. In technology mapping for field 
programmable gate array (FPGA), a gate-level circuit is transcribed 
into a lookup table (LUT)-level circuit. Quick timing analysis is 
necessary on a pre-mapped circuit to guide optimizations 
downstream. However, a static timing analyzer is too slow due to 
its complexity and highly inaccurate like other faster empirical 
heuristics before technology mapping. In this work, we present a 
machine learning based framework for accurately and efficiently 
estimating the delay of a gate-level circuit from predicting the depth 
of the corresponding LUT logic after technology mapping. Our 
experimental results show that the proposed method achieves a 56x 
accuracy improvement compared to the existing delay estimation 
heuristic. Instead of running the mapper for the ground truth, our 
delay estimator saves 87.5% on runtime with negligible error.  
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1  Introduction 

Early decisions in high-level synthesis or logic synthesis greatly 

impact the final timing quality of result (QoR). However, delay 

estimation is often too coarse at that stage to guide optimizations. 

The key reason is that the design is often represented with a high 

level graph or technology-independent gates and not mapped into 

FPGA hardware primitives.  

 

The operation node in the control dataflow graph (CDFG) in 

high-level synthesis and the dataflow graph (DFG) in logic 

synthesis can be lowered and generated as a technology-

independent a gate-level netlist, which is also input to the Boolean 

optimization engine. Our work chooses gate-level netlist as an 

anchor point and presents a machine learning (ML)-based method 

to estimate delay on pre-mapped gate-level netlist. The method is 

8x faster than running FPGA technology mapping and has over 

99% accuracy score with the mean squared error of less than 2 logic 

levels.   

 

The remainder of the paper is organized as follows. In Section 

1.1, the process of FPGA technology mapping is presented. Section 

1.2 provides an overview of ML in electronic design automation 

(EDA). Our ML framework is described in section 2. Section 3 

discusses how the proposed framework can be integrated into the 

logic synthesis and high-level synthesis flows. The experimental 

setup and detailed results and analyses are presented in section 4. 

Section 5 presents our conclusions and future work.  

1.1 Technology Mapping in FPGA Synthesis 

A Boolean network is a directed acyclic graph (DAG) with 

nodes corresponding to logic gates and directed edges 

corresponding to connections between them. A combinational logic 

function can be represented with a Boolean network 

noncanonically. One logic function can have many representations 

in a Boolean network generated by Boolean optimizations or by 

construction. Technology mapping in FPGA synthesis is the 

procedure of transforming a Boolean network into a network of 

lookup tables (LUTs). A LUT can have up to k inputs and can 

implement as many as 22𝑘 combinational logic functions. Figure 1 

shows a simplified gate-level Boolean network and its post-

mapping result.  
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Figure 1: A Boolean network representing 𝒇 = (𝒂|𝒃) ⊕  (𝒄&𝒅) 

on the left and its LUT implementation after technology 

mapping on the right. 

A Boolean network (also referred to as gate-level netlist in our 

context) for real combinational circuits can be large and has a 

complex structure with re-convergent fanouts. A standard 

technique for mapping a Boolean network into k-input LUTs is to 

formulate it as a graph covering the problem [1,2,3]. Cuts are 

computed on each node to cover logic cones in the Boolean network 

with k-input LUTs. Costing is associated with each candidate cut 

and propagated from input to output. After the cut computation, a 

backward pass is executed to select the best cut choice. Most of the 

runtime is spent during the cut computation phase, with a runtime 

complexity of 𝑂(𝑛𝑘), where 𝑛 is the number of nodes and k is 

number of LUT inputs [4]. Depending on different cost functions 

(delay, area, and wire length) and the topology of the pre-mapped 

Boolean network, the generated LUTs circuitry can have a wide 

range of logic levels and LUT count. Due to this variety, it is 

desirable to predict the delay of the mapped result prior to mapping, 

where we believe ML is an effective technique.  

1.2 ML in EDA  

In recent years there has been burgeoning research on applying 

ML in EDA. For logic synthesis, Keren et al. adopted Graph Neural 

Network (GNN) and Reinforcement learning (RL) to find the 

sequence of optimizations to reduce logic delay and gate count [5]. 

