

Machine-Learning Based Delay Prediction for FPGA Technology
Mapping

Hailiang Hu, Jiang Hu
Texas A&M University

College Station, TX, USA

hailiang@tamu.edu, jianghu@tamu.edu

Fan Zhang, Bing Tian, Ismail Bustany
Advanced Micro Devices

San Jose, CA, USA

zhangf2@amd.com, bing.tian@amd.com,
ismail.bustany@amd.com

ABSTRACT

Accurate delay prediction is important in the early stages of logic
and high-level synthesis. In technology mapping for field
programmable gate array (FPGA), a gate-level circuit is transcribed
into a lookup table (LUT)-level circuit. Quick timing analysis is
necessary on a pre-mapped circuit to guide optimizations
downstream. However, a static timing analyzer is too slow due to
its complexity and highly inaccurate like other faster empirical
heuristics before technology mapping. In this work, we present a
machine learning based framework for accurately and efficiently
estimating the delay of a gate-level circuit from predicting the depth
of the corresponding LUT logic after technology mapping. Our
experimental results show that the proposed method achieves a 56x
accuracy improvement compared to the existing delay estimation
heuristic. Instead of running the mapper for the ground truth, our
delay estimator saves 87.5% on runtime with negligible error.

CCS CONCEPTS

Hardware → EDA → Logic synthesis → Technology mapping;

Computing methodologies → Machine learning → Machine
learning algorithms

KEYWORDS

FPGA; Synthesis; Delay Estimation; Technology Mapping;
Machine Learning

1 Introduction

Early decisions in high-level synthesis or logic synthesis greatly

impact the final timing quality of result (QoR). However, delay

estimation is often too coarse at that stage to guide optimizations.

The key reason is that the design is often represented with a high

level graph or technology-independent gates and not mapped into

FPGA hardware primitives.

The operation node in the control dataflow graph (CDFG) in

high-level synthesis and the dataflow graph (DFG) in logic

synthesis can be lowered and generated as a technology-

independent a gate-level netlist, which is also input to the Boolean

optimization engine. Our work chooses gate-level netlist as an

anchor point and presents a machine learning (ML)-based method

to estimate delay on pre-mapped gate-level netlist. The method is

8x faster than running FPGA technology mapping and has over

99% accuracy score with the mean squared error of less than 2 logic

levels.

The remainder of the paper is organized as follows. In Section

1.1, the process of FPGA technology mapping is presented. Section

1.2 provides an overview of ML in electronic design automation

(EDA). Our ML framework is described in section 2. Section 3

discusses how the proposed framework can be integrated into the

logic synthesis and high-level synthesis flows. The experimental

setup and detailed results and analyses are presented in section 4.

Section 5 presents our conclusions and future work.

1.1 Technology Mapping in FPGA Synthesis

A Boolean network is a directed acyclic graph (DAG) with

nodes corresponding to logic gates and directed edges

corresponding to connections between them. A combinational logic

function can be represented with a Boolean network

noncanonically. One logic function can have many representations

in a Boolean network generated by Boolean optimizations or by

construction. Technology mapping in FPGA synthesis is the

procedure of transforming a Boolean network into a network of

lookup tables (LUTs). A LUT can have up to k inputs and can

implement as many as 22𝑘 combinational logic functions. Figure 1

shows a simplified gate-level Boolean network and its post-

mapping result.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for components of this work owned by others

than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Permissions@acm.org.

SLIP '22, November 3, 2022, San Diego, CA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9536-6/22/11…$15.00
https://doi.org/10.1145/3557988.3569713

SLIP’22, November 3, 2022, San Diego, CA, USA

Figure 1: A Boolean network representing 𝒇 = (𝒂|𝒃) ⊕ (𝒄&𝒅)

on the left and its LUT implementation after technology

mapping on the right.

A Boolean network (also referred to as gate-level netlist in our

context) for real combinational circuits can be large and has a

complex structure with re-convergent fanouts. A standard

technique for mapping a Boolean network into k-input LUTs is to

formulate it as a graph covering the problem [1,2,3]. Cuts are

computed on each node to cover logic cones in the Boolean network

with k-input LUTs. Costing is associated with each candidate cut

and propagated from input to output. After the cut computation, a

backward pass is executed to select the best cut choice. Most of the

runtime is spent during the cut computation phase, with a runtime

complexity of 𝑂(𝑛𝑘), where 𝑛 is the number of nodes and k is

number of LUT inputs [4]. Depending on different cost functions

(delay, area, and wire length) and the topology of the pre-mapped

Boolean network, the generated LUTs circuitry can have a wide

range of logic levels and LUT count. Due to this variety, it is

desirable to predict the delay of the mapped result prior to mapping,

where we believe ML is an effective technique.

