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ABSTRACT

Accurate delay prediction is important in the early stages of logic
and high-level synthesis. In technology mapping for field
programmable gate array (FPGA), a gate-level circuit is transcribed
into a lookup table (LUT)-level circuit. Quick timing analysis is
necessary on a pre-mapped circuit to guide optimizations
downstream. However, a static timing analyzer is too slow due to
its complexity and highly inaccurate like other faster empirical
heuristics before technology mapping. In this work, we present a
machine learning based framework for accurately and efficiently
estimating the delay of a gate-level circuit from predicting the depth
of the corresponding LUT logic after technology mapping. Our
experimental results show that the proposed method achieves a 56x
accuracy improvement compared to the existing delay estimation
heuristic. Instead of running the mapper for the ground truth, our
delay estimator saves 87.5% on runtime with negligible error.
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1 Introduction

Early decisions in high-level synthesis or logic synthesis greatly
impact the final timing quality of result (QoR). However, delay
estimation is often too coarse at that stage to guide optimizations.
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The key reason is that the design is often represented with a high
level graph or technology-independent gates and not mapped into
FPGA hardware primitives.

The operation node in the control dataflow graph (CDFG) in
high-level synthesis and the dataflow graph (DFG) in logic
synthesis can be lowered and generated as a technology-
independent a gate-level netlist, which is also input to the Boolean
optimization engine. Our work chooses gate-level netlist as an
anchor point and presents a machine learning (ML)-based method
to estimate delay on pre-mapped gate-level netlist. The method is
8x faster than running FPGA technology mapping and has over
99% accuracy score with the mean squared error of less than 2 logic
levels.

The remainder of the paper is organized as follows. In Section
1.1, the process of FPGA technology mapping is presented. Section
1.2 provides an overview of ML in electronic design automation
(EDA). Our ML framework is described in section 2. Section 3
discusses how the proposed framework can be integrated into the
logic synthesis and high-level synthesis flows. The experimental
setup and detailed results and analyses are presented in section 4.
Section 5 presents our conclusions and future work.

1.1 Technology Mapping in FPGA Synthesis

A Boolean network is a directed acyclic graph (DAG) with
nodes corresponding to logic gates and directed edges
corresponding to connections between them. A combinational logic
function can be represented with a Boolean network
noncanonically. One logic function can have many representations
in a Boolean network generated by Boolean optimizations or by
construction. Technology mapping in FPGA synthesis is the
procedure of transforming a Boolean network into a network of
lookup tables (LUTs). A LUT can have up to k inputs and can
implement as many as 22 combinational logic functions. Figure 1
shows a simplified gate-level Boolean network and its post-
mapping result.
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Figure 1: A Boolean network representing f = (a|b) @ (c&d)
on the left and its LUT implementation after technology
mapping on the right.

A Boolean network (also referred to as gate-level netlist in our
context) for real combinational circuits can be large and has a
complex structure with re-convergent fanouts. A standard
technique for mapping a Boolean network into k-input LUTs is to
formulate it as a graph covering the problem [1,2,3]. Cuts are
computed on each node to cover logic cones in the Boolean network
with k-input LUTs. Costing is associated with each candidate cut
and propagated from input to output. After the cut computation, a
backward pass is executed to select the best cut choice. Most of the
runtime is spent during the cut computation phase, with a runtime
complexity of O(nk), where n is the number of nodes and k is
number of LUT inputs [4]. Depending on different cost functions
(delay, area, and wire length) and the topology of the pre-mapped
Boolean network, the generated LUTs circuitry can have a wide
range of logic levels and LUT count. Due to this variety, it is
desirable to predict the delay of the mapped result prior to mapping,
where we believe ML is an effective technique.