Rai et al. present learning incompletely-specified functions on the 

results of the recent IWLS 2020 competition [15]. Zhu et al. 

proposed a Markov decision process formulation for the logic 

optimization problem and RL approach incorporating a graph 

convolutional network to explore the solution search space. Their 

empirical results show improvements over well-known logic 

heuristics [16].  For the backend, Mirhoseini et al. demonstrated a 

RL-based macro placer on TensorFlow ASIC blocks [14].  Ghandi 

et al. proposed a RL based router to route circuitry and fix 

violations with limited access to labeled data [6]. Baig et al. 

proposed an RL-based detailed routing approach for FPGA detailed 

routing attaining a 35% speedup with similar or better quality of 

results [13]. A whole class of regression or classification techniques 

have been used for prediction. For example, Random Forest is 

applied to predict timing delay during placement with 94% 

accuracy [7]. Maarouf et al. created a competitive Linear 

Regression model with comparable accuracy but on average 291x 

faster than KNN and MLP based models to predict FPGA routing 

congestion [8]. Elgammal et al. [11] enhanced a SA-based FPGA 

placer with RL and targeted perturbations and showed 2.5x speedup 

with comparable quality to VTR 8 [12]. 

 

To our knowledge, there is no prior ML-based research work to 

predict timing delay before technology mapping. Delay is usually 

estimated with pre-built libraries, which do not scale well and 

suffer from inaccurate heuristics. 

2  Proposed Framework 

2.1 Overview  

 

Figure 2: Our proposed framework, MLDlyTrain for training 

and MLDlyEst for inference. 

The proposed framework comprises two parts, shown in Figure 

2. The first part is MLDlyTrain, which does the feature and label 

extraction on a pool of designs and trains the ML model to predict 

post-mapped LUT level. The second part is MLDlyEst for logic 

depth inference.  The LUT logic level based delay estimate is 

accurate enough for logic and high-level synthesis.   

2.2 Features and Label Extraction 

Twelve features in four categories have been selected to capture 

the topology of the gate-level netlist and behavior of technology 

mapping: 

1) Number of Primary Inputs (PIs), in general reflects the 

scale of a circuit, which helps make some quick decisions (e.g., any 

circuit with six or fewer primary inputs can be encoded into a single 

LUT6). 

2) Number of Gates is another metric of the size of a circuit. 

To better describe the circuits and capture the nature of LUT 

mapping, we categorize gates by their associated number of PIs 

(e.g., Gates with the number of PI ∈ (0,6], (6,12], (12, 18], …, (31, 

+∞)) and keep track of the number of gates in each category. 
3) Number of Paths is a good supplement to the two features 

above on the complexity of a circuit. It helps identify the circuit’s 
fanout and indicates the circuit’s wideness.  

4) Path Length in a circuit gives an estimation of the depth 

of a circuit. We use four features to measure the length: (a) total 
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path length, (b) average path length, (c) maximum path length and 

(d) minimum path length.  

 

The combination of the number of paths and path length 

sketches the shape of a circuit on wideness and depth.  A depth-first 

search is performed on the gate-level netlist to extract the features. 

Our traversal algorithm consumes only 𝑂(𝑛) runtime, where 𝑛 is 

the number of cells in the circuit. The process of extracting labels 

shares the same framework as extracting features, but instead of 

traversing the gate-level circuit, it traverses the LUT-level circuit 

and captures LUT logic levels.  

 

Once the features and labels are acquired and combined as 

training data, they are then filtered to remove abnormal and trivial 

cases. For example, a large netlist could have too many paths 

leading to integer overflow, and the number needs to be converted 

to a floating point. Trivial cases like constant logic, which can lead 

to 0-level, are removed. The whole dataset is then divided into 80% 

for training and 20% for testing. 

2.3 Proposed ML Model 

In this work, we adopt a supervised learning model based on 

gradient boosting, Light Gradient Boosting Machine (LGBM) [9] 

as it works well on the highly non-linear relationships that underly 

delay estimation.  Our framework can be easily integrated into 

AMD’s Vivado ML®Compiler. 

3  Flow Integration 

After the model is trained using the proposed framework, it can 

be applied at various stages in logic synthesis and high-level 

synthesis. Figure 3 and 4 show how it can be integrated in high-

level synthesis during scheduling and logic synthesis for operator 

sharing.   