1.2 ML in EDA

In recent years there has been burgeoning research on applying

ML in EDA. For logic synthesis, Keren et al. adopted Graph Neural

Network (GNN) and Reinforcement learning (RL) to find the

sequence of optimizations to reduce logic delay and gate count [5].

Rai et al. present learning incompletely-specified functions on the

results of the recent IWLS 2020 competition [15]. Zhu et al.

proposed a Markov decision process formulation for the logic

optimization problem and RL approach incorporating a graph

convolutional network to explore the solution search space. Their

empirical results show improvements over well-known logic

heuristics [16]. For the backend, Mirhoseini et al. demonstrated a

RL-based macro placer on TensorFlow ASIC blocks [14]. Ghandi

et al. proposed a RL based router to route circuitry and fix

violations with limited access to labeled data [6]. Baig et al.

proposed an RL-based detailed routing approach for FPGA detailed

routing attaining a 35% speedup with similar or better quality of

results [13]. A whole class of regression or classification techniques

have been used for prediction. For example, Random Forest is

applied to predict timing delay during placement with 94%

accuracy [7]. Maarouf et al. created a competitive Linear

Regression model with comparable accuracy but on average 291x

faster than KNN and MLP based models to predict FPGA routing

congestion [8]. Elgammal et al. [11] enhanced a SA-based FPGA

placer with RL and targeted perturbations and showed 2.5x speedup

with comparable quality to VTR 8 [12].

To our knowledge, there is no prior ML-based research work to

predict timing delay before technology mapping. Delay is usually

estimated with pre-built libraries, which do not scale well and

suffer from inaccurate heuristics.

2 Proposed Framework

2.1 Overview

Figure 2: Our proposed framework, MLDlyTrain for training

and MLDlyEst for inference.

The proposed framework comprises two parts, shown in Figure

2. The first part is MLDlyTrain, which does the feature and label

extraction on a pool of designs and trains the ML model to predict

post-mapped LUT level. The second part is MLDlyEst for logic

depth inference. The LUT logic level based delay estimate is

accurate enough for logic and high-level synthesis.

2.2 Features and Label Extraction

Twelve features in four categories have been selected to capture

the topology of the gate-level netlist and behavior of technology

mapping:

1) Number of Primary Inputs (PIs), in general reflects the

scale of a circuit, which helps make some quick decisions (e.g., any

circuit with six or fewer primary inputs can be encoded into a single

LUT6).

2) Number of Gates is another metric of the size of a circuit.

To better describe the circuits and capture the nature of LUT

mapping, we categorize gates by their associated number of PIs

(e.g., Gates with the number of PI ∈ (0,6], (6,12], (12, 18], …, (31,

+∞)) and keep track of the number of gates in each category.
3) Number of Paths is a good supplement to the two features

above on the complexity of a circuit. It helps identify the circuit’s
fanout and indicates the circuit’s wideness.

4) Path Length in a circuit gives an estimation of the depth

of a circuit. We use four features to measure the length: (a) total

SLIP’22, November 3, 2022, San Diego, CA, USA

path length, (b) average path length, (c) maximum path length and

(d) minimum path length.

The combination of the number of paths and path length

sketches the shape of a circuit on wideness and depth. A depth-first

search is performed on the gate-level netlist to extract the features.

Our traversal algorithm consumes only 𝑂(𝑛) runtime, where 𝑛 is

the number of cells in the circuit. The process of extracting labels

shares the same framework as extracting features, but instead of

traversing the gate-level circuit, it traverses the LUT-level circuit

and captures LUT logic levels.

Once the features and labels are acquired and combined as

training data, they are then filtered to remove abnormal and trivial

cases. For example, a large netlist could have too many paths

leading to integer overflow, and the number needs to be converted

to a floating point. Trivial cases like constant logic, which can lead

to 0-level, are removed. The whole dataset is then divided into 80%

for training and 20% for testing.

2.3 Proposed ML Model

In this work, we adopt a supervised learning model based on

gradient boosting, Light Gradient Boosting Machine (LGBM) [9]

as it works well on the highly non-linear relationships that underly

delay estimation. Our framework can be easily integrated into

AMD’s Vivado ML®Compiler.