1.2 ML in EDA

In recent years there has been burgeoning research on applying
ML in EDA. For logic synthesis, Keren et al. adopted Graph Neural
Network (GNN) and Reinforcement learning (RL) to find the
sequence of optimizations to reduce logic delay and gate count [5].
Rai et al. present learning incompletely-specified functions on the
results of the recent IWLS 2020 competition [15]. Zhu et al.
proposed a Markov decision process formulation for the logic
optimization problem and RL approach incorporating a graph
convolutional network to explore the solution search space. Their
empirical results show improvements over well-known logic
heuristics [16]. For the backend, Mirhoseini et al. demonstrated a
RL-based macro placer on TensorFlow ASIC blocks [14]. Ghandi
et al. proposed a RL based router to route circuitry and fix
violations with limited access to labeled data [6]. Baig et al.
proposed an RL-based detailed routing approach for FPGA detailed
routing attaining a 35% speedup with similar or better quality of
results [13]. A whole class of regression or classification techniques
have been used for prediction. For example, Random Forest is
applied to predict timing delay during placement with 94%
accuracy [7]. Maarouf et al. created a competitive Linear
Regression model with comparable accuracy but on average 291x
faster than KNN and MLP based models to predict FPGA routing
congestion [8]. Elgammal et al. [11] enhanced a SA-based FPGA
placer with RL and targeted perturbations and showed 2.5x speedup
with comparable quality to VTR 8 [12].

To our knowledge, there is no prior ML-based research work to
predict timing delay before technology mapping. Delay is usually
estimated with pre-built libraries, which do not scale well and
suffer from inaccurate heuristics.

2 Proposed Framework

2.1 Overview
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Figure 2: Our proposed framework, MLDIlyTrain for training
and MLDIyEst for inference.

The proposed framework comprises two parts, shown in Figure
2. The first part is MLDlyTrain, which does the feature and label
extraction on a pool of designs and trains the ML model to predict
post-mapped LUT level. The second part is MLDIyEst for logic
depth inference. The LUT logic level based delay estimate is
accurate enough for logic and high-level synthesis.

2.2 Features and Label Extraction

Twelve features in four categories have been selected to capture
the topology of the gate-level netlist and behavior of technology
mapping:

1)  Number of Primary Inputs (PIs), in general reflects the
scale of a circuit, which helps make some quick decisions (e.g., any
circuit with six or fewer primary inputs can be encoded into a single
LUTS).

2)  Number of Gates is another metric of the size of a circuit.
To better describe the circuits and capture the nature of LUT
mapping, we categorize gates by their associated number of Pls
(e.g., Gates with the number of PI € (0,6], (6,12], (12, 18], ..., (31,
+00)) and keep track of the number of gates in each category.

3)  Number of Paths is a good supplement to the two features
above on the complexity of a circuit. It helps identify the circuit’s
fanout and indicates the circuit’s wideness.

4) Path Length in a circuit gives an estimation of the depth
of a circuit. We use four features to measure the length: (a) total
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path length, (b) average path length, (c) maximum path length and
(d) minimum path length.

The combination of the number of paths and path length
sketches the shape of a circuit on wideness and depth. A depth-first
search is performed on the gate-level netlist to extract the features.
Our traversal algorithm consumes only O(n) runtime, where n is
the number of cells in the circuit. The process of extracting labels
shares the same framework as extracting features, but instead of
traversing the gate-level circuit, it traverses the LUT-level circuit
and captures LUT logic levels.

Once the features and labels are acquired and combined as
training data, they are then filtered to remove abnormal and trivial
cases. For example, a large netlist could have too many paths
leading to integer overflow, and the number needs to be converted
to a floating point. Trivial cases like constant logic, which can lead
to 0-level, are removed. The whole dataset is then divided into 80%
for training and 20% for testing.

2.3 Proposed ML Model

In this work, we adopt a supervised learning model based on
gradient boosting, Light Gradient Boosting Machine (LGBM) [9]
as it works well on the highly non-linear relationships that underly
delay estimation. Our framework can be easily integrated into
AMD’s Vivado ML®Compiler.

3 Flow Integration

After the model is trained using the proposed framework, it can
be applied at various stages in logic synthesis and high-level
synthesis. Figure 3 and 4 show how it can be integrated in high-
level synthesis during scheduling and logic synthesis for operator
sharing.

C-level design e
description o b
For target nodes: cyce 1 },{

Graph Node
lowering

| W ‘- -A\ ;"
- O
netlist ) / \;
Xz / 5

.........................

i
(
o

M
MLDIyEst \ ]
m : SR ! 5

Assign cycle X

-

Figure 3: Delay prediction integration into high-level
synthesis(left). Nodes in CDFG assigned cycles after predicting
delay of nodes(right)

In high-level synthesis, during scheduling, operation nodes in
CDFG are assigned cycles, and the delay of operations cannot
exceed the clock period times the number of cycles. Similarly, in
logic synthesis, DFG optimization, such as operator sharing, makes

delay-area trade-offs based on early estimates. In both cases, nodes
in DFG and CDFG can be lowered into gate-level netlist, and
MLDIyEst can be applied to provide accurate delay estimation. In
Figure 5, corresponding LUT level delays are predicted
respectively for the adder and comparator. They are simply added
up and compared with a timing budget, which can be derived from
design timing constraints or any heuristics. If the total delay is not
critical, then operator sharing can be applied to save the area of one
adder.