 

Figure 3: Delay prediction integration into high-level 

synthesis(left). Nodes in CDFG assigned cycles after predicting 

delay of nodes(right) 

In high-level synthesis, during scheduling, operation nodes in 

CDFG are assigned cycles, and the delay of operations cannot 

exceed the clock period times the number of cycles. Similarly, in 

logic synthesis, DFG optimization, such as operator sharing, makes 

delay-area trade-offs based on early estimates. In both cases, nodes 

in DFG and CDFG can be lowered into gate-level netlist, and 

MLDlyEst can be applied to provide accurate delay estimation. In 

Figure 5, corresponding LUT level delays are predicted 

respectively for the adder and comparator. They are simply added 

up and compared with a timing budget, which can be derived from 

design timing constraints or any heuristics. If the total delay is not 

critical, then operator sharing can be applied to save the area of one 

adder. 

 

Figure 4 also shows how MLDlyEst can be integrated into the 

Boolean optimization engine to choose a better implementation for 

FPGA mapping from candidates generated from different 

algorithms.   

 

Figure 4: Delay prediction integration into early DFG and 
Boolean optimization stage of logic synthesis 

 

Figure 5: Operator sharing guided by prediction from 
MLDlyEst 

MLDlyEst is easy to integrate, and there is no need to change 

the feature set nor add customized features to retrain the ML model 

for different tools since the trained model works on a uniform gate-

level netlist. 

4  Experimental Results 

This section shows the evaluation of models based on accuracy 

and runtime metrics. The experiment is conducted with a Linux 

Machine running on a Xeon 2.6GHz processor. All ML models are 
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implemented with Scikit-learn [10]. Logical synthesis and 

technology mapping is carried out by the Vivado ® Synthesis Tool.   

4.1 Benchmark Design Suite 

 

Figure 6: Number of Records for Each Label (Log Scale) 

Our benchmark design suite contains 86 RTL industrial designs. 

Each design, on average, contains 50K sub-circuits used as data 

points. The Vivado Synthesis ® tool is invoked to transfer the RTL 

design into the gate-level netlist, and then the LUT-level netlist.   

 

The histogram in Figure 6 shows the distribution of the labels 

on the benchmark suite designs. It is evident that the dataset is 

heavily unbalanced (94% of the sampled labels have depth less than 

5). Clearly, special handling is needed for the minority class to 

ensure the performance on all records. 

4.2 Model Training 

As mentioned in Section 2.2, data is split randomly into 80% 

training and 20% testing sets. Cross-validation is done to ensure the 

stability of our model. Different options in model training affect the 

performance of the model. In this section, we list the options that 

work best for our cases.  

 

In general, increasing the number of estimators helps reduce the 

prediction errors without a significant increase on the inference 

runtime. In our model, the number of estimators is set to 1000. The 

number of estimators, maximum tree depths, step length and other 

parameters can be optimized through an automatic hyperparameter 

tuner, which is our intention for future work. 

 

As shown in Figure 6, the distribution of the labels in our 

benchmark is unbalanced, which could make the focus of the 

training process on the majority, thus giving poor results on the 

under-represented classes. To mitigate this problem, we increase 

the LGBM weights for the less frequent data. In particular, we set 

the weight to be inversely proportional to the class frequencies 

during training.  

4.3 Error of LGBM on Depth and Area Driven 

Mapper 

Table 1 shows the performance of ML model in predicting the 

result of technology mapping when the mapper runs in different 

modes. For the depth-driven mode, the mapper tries to minimize 

the depth of the mapped netlist. For the area-driven mode, the 

mapper optimizes the depth and the area of the design at the same 

time. The experimental results shown are generated from the test 

dataset.  

 

Since the dataset is unbalanced, we evaluate the model on 

different ranges of labels separately. By utilizing the weight 

adjustment technique mentioned in Section 4.2, we achieve similar 

accuracy among the different label classes.   

 

From the column of mean absolute error (MAE), one can tell 

that our model predicts the LUT depth well. In most label classes, 

the MAE is less or equal to 0.2 and 0.5 for the depth and area-driven 

mapper respectively. Even though the relative percentage error is 

not explicitly given, one can infer that it is upper bounded by 20%, 

which appears to be the MAE for the area-driven mapper for label 

class less than or equal to five.   

 

In addition to MAE, two more metrics are presented to help 

understand the prediction result: “Err 99.7%” is the upper bound 
error for 99.7% of the records. For example, Column 3 shows that 

99.7% of all the records with LUT depth less or equal to five have 

errors less or equal to 1.31.  Also, in Table 1, “Err<=2 Pct” is the 
percentage of records that have a prediction error less than or equal 

to two logic levels.  