3 Flow Integration

After the model is trained using the proposed framework, it can

be applied at various stages in logic synthesis and high-level

synthesis. Figure 3 and 4 show how it can be integrated in high-

level synthesis during scheduling and logic synthesis for operator

sharing.

Figure 3: Delay prediction integration into high-level

synthesis(left). Nodes in CDFG assigned cycles after predicting

delay of nodes(right)

In high-level synthesis, during scheduling, operation nodes in

CDFG are assigned cycles, and the delay of operations cannot

exceed the clock period times the number of cycles. Similarly, in

logic synthesis, DFG optimization, such as operator sharing, makes

delay-area trade-offs based on early estimates. In both cases, nodes

in DFG and CDFG can be lowered into gate-level netlist, and

MLDlyEst can be applied to provide accurate delay estimation. In

Figure 5, corresponding LUT level delays are predicted

respectively for the adder and comparator. They are simply added

up and compared with a timing budget, which can be derived from

design timing constraints or any heuristics. If the total delay is not

critical, then operator sharing can be applied to save the area of one

adder.

Figure 4 also shows how MLDlyEst can be integrated into the

Boolean optimization engine to choose a better implementation for

FPGA mapping from candidates generated from different

algorithms.

Figure 4: Delay prediction integration into early DFG and
Boolean optimization stage of logic synthesis

Figure 5: Operator sharing guided by prediction from
MLDlyEst

MLDlyEst is easy to integrate, and there is no need to change

the feature set nor add customized features to retrain the ML model

for different tools since the trained model works on a uniform gate-

level netlist.

4 Experimental Results

This section shows the evaluation of models based on accuracy

and runtime metrics. The experiment is conducted with a Linux

Machine running on a Xeon 2.6GHz processor. All ML models are

SLIP’22, November 3, 2022, San Diego, CA, USA

implemented with Scikit-learn [10]. Logical synthesis and

technology mapping is carried out by the Vivado ® Synthesis Tool.

4.1 Benchmark Design Suite

Figure 6: Number of Records for Each Label (Log Scale)

Our benchmark design suite contains 86 RTL industrial designs.

Each design, on average, contains 50K sub-circuits used as data

points. The Vivado Synthesis ® tool is invoked to transfer the RTL

design into the gate-level netlist, and then the LUT-level netlist.

The histogram in Figure 6 shows the distribution of the labels

on the benchmark suite designs. It is evident that the dataset is

heavily unbalanced (94% of the sampled labels have depth less than

5). Clearly, special handling is needed for the minority class to

ensure the performance on all records.

4.2 Model Training

As mentioned in Section 2.2, data is split randomly into 80%

training and 20% testing sets. Cross-validation is done to ensure the

stability of our model. Different options in model training affect the

performance of the model. In this section, we list the options that

work best for our cases.

In general, increasing the number of estimators helps reduce the

prediction errors without a significant increase on the inference

runtime. In our model, the number of estimators is set to 1000. The

number of estimators, maximum tree depths, step length and other

parameters can be optimized through an automatic hyperparameter

tuner, which is our intention for future work.

As shown in Figure 6, the distribution of the labels in our

benchmark is unbalanced, which could make the focus of the

training process on the majority, thus giving poor results on the

under-represented classes. To mitigate this problem, we increase

the LGBM weights for the less frequent data. In particular, we set

the weight to be inversely proportional to the class frequencies

during training.

4.3 Error of LGBM on Depth and Area Driven

Mapper

Table 1 shows the performance of ML model in predicting the

result of technology mapping when the mapper runs in different

modes. For the depth-driven mode, the mapper tries to minimize

the depth of the mapped netlist. For the area-driven mode, the

mapper optimizes the depth and the area of the design at the same

time. The experimental results shown are generated from the test

dataset.

Since the dataset is unbalanced, we evaluate the model on

different ranges of labels separately. By utilizing the weight

adjustment technique mentioned in Section 4.2, we achieve similar

accuracy among the different label classes.

From the column of mean absolute error (MAE), one can tell

that our model predicts the LUT depth well. In most label classes,

the MAE is less or equal to 0.2 and 0.5 for the depth and area-driven

mapper respectively. Even though the relative percentage error is

not explicitly given, one can infer that it is upper bounded by 20%,

which appears to be the MAE for the area-driven mapper for label

class less than or equal to five.

In addition to MAE, two more metrics are presented to help

understand the prediction result: “Err 99.7%” is the upper bound
error for 99.7% of the records. For example, Column 3 shows that

99.7% of all the records with LUT depth less or equal to five have

errors less or equal to 1.31. Also, in Table 1, “Err<=2 Pct” is the
percentage of records that have a prediction error less than or equal

to two logic levels.