Figure 4 also shows how MLDIyEst can be integrated into the
Boolean optimization engine to choose a better implementation for
FPGA mapping from candidates generated from different
algorithms.
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Figure 4: Delay prediction integration into early DFG and
Boolean optimization stage of logic synthesis
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Figure 5: Operator sharing guided by prediction from
MLDIyEst

MLDIyEst is easy to integrate, and there is no need to change
the feature set nor add customized features to retrain the ML model
for different tools since the trained model works on a uniform gate-
level netlist.

4 Experimental Results

This section shows the evaluation of models based on accuracy
and runtime metrics. The experiment is conducted with a Linux
Machine running on a Xeon 2.6GHz processor. All ML models are
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implemented with Scikit-learn [10]. Logical synthesis and
technology mapping is carried out by the Vivado ® Synthesis Tool.

4.1 Benchmark Design Suite
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Figure 6: Number of Records for Each Label (Log Scale)

Our benchmark design suite contains 86 RTL industrial designs.
Each design, on average, contains 50K sub-circuits used as data
points. The Vivado Synthesis ® tool is invoked to transfer the RTL
design into the gate-level netlist, and then the LUT-level netlist.

The histogram in Figure 6 shows the distribution of the labels
on the benchmark suite designs. It is evident that the dataset is
heavily unbalanced (94% of the sampled labels have depth less than
5). Clearly, special handling is needed for the minority class to
ensure the performance on all records.

4.2 Model Training

As mentioned in Section 2.2, data is split randomly into 80%
training and 20% testing sets. Cross-validation is done to ensure the
stability of our model. Different options in model training affect the
performance of the model. In this section, we list the options that
work best for our cases.

In general, increasing the number of estimators helps reduce the
prediction errors without a significant increase on the inference
runtime. In our model, the number of estimators is set to 1000. The
number of estimators, maximum tree depths, step length and other
parameters can be optimized through an automatic hyperparameter
tuner, which is our intention for future work.

As shown in Figure 6, the distribution of the labels in our
benchmark is unbalanced, which could make the focus of the
training process on the majority, thus giving poor results on the
under-represented classes. To mitigate this problem, we increase
the LGBM weights for the less frequent data. In particular, we set
the weight to be inversely proportional to the class frequencies
during training.

4.3 Error of LGBM on Depth and Area Driven
Mapper

Table 1 shows the performance of ML model in predicting the
result of technology mapping when the mapper runs in different
modes. For the depth-driven mode, the mapper tries to minimize
the depth of the mapped netlist. For the area-driven mode, the
mapper optimizes the depth and the area of the design at the same
time. The experimental results shown are generated from the test
dataset.

Since the dataset is unbalanced, we evaluate the model on
different ranges of labels separately. By utilizing the weight
adjustment technique mentioned in Section 4.2, we achieve similar
accuracy among the different label classes.

From the column of mean absolute error (MAE), one can tell
that our model predicts the LUT depth well. In most label classes,
the MAE is less or equal to 0.2 and 0.5 for the depth and area-driven
mapper respectively. Even though the relative percentage error is
not explicitly given, one can infer that it is upper bounded by 20%,
which appears to be the MAE for the area-driven mapper for label
class less than or equal to five.

In addition to MAE, two more metrics are presented to help
understand the prediction result: “Err 99.7%” is the upper bound
error for 99.7% of the records. For example, Column 3 shows that
99.7% of all the records with LUT depth less or equal to five have
errors less or equal to 1.31. Also, in Table 1, “Err<=2 Pct” is the
percentage of records that have a prediction error less than or equal
to two logic levels.