  

 

Table 1: LGBM Prediction Accuracy on Depth-driven and 

Area-driven Mapper 

 

Figure 7: Confusion Matrix of the LGBM Model w.r.t.  Depth 

(left) and Area(right) Driven Mapper 
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The metrics in Table 1 show that the ML model performs better 

on the depth-driven mapper compared to the area-driven mapper. 

This observation coincides with our expectations as the area-driven 

mapper enables resource sharing among the neighboring sub-

circuits, which is not well captured in our feature extraction 

process. The confusion matrix in Figure 7 shows the same trend. 

4.4 Runtime Analysis 

 

Figure 8: Mapper and LGBM ML Model-based Delay 

Estimation Runtime (s) 

Figure 8 shows the runtime of the mapper and the ML model 

over the benchmarks. On average, The ML model is 8x faster than 

the mapper. The speedup varies depending on the scale of the 

netlist. The benchmarks on the left-hand side (i.e. with lower ID’s) 
are designs with large and deep combinational logic. Their 

respective runtime gain is significantly higher than the designs with 

less combinational logic on the right-hand side. This observation 

supports the runtime complexity analysis of 𝑂(𝑛) for the ML model 

vs. 𝑂(𝑛𝑘) for the mapper alluded to earlier. Mapper’s runtime is of 
much higher order because it needs to enumerate Cuts for each 

node. Rather than the highly pipelined design where shallow 

netlists dominate, our model shows more potential on a deep netlist 

or untimed large logic cones, which, in practice, is more frequently 

the case when a prediction is needed. 

4.5 Importance of Features 

 

Figure 9: Feature Importance of the LGBM ML Model 

Figure 9 shows the importance of features in the proposed 

model. The number of PIs and the path length information 

dominate, while the number of gates with different PIs also plays 

an important role. 

4.6 Error of Alternative Models and the Timer: 

A Comparison 

Model  MAE  MSE  Accuracy  

LGBM  0.09  0.04  96.02%  

Timer  5.03  288  0.03%  

LR  0.26  0.38  83.30%  

MLP  0.59  0.06  81.78%  

Table 2: Error of Timer and Models 

Linear regression (LR) and multi-layer perceptron (MLP) are 

implemented to explore the performance of different models. 

Besides the features mentioned in section 2.2, we added the 

logarithm of the number of paths and total path length with a base 

of two, which exposes the linear characteristics from the 

exponentially growing values. We tuned these models for a fair 

comparison. The performance of a pre-mapping timer is also listed 

for comparison. Similar to the post-mapped timer, the pre-mapped 

timer computes arrival time based on the delays associated with 

each pre-mapped gate and net. Considering that there is much 

larger number of pre-mapped gates and nets compared to post-

mapped, their associated delays are adjusted and dampened. The 

pre-mapped timer gives an albeit rough but acceptable estimate on 

delay. 

 

Table 2 shows the prediction results of Timer and other models 

on the testing data. The computed arrival time from Timer is 

normalized to LUT levels for comparison against ML models. 

LGBM is superior to other models on MAE and mean squared error 

(MSE). Accuracy in the table is defined as the ‘hit rate’ of 
predictions. For example, if the ground truth is 5 LUT levels and 

the predicted value is 4.4 (rounded down to 4), it is counted as miss. 

And if the predicted value is 4.6 (rounded up to 5), it is counted as 

a hit. Although Timer can give a rough estimate, it has a very low 

hit rate because it tries to use an overly simplified axis (critical path 

arrival time) to predict a much harder problem. LR gives better 

performance than Timer since it takes more features than just 

critical path depth. LGBM outperforms the rest because not only it 

has more features, but it can also model non-linear behavior. 

Compared to Timer, the integration of LGBM ML model yields a 

big leap of 56x accuracy (MAE ratio) improvement on delay 

estimation in the early stages of synthesis. 

5  Conclusions 

In this paper, a machine learning based framework for delay 

estimation on gate-level netlist is presented. The LGBM model 

gives an estimation with an error of less than 2 for most of the 
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benchmarks with 8x faster runtime compared with the depth-driven 

mapper. Due to its flexibility, our model can be deployed in 

multiple stages to guide the netlist optimization in the synthesis 

flow. Our future work will focus on improving the performance of 

the estimation on the area-driven mapper and predicting the delay 

of specific path in the netlist. 
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