Table 1: LGBM Prediction Accuracy on Depth-driven and

Area-driven Mapper

Figure 7: Confusion Matrix of the LGBM Model w.r.t. Depth

(left) and Area(right) Driven Mapper

SLIP’22, November 3, 2022, San Diego, CA, USA

The metrics in Table 1 show that the ML model performs better

on the depth-driven mapper compared to the area-driven mapper.

This observation coincides with our expectations as the area-driven

mapper enables resource sharing among the neighboring sub-

circuits, which is not well captured in our feature extraction

process. The confusion matrix in Figure 7 shows the same trend.

4.4 Runtime Analysis

Figure 8: Mapper and LGBM ML Model-based Delay

Estimation Runtime (s)

Figure 8 shows the runtime of the mapper and the ML model

over the benchmarks. On average, The ML model is 8x faster than

the mapper. The speedup varies depending on the scale of the

netlist. The benchmarks on the left-hand side (i.e. with lower ID’s)
are designs with large and deep combinational logic. Their

respective runtime gain is significantly higher than the designs with

less combinational logic on the right-hand side. This observation

supports the runtime complexity analysis of 𝑂(𝑛) for the ML model

vs. 𝑂(𝑛𝑘) for the mapper alluded to earlier. Mapper’s runtime is of
much higher order because it needs to enumerate Cuts for each

node. Rather than the highly pipelined design where shallow

netlists dominate, our model shows more potential on a deep netlist

or untimed large logic cones, which, in practice, is more frequently

the case when a prediction is needed.

4.5 Importance of Features

Figure 9: Feature Importance of the LGBM ML Model

Figure 9 shows the importance of features in the proposed

model. The number of PIs and the path length information

dominate, while the number of gates with different PIs also plays

an important role.

4.6 Error of Alternative Models and the Timer:

A Comparison

Model MAE MSE Accuracy

LGBM 0.09 0.04 96.02%

Timer 5.03 288 0.03%

LR 0.26 0.38 83.30%

MLP 0.59 0.06 81.78%

Table 2: Error of Timer and Models

Linear regression (LR) and multi-layer perceptron (MLP) are

implemented to explore the performance of different models.

Besides the features mentioned in section 2.2, we added the

logarithm of the number of paths and total path length with a base

of two, which exposes the linear characteristics from the

exponentially growing values. We tuned these models for a fair

comparison. The performance of a pre-mapping timer is also listed

for comparison. Similar to the post-mapped timer, the pre-mapped

timer computes arrival time based on the delays associated with

each pre-mapped gate and net. Considering that there is much

larger number of pre-mapped gates and nets compared to post-

mapped, their associated delays are adjusted and dampened. The

pre-mapped timer gives an albeit rough but acceptable estimate on

delay.

Table 2 shows the prediction results of Timer and other models

on the testing data. The computed arrival time from Timer is

normalized to LUT levels for comparison against ML models.

LGBM is superior to other models on MAE and mean squared error

(MSE). Accuracy in the table is defined as the ‘hit rate’ of
predictions. For example, if the ground truth is 5 LUT levels and

the predicted value is 4.4 (rounded down to 4), it is counted as miss.

And if the predicted value is 4.6 (rounded up to 5), it is counted as

a hit. Although Timer can give a rough estimate, it has a very low

hit rate because it tries to use an overly simplified axis (critical path

arrival time) to predict a much harder problem. LR gives better

performance than Timer since it takes more features than just

critical path depth. LGBM outperforms the rest because not only it

has more features, but it can also model non-linear behavior.

Compared to Timer, the integration of LGBM ML model yields a

big leap of 56x accuracy (MAE ratio) improvement on delay

estimation in the early stages of synthesis.

5 Conclusions

In this paper, a machine learning based framework for delay

estimation on gate-level netlist is presented. The LGBM model

gives an estimation with an error of less than 2 for most of the

SLIP’22, November 3, 2022, San Diego, CA, USA

benchmarks with 8x faster runtime compared with the depth-driven

mapper. Due to its flexibility, our model can be deployed in

multiple stages to guide the netlist optimization in the synthesis

flow. Our future work will focus on improving the performance of

the estimation on the area-driven mapper and predicting the delay

of specific path in the netlist.

REFERENCES
[1] J. Cong and Y. Ding, “FlowMap: An optimal technology mapping algorithm for

delay optimization in lookup-table based FPGA designs,” IEEE Trans. CAD,

Vol.13(1), Jan. 1994, pp. 1-12, doi: 10.1109/43.273754.