Label MAE Err 99.7% Err<=2 Pct
Depth Area Depth Area Depth Area

[ 1,50] 0.05 0.23 1.31 2.50 100.00% 99.62%
[ 1, 51 0.05 0.20 131 2.21 100.00% 99.82%
[ 6,10] 0.14 0.63 1.38 5.38 99.958% 96.26%
[11,20] 0.11 0.50 1.80 3.93 599.88% 96.48%
[21,30] 0.05 0.32 0.67 1.71 59.98% 59.25%
[31,40] 0.17 0.27 27 1.27 99.96% 99.78%
[41,50] 0.54 1.36 1.15 1.65 100.00% 96.25%

Table 1: LGBM Prediction Accuracy on Depth-driven and
Area-driven Mapper

TFue label
Tue label

0 10 20 30 40 o 10 20 30 40
Predicted label Predicted label

Figure 7: Confusion Matrix of the LGBM Model w.r.t. Depth
(left) and Area(right) Driven Mapper
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The metrics in Table 1 show that the ML model performs better
on the depth-driven mapper compared to the area-driven mapper.
This observation coincides with our expectations as the area-driven
mapper enables resource sharing among the neighboring sub-
circuits, which is not well captured in our feature extraction
process. The confusion matrix in Figure 7 shows the same trend.

4.4 Runtime Analysis
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Figure 8: Mapper and LGBM ML Model-based Delay
Estimation Runtime (s)

Figure 8 shows the runtime of the mapper and the ML model
over the benchmarks. On average, The ML model is 8x faster than
the mapper. The speedup varies depending on the scale of the
netlist. The benchmarks on the left-hand side (i.e. with lower ID’s)
are designs with large and deep combinational logic. Their
respective runtime gain is significantly higher than the designs with
less combinational logic on the right-hand side. This observation
supports the runtime complexity analysis of O(n) for the ML model
vs. O(nk) for the mapper alluded to earlier. Mapper’s runtime is of
much higher order because it needs to enumerate Cuts for each
node. Rather than the highly pipelined design where shallow
netlists dominate, our model shows more potential on a deep netlist
or untimed large logic cones, which, in practice, is more frequently
the case when a prediction is needed.

4.5 Importance of Features
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Figure 9: Feature Importance of the LGBM ML Model

Figure 9 shows the importance of features in the proposed
model. The number of PIs and the path length information

dominate, while the number of gates with different Pls also plays
an important role.

4.6 Error of Alternative Models and the Timer:
A Comparison

Model MAE MSE Accuracy

LGBM 0.09 0.04 96.02%

Timer 5.03 288 0.03%
LR 0.26 0.38 83.30%
MLP 0.59 0.06 81.78%

Table 2: Error of Timer and Models

Linear regression (LR) and multi-layer perceptron (MLP) are
implemented to explore the performance of different models.
Besides the features mentioned in section 2.2, we added the
logarithm of the number of paths and total path length with a base
of two, which exposes the linear characteristics from the
exponentially growing values. We tuned these models for a fair
comparison. The performance of a pre-mapping timer is also listed
for comparison. Similar to the post-mapped timer, the pre-mapped
timer computes arrival time based on the delays associated with
each pre-mapped gate and net. Considering that there is much
larger number of pre-mapped gates and nets compared to post-
mapped, their associated delays are adjusted and dampened. The
pre-mapped timer gives an albeit rough but acceptable estimate on
delay.

Table 2 shows the prediction results of Timer and other models
on the testing data. The computed arrival time from Timer is
normalized to LUT levels for comparison against ML models.
LGBM is superior to other models on MAE and mean squared error
(MSE). Accuracy in the table is defined as the ‘hit rate’ of
predictions. For example, if the ground truth is 5 LUT levels and
the predicted value is 4.4 (rounded down to 4), it is counted as miss.
And if the predicted value is 4.6 (rounded up to 5), it is counted as
a hit. Although Timer can give a rough estimate, it has a very low
hit rate because it tries to use an overly simplified axis (critical path
arrival time) to predict a much harder problem. LR gives better
performance than Timer since it takes more features than just
critical path depth. LGBM outperforms the rest because not only it
has more features, but it can also model non-linear behavior.
Compared to Timer, the integration of LGBM ML model yields a
big leap of 56x accuracy (MAE ratio) improvement on delay
estimation in the early stages of synthesis.

5 Conclusions

In this paper, a machine learning based framework for delay
estimation on gate-level netlist is presented. The LGBM model
gives an estimation with an error of less than 2 for most of the
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benchmarks with 8x faster runtime compared with the depth-driven
mapper. Due to its flexibility, our model can be deployed in
multiple stages to guide the netlist optimization in the synthesis
flow. Our future work will focus on improving the performance of
the estimation on the area-driven mapper and predicting the delay
of specific path in the netlist.
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