[2] J. Cong and Y. Ding, “On area/depth trade-off in LUT-based FPGA technology

mapping,” IEEE Trans. VLSI, Vol 2(2), Jun. 1994, pp. 137-148, doi:

10.1109/92.285741.

[3] J. Cong, C. Wu and Y. Ding, “Cut ranking and pruning: Enabling a general and
efficient FPGA mapping solution,” Proc. FPGA 99, pp. 29-36.

[4] R. Brayton, S. Chatterjee, A. Mishchenko, “Improvements to Technology
Mapping for LUT-Based FPGAs,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 26, no. 2, pp. 240-253, Feb. 2007,

doi: 10.1109/TCAD.2006.887925.

[5] K. Zhu, M. Liu, H. Chen, Z. Zhao and D. Pan, “Exploring Logic Optimizations
with Reinforcement Learning and Graph Convolutional Network,” 2020

ACM/IEEE 2nd Workshop on Machine Learning for CAD (MLCAD), 2020, pp.

145-150, doi: 10.1145/3380446.3430622.

[6] U. Gandhi, I. Bustany, W. Swartz and L. Behjat, “A Reinforcement Learning-

Based Framework for Solving Physical Design Routing Problem in the Absence

of Large Test Sets,” 2019 ACM/IEEE 1st Workshop on Machine Learning for

CAD (MLCAD), 2019, pp. 1-6, doi: 10.1109/MLCAD48534.2019.9142109.

[7] T. Martin, G. Grewal and S. Areibi, “A Machine Learning Approach to Predict

Timing Delays During FPGA Placement,” 2021 IEEE International Parallel and

Distributed Processing Symposium Workshops (IPDPSW), 2021, pp. 124-127,

doi: 10.1109/IPDPSW52791.2021.00026.

[8] D. Maarouf et al, “Machine-Learning Based Congestion Estimation for Modern

FPGAs,” 2018 International Conference on Field-Programmable Logic and

Applications (FPL), 2018, pp. 427-4277, doi: 10.1109/FPL.2018.00079.

[9] G. Ke et al, “LightGBM: a highly efficient gradient boosting decision tree,” In

Proceedings of the 31st International Conference on Neural Information

Processing Systems (NIPS'17). Curran Associates Inc., Red Hook, NY, USA,

3149–3157, doi: 10.5555/3294996.3295074.

[10] Pedregosa et al., “Scikit-learn: Machine Learning in Python,” 2011 JMLR 12, pp.

2825-2830.

[11] M. A. Elgammal, K. E. Murray, V. Betz, “RLPlace: Using Reinforcement
Learning and Smart Perturbations to Optimize FPGA Placement,” IEE
Transactions on Computer-Aided Design and Integrated Circuits and Systems,

no. 8 (2022): 2532-2545 , doi: 10.1109/TCAD.2021.3109863.

[12] K. E. Murray et al. “VTR 8: High Performance CAD and Customizable FPGA
Architecture modelling,” ACM Transactions on Reconfigurable Technologies

and Systems, vol. 13, no. 2, pp. 1-55, 2020, doi: 10.1145/3388617.

[13] I. Baig, U. Farooq, “Efficient Detailed Routing for FPGA Back-End Flow Using

Reinforcement Learning,” Electronics 11 (14)2240, 2022, doi:

10.3390/electronics11142240.

[14] A. mirhoseini, A. Goldie, M. Yazgan, J. Jiang, E. Songhori, S. Wang, Y.-J. Lee,

E. Johnson, O. Pathak, S. Bae et al. “Chip Placement With Deep Reinforcement
Learning,” arXiv preprint arXiv:2004.10746, 2020.

[15] S. Rai, W. :. Neto, Y. Miyasaka, X. Zhang, M. Yu, Q. Yi, et al, “Logic Synthesis
Meets Machine Learning: Trading Exactness for Generalization,” 2021 Design,

Automation & Test in Europe Conference & Exhibition (DATE), 2021, pp. 1026-

1031, doi: 10.23919/DATE51398.2021.9473972.

[16] K. Zhu, M. Liu, H. Chen, Z. Zhao, D. Pan, “Exploring Logic Optimizations with
Reinforcement Learning and Graph Convolutional Network,” 2020 ACM/IEEE

2nd Workshop on Machine Learning for CAD (MLCAD), 2022, pp. 145-150,

doi: 10.1145/3380446.3430622